
ar
X

iv
:2

50
6.

07
01

0v
1 

 [
cs

.C
R

] 
 8

 J
un

 2
02

5

ModelForge: Using GenAI to Improve the
Development of Security Protocols

Martin Duclos1[0000−0003−2182−6496], Ivan A. Fernandez1[0009−0003−4153−4105],
Kaneesha Moore1[0009−0000−1197−3228], Sudip Mittal1[0000−0001−9151−8347], and

Edward Zieglar3[0000−0001−5107−2125]

1 Mississippi State University, Mississippi State, MS 39762, USA
{md128,iaf28,kkm267}@msstate.edu,mittal@cse.msstate.edu

2 National Security Agency, Fort George G. Meade, MD 20755, USA
evziegl@nsa.gov

Abstract. Formal methods can be used for verifying security protocols,
but their adoption can be hindered by the complexity of translating nat-
ural language protocol specifications into formal representations. In this
paper, we introduce ModelForge, a novel tool that automates the trans-
lation of protocol specifications for the Cryptographic Protocol Shapes
Analyzer (CPSA). By leveraging advances in Natural Language Process-
ing (NLP) and Generative AI (GenAI), ModelForge processes protocol
specifications and generates a CPSA protocol definition. This approach
reduces the manual effort required, making formal analysis more acces-
sible. We evaluate ModelForge by fine-tuning a large language model
(LLM) to generate protocol definitions for CPSA, comparing its perfor-
mance with other popular LLMs. The results from our evaluation show
that ModelForge consistently produces quality outputs, excelling in syn-
tactic accuracy, though some refinement is needed to handle certain pro-
tocol details. The contributions of this work include the architecture and
proof of concept for a translating tool designed to simplify the adoption
of formal methods in the development of security protocols.

Keywords: Formal Methods · Security Protocols · CPSA · NLP · Gen-
erative AI · LLM · Protocol Analysis.

1 Introduction

The current standards process used by the Internet Engineering Task Force
(IETF) for reviewing security protocols is hindered by a lack of verification of
the stated protocol properties. This shortcoming primarily arises from the ab-
sence of formal proofs, which are essential for thorough verification. In an effort
to enhance the standards process, the IETF is encouraging protocol develop-
ers to incorporate formal methods analysis and validation into their work [6].
Formal methods are mathematical techniques used to prove the correctness and
security properties of protocols. However, formal methods analysis is a complex
area that demands specialized expertise, rendering it inaccessible to some secu-
rity protocol developers [5]. This paper aims to support the IETF’s efforts by

https://arxiv.org/abs/2506.07010v1


2 M. Duclos et al.

simplifying formal methods analysis and validation, thereby making these tasks
more accessible to security protocol developers.

One approach to formal methods analysis, as described by Meadows [13] and
originally suggested by Kemmerer [8], involves modeling a protocol in a formal
language. A verification system is then employed to validate these models against
the stated protocol properties (e.g., secrecy and authentication). Protocol devel-
opers perform analysis and verification using tools such as Cryptographic Pro-
tocol Shapes Analyzer (CPSA), Maude-NPA, Tamarin, and ProVerif. However,
this task is both tedious and labor-intensive, often requiring a domain expert
to parse and convert protocol specifications—typically expressed in natural lan-
guage [18, 7, 17]—into models or protocol definitions compatible with a formal
methods tool [6]. Consequently, accurately translating protocol specifications
into a usable form for formal methods tools poses a significant challenge [5].

As illustrated in Figure 1, the current IETF standards process could be im-
proved by making formal methods analysis tools more accessible to protocol
developers. Increased accessibility would likely encourage security protocol de-
velopers to integrate these tools into their workflow, enabling them to perform
protocol analysis during the specification development phase, even before sub-
mitting a protocol proposal to the IETF. We envision an enhanced workflow
where a translator tool is capable of accepting protocol specifications and turn-
ing them into protocol definitions or models for a formal methods tool. Such a
system could potentially automate a portion of the creation of security protocol
definitions, reducing the manual effort required and improving efficiency. Sub-
sequently, this translator tool would align with one of the goals of the Usable
Formal Methods Research Group (UFMRG), established by the IETF in January
2023 [6], which seeks to understand how formal methods can be incorporated
into the development of specifications for security protocols.

