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Abstract
Large Language Models (LLMs) have
achieved remarkable success in tasks re-
quiring complex reasoning, such as code
generation, mathematical problem solving,
and algorithmic synthesis — especially when
aided by reasoning tokens and Chain-of-
Thought prompting. Yet, a core question
remains: do these models truly reason,
or do they merely exploit shallow statisti-
cal patterns? In this paper, we introduce
CHAIN-OF-CODE COLLAPSE, where we
systematically investigate the robustness
of reasoning LLMs by introducing a suite
of semantically faithful yet adversarially
structured prompt perturbations. Our eval-
uation — spanning 700 perturbed code
generations derived from LeetCode-style
problems — applies transformations such as
storytelling reframing, irrelevant constraint
injection, example reordering, and numeric
perturbation. We observe that while certain
modifications severely degrade performance
(with accuracy drops up to -42.1%), others
surprisingly improve model accuracy by up
to 35.3%, suggesting sensitivity not only to
semantics but also to surface-level prompt
dynamics. These findings expose the fragility
and unpredictability of current reasoning
systems, underscoring the need for more
principles approaches to reasoning alignments
and prompting robustness. We release our per-
turbation datasets and evaluation framework 1

to promote further research in trustworthy and
resilient LLM reasoning.

1 Introduction (Problem Statement)

Large Language Models (LLMs) have rapidly ad-
vanced in recent years, demonstrating impressive
capabilities across a range of tasks—from natu-
ral language understanding and translation to code

1https://github.com/jrohsc/
Chain-of-Code-Collapse

generation and complex reasoning (Brown et al.,
2020; Chowdhery et al., 2022; OpenAI, 2023; Bai
et al., 2023; Chen et al., 2021). With architectural
improvements and techniques like instruction tun-
ing, chain-of-thought (CoT) prompting (Wei et al.,
2022), and reinforcement learning from human
feedback, modern LLMs have achieved state-of-
the-art performance on benchmarks once thought
to require human-level intelligence.

Yet, despite their impressive breadth, LLMs
remain vulnerable to adversarial inputs. Small
changes in phrasing—often semantically irrele-
vant—can dramatically alter model behavior, es-
pecially in sensitive applications such as code gen-
eration. This vulnerability is not merely cosmetic:
subtle prompt perturbations can cause models to
ignore logic, omit constraints, or even produce
insecure code. As prior work on DeceptPrompt
(Wu et al., 2023) and prompt injection attacks has
shown, these models often rely on superficial pat-
terns in prompts, rendering them brittle in the face
of real-world input variability.

Recent efforts have emphasized the emergent
reasoning capabilities of LLMs. Through tech-
niques like CoT prompting, models can now tackle
tasks involving multi-step computation, logical in-
ference, and algorithmic synthesis. These de-
velopments have sparked hope that LLMs may
be evolving from stochastic parrots into true rea-
soners. However, the key question remains: do
LLMs genuinely reason—or do they simulate rea-
soning only when cues align with familiar tem-
plates? This distinction is crucial, especially when
evaluating robustness under linguistic or contex-
tual variation.

To rigorously study this question, Mirzadeh et
al. (2024) proposed GSM-Symbolic ((Mirzadeh
et al., 2024)), a benchmark that perturbs math
word problems using symbolic and seman-
tic transformations while keeping their logical

https://github.com/jrohsc/Chain-of-Code-Collapse
https://github.com/jrohsc/Chain-of-Code-Collapse
https://arxiv.org/abs/2506.06971v2


Perturbation Type: Gamification

(I) Clean Coding Problem
You are given a 0-indexed 2D integer array nums. Initially, your score is 0. Perform
the   following operations until the matrix becomes empty:   

  From each row in the matrix, select the largest number and remove it. In the
case of a tie, it  does    not matter which number is chosen.  Identify the highest
number amongst all those removed in step 1. Add that number to your score. 

  Return the final score. 
  Example 1:  .........................

**The Great Treasure Hunt of Azura**

  In the mystical realm of Azura, four brave adventurers - Arin, Lyra, Kaida, and
Zephyr - embark  on a perilous quest to claim the legendary Golden Chalice. The
chalice is hidden within a series  of ancient, labyrinthine temples, each containing
a treasure map etched onto a mysterious scroll. 

**Your Mission:**

  As the leader of the adventurers, your goal is to navigate the temples, collect
the treasure  maps, and claim the Golden Chalice. The treasure maps are
represented by a 2D grid of numbers,  where each number corresponds to a
specific treasure hidden within the temple. ...............

(II) Gamified Coding Problem

class Solution:
    def matrixSum(self, nums: List[List[int]]) -> int:
        # Sort each row in descending order
        for i in range(len(nums)):
            nums[i].sort(reverse=True)
        total_score = 0
        # Process columns from left to right (since each row is
sorted in descending order)
        for col in range(len(nums[0])):
            # Find the maximum value in the current column
            max_val = 0
            for row in range(len(nums)):
                # Only consider the column if it exists in this row
                if col < len(nums[row]):
                    max_val = max(max_val, nums[row][col])
            total_score += max_val

        return total_score

Claude 3.7 Sonnet

class Solution:
    def matrixSum(self, nums:
List[List[int]]) -> int:
        total_sum = 0
        for row in nums:
            total_sum += max(row)
        return total_sum

Claude 3.7 Sonnet

Correct

Wrong

Figure 1: Overview of CHAIN-OF-CODE COLLAPSE

structure intact. Their results revealed sig-
nificant accuracy drops under benign modifica-
tions—suggesting that reasoning performance is
highly sensitive to surface form, even when task
semantics remain unchanged.

In this work, we extend this line of inquiry
to the domain of code generation. We introduce
CHAIN-OF-CODE COLLAPSE (CoCC), a system-
atic framework for evaluating reasoning robust-
ness in LLMs using semantically aligned yet ad-
versarial prompt perturbations. Our perturbations
span a diverse set of transformations—including
storytelling, gamification, domain shifts, distract-
ing constraints, and negation—that vary in narra-
tive structure, lexical framing, and semantic drift.
Crucially, each transformation preserves the core
logic of the original task, allowing us to isolate
how surface-level changes impact reasoning fi-
delity.

As shown in Figure 1, our methodology re-
veals striking differences in LLM behavior under
these controlled perturbations. Some models col-
lapse under low-preservation rewrites, while oth-
ers paradoxically improve with narrative scaffold-
ing. Unlike prior benchmarks focused on clean ac-
curacy, our framework probes the cognitive stabil-
ity of LLMs—highlighting the need for robustness
evaluations that account for linguistic diversity,
adversarial intent, and human-aligned prompting.

In the paper, we successfully implemented six

distinct perturbation methods—numeric perturba-
tion, semantic clause injection, storytelling, gam-
ification, domain shift, and negation. Among ex-
isting benchmarks on code generation tasks (Chen
et al., 2021; Austin et al., 2021), we applied
them to a curated set of 100 LeetCode-style
problems from the LiveCodeBench dataset (Jain
et al., 2024), resulting in 700 perturbed instances.
We evaluated nine state-of-the-art LLMs using
Pass@1 (Jain et al., 2024) (adapted from Live-
CodeBench), code correctness via compilation-
based execution, and manual inspection. Our re-
sults showed that performance on clean prompts
ranged from 95.0% (Gemini-2.5-Flash) (Deep-
Mind, 2024) to 17.0% (DeepSeek-Coder-1.3B)
(Guo et al., 2025), while some perturbations like
storytelling improved accuracy for specific mod-
els (e.g., +23.5% for LLaMA-3.1-Instruct (Meta,
2024)). In contrast, low-preservation attacks such
as negation degraded performance by over 50%
in several cases. We conducted a detailed abla-
tion study and introduced semantic perturbation
robustness as a new evaluation axis to character-
ize model sensitivity to benign linguistic changes.

The relevance of this work is twofold. First, as
LLMs become integrated into development work-
flows and coding assistants, ensuring their relia-
bility under diverse and imperfect inputs becomes
paramount. Second, for the broader NLP commu-
nity, our findings offer a new lens through which



to assess model generalization—not just in terms
of accuracy, but in terms of behavioral consis-
tency under semantic perturbation. We believe this
framework can serve as a foundation for future re-
search on trustworthy and interpretable LLM rea-
soning.

2 Related work

The challenge of evaluating and ensuring true
reasoning capabilities in Large Language Mod-
els (LLMs), particularly for complex tasks such
as code generation, has been approached from
several angles. While LLMs have demonstrated
strong performance across multiple NLP tasks,
significant challenges remain in ensuring their ro-
bustness, reliability, and the actual depth of their
reasoning quality. Our work, builds upon and ex-
tends prior research in three key areas that inform
our study on reasoning failures under adversarial
prompt perturbations: the nature of reasoning in
LLMs, specific advancements and evaluations in
LLM-based code generation, and existing research
on attacks against LLM reasoning.