?

Protocol
Proposal

Protocol
Developers

IETF
Review

1 2 3 4

IETF Standards Process

Formal
Proofs

Fig. 1. Overview of the IETF standards process for security protocols, highlighting
the lack of formal verification at key stages. ModelForge aims to automate aspects of
formal methods analysis to address these gaps. (1) Developers design a new protocol,
(2) compile protocol specifications into a proposal, (3) often submitting it without
formal proofs, (4) leaving the IETF to establish formal proofs during review.

Building on our objective of making formal methods analysis more accessi-
ble, we propose ModelForge, a translating tool that leverages recent advances



ModelForge: Using GenAI to Improve the Development of Security Protocols 3

in Natural Language Processing (NLP) and Generative AI (GenAI). Our tool
feeds protocol specifications into a fine-tuned Large Language Model (LLM),
which then automatically generates candidate protocol definitions or models.
ModelForge is specifically designed with CPSA as the target protocol analyzer,
requiring the LLM to output the protocol definitions using CPSA syntax. The
CPSA formal methods tool necessitates a protocol definition (model) and a par-
tial description of an execution (protocol skeleton) as inputs, both formatted as
structured text using symbolic expressions (s-expressions) [10]. The structured
output candidates generated by ModelForge will need to be reviewed and revised
by a domain expert. This step is to ensure that protocol definitions accurately
represent the protocol specifications before undergoing analysis. This novel ap-
proach has the potential to enhance the overall efficiency of the secure protocol
formal analysis process by reducing the manual effort and complexity associ-
ated with translating specifications into the format required by CPSA, thereby
making formal analysis more accessible.

Our key contributions are: 1) the development of an architecture for trans-
lating natural language protocol specifications into CPSA protocol definitions,
2) the validation of this architecture through a proof-of-concept implementation,
and 3) the evaluation of various LLMs in translating protocol specifications into
CPSA protocol definitions. In summary, our paper presents a methodology that
lowers the barriers to adopting formal methods tools in the field of security
protocol development and analysis.

To address the complexity and inaccessibility of formal methods in security
protocol development, as we discussed in the introduction, we now focus on key
concepts and related work in formal methods, NLP, and Generative AI, which
provide the basis for our proposed solution, ModelForge.

2 Background and Related Work

Despite advancements in Natural Language Processing (NLP), translating pro-
tocol specifications into formal definitions remains a challenge across various
tools, including CPSA. Automating this translation process offers a potential
solution. This section reviews related work in formal methods, NLP, and large
language models (LLMs) as a foundation for addressing this challenge.

2.1 Internet Engineering Task Force

The Internet Engineering Task Force (IETF) develops standards and security
protocols through the Request for Comments (RFC) process, which relies heavily
on natural language to promote discussion and consensus. In January 2023, the
IETF established the Usable Formal Methods Research Group (UFMRG) to
promote the use of formal methods in protocol standards development [6].



4 M. Duclos et al.

2.2 Formal Methods in Protocol Analysis

Protocol developers and researchers can utilize different formal methods tools to
verify the security goals of a protocol. In the context of such tools, formal meth-
ods are expressive mathematical models used to prove theorems constructed from
a protocol’s stated properties. These methods fall under domains such as model
checking and logical inference. As defined by Lal et. al, the emphasis within
model checking lies in exploring all possible states and transitions in a system-
atic nature, using abstractions to optimize the verification analysis. Whereas,
logical inference, the domain in which our work resides, uses mathematical rea-
soning of the system to determine the validity of the protocol analysis [9].

2.3 Cryptographic Protocol Shapes Analyzer

The MITRE Corporation developed the Cryptographic Protocol Shapes Ana-
lyzer (CPSA) [10], an open-source tool for analyzing cryptographic protocols us-
ing logical inference within a strand-space model. CPSA acts as a model finder,
exploring protocol behaviors through roles, messages, variables, and their as-
sumptions, defined using a LISP (LISt Processing)-like syntax.”