2.1 Reasoning Large Language Models

Reasoning in LLMs encompasses analytical tasks
like math problem-solving, code generation, and
logical inference. While traditional models
often rely on pattern recognition, reasoning-
enhanced models increasingly use techniques such
as reasoning tokens and Chain-of-Thought (CoT)
prompting (Wei et al., 2022). Reasoning tokens
are designed as explicit markers within the train-
ing process to guide LLMs toward more struc-
tured reasoning, an approach that has shown im-
provements in handling complex reasoning chal-
lenges, especially in arithmetic and code-related
tasks. CoT prompting (Wei et al., 2022) and
its derivatives, like Zero-shot-CoT (Wang et al.,
2023) and Program of Thoughts (Chen et al.,
2022) (which aims to separate computation from
reasoning), have demonstrably enhanced multi-
step reasoning. However, while CoT can improve
performance on standard benchmarks, our work
with CoCC investigates a critical subsequent ques-
tion: whether such induced reasoning chains re-
main stable and effective when the problem’s sur-
face structure is perturbed, even if the core logic is
preserved. This inquiry is crucial for understand-
ing the true depth and transferability of the elicited
reasoning.

Recent surveys and comprehensive re-
views (Mondorf and Plank, 2024; Prasad
et al., 2023; Golovneva et al., 2022) have further
explored the reasoning behavior of LLMs beyond
simple accuracy metrics, highlighting a prevalent
concern: LLMs often rely on surface-level cor-
relations rather than genuine logical inference.
For instance, models might associate certain key-
words or phrasing patterns with specific solution
templates. CoCC directly tests this dependency by
altering these patterns through methods like Story-
telling, Gamification, and Domain Shift, all while
maintaining the underlying semantic integrity of
the task. This reliance on potentially superficial
cues, even with advanced prompting techniques,
underscores the need for evaluations like ours. In
this work, we therefore aim to evaluate reasoning
through more nuanced behavioral analyses rather
than just final answer correctness, focusing on
behavioral consistency under controlled linguistic
and structural variations.

2.2 LLM for Code Generation

LLMs have shown remarkable capabilities in code
generation, assisting developers by translating nat-
ural language descriptions into executable code.
A comprehensive survey by Jiang et al. (Jiang
et al., 2024) categorizes recent advancements in
Code LLMs, covering aspects such as dataset cu-
ration, benchmark evaluations, and ethical impli-
cations. Evaluating the performance of LLMs in
code generation remains a critical research area.
Traditional methods primarily rely on execution-
based metrics such as pass@k, which evalu-
ates how often the generated code successfully
runs and passes test cases. More recent LLM-
based evaluation frameworks, such as CODE-
JUDGE (Tong and Zhang, 2024), leverage lan-
guage models themselves to assess the semantic
correctness of generated code.

While these methods are valuable, metrics like
pass@k primarily assess functional correctness on
standard problem formulations, and LLM-based
evaluators like CODEJUDGE, though assessing
semantic correctness, may not fully capture how
models respond when the presentation of the prob-
lem itself is adversarially yet semantically per-
turbed. Our study aligns with the goal of robust
evaluation but extends it by focusing on the sta-
bility of the reasoning process leading to code
generation when faced with such input variations.



CoCC specifically assesses the impact of these ad-
versarial modifications on the reasoning tasks in-
herent in code generation, probing whether the
logical process itself is resilient.

2.3 Reasoning LLM Attacks

The robustness of LLMs has been scrutinized
through various adversarial attack methodologies.
Previous research has explored how seemingly
small perturbations, such as typographical er-
rors (Gan et al., 2024) or certain types of adver-
sarial prompts (Wu et al., 2023), can significantly
degrade model performance. The GSM-Symbolic
benchmark (Mirzadeh et al., 2024), for instance,
demonstrated that slight modifications to mathe-
matical problem structures, such as altering nu-
merical values or adding irrelevant clauses, can
lead to drastic drops in accuracy, suggesting a
fundamental brittleness in LLM reasoning when
faced with inputs that deviate from learned pat-
terns.

Adversarial attacks on code generation models
have also been investigated. The DeceptPrompt
framework (Wu et al., 2023) reveals that benign-
looking natural language modifications can induce
LLMs to generate insecure or incorrect code, ex-
posing vulnerabilities in real-world applications.
While DeceptPrompt reveals vulnerabilities lead-
ing to insecure code, CoCC explores a comple-
mentary set of semantically-focused perturbations
(e.g., Storytelling, Gamification, Domain Shift,
Distracting Constraints). These are designed not
primarily to induce insecurity, but to test the stabil-
ity and fidelity of the underlying reasoning chain
required for correct code generation when famil-
iar problem cues are altered. Our study exam-
ines how these adversarial modifications—ranging
from narrative restructuring to the injection of log-
ically inert information—impact reasoning mod-
els. A key distinction in our methodology is the
emphasis on perturbations that, while adversarial
in their structure or framing, are designed to be se-
mantically faithful to the original problem’s core
logic. This allows us to isolate reasoning failures
that are not due to misunderstanding a completely
different task, but rather to an inability to reason
robustly when the problem presentation changes.

In summary, prior work has established the po-
tential of LLMs in complex reasoning and code
generation, yet has also consistently highlighted
their brittleness and potential over-reliance on

learned superficial patterns. Existing evaluation
methods and attack strategies provide valuable
insights into model capabilities and vulnerabili-
ties. However, a gap remains in systematically
understanding how LLMs’ reasoning chains for
code generation withstand diverse, semantically-
grounded perturbations that alter problem presen-
tation without changing the core logic. CoCC ad-
dresses this by introducing a novel framework and
a suite of perturbation techniques specifically de-
signed to probe these nuanced aspects of reasoning
robustness in the domain of code generation.

3 Methodology

To systematically evaluate how semantically con-
trolled modifications affect the code generation
abilities of LLMs, we design a framework that
perturbs existing coding problems through a set
of natural language transformations. Our method
centers on applying meaning-preserving or mini-
mally diverging rewrites to problems, without al-
tering their underlying logic or difficulty.

3.1 Problem Perturbation Framework

Unlike prior works (Mu et al., 2025; Zhu et al.,
2025) that focus solely on adversarial attacks or
CoT reasoning, our framework introduces seman-
tically aligned rewrites of coding problems that
preserve the structure of the original coding prob-
lem while varying its linguistic, narrative, or log-
ical framing. Inspired by recent studies on sym-
bolic noise (Mirzadeh et al., 2024), narrative-
based jailbreaks (Shen et al., 2024; Song et al.,
2025), and deceptive prompt manipulations (Wu
et al., 2023), we propose four transformation
strategies (or ”attacks”) that vary in their degree of
logical preservation — ranging from fully equiva-
lent reformulations (e.g., storytelling) to objective
inversions (e.g., negation). Each strategy is instan-
tiated via a consistent prompting template passed
to LLaMA 3.1 8B-Instruct that guides the rewrit-
ing of the original problem, while explicitly pre-
serving key components: Input, Output, Explana-
tion, Examples, and Constraints. We designed dif-
ferent types of tests to check the language model’s
reasoning abilities in several key areas. Story-
telling and Gamification test the model’s ability to
extract formal logic from informal, human-centric
narratives, a common scenario in real-world user
prompts. Domain Shift evaluates the core gener-
alization capability by testing if the model’s algo-



rithmic knowledge is tied to specific terminolog-
ical contexts. Distracting Constraints and Exam-
ple Perturbation directly challenge the model’s at-
tentional mechanisms and its reliance on superfi-
cial pattern-matching versus robust logical deduc-
tion. Finally, the Negation transformations serve
as a stress test for true logical manipulation, as-
sessing whether models can invert a learned rea-
soning process rather than merely retrieving a fa-
miliar one. Together, these transformations cover
a spectrum from plausible linguistic variation to
direct logical challenge.

3.2 Perturbation Methods
In this subsection, we thoroughly describe each of
the problem perturbation methods.

Attack Type Score

Storytelling 8.89
Gamification 8.01
Domain Shift 7.07
Example Perturbation 6.71
Distracting Constraints 3.82

Table 1: Preservation Scores for Different Attack Types

Storytelling. Motivated by narrative jailbreaks
in safety research (Shen et al., 2024; Song et al.,
2025; Chan et al., 2025), this method reframes
the problem as a story or adventure. The prompt
preserves all critical components but introduces a
narrative wrapper that may change surface-level
structure. We use this transformation to study
whether storytelling facilitates or hinders LLM
reasoning in algorithmic contexts. The Story-
telling prompt template explicitly instructs the
models to ”make the introduction engaging and
fun”, but not to alter the technical sections such
as examples, constraints, or explanation by ex-
plicitly mentioning ”keep the original intent and
structure” in the prompt. This transformation tests
whether LLMs benefit from more natural, human-
readable phrasings while still preserving problem
semantics (see Figure 2).

Gamification. This transformation wraps the
task in a challenge-based format (e.g., player or
robots solving the task) while keeping the logic
intact. Similar to storytelling, it introduces an-
thropomorphic or thematic context, drawing inspi-
ration from instruction-tuning setups that present
tasks in game-like scenarios (Wu et al., 2023). We
evaluate whether such gamified inputs boosts en-

gagement or distracts models from formal reason-
ing (see Figure 4).

Distracting Constraints. Inspired by
the symbolic injection strategies in GSM-
Symbolic (Mirzadeh et al., 2024), this method
appends irrelevant but plausible-sounding con-
straints (e.g., ”input is a palindrome”) to the
problem. While logically inert, these constraints
test the model’s ability to filter out irrelevant lin-
guistic noise. Unlike classic adversarial examples,
these do not change task correctness but increase
input ambiguity (see Figure 6).

Domain Shift. This strategy replaces tokens and
terminology from one context to another (e.g.,
”array of integers: becomes ”daily revenue”) or
replacing terms with domain-specific equivalents
(e.g., convert numbers to elevator floors, jobs,
floors, days) (see Figure 7).

3.3 Logical Preservation Scoring
To quantify the degree of semantic deviation in-
duced by each transformation, we developed a
Logical Preservation Score. We employed the
Claude-3.7-Sonnet model as an automated evalua-
tor to ensure consistent and scalable scoring across
all 700 perturbed instances. This approach miti-
gates potential human rater fatigue and subjectiv-
ity. The scoring is guided by a detailed rubric-
based prompt (see Appendix F, Figure 10) that in-
structs the model to rate preservation on a scale of
1-10, where 10 indicates perfect logical alignment
and 1 indicates a complete semantic shift. These
scores are used in later analysis to understand how
semantic drift correlates with performance degra-
dation.

4 Experimental Setting

Model Easy Medium Hard Overall

Gemini-2.5-Flash 100.0 98.0 76.5 95.0
Claude-3.7-Sonnet 100.0 92.0 64.7 90.0
DeepSeek-14B 97.0 92.0 58.8 88.0
Gemini-2.0-Flash 97.0 86.0 47.1 83.0
DeepSeek-7B 90.9 70.0 35.3 71.0
Qwen2.5-Coder 81.8 52.0 35.3 59.0
DeepSeek-Coder-33B 84.8 48.0 11.8 54.0
Claude-3-Haiku 51.5 32.0 41.2 40.0
LLaMA-3.1-8B-Instruct 36.4 12.0 5.9 19.0
DeepSeek-Coder-1.3B 36.4 8.0 5.9 17.0

Avg. Accuracy 77.6 59.9 38.3 67.6

Table 2: Accuracy (%) of models across different diffi-
culty levels under the no attack setting.



Storytelling Prompt Template

Instruction: Rewrite the problem in a storytelling format, while preserving its logic.

Guidelines:

• Keep Input, Output, Explanation, Example, and Constraints sections unchanged.

• Frame the problem as an engaging story or programming narrative.

{original content}
No additional explanation needed. Just output the modified problem.

Figure 2: Prompt template for Storytelling transformation.

4.1 Dataset and Evaluation Metrics
We conduct our experiments using the Live-
CodeBench dataset (Jain et al., 2024), a recent
benchmark designed to evaluate LLM perfor-
mance on code generation under interactive and
test-driven settings. For our study, we select a
curated subset of 100 LeetCode problems from
the Code Generation split of the LiveCodeBench,
which provides rich problem descriptions and test
cases suitable for both modifications and evalua-
tion. To assess model performance, we adopt the
standard Pass@1 metric (Jain et al., 2024), which
measures the proportion of problems for which
the model’s first generated solution passes all pro-
vided test cases.

4.2 Model Selection
We evaluate both black-box API models and
open-source models spanning general-purpose
reasoning and code-specialized capabilities. For
consistency with prior work, we include models
from the LiveCodeBench leaderboard2 as well
as strong code-focused baselines not originally
part of the benchmark.

We test four proprietary black-box LLMs
known for their reasoning abilities: Gemini-
2.5-Flash-Preview, Gemini-2.0-Flash (Deep-
Mind, 2024), Claude-3.7-Sonnet, and Claude-
3-Haiku (Anthropic, 2024). To assess open-
source reasoning, we include DeepSeek-R1-
Distill-Qwen-7B and -14B (Guo et al., 2025),
which are distilled DeepSeek-R1 models with
robust reasoning capabilities and native support
for reasoning token generation, facilitating fine-
grained trace analysis. For code-focused mod-
els, we evaluate: Qwen2.5-Coder and DeepSeek-

2https://livecodebench.github.io/
leaderboard.html

Coder-33B, both of which are optimized for
code generation but not explicitly tuned for
reasoning. Finally, we include the LLaMA-
3.1-8B-Instruct (Meta, 2024), a general-purpose
instruction-tuned model. Although not code-
nor reasoning-specialized, LLaMA-3.1 performs
competitively and supports inference-time CoT
prompt engineering, making it a valuable refer-
ence point in our analysis.

5 Results and Analysis

In this section, we present both aggregate and
manual case-level results from our evaluation of
LLMs under perturbations. While overall accu-
racy and reasoning scores provide a high-level
view of model robustness, a closer examination of
specific instances reveals nuanced patterns. We
identify cases where perturbations help models
reason better and others where they introduce con-
fusion, highlighting the diverse impacts of prompt
formulation on code generation.

5.1 Clean Performance Overview

We begin by benchmarking all models on the
original (unmodified) version of 100 LeetCode-
style problems (Table 2). As expected, mod-
els optimized for instruction-following and rea-
soning, such as Gemini-2.5-Flash (95.0% overall)
and Claude-3.7-Sonnet (90.0%), outperform code-
specific models like Qwen2.5-Coder (59.0%) and
DeepSeek-Coder-33B (54.0%). ON average, per-
formance declines sharply from Easy (77.6%) to
Hard (38.3%) tasks, reflecting the inherent chal-
lenge of generalization across reasoning complex-
ity.

https://livecodebench.github.io/leaderboard.html
https://livecodebench.github.io/leaderboard.html


Models Distracting
Constraints

Domain
Shift

Example
Perturbation Gamification Storytelling Avg. Acc.

Gemini 2.5 Flash 95.48% (+0.5%) 89.81% (-5.2%) 93.09% (-1.9%) 96.93% (+1.9%) 97.37% (+2.4%) 94.94%
Gemini 2.0 Flash 88.78% (+5.8%) 72.47% (-10.5%) 95.02% (+12.0%) 89.76% (+6.8%) 90.38% (+7.4%) 87.28%
DeepSeek-14B 83.84% (-4.2%) 75.53% (-12.5%) 84.10% (-3.9%) 86.76% (-1.2%) 91.16% (+3.2%) 84.28%
Qwen2.5-Coder 65.03% (+6.0%) 68.33% (+9.3%) 83.51% (+24.5%) 70.11% (+11.1%) 79.69% (+20.7%) 73.33%
DeepSeek-7B 65.06% (-5.9%) 58.28% (-12.7%) 71.18% (+0.2%) 73.30% (+2.3%) 82.99% (+12.0%) 70.16%
DeepSeek-Coder-33B 58.44% (+4.4%) 55.26% (+1.3%) 70.00% (+16.0%) 67.44% (+13.4%) 70.45% (+16.5%) 64.32%
Claude-3.7-Sonnet 47.89% (-42.1%) 35.66% (-54.3%) 62.87% (-27.1%) 50.00% (-40.0%) 63.35% (-26.6%) 51.95%
Claude-3-Haiku 41.04% (+1.0%) 37.98% (-2.0%) 60.12% (+20.1%) 45.14% (+5.1%) 57.69% (+17.7%) 48.39%
LLaMA3-8B-Instruct 37.59% (+18.6%) 22.03% (+3.0%) 54.30% (+35.3%) 37.78% (+18.8%) 44.68% (+25.7%) 39.28%

Avg. Acc. 64.57% 57.70% 75.24% 68.80% 75.64% –

Table 3: Attack accuracy (%) and delta ∆ from clean performance. Rows are sorted by average accuracy.

5.2 Perturbation Resilience and Gains

Table 3 reveals that semantic perturbations do
not uniformly degrade performance. On the
contrary, several perturbation types — particularly
Storytelling and Gamification — consistently im-
prove performance, especially for models tuned
for human-aligned reasoning.

Notably, Gemini-2.0-Flash, which ranks 4th in
clean accuracy, outperforms its original base-
line on four perturbation types, improving up
to +12.0% on Example Perturbation. Simi-
larly Qwen2.5-Coder and LLaMA-3.1, both non-
reasoning-specialized, exhibit large performance
gains (+24.5% and +35.3%, respectively) un-
der storytelling-style or pattern-breaking rewrites.
Based on these findings, we noticed that certain
models benefit from more natural or decentered
problem formulations. This suggests that rigid,
minimalistic problem statements may actually un-
derutlize LLM capabilities.
This is further supported by our manual inspec-
tion of Gemini-2.5-Flash outputs, where in 11
cases of Distracting Constraints attack, the per-
turbed versions with added constraints produced
correct solutions while the original did not. These
constraints, though labeled as ”distracting”, may
have made implicit assumptions explicit, improv-
ing clarity. This aligns with findings by Xu
et al. (2024), who show that structured context in
prompts can enhance generation accuracy. This
finding challenges prior assumptions that natural-
language verbosity of format deviation is always
detrimental (Zhu et al., 2024). Instead, we observe
that semantically richer prompts can elicit better
program synthesis.