CPSA uses partial executions, known as skeletons, which instantiate strands
and roles with variable assumptions to identify possible protocol behaviors. Fig-
ure 2 shows an example from the CPSA manual. In a Dolev-Yao network [4],
where an adversary can intercept, alter, and fabricate messages, CPSA finds all
distinct protocol executions and outputs them as shapes [11].

Shapes represent distinct protocol executions, and each contains analysis
sentences that capture “all that can be learned from a CPSA run” [14], enabling
derivation of security goals and proofs. We selected CPSA for our work due to
our familiarity with the tool and access to experts.

2.4 Large Language Models

LLMs are versatile models trained on large datasets to perform a wide range
of tasks across various domains. Their development goes back to the rise of
foundational models in natural language processing (NLP) [1]. Foundational
models are designed to be highly adaptable, using diverse training data to enable
fine-tuning for multiple tasks. However, their broad training scope can lead to
limitations in accuracy when applied to specialized fields.

2.5 ChemLLM

Foundational LLMs like OpenAI’s ChatGPT and Meta’s Llama are widely used,
but specialized domains, such as chemistry, benefit from domain-specific mod-
els. Zhang et al. [20] emphasize that foundational models often lack chemical
knowledge and propose ChemLLM, a chemistry-specific LLM fine-tuned from a
foundational model. They also demonstrate the use of synthetic data to train
the model when organic data is limited.



ModelForge: Using GenAI to Improve the Development of Security Protocols 5

(defprotocol blanchet basic
(defrole init

(vars (a b akey) (s skey) (d data))
(trace (send (enc (enc s (invk a)) b))

(recv (enc d s)))
(uniq-orig s))

(defrole resp
(vars (a b akey) (s skey) (d data))
(trace (recv (enc (enc s (invk a)) b))

(send (enc d s)))
(uniq-orig d)))

(defskeleton blanchet
(vars (a b akey) (s skey) (d data))
(defstrand init 2 (a a) (b b) (s s) (d d))
(deflistener d)
(non-orig (invk b)))

(defskeleton blanchet
(vars (a b akey) (s skey) (d data))
(defstrand resp 2 (a a) (b b) (s s) (d d))
(deflistener d)
(non-orig (invk a) (invk b)))

Fig. 2. Blanchet’s Protocol, defined in CPSA syntax, consists of two steps. First, the
initiator (init) sends a symmetric key s to the responder (resp), signed with init’s
private key (a) and encrypted with resp’s public key (b). Then, resp sends data d back
to init, encrypted with s.

2.6 StrucBench

Extending LLMs beyond simple text generation can be challenging. Tang et al.
[19] note that LLMs, such as GPT-4, struggle with generating intricate formatted
text including complex structured data (e.g., tables). These limitations are likely
due to the way LLMs are trained to mimic patterns of human language and
the token requirements for structured output. Tang et al. propose the Format
Chain-of-Thought (FormatCOT) methodology for generate fine-tuning pairs via
self-instruction. To address the research gaps with LLMs used for structured
output including systemic analyses, they also introduce the STRUC-BENCH
benchmark that focuses on structured text generation (e.g., HTML, LaTeX).

3 ModelForge Architecture

In this section, we present the modular architecture of ModelForge, a translator
designed to convert natural language secure protocol specifications into CPSA
protocol definitions. Figure 3 illustrates how the architecture centers around a
fine-tuned LLM for generating protocol definitions in response to user defined
queries. Like CPSA, ModelForge is designed for researchers and developers work-
ing with cryptographic protocols and formal methods. The main components and
data flow are illustrated in Figure 3.