5.3 Semantic Robustness

Despite general trends, not all models are equally
resilient to semantic shift. Claude-3.7-Sonnet ex-
hibits massive accuracy degradation under low-
preservation transformations, losing up to -68.0%
in medium difficulty tasks for Distracting Con-
straints. In contrast, Gemini-2.5-Flash and
DeepSeek-14B are remarkably stable, showing
<5% deviation across all tasks. Through these ex-
perimental results, we demonstrate a novel axis of
evaluation: Semantic Perturbation Robustness —
defined as the standard deviation in performance
across logic-preserving rewrites. This axis cap-
tures a model’s ability to maintain performance
under benign yet diverse formulations of the same
task. We argue that this robustness is as critical as
clean accuracy, especially in real-world applica-
tions where user queries are linguistically varied
and imperfectly phrased.
This phenomenon is visible in models like Claude-
3.7-Sonnet, where code generated from perturbed
prompts is often simpler and less complete com-
pared to the original. It appears that the model re-
lies on surface-level patterns in the original prompt
to retrieve structured code, and perturbations dis-
rupt this retrieval behavior. As Cai et al. (2024)
observe, such perturbations likely increase token-
level entropy and variance, making the model less
confident and more prone to errors.

5.4 Accuracy vs. Logic Preservation

In Figure 3, we plot average model accuracy
against our logical preservation scores (Table 1.
A positive, albeit nonlinear, correlation emerges:
Storytelling (score: 8.89) and Gamification (8.01)
lead to improved or stable performance. Dis-
tracting Constraints (3.82) and Negation Objective
(1.83) consistently degrade it. However, we no-



Attack Model Easy Acc. Medium Acc. Hard Acc.

Storytelling

Gemini-2.5-Flash 93.9% (-6.1%) 96.0% (-2.0%) 88.2% (+11.7%)
Gemini-2.0-Flash 90.9% (-6.1%) 82.0% (-4.0%) 52.9% (+5.8%)
Claude-3.7-Sonnet 48.5% (-51.5%) 34.0% (-58.0%) 47.1% (-17.6%)
Claude-3-Haiku 45.5% (-6.0%) 26.0% (-6.0%) 35.3% (-5.9%)
DeepSeek-14B 93.9% (-3.1%) 82.0% (-10.0%) 52.9% (-5.9%)
DeepSeek-7B 97.0% (+6.1%) 62.0% (-8.0%) 23.5% (-11.8%)

Domain Shift

Gemini-2.5-Flash 89.8% (-10.2%) 96.0% (+0.0%) 82.4% (+5.9%)
Gemini-2.0-Flash 72.5% (-24.5%) 80.0% (-6.0%) 58.8% (+11.7%)
Claude-3.7-Sonnet 35.7% (-64.3%) 24.0% (-68.0%) 11.8% (-52.9%)
Claude-3-Haiku 30.3% (-21.2%) 18.0% (-14.0%) 5.9% (-35.3%)
DeepSeek-14B 54.5% (-42.5%) 62.0% (-30.0%) 29.4% (-29.4%)
DeepSeek-7B 45.5% (-45.4%) 38.0% (-32.0%) 17.6% (-17.7%)

Example Perturbation

Gemini-2.0-Flash 97.0% (+0.0%) 92.0% (+6.0%) 64.7% (+17.6%)
Gemini-2.5-Flash 93.9% (-6.1%) 84.0% (-14.0%) 70.6% (-5.9%)
Claude-3.7-Sonnet 51.5% (-48.5%) 34.0% (-58.0%) 23.5% (-41.2%)
Claude-3-Haiku 45.5% (-6.0%) 28.0% (-4.0%) 35.3% (-5.9%)
DeepSeek-14B 81.8% (-15.2%) 68.0% (-24.0%) 47.1% (-11.7%)
DeepSeek-7B 72.7% (-18.2%) 42.0% (-28.0%) 35.3% (+0.0%)

Distracting Constraints

Gemini-2.5-Flash 84.8% (-15.2%) 96.0% (-2.0%) 82.4% (+5.9%)
Gemini-2.0-Flash 81.8% (-15.2%) 80.0% (-6.0%) 58.8% (+11.7%)
Claude-3.7-Sonnet 36.4% (-63.6%) 24.0% (-68.0%) 11.8% (-52.9%)
Claude-3-Haiku 36.4% (-15.1%) 12.0% (-20.0%) 17.6% (-23.6%)
DeepSeek-14B 78.8% (-18.2%) 70.0% (-22.0%) 41.2% (-17.6%)
DeepSeek-7B 57.6% (-33.3%) 36.0% (-34.0%) 29.4% (-5.9%)

Gamification

Gemini-2.5-Flash 100.0% (+0.0%) 92.0% (-6.0%) 88.2% (+11.7%)
Gemini-2.0-Flash 97.0% (+0.0%) 74.0% (-12.0%) 58.8% (+11.7%)
Claude-3.7-Sonnet 48.5% (-51.5%) 30.0% (-62.0%) 23.5% (-41.2%)
Claude-3-Haiku 51.5% (+0.0%) 34.0% (+2.0%) 35.3% (-5.9%)
DeepSeek-14B 84.8% (-12.2%) 64.0% (-28.0%) 52.9% (-5.9%)
DeepSeek-7B 75.8% (-15.1%) 46.0% (-24.0%) 29.4% (-5.9%)

Table 4: Accuracy (%) for Reasoning-focused LLMs under various attacks, broken down by difficulty level.

Figure 3: Accuracy vs. Logical Preservation Score for
each attack type. Storytelling and Example Perturba-
tion improve performance despite non-trivial rephras-
ings, while Distracting Constraints degrades accuracy
significantly.

ticed that performance does not degrade propor-
tionally with logical drift. Some logically pre-
served rewrites improve accuracy, while a single
line of structurally trivial edits (like Distracting
Constraints) dramatically hurt it. This suggests
that cognitive alignment — not logical alignment

alone — governs LLM success. LLMs are more
sensitive to semantic distractors than to narrative
abstraction.

5.5 Difficulty Analysis

As shown in Table 4, models often retain high ac-
curacy on Easy problems across all attacks, but
break under Hard tasks even for high-preservation
rewrites. This confirms that reasoning complex-
ity, not just input phrasing, lead to model break-
down. However, storytelling notably boosts hard-
problem performance for Gemini-2.5 (+11.7%)
and LLaMA3.1 (+23.5%), indicating that human-
friendly reformulations may facilitate deeper rea-
soning under challenge.

5.6 Errors through Prompt Clarity

To interpret why some perturbations help while
others hinder, we draw on recent findings that con-
nect model uncertainty to error rates. Cai et al.
(2024) observe that errors in LLMs are more likely
to occur at tokens with high entropy and vari-
ance regions where the model is unsure of the



Attack Model Easy Acc. Medium Acc. Hard Acc.

Storytelling

Qwen2.5-Coder 84.8% (+3.0%) 54.0% (+2.0%) 35.3% (+0.0%)
DeepSeek-Coder-33B 81.8% (-3.0%) 34.0% (-14.0%) 23.5% (+11.7%)
LLaMA3-8B-Instruct 45.5% (+9.1%) 4.0% (-8.0%) 29.4% (+23.5%)

Example Perturbation

Qwen2.5-Coder 84.8% (+3.0%) 66.0% (+14.0%) 41.2% (+5.9%)
LLaMA3-8B-Instruct 45.5% (+9.1%) 28.0% (+16.0%) 11.8% (+5.9%)
DeepSeek-Coder-33B 72.7% (-12.1%) 44.0% (-4.0%) 17.6% (+5.8%)

Distracting Constraints

Qwen2.5-Coder 57.6% (-24.2%) 42.0% (-10.0%) 17.6% (-17.7%)
DeepSeek-Coder-33B 54.5% (-30.3%) 26.0% (-22.0%) 29.4% (+17.6%)
LLaMA3-8B-Instruct 30.3% (-6.1%) 8.0% (-4.0%) 17.6% (+11.7%)

Gamification

Qwen2.5-Coder 75.8% (-6.0%) 52.0% (+0.0%) 23.5% (-11.8%)
DeepSeek-Coder-33B 69.7% (-15.1%) 50.0% (+2.0%) 35.3% (+23.5%)
LLaMA3-8B-Instruct 42.4% (+6.0%) 20.0% (+8.0%) 23.5% (+17.6%)

Domain Shift

Qwen2.5-Coder 64.3% (-17.5%) 41.2% (-10.8%) 20.0% (-15.3%)
DeepSeek-Coder-33B 48.5% (-36.3%) 26.0% (-22.0%) 17.6% (+5.8%)
LLaMA3-8B-Instruct 15.2% (-21.2%) 2.0% (-10.0%) 11.8% (+5.9%)

Table 5: Accuracy (%) for Code Generation Models under various attacks.

next step. When we perturb prompts, especially
with vague or extraneous constraints, the resulting
prompt may distribute the model’s attention more
diffusely, increasing uncertainty and leading to in-
correct generations.