6 M. Duclos et al.

ControllerUser

1

2

Specifications 
Generation

Process

Seed 
Template

Fine-Tuning 
Dataset

Fine-Tuning
Process

Base 
GPT-3.5

Fine-Tuned 
GPT-3.5 LLM

CPSA 
Definitions

Context

Pre-processing

Query

3

4

Generated 
Response

Pre-processing

Generative Workflow

Instructions 
Prompt

Protocol 
Specifications

Protocol 
Definition

Fig. 3. ModelForge architecture: (1) A user submits protocol specifications as a query.
(2) The controller combines the query with an instruction prompt and sends it to the
fine-tuned LLM. (3) The LLM generates a CPSA protocol definition. (4) The output
is then delivered to the user for validation.

3.1 Query

A user-provided query serves as both the input and the starting point for Mod-
elForge. The query consists of a natural language protocol specifications. Figure 4
presents an example of a simple user query.

3.2 Generative Workflow

The keystone of the generative workflow in our architecture is a fine-tuned LLM,
a subset of generative AI focused specifically on text generation. In our use
case, this model generates a CPSA protocol definition from natural language
specifications, aiding in the formal methods analysis of security protocols.

3.3 Pre-processing

Before the generative workflow can be utilized, several components must be
initialized as part of a pre-processing sequence. These components, highlighted
in a darker shade in Figure 3, consist of pre-processing tasks, loosely categorized
into dataset-related, fine-tuning, and configuration tasks.



ModelForge: Using GenAI to Improve the Development of Security Protocols 7

Protocol Description: Alice and Bob require a secure protocol for mutual
authentication over an insecure network. Using the specifications below, create
a CPSA protocol definition. The protocol must employ public-key encryption[...]

Initiation Sequence: Alice sends a message to Bob including Alice’s identity (a)
and her nonce (n1), encrypted with Bob’s public key. Upon receiving Alice’s
message, Bob sends to Alice the nonce (n1) received from Alice, his identity
(b), and his nonce (n2), encrypted with Alice’s public key. Alice decrypts Bob’s
message then sends Bob’s nonce (n2) back to him.

Fig. 4. Example of a user-submitted query for a secure protocol using public-key en-
cryption. This query serves as input for ModelForge.

3.4 Fine-Tuning Dataset

One of the initial challenges we faced was the scarcity of CPSA protocol defini-
tions available to us for our fine-tuning goal. To address this issue, we utilized
GPT-4, to generate ten seed templates of CPSA protocol definitions. These
templates served as the question portion of a question-and-answer (Q&A) pair.
GPT-4 was further employed to generate corresponding protocol specifications,
creating synthetic Q&A pairs of CPSA protocol definitions and their associated
specifications. After forming these pairs, GPT-4 was leveraged once again to
introduce variance into the existing set of Q&A pairs, thereby increasing the
number of pairs available for the fine-tuning process.

3.5 Fine-Tuning Process

With a curated dataset of synthetic Q&A pairs in place, the next step involved
fine-tuning a pre-trained LLM to ensure it could accurately generate protocol def-
initions, a task requiring domain-specific adjustments. Fine-tuning is a method
used to update the weights of a pre-trained model by further training it on
specific data. This process is referred to as supervised fine-tuning when it uses
labeled data tailored to a particular task [3]. In other words, fine-tuning enables
us to modify the LLM in two ways: 1) inject it with additional knowledge, and
2) altering its behavior to perform specific tasks more effectively. In Section 4.4,
we detail the fine-tuning process associated with OpenAI’s GPT-3.5 model, the
LLM selected for ModelForge.

3.6 Configuration

The configuration components are the settings and parameters that guide the
behavior of the LLM during the generation process. In our architecture, this con-
sists of a single but important configuration component: a pre-defined instruc-
tions prompt. This prompt includes specialized instructions and a placeholder
for the user query.



8 M. Duclos et al.

3.7 Context

The context is obtained by concatenating two components: 1) the user query
and 2) the instructions prompt. These two components form the context, and is
later fed by the controller as an input into the LLM for processing.

3.8 Fine-Tuned LLM

Core to our architecture, is an LLM responsible for translating the input into an
output that contains a CPSA protocol definition. To accomplish this task, the
LLM relies on three types of knowledge: 1) knowledge acquired during an initial
pre-training phase, 2) knowledge gained through the fine-tuning process, and 3)
context-specific knowledge provided by the user query. In Section 4.4, we detail
the specifics of using GPT-3.5-turbo from OpenAI, the LLM we selected for the
implementation of our translator.

3.9 Generated Response

The output out of the LLM consists of structured text, made of symbolic expres-
sions that form a CPSA protocol definition. See Figure 5 for an output example.

(herald "Mutual Authentication Protocol
with Public Key Encryption")

(defprotocol mutual-auth basic
(defrole init

(vars (a name) (b name) (n1 text) (n2 text)
(pubk data))
(trace

(send (enc (cat a n1) (pubk b)))
(recv (enc (cat n1 n2) (pubk a)))
(send n2)))

Fig. 5. Example of a generated CPSA protocol definition by ModelForge, illustrating
the output format using s-expressions for protocol roles and trace sequences.

3.10 Controller

The controller’s role is to orchestrate the sequence of execution between the ar-
chitectural components. Additionally, the controller is responsible for initializing
the system and setting up the necessary parameters and states.

3.11 Data Flow

As illustrated in Figure 3, the flow of data through the main components of the
architecture is described below.



ModelForge: Using GenAI to Improve the Development of Security Protocols 9

(1) User Query: The process begins when a user submits a query containing
secure protocol specifications, similar to the example in Figure 4.
(2) Query and Prompt Concatenation: The next step consists of concatenating
the user query with instructions prompt. This will form the input for the LLM.
(3) LLM Response Generation: The combined input is then fed into a fine-tuned
LLM, which is instructed to generate a CPSA protocol definition based on the
secure protocol specifications contained within the input.
(4) Output Delivery: Finally, the controller receives the response generated by
the LLM and directs it back to the user.

4 Experimental Results

In this section, we present the findings from our experiments, including both
a quantitative and qualitative evaluation methods of our fine-tuned translator
model. We also provide information on the technical setup of our experiment,
along with details on the survey instrument used to collect data for the eval-
uation. Finally, we present and discuss the results, offering insights into the
effectiveness of our approach.

4.1 Evaluation

To assess the effectiveness of ModelForge in generating CPSA protocol defini-
tions, we conducted an evaluation using both quantitative and qualitative meth-
ods. The evaluation involved 4 participants with relevant experience ranging
from less than one year to 10 or more years. These participants reviewed the
outputs generated by various LLMs, rating their correctness, clarity, and com-
pleteness, while also providing feedback on the outputs’ strengths and weak-
nesses. This allowed us to gather valuable data on the LLMs’ effectiveness in
meeting the requirements of CPSA protocol definitions. The data collection was
carried through a survey implemented using Google Forms. The survey presented
participants with three distinct queries and a total of nine corresponding CPSA
protocol definitions. Table 1 provides the specific criteria and definitions used in
the survey.

Table 1. Evaluation criteria for assessing CPSA protocol definitions, including cor-
rectness, clarity, and completeness for formal analysis.

Criterion Description
Correctness Output uses proper CPSA syntax.
Clarity Output is easy to read and well-structured.
Completeness Output covers the main aspects of the query.



10 M. Duclos et al.

4.2 Quantitative Method

Our quantitative portion of the evaluation, focused on assessing how well Mod-
elForge, along with other popular LLMs (see Table 2), could generate an output
that aligns with the syntactical requirements of CPSA, readability of protocol
definitions, and the intent of the user query.

To assess the protocol definitions, we collected ratings from subject-matter
experts who evaluated how closely each model’s output approximated a com-
plete, accurate and easily readable CPSA protocol definition.

For each output, experts were asked to rate its correctness, clarity, and com-
pleteness on a scale from 1 to 5, with 1 indicating an unusable output and 5
indicating a very good output. Table 1 provides the criteria used in the survey.

The experts’ ratings provided data on each LLM’s performance, highlighting
their ability or inability in generating CPSA protocol definitions. A summary of
the ratings provided by the experts is presented in Table 3.