This highlights a dual nature of perturba-
tions: when they disrupt expected patterns with-
out adding structure, they degrade performance;
but when they elaborate or scaffold problem con-
text, they may improve reasoning as we see above
for certain models in Table 5. Future models may
benefit from tuning not only on correct answers,
but on uncertainty aware reasoning paths.

5.7 Comment-Driven Reasoning Behaviors

A notable behavioral pattern emerged when ana-
lyzing Claude-3.7-Sonnet’s performance under the
Gamification prompt variant. While Claude-3.7
demonstrates strong performance under clean con-
ditions (90.0% overall accuracy; Table 2), its ac-
curacy drops dramatically by –40.0% under Gam-
ification (Table 3). Manual inspection of model
outputs (Table 6) revealed a consistent shift in be-
havior: Claude’s code responses on unperturbed
prompts routinely included inline comments—
clarifying control flow logic, edge case handling,
or the purpose of specific variables. In con-
trast, responses under gamified prompt formula-
tions lacked such explanatory commentary.

The absence of natural language comments ap-
peared to correlate with degraded code quality.
Logic that was correctly implemented in the clean
setting often became brittle or misaligned under
perturbation, indicating reduced internal reason-

ing coherence. This trend is consistent with find-
ings by Dou et al. (Dou et al., 2024), who showed
that a higher frequency of comments in LLM-
generated code is associated with enhanced rea-
soning capabilities and fewer bugs. Their results
suggest that encouraging comment generation dur-
ing code synthesis can improve reasoning—even
without model fine-tuning.

Our results extend this insight by proposing that
comment generation serves not only as a reflection
of internal reasoning, but also as a mediating fac-
tor in model robustness. When Claude-3.7 omits
comments under prompt perturbation, its per-
formance deteriorates significantly—despite the
underlying task semantics remaining unchanged.
This supports the hypothesis that comment-driven
reasoning may serve a stabilizing role in preserv-
ing performance across diverse linguistic formula-
tions of the same task.

5.8 Deeper dive in domain shift

A detailed analysis of the evaluation logs reveals
distinct behavioral patterns. To begin with, Llama-
3.1’s robustness appears to stem from its capabil-
ity to abstract the underlying logical task from the
superficial narrative. Its reasoning often involved
re-stating the problem with the new domain terms
and then applying the correct, generalized algo-
rithm, effectively handling the semantic shift (see
Appendix C.1). Furthermore, the performance
gain for Qwen2.5-Coder suggests that shifting to
domains more aligned with common program-
ming tasks or utilizing more concrete terminol-
ogy (e.g., ”employee salaries” instead of abstract



Original Prompt Output Perturbed Prompt Output Original Result Perturbed Result

class Solution:
def countSeniors(self, details: List[str]) − > int:

# Counter for passengers older than 60
count = 0

for passenger in details:
# The age is stored in the 11th and 12th characters
age = int(passenger[11:13])

# Check if the age is strictly greater than 60
if age > 60:

count += 1

return count

class Solution:
def countSeniors(self, details: List[str]) − > int:

count = 0
for record in details:

age = int(record[12:14])
if age > 60:

count += 1
return count

[True, True] [False]

Table 6: Comment-driven reasoning behaviors under prompt perturbation: comparison of Claude-3.7-Sonnet’s
code responses and resulting accuracies under clean (original) versus gamified (perturbed) prompts.

”nums”) might have enhanced its understanding or
triggered more relevant learned patterns. It consis-
tently adopted new terminologies while correctly
implementing the core logic (see Appendix C.1).
On the other hand, Claude’s substantial accuracy
drop highlights a significant fragility when faced
with unfamiliar thematic contexts. In several in-
stances, Claude’s reasoning (output) would cor-
rectly re-state the objective in the new domain,
yet its generated solution code would be drasti-
cally incomplete, address a much simpler version
of the problem, or fail to implement the core pre-
served logic. For example, in the minIncremen-
tOperations task (originally about making an ar-
ray ”beautiful” based on a sliding window con-
dition, shifted to stabilizing task priorities based
on a similar window), Claude correctly under-
stood and re-stated the complex windowed objec-
tive in the new domain terms. However, its sub-
sequent code implemented a much simpler, in-
correct element-wise check, completely missing
the required windowed logic (see Appendix C.2).
This indicates that while it can process surface-
level semantic changes, the mapping to the correct
complex algorithmic solution becomes unreliable.
DeepSeek-14B, while not failing as comprehen-
sively as Claude, still showed difficulties. Its er-
rors often involved a correct general algorithmic
idea but flawed execution within the new domain,
such as misinterpreting new terms or making er-
rors in adapting conditions, indicating challenges
in accurately translating familiar logic to novel se-
mantic contexts (see Appendix C.1).

6 Ablation Study

To probe the boundary of semantic robustness, we
conduct an ablation study focused on Negation
Objective (Hard) and Negation Objective (Soft)

transformations. These rewrites are designed to
test whether models can adapt to inverted or sub-
tly reversed objectives, while preserving the for-
mat and structural elements of the original prob-
lem.

6.1 Methods
Negation Objective (Hard). This method fully
inverts the core task (e.g., ”maximize” → ”mini-
mize” or ”include” → ”exclude”). A part of the
transformation prompt asks the LLM to: ”rewrite
it with the opposite objective ... ensure the exam-
ples and output are updated accordingly: (see Fig-
ure 8). While the input, output, explanation and
constraints are preserved, the solution logic must
change, requiring the model to recompute from a
new problem intent. The preservation score was
recorded as 1.83 based on Claude-3.7.

Negation Objective (Soft). This variant applied
milder semantic reversals (e.g., asking for ”non-
decreasing” instead of ”increasing”) without flip-
ping the task entirely. The instruction explicitly
states: ”Do NOT fundamentally change the prob-
lem’s task ... adjust the examples minimally” (see
Figure 9). This design tests whether models are
robust to subtle linguistic tweaks that alter logic
while retaining solvability. The preservation score
was recorded as 2.56 based on Claude-3.7, a little
higher than the hard negation.

6.2 Results
Table 7 summarizes the impact of negation-based
perturbations. Hard negation proves highly dis-
ruptive, causing average accuracy drops of over
50% across all difficulty levels. For instance,
Gemini-2.5-Flash drops from 95.0% to 42.6%,
and Claude-3.7 falls from 90.0% to 15.0%. Even
instruction-following models struggle to adapt,



as reasoning reversal—not just language adapta-
tion—is required. In contrast, soft negation shows
more variability, with some models like LLaMA-
3.1 improving from 19.0% to 29.4%. However,
others like DeepSeek-14B and Claude-3.7 still
suffer large drops, showing that even subtle log-
ical shifts can disrupt reasoning.

6.3 Analysis

Negation Objective (Soft) Analysis. Under soft
negation, Llama-3.1-8B-Instruct’s improved accu-
racy was sometimes linked to genuine adaptation
when test cases were correctly aligned with the
modified textual objective (see Appendix A.1).
However, a prevalent issue was test case mis-
alignment: Llama, despite correct logical adap-
tation to modified text, often failed tests still
expecting original problem answers (e.g., for
sumOfSquares, Appendix A.2). Conversely,
models like DeepSeek-14B sometimes ”passed”
by ignoring the modification, as their test cases
also remained unchanged. Failure patterns for
other models included partial adaptation, where
only parts of the negated logic were imple-
mented (e.g., Gemini-2.5-Flash on matrixSum,
Appendix A.3), and archetype override, where
models reverted to known problem solutions de-
spite contradictory modified instructions (e.g.,
Gemini-2.5-Flash on maximumOr, Appendix
A.4). DeepSeek-14B, in particular, consistently
ignored modifications. While Llama-3.1 demon-
strated better semantic fidelity to textual changes,
its overall accuracy increase is a nuanced out-
come influenced by both genuine adaptation and
the complex interplay with test case consistency.
True robustness assessment hinges on meticu-
lously aligned problem prompts and test evalua-
tions.

Negation Objective (Hard) Analysis. The
Negation Objective (Hard) perturbation led
to near-total task failure across models, with
reported accuracies (0% − 17%) not reflecting
genuine capability in handling inverted objec-
tives due to pervasive test case misalignment.
Observed ”successes” typically arose when
models solved the original problem against
un-updated test cases (e.g., Qwen2.5-Coder on
count seniors, Appendix B.1; Gemini-2.5-
Flash on min extra char, Appendix B.4).
Conversely, models that correctly implemented
simple negated logic often failed these mis-

aligned tests (e.g., Claude, DeepSeek, Gemini
on count seniors, Appendix B.2). No
model consistently demonstrated reasoning
reversal. Instead, common behaviors included
defaulting to original problem archetypes, code
instability (DeepSeek-14B on complex negations,
Appendix B.3), and failure to implement cor-
rectly inverted logic even when acknowledging
the textual change (e.g., on matrixSum, Ap-
pendix B.5). Hard negation thus exposes profound
limitations in current LLMs’ ability to perform
genuine goal and logic reversal, emphasizing the
need for rigorously aligned evaluations.