4.3 Qualitative Method

For the qualitative portion, we again asked the same experts to provide feedback
on the strengths and weaknesses of the generated CPSA protocol definitions.
Experts were asked to describe the strengths and weaknesses of each generated
protocol definition, providing detailed feedback on aspects that are critical for
the practical application of CPSA protocols but difficult to quantify. We present
a summary of the qualitative results in Table 4.

4.4 Experimental Setup

To gather experimental results for ModelForge, we implemented a proof of con-
cept based on the architecture depicted in Figure 3. This setup enabled us to
evaluate the performance of ModelForge by having human experts rate the out-
puts it generated. Below, we describe the technical details of our implementation.
Framework: At the core of our implementation is LlamaIndex, a modern data
framework for LLM-based applications, built using Python [15, 16, 2, 12]. We
chose LlamaIndex due to our familiarity with the framework and its ease of use
in working with LLMs.
LLM and Fine-Tuning: Building on the LlamaIndex framework, we used a
fine-tuned version of OpenAI’s GPT-3.5-turbo model to generate CPSA protocol
definitions from natural language specifications. The base model, gpt-3.5-turbo,
was fine-tuned to handle the structured nature of CPSA syntax.

Our fine-tuning process utilized a carefully curated dataset of 340 synthetic
Q&A pairs, partitioned into a 70% training set and a 30% testing set. The
model underwent 3 epochs of training, processing a total of 568,200 tokens. This
resulted in a training loss of 0.2976 and a validation loss of 0.3902, indicating
effective generalization of the task of generating CPSA protocol definitions from
input specifications.



ModelForge: Using GenAI to Improve the Development of Security Protocols 11

For the generation phases of both the fine-tuning dataset and protocol def-
initions, we intentionally set the temperature parameter to 0. This parameter
controls the randomness of the LLM’s outputs. This choice of temperature en-
courages more deterministic results, prioritizing consistency and adherence to
the protocol specifications over creative variations. By minimizing randomness,
we aimed to ensure that ModelForge’s outputs aligned with the structured nature
of CPSA syntax (see Section 2) and the specific requirements of each protocol
definition.

4.5 Results

Using our experimental setup, we evaluated the performance of ModelForge as
well as other LLMs (see Table 2) for comparison. In Tables 3 and 4 we present
the results for both quantitative and qualitative methods of our evaluation.

Table 2. List of additional LLMs evaluated alongside ModelForge.

LLM Author Parameters Description
Claude 3.5 Anthropic Unknown Conversational model for dialogue and in-

teractive tasks.
LLama 3 Meta 70B Multilingual model for a wide variety of

tasks.
GPT-4o OpenAI >175B Versatile model capable of a wide variety of

tasks.
Codestral Mistral AI 22B Specialized in generating and understand-

ing code.

The results of our quantitative study found in Table 3, summarizes the ex-
perts’ survey ratings across the three queries and nine models evaluated. The
data reflects the experts’ assessments of each model’s correctness, clarity, com-
pleteness, as defined in Table 1. These ratings provide valuable insights into the
relative effectiveness of ModelForge, compared to other leading LLMs.

ModelForge, as indicated by the results, demonstrates consistent performance
across correctness, clarity, and completeness, particularly excelling with Query 2,
where it achieved some of the highest ratings across all models. However, there is
room for improvement with Query 3, where GPT-4o outperformed ModelForge.
Despite this, ModelForge remains competitive, consistently ranking among the
top-performers overall.

From a qualitative perspective, the feedback on the strengths and weaknesses
provided by survey participants was also insightful. As summarized in Table 4,
ModelForge was regarded as having the best instance of CPSA syntax among
the evaluated models, but it still exhibited specific weaknesses, particularly in
protocol handling, such as issues with the use of public keys. While the structure
and syntax of its outputs were praised, the feedback highlighted opportunities
for further refinement to achieve greater CPSA compatibility.



12 M. Duclos et al.

Table 3. Normalized average ratings provided by experts for each query and model.
Metrics include correctness, clarity, and completeness for CPSA protocol definitions.