In conclusion, negation-based rewrites expose a
critical blind spot in LLM reasoning: the inabil-
ity to reinterpret or invert logical objectives even
when all structural information is preserved. In
addition, the model collapse under negation objec-
tive suggests that task framing overrides instruc-
tion tuning, and that models struggle to recompute
from inverse logic. Finally, soft negation reveals
the fragility of lexical understanding: small se-
mantic perturbations that humans consider minor
can lead to cascading failures in reasoning paths.

7 Limitation

One limitation of our work is that we evaluated
only a subset of the LiveCodeBench LeetCode-
style problems — specifically, 100 our of 235
problems. Additionally, our study did not cover
other task types available in LiveCodeBench, such
as code execution, test output prediction, and self-
repair. While LiveCodeBench includes a diverse
set of problems sources from platforms like At-
Coder and Codeforces in addition to LeetCode,
our evaluation was restricted to the LeetCode sub-
set. This decision was primarily driven by lim-
ited computational resources, as inference time in-
creases substantially with model size, particularly
for open-source models. To ensure fair compari-
son across different models, we maintained a con-
sistent evaluation set.

Despite these constraints, we conducted a large-
scle robustness analysis by generating and evalu-
ating 700 perturbed instances (100 clean problems
× 7 perturbation types), allowing us to systemati-
cally assess model behavior under diverse logical
modifications.

Another limitation is the exclusion of GPT-
series models (e.g., GPT-4), which are among the
top-performing proprietary models for code gen-



eration according to the LiveCodeBench leader-
board. Due to access limitations, we were unable
to include them in our evaluation, leaving their
robustness under these perturbations as an open
question for future work.

8 Conclusion

In this work, we presented CoCC, a systematic
framework for evaluating reasoning robustness in
LLMs under adversarial prompting in code gen-
eration tasks. By introducing semantically plausi-
ble but logically challenging perturbations such as
storytelling, gamification, distracting constraints,
and negation objectives, we revealed key vulnera-
bilities in current state-of-the-art models. Through
comprehensive experiments across nine LLMs and
700 perturbed instances, we found that while some
perturbations surprisingly improved model perfor-
mance, others, especially those involving subtle
semantic drift, led to significant reasoning failures.

Our analysis introduced a novel evaluation axis,
semantic perturbation robustness, which quanti-
fies a model’s ability to generalize across logically
equivalent but linguistically diverse inputs. These
findings underscore that high clean accuracy does
not imply robust reasoning and highlight the need
for more cognitively aligned model training.
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A Detailed Examples for Negation Objective (Soft) Analysis

A.1 Example A.1: countBeautifulPairs — Llama’s Successful Adaptation
Original Problem Objective (Summarized): Count pairs of numbers (nums[i], nums[j]) where i < j
such that the first digit of nums[i] and the last digit of nums[j] are coprime (i.e., GCD is 1).

Modified Problem Objective (Soft Negation): Count pairs where the first digit of nums[i] and the last digit of
nums[j] are not coprime (i.e., GCD greater than 1).

Input Instance: nums = [30, 72, 9, 96, 82]

Llama-3.1-8B-Instruct Performance: (result: True)

• Reasoning Snippet: ”The problem asks us to count the number of non-beautiful pairs... A pair is non-beautiful if the
first digit of nums[i] and the last digit of nums[j] are not coprime. This means their greatest common divisor (GCD) is
greater than 1.”

• Relevant solution code Logic:

if gcd(first_digit_i, last_digit_j) > 1:
count += 1

• Result Details: {’output’: ’3’, ’expected’: ’3’}

• Analysis: Llama correctly implemented the modified logic and matched the expected result.

Claude-3.7-Sonnet Performance: (result: False)

• Reasoning/Code Logic: Implemented logic to count GCD == 1 (original problem). Outputted 7.

• Result Details: {’output’: ’7’, ’expected’: ’0’}

• Analysis: Failed to adapt to negated task and failed its own test.

DeepSeek-14B Performance: (result: False)

• Same as Claude: Used original problem logic. Output: 7, Expected: 0.

Gemini-2.5-Flash-Preview Performance: (result: False)

• Reasoning: Adapted to negated logic correctly.

• Output: 3, but Expected: 0.

• Analysis: Misalignment between adapted logic and test case expectation.

Comparative Summary: Llama succeeded with aligned logic and expectation. Gemini partially succeeded. Claude
and DeepSeek failed to adapt.

A.2 Example A.2: sumOfSquares — Llama Adapts, Test Case Expects Original
Original Problem Objective (Summarized): Sum the squares of elements nums[i] where the 1-based index i
divides n (i.e., n % i == 0).

Modified Problem Objective (Soft Negation): Sum the squares of elements where the index i does not divide n
(i.e., n % i != 0).

Input Instance: nums = [1, 2, 3, 4] (n = 4)

• Original correct result: 12 + 22 + 42 = 21

• Modified correct result: 32 = 9

Llama-3.1-8B-Instruct Performance: (result: False)

• Relevant solution code Logic:

sum(num ** 2 for i, num in enumerate(nums, start=1) if n % i != 0)

• Output: 9, Expected: 21



• Analysis: Llama correctly followed the modified logic but failed due to the test case expecting the original problem’s
output.

DeepSeek-14B Performance: (result: True)

• Relevant solution code Logic:

if n % i == 0:
ans += nums[i-1]**2

• Output: 21, Expected: 21

• Analysis: DeepSeek ignored the modified instruction and solved the original problem. It passed due to misaligned test
case expectations.

Comparative Summary: Llama faithfully applied the negated logic but failed the test due to incorrect expectation.
DeepSeek ignored the instruction change and passed, highlighting the need for aligned evaluation pipelines.

A.3 Example A.3: matrixSum — Partial Adaptation by Gemini
Original Problem Objective (Summarized): From each row, remove the largest element, take the maximum
among them, and add it to the score.

Modified Problem Objective (Negation): From each row, remove the smallest element, take the minimum among
them, and subtract it from the score.

Gemini-2.5-Flash-Preview Performance: (result: False)

• Relevant solution code Logic:

for row in nums:
row.sort()

for j in range(num_cols):
removed_this_round = []
for i in range(num_rows):

removed_this_round.append(nums[i][num_cols - 1 - j])

min_val = min(removed_this_round)
score -= min_val

• Analysis: Gemini correctly applied subtraction and switched from max to min aggregation, but still removed the largest
element from each row—failing to fully adapt the problem logic.

A.4 Example A.4: maximumOr — Archetype Override by Gemini
Original Problem Objective (Summarized): Given nums and k operations (each allowing one number to be
multiplied by 2), maximize the bitwise OR of all elements.

Modified Problem Objective (Negation): Minimize the bitwise OR value after k operations.
Gemini-2.5-Flash-Preview Performance: (result: True)

• Reasoning Behavior: Despite the instruction to minimize, Gemini solved for the maximum OR. The output matched
the original test case, which remained unchanged.

• Input: nums = [12, 9], k = 1

• Output: 30, Expected: 30

• Analysis: Gemini overrode the negated objective, likely due to overfitting to the known problem pattern, and passed
because the test case was still aligned with the original formulation.

Comparative Summary: Example A.3 illustrates partial adaptation: Gemini recognized the transformation (e.g., sub-
traction, min) but failed in row-level logic. In Example A.4, the model defaulted to the original objective entirely, reflecting the
dominance of memorized archetypes over prompt instructions.



B Detailed Examples for Negation Objective (Hard) Analysis

B.1 Example B.1: count seniors — Test Misalignment & False Success
Original Problem Objective (Summarized): Count passengers strictly older than 60.

Modified Problem Objective (Hard Negation): Count passengers strictly 60 years old or less (i.e., age ≤ 60).

Input Instance: details = ["7868190130M7522", "5303914400F9211", "9273338290F4010"]

• Original correct output (age > 60): 2 (for ages 75, 92)

• Modified correct output (age ≤ 60): 1 (for age 40)

Qwen2.5-Coder Performance: (result: [True, True])

• Relevant solution code Logic:

if age > 60: # Original problem logic
count += 1

• Result Details: {’output’: ’2’, ’expected’: ’2’}

• Analysis: Qwen ignored the negated prompt (”60 or less”), implemented the original logic (”greater than 60”), and
passed. This strongly indicates its test case expected the original problem’s answer.

Claude-3.7-Sonnet / DeepSeek-14B / Gemini-2.5-Flash Performance: (result: [False])

• Analysis: See Appendix B.2. These models implemented the correct negated logic but failed.

Comparative Summary: Qwen ”succeeded” by solving the original task against a misaligned test. Other models
correctly adapted to the negated text but failed the same misaligned test.

B.2 Example B.2: count seniors — Correct Negation Fails Misaligned Test
Objectives & Input Instance: Same as Appendix B.1.

• Original correct output: 2

• Modified correct output: 1

Claude-3.7-Sonnet Performance: (result: [False])

• Relevant solution code Logic:

if age <= 60: # Correct negated logic
count += 1

• Result Details: {’output’: ’1’, ’expected’: ’2’, ’error message’: ’Wrong Answer’}

• Analysis: Claude correctly implemented the logic required by the modified prompt (”60 or less”) but failed because the
test case expected the output corresponding to the original prompt (”greater than 60”).

DeepSeek-14B & Gemini-2.5-Flash Performance: (result: [False])

• Logic & Result Details: Identical outcome to Claude. Both implemented age <= 60, outputted 1, but the test expected
2.

Comparative Summary: Multiple models faithfully adapted to the simple negation in the text but were incorrectly
penalized by test cases expecting the original problem’s behavior.

B.3 Example B.3: find missing and repeated values — DeepSeek Code Instability on
Complex Negation

Original Problem Objective (Summarized): Find the number that appears twice and the number that is missing
in a range derived from a grid’s elements.



Modified Objective (Hard Negation - Illustrative): Could be inverted to find numbers that appear once and are
present, or other complex logical reversals.

DeepSeek-14B Performance: (result: [-4])

• Relevant solution code Snippet (Illustrative): Often involves complex comprehensions or logic attempting to
handle the negated task.

# Code failed during execution
# Example error: ’NoneType’ object is not iterable

• Result Details: {’error’: ’TypeError("NoneType object is not iterable")’,
’error code’: -4}

• Analysis: DeepSeek’s attempt to reason over complex inverted logic led to runtime errors. This suggests that reversing
objectives on difficult problems exceeds the model’s capacity, leading to unstable code.

B.4 Example B.4: min extra char — Gemini’s False Success via Original Logic
Original Problem Objective (Summarized): Find the minimum number of extra characters remaining after opti-
mally breaking a string s using words from a dictionary.

Modified Problem Objective (Hard Negation): Find the maximum number of extra characters.

Input Instance: s = "leetscode", dictionary = ["leet", "code", "leetcode"]

• Original correct output (minimum extra): 1 (using ”leetcode”)

• Modified correct output (maximum extra): 9 (using no words)

Gemini-2.5-Flash Performance: (result: [True, True])

• Reasoning Snippet (output): Describes dynamic programming approach to find the minimum number of extra char-
acters.

• Relevant solution code Logic:

# dp[i] will store the minimum number of extra chars
# ... logic calculates minimum ...
return dp[n]

• Result Details: Passed test cases. Execution time indicates successful run.

• Analysis: Gemini ignored the negated objective (”maximum”) and solved for the original (”minimum”). Success indi-
cates that test cases were misaligned with the negated prompt.

Comparative Summary: Gemini succeeded by reverting to the known original problem archetype, likely due to a
misaligned test case that still evaluated the original objective.

B.5 Example B.5: matrixSum — Model Confusion on Complex Negation
Original Problem Objective (Summarized): Iteratively remove the largest number from each row, find the maxi-
mum among these, and add it to the score.

Modified Problem Objective (Hard Negation): Iteratively remove the smallest number from each row, find the
lowest among these, and subtract it from the score.

DeepSeek-14B Performance: (result: [False])

• Reasoning Snippet: ”So the process is: 1. For each row, remove the smallest element. 2. Find the minimum among
these. 3. Subtract this minimum... Wait, no...”

• Relevant solution code Logic:

rows = [deque(row) for row in nums]
sum_min = 0
while any(rows):

# Find and accumulate min_val
sum_min += min_val

return -sum_min



• Result Details: Marked ”Wrong Answer”.

• Analysis: DeepSeek attempted a form of the negated logic but displayed confusion in both reasoning and implementation.

Claude, Gemini, Qwen Performance: (result: [False])

• Analysis: All models failed. Gemini showed prompt confusion; Qwen reverted to simplified logic; Claude struggled
with objective inversion.

Comparative Summary: The multi-step, logically inverted nature of this task caused failure across all models. This
reveals a common weakness in handling procedural negations that require non-trivial reasoning adjustments.



C Detailed Examples for Domain Shift Analysis
C.1 Example C.1: Problem - ”Count Pairs Whose Sum is Less than Target” (Easy Difficulty)
Original Problem Objective (Summarized): Given a 0-indexed integer array ‘nums‘ and an integer ‘target‘, return
the number of pairs ‘(i,j)‘ such that ‘0 ¡= i ¡ j ¡ nums.length‘ and ‘nums[i] + nums[j] ¡ target‘.

Modified Problem Objective (Domain Shift Example): ”You are given a list of employee salaries ‘em-
ployee salaries‘ and a target ‘bonus threshold‘. Your task is to count the number of pairs of employees (i, j) such that employee
‘i‘ comes before employee ‘j‘ in the list, and the sum of their salaries ‘employee salaries[i] + employee salaries[j]‘ is strictly
less than the ‘bonus threshold‘.” (Wording adapted from Llama’s log). The core logic of iterating through pairs and checking a
sum against a threshold is preserved.

Input Instance (from original problem, used for all models here): ‘nums = [-1,1,2,3,1]‘, ‘target = 2‘.

Correct Output for this Instance (Original and Shifted Logic): 3.
Llama-3.1-8B-Instruct Performance: (result: True)

• Reasoning Snippet (output): ”The problem asks us to count the number of pairs of employees (i, j) such that i ¡ j and
their combined salaries (‘employee salaries[i] + employee salaries[j]‘) are strictly less than a given ‘bonus threshold‘...
We can iterate through all possible pairs of employees (i, j) with i ¡ j. For each pair, we calculate the sum of their salaries.
If the sum is less than ‘bonus threshold‘, we increment a counter.”

• Relevant solution

code Snippet:

class Solution:
def countPairs(self, employee_salaries: List[int], bonus_threshold: int)

-> int:
n = len(employee_salaries)
count = 0
for i in range(n):

for j in range(i + 1, n):
if employee_salaries[i] + employee_salaries[j] < bonus_threshold:
count += 1

return count

• Result Details (metadata output): ‘’output’: ’3’, ’inputs’: ’[[-1, 1, 2, 3, 1], 2]’, ’expected’: ’3’, ...‘

• Analysis: Llama successfully understood the domain shift, correctly used the new terminology, and implemented the
correct pair-counting logic, matching the expected output.

Qwen2.5-Coder Performance: (result: True)

• Reasoning Snippet (output): ”The problem asks us to count the number of pairs of employees (i, j) such that ‘em-
ployee salaries[i] + employee salaries[j] ¡ bonus threshold‘.”

• Relevant solution code Snippet: Correct implementation using new domain variable names, similar to Llama.

• Result Details (metadata output): ‘’output’: ’3’, ’inputs’: ’[[-1, 1, 2, 3, 1], 2]’, ’expected’: ’3’, ...‘

• Analysis: Qwen also successfully adapted, supporting the idea that shifts to concrete programming scenarios can be
handled well.

DeepSeek-14B Performance: (result: False)

• Reasoning Snippet (output): Minimal reasoning, often directly outputting code.

• Relevant solution code Snippet (example of failure for this problem):

# Might correctly implement the logic but use original names, or make subtle errors
class Solution:

def countPairs(self, nums: List[int], target: int) -> int: #Note: uses ’nums’,’target’
n = len(nums)
count = 0
# ... (correct loop structure) ...
# if nums[i] + nums[j] < target: count += 1
return count # For this instance, output was 0

• Result Details (metadata output): ‘’output’: ’0’, ’inputs’: ’[[-1, 1, 2, 3, 1], 2]’, ’expected’: ’3’, ...‘

• Analysis: DeepSeek-14B failed. The failure could be due to not fully adapting to new variable names if the test harness
strictly expected them, or other subtle logical errors when attempting to apply the algorithm in the new context. Its output
of 0 for an expected 3 is a clear miscalculation.



Comparative Summary for Example C.1: Llama and Qwen successfully generalized for this pair-counting task.
DeepSeek’s failure indicates difficulty in accurately reapplying the algorithm in the new semantic context. Claude’s typical
failures on other problems (as seen in C.2) show a more severe disruption.

C.2 Example C.2: Problem - minIncrementOperations - Claude-3.7-Sonnet’s Failure via
Oversimplification

Original Problem Objective (Summarized): Given ‘nums‘ and ‘k‘, find minimum increment operations such that
for every subarray of length 3, at least one element is ‘¿= k‘. (This is a dynamic programming problem).

Modified Problem Objective (Domain Shift Example for Claude): ”You are managing project tasks.
‘task priorities‘ is an array of initial priority scores. ‘min threshold‘ is an integer. An operation involves increasing a task’s
priority by 1. A project schedule is ’stable’ if, for every sequence of 3 consecutive tasks, at least one task has a priority score
¿= ‘min threshold‘. Return the minimum number of priority increases to make the schedule stable.”