Query Model Correctness Clarity Completeness

Query 1

Codestral 0.00 0.50 0.33
Claude 3.5 0.50 0.50 0.33
GPT-4o 0.25 0.50 0.42
LLama 3.1 0.00 0.00 0.00
ModelForge 0.67 0.75 0.67

Query 2

Codestral 0.00 0.17 0.08
Claude 3.5 0.75 0.92 0.83
GPT-4o 0.00 0.00 0.00
LLama 3.1 0.00 0.17 0.25
ModelForge 0.83 0.92 0.92

Query 3

Codestral 0.00 0.33 0.25
Claude 3.5 0.50 0.50 0.50
GPT-4o 0.80 0.80 0.80
LLama 3.1 0.00 0.00 0.33
ModelForge 0.75 0.50 0.50

Table 4. Summary of qualitative feedback on ModelForge’s performance, highlighting
strengths in CPSA syntax generation and areas requiring improvement.

Aspect Feedback
Strengths Best CPSA syntax so far. Strong structure and formatting, rec-

ognized as clear.
Weaknesses Public key issue: Sending out the public key, which was not

part of the protocol definition. Limited CPSA compliance, needs
refinement for full compatibility.

5 Limitations and Future Work

While our evaluation in Section 4.1 demonstrates that ModelForge can generate
syntactically correct CPSA definitions, particularly excelling in certain queries,
there are notable limitations. In this section, we explore some of these limitations
and propose avenues for future improvement.

ModelForge’s initial outputs generally adhered to the CPSA syntax format,
however, they often required corrections. As such, human experts should remain
an integral part of any workflow. More precisely, a domain expert should carefully
review the AI-generated CPSA protocol definitions to ensure they are correct,
complete, and secure. A Human-in-the-Loop validation is an efficient way to
increase automation while minimizing risks caused by limitations.

One notable limitation of ModelForge is that it performs better when vari-
able names are provided as part of the user query. This presents a challenge
when translating documents such as RFCs, where variable names are not always
explicitly stated. To address this challenge, future work could explore methods



ModelForge: Using GenAI to Improve the Development of Security Protocols 13

such as reinforcement learning from human feedback to establish a basis for
automatically inferring or generating variable names.

Another significant challenge arises when working with RFCs, which often
contain a considerable amount of unnecessary content to form a protocol defi-
nition. One potential solution to this issue could involve training a separate AI
model designed to parse and extract only the necessary content for translation
into a protocol definition.

Addressing these limitations, such as inferring variable names and content
extraction from RFCs, will be key milestones in enhancing ModelForge’s capabil-
ities. Future research could explore larger-scale evaluations and the development
of additional models to handle more complex protocol features. In conclusion,
our work demonstrates the potential of AI-driven tools in simplifying formal
methods analysis, moving us closer to the IETF’s goal of integrating formal
methods into security protocol development.

6 Conclusion

In this paper, we presented ModelForge, a novel translating tool designed to facil-
itate the integration of formal methods analysis into the development of security
protocols. Our evaluation, detailed in Section 4.1, demonstrates ModelForge’s
strong performance. It consistently performs well and, in several instances, even
outperforms more recent foundational LLMs. It is important to note that only
ModelForge had been fine-tuned for the specific task, further highlighting the
effectiveness of domain-specific language models.

Looking ahead, future research could involve larger-scale evaluations across
a broader range of protocol specifications, as well as the development of an
ensemble of models to handle more complex features within CPSA, such as
Diffie-Hellman algebra, goals, and listeners.

Overall, the contributions of our work represent a step towards making for-
mal methods more accessible, supporting the Internet Engineering Task Force’s
(IETF) efforts to improve the verification of security protocol standards.

Acknowledgments. This work was supported by the PATENT Lab (Predictive Ana-
lytics and Technology Integration Laboratory) in the Department of Computer Science
and Engineering at Mississippi State University. The authors would also like to thank
the participants who completed the survey. We extend our sincere gratitude to Enis Go-
laszewski for his invaluable guidance in utilizing CPSA, which significantly contributed
to this research.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S.,
Bernstein, M.S., Bohg, J., Bosselut, A., Brunskill, E., et al.: On the opportunities
and risks of foundation models (2021)



14 M. Duclos et al.

2. Braunschweiler, N., Doddipatla, R., Keizer, S., Stoyanchev, S.: Evaluating large
language models for document-grounded response generation in information-
seeking dialogues (2023), https://arxiv.org/abs/2309.11838

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

4. Dolev, D., Yao, A.C.C.: On the security of public key protocols. 22nd Annual
Symposium on Foundations of Computer Science (sfcs 1981) pp. 350–357 (1981)

5. Gritzalis, S., Spinellis, D., Georgiadis, P.: Security protocols over open networks
and distributed systems: Formal methods for their analysis, design, and verifica-
tion. Computer Communications 22(8), 697–709 (1999)

6. Internet Engineering Task Force (IETF): Usable Formal Methods Proposed Re-
search Group (UFMRG). https://datatracker.ietf.org/doc/charter-irtf-ufmrg/01/
(January 2023), accessed: 1/08/2024

7. Kaufman, C., Hoffman, P.E., Nir, Y., Eronen, P., Kivinen, T.: Inter-
net Key Exchange Protocol Version 2 (IKEv2). RFC 7296 (Oct 2014).
https://doi.org/10.17487/RFC7296, https://www.rfc-editor.org/info/rfc7296

8. Kemmerer, R.: Using formal methods to analyze encryption protocols. IEEE J.
Select. Areas Commun. 7(4), 448–457 (1989)

9. Lal, S., Jain, M., Chaplot, V.: Approaches to formal verification of security proto-
cols (2011), https://api.semanticscholar.org/CorpusID:18414398

10. Liskov, M.D., Ramsdell, J.D., Guttman, J.D., Rowe, P.D.: The Cryptographic
Protocol Shapes Analyzer: A Manual for CPSA 4.1. The MITRE Corporation
(October 2023), version 4.3

11. Liskov, M.D., Rowe, P.D., Thayer, F.J.: Completeness of cpsa. Tech. rep., Citeseer
(2011)

12. Liu, J.: Llamaindex (November 2022). https://doi.org/10.5281/zenodo.1234,
https://github.com/jerryjliu/llama_index, release date: 2022-11-01

13. Meadows, C.: Applying formal methods to the analysis of a key management pro-
tocol. Journal of Computer security 1(1), 5–35 (1992)

14. Ramsdell, J.D.: Cpsa and formal security goals (2015)
15. Rau, A., Rau, S., Zoeller, D., Fink, A., Tran, H., Wilpert, C., Nattenmueller, J.,

Neubauer, J., Bamberg, F., Reisert, M., et al.: A context-based chatbot surpasses
radiologists and generic chatgpt in following the acr appropriateness guidelines.
Radiology 308(1), e230970 (2023)

16. Rau, S., Rau, A., Nattenmüller, J., Fink, A., Bamberg, F., Reisert, M., Russe,
M.F.: A retrieval-augmented chatbot based on gpt-4 provides appropriate differ-
ential diagnosis in gastrointestinal radiology: a proof of concept study. European
radiology experimental 8(1), 60 (2024)

17. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (Aug 2018). https://doi.org/10.17487/RFC8446, https://www.rfc-
editor.org/info/rfc8446

18. Simpson, W.A.: PPP Authentication Protocols. RFC 1334 (Oct 1992).
https://doi.org/10.17487/RFC1334, https://www.rfc-editor.org/info/rfc1334

19. Tang, X., Zong, Y., Zhao, Y., Cohan, A., Gerstein, M.: Struc-bench: Are large
language models really good at generating complex structured data? (2023)

20. Zhang, D., Liu, W., Tan, Q., Chen, J., Yan, H., Yan, Y., Li, J., Huang, W., Yue,
X., Zhou, D., et al.: Chemllm: A chemical large language model (2024)