Input Instance: ‘nums = [2,3,0,0,2]‘ (becomes ‘task priorities‘), ‘k = 4‘ (becomes ‘min threshold‘).

Correct Output for this Instance (Original and Shifted Logic): 3.
Claude-3.7-Sonnet Performance: (result: [False])

• Reasoning Snippet (output): ”The problem asks us to find the minimum number of ’priority increases’ (operations) to
make a schedule ’stable’. A schedule, represented by an array ‘task priorities‘, is stable if every sequence of 3 consecutive
tasks has at least one task with a priority score greater than or equal to ‘min threshold‘...”

• Relevant solution code Snippet:

class Solution:
def minIncrementOperations(self, task_priorities: List[int], min_threshold: int)->int:

n = len(task_priorities)
ans = 0
# Incorrectly makes EACH element >= threshold, not the windowed condition
for i in range(n):

if task_priorities[i] < min_threshold:
ans += min_threshold - task_priorities[i]

return ans

• Result Details (metadata output): ‘’output’: ’13’, ’inputs’: ’[[2,3,0,0,2], 4]’, ’expected’: ’3’, ’error code’: -2,
’error message’: ’Wrong Answer’‘

• Analysis of Failure: Claude’s reasoning correctly re-stated the objective in the new domain, including the crucial ”every
sequence of 3 consecutive tasks” condition. However, the generated code implemented a much simpler and incorrect
logic: it calculated the operations needed to make *every single task* meet the ‘min threshold‘ individually, ignoring the
more complex windowed requirement. This is a clear case where, despite understanding the shifted problem’s textual
goal, the model failed to map it to the correct complex algorithm and instead defaulted to an oversimplified solution.

D Negation Objective and Negation Objective (Soft) Results

E Prompt Templates for Modification

Gamification Prompt Template

Instruction: Rewrite the problem as a challenge involving agents or players.

Guidelines:

• Preserve all technical components (Input, Output, Explanation, Constraints).

• Add a game-like narrative layer (e.g., robot navigation, puzzle solving).

Prompted Task: Embed the problem into a goal-driven challenge structure.

{original content}
No additional explanation needed.

Figure 4: Prompt template for Gamification transformation.

F Preservation Score Prompt Template



Attack Model Easy Acc. Medium Acc. Hard Acc. Overall Acc.

Negation Objective
(Hard)

DeepSeek-7B 3.0% (-87.9%) 2.0% (-68.0%) 0.0% (-35.3%) 14.0% (-57.0%)
DeepSeek-14B 3.0% (-94.0%) 0.0% (-92.0%) 0.0% (-58.8%) 5.7% (-82.3%)
Qwen2.5-Coder 33.3% (-48.5%) 20.0% (-32.0%) 23.5% (-11.8%) 47.2% (-11.8%)
LLaMA3-8B-Instruct 3.0% (-33.4%) 0.0% (-12.0%) 0.0% (-5.9%) 8.3% (-10.7%)
DeepSeek-Coder-33B 18.2% (-66.6%) 22.0% (-26.0%) 5.9% (-5.9%) 36.9% (-17.1%)
Claude-3-Haiku 12.1% (-39.4%) 4.0% (-28.0%) 5.9% (-35.3%) 21.2% (-18.8%)
Claude-3.7-Sonnet 6.1% (-93.9%) 2.0% (-90.0%) 5.9% (-58.8%) 15.0% (-75.0%)
Gemini-2.5-Flash 27.3% (-72.7%) 18.0% (-80.0%) 23.5% (-53.0%) 42.6% (-52.4%)
Gemini-2.0-Flash 18.2% (-78.8%) 26.0% (-60.0%) 11.8% (-35.3%) 43.2% (-39.8%)

Negation Objective
(Soft)

DeepSeek-7B 3.0% (-87.9%) 0.0% (-70.0%) 0.0% (-35.3%) 5.7% (-65.3%)
DeepSeek-14B 0.0% (-97.0%) 0.0% (-92.0%) 0.0% (-58.8%) 1.1% (-86.9%)
Qwen2.5-Coder 36.4% (-45.4%) 22.0% (-30.0%) 5.9% (-29.4%) 46.9% (-12.1%)
LLaMA3-8B-Instruct 21.2% (-15.2%) 6.0% (-6.0%) 5.9% (+0.0%) 29.4% (+10.4%)
DeepSeek-Coder-33B 0.0% (-84.8%) 25.0% (-23.0%) 0.0% (-11.8%) 37.5% (-16.5%)
Claude-3-Haiku 15.2% (-36.3%) 0.0% (-32.0%) 11.8% (-29.4%) 22.5% (-17.5%)
Claude-3.7-Sonnet 12.1% (-87.9%) 2.0% (-90.0%) 5.9% (-58.8%) 25.4% (-64.6%)
Gemini-2.5-Flash 21.2% (-78.8%) 24.0% (-74.0%) 11.8% (-64.7%) 41.5% (-53.5%)
Gemini-2.0-Flash 15.2% (-81.8%) 30.0% (-56.0%) 5.9% (-41.2%) 40.6% (-42.4%)

Table 7: Accuracy (%) for problem set perturbed with Negation Objective and Negation Objective (Soft).

Example Perturbation Prompt Template

Instruction: Modify only the examples to make them confusing for LLMs.

Guidelines:

• Keep Input/Output logic correct.

• Shuffle values, insert noise (e.g., swapped labels, edge-case placements).

Prompted Task: Make the examples harder to pattern-match while maintaining validity.

{original content}
No additional explanation needed.

Figure 5: Prompt template for Example Perturbation transformation.

Distracting Constraints Prompt Template

Instruction: Add irrelevant but realistic constraints to the problem.

Guidelines:

• Do not alter solvability.

• Insert edge cases, meaningless jargon, or constraints that distract models.

Prompted Task: Inject non-functional complexity into the problem description.

{original content}
No additional explanation needed.

Figure 6: Prompt template for Distracting Constraints transformation.



Domain Shift Prompt Template

Instruction: Shift the problem into a different but equivalent domain.

Guidelines:

• Retain logical structure and constraints.

• Replace nouns and context (e.g., integers → salaries, arrays → elevator floors).

Prompted Task: Change the framing without affecting logic.

{original content}
No additional explanation needed.

Figure 7: Prompt template for Domain Shift transformation.

Hard Negation Objective Prompt Template

Instruction: Invert the objective of the coding task.

Examples:

• Max → Min

• Increasing → Not Increasing

• Include → Exclude

Prompted Task: Rewrite the problem with the opposite intent and updated examples.

{original content}
No additional explanation needed.

Figure 8: Prompt template for Hard Negation Objective transformation.

Soft Negation Prompt Template

Instruction: Apply a light semantic reversal without changing the task’s core logic.

Examples:

• Non-decreasing instead of increasing

• Non-minimum instead of minimum

Guidelines:

• Preserve input/output, examples, and difficulty.

• Adjust only the task description and minimal example logic.

Prompted Task: Rewrite with slight negation while keeping format identical.

{original content}
No additional explanation needed.

Figure 9: Prompt template for Soft Negation transformation.



Logical Preservation Evaluation Prompt Template

System Prompt: You are a meticulous evaluator tasked with assessing the logical preservation of coding problems.
You will be given two versions of a coding problem: the Original Problem and the Modified (Perturbed) Problem.
Your goal is to evaluate whether the Modified Problem faithfully preserves:

• the fundamental task,

• the input/output specifications,

• the logical structure,

• and all critical details of the Original Problem.

You must judge strictly according to the rubric provided. Be critical but fair: minor rewordings are acceptable, but
changes to task meaning, core logic, or critical information are not. You must output your evaluation in a structured
format.

User Prompt: You will now receive two problems: an Original Problem and a Modified Problem.
{original problem}
{modified problem}
Please answer the following evaluation questions carefully:

1. Task Consistency: Does the Modified Problem ask the user to solve the same fundamental task as the Original?

2. Input/Output Preservation: Are the input format, output format, and constraints logically identical?

3. Logical Integrity: Is the problem’s solution path and necessary reasoning preserved?

4. Critical Information: Is all important information (constraints, conditions, definitions) preserved without dis-
tortion?

5. Overall Preservation Score (0–10):

• 10 = Perfect preservation, only cosmetic wording changes.
• 8–9 = Very minor harmless changes; core task fully intact.
• 6–7 = Some small logical shifts; still mostly solvable similarly.
• 4–5 = Major logical shifts; significant omissions or confusing edits.
• 1–3 = Core task altered; substantial confusion introduced.
• 0 = Task completely changed or adversarially broken.

6. Reasoning: Write a brief but detailed explanation justifying the score. Point out any specific differences or
issues if any exist.

Format your output exactly like this:
Task Consistency: [Yes/No]
Input/Output Preservation: [Yes/No]
Logical Integrity: [Yes/No]
Critical Information: [Yes/No]

Preservation Score: [0{10]

Reasoning:
- [Brief, clear explanation highlighting matching parts or critical deviations]

Figure 10: Prompt template for evaluating logical preservation between original and modified coding problems.


