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Abstract. As a fundamental problem in machine learning and differ-
ential privacy (DP), DP linear regression has been extensively studied.
However, most existing methods focus primarily on either regular data
distributions or low-dimensional cases with irregular data. To address
these limitations, this paper provides a comprehensive study of DP sparse
linear regression with heavy-tailed responses in high-dimensional set-
tings. In the first part, we introduce the DP-IHT-H method, which lever-
ages the Huber loss and private iterative hard thresholding to achieve an

estimation error bound of Õ
(
s∗

1
2 ·

(
log d
n

) ζ
1+ζ

+ s
∗ 1+2ζ

2+2ζ ·
(

log2 d
nε

) ζ
1+ζ

)
under the (ε, δ)-DP model, where n is the sample size, d is the dimen-
sionality, s∗ is the sparsity of the parameter, and ζ ∈ (0, 1] characterizes
the tail heaviness of the data. In the second part, we propose DP-IHT-L,
which further improves the error bound under additional assumptions
on the response and achieves Õ

(
(s∗)3/2 log d

nε

)
. Compared to the first re-

sult, this bound is independent of the tail parameter ζ. Finally, through
experiments on synthetic and real-world datasets, we demonstrate that
our methods outperform standard DP algorithms designed for “regular”
data.

Keywords: Differential Privacy · Sparse Linear Regression · Heavy-
tailed Data

1 Introduction

Differential Privacy (DP) [18] has received significant attention and is now widely
considered the de facto standard to protect privacy in data analysis. DP provides
a rigorous mathematical framework to ensure that the inclusion or exclusion of
any single individual’s data in a dataset does not significantly affect the output
of an analysis, thereby preserving privacy. A large body of research has explored
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various DP guarantees, and these concepts have been successfully adopted in
industry [14, 43].

Linear regression in the DP model has been extensively studied for many
years, becoming one of the most thoroughly explored topics in machine learning
and DP communities. A substantial body of research has addressed the prob-
lem from various perspectives. Early investigations of DP linear regression were
closely tied to more general frameworks such as DP Stochastic Convex Opti-
mization (DP-SCO) and Empirical Risk Minimization (DP-ERM), as explored in
the seminal works of [11, 12, 55, 49, 46, 51, 22, 58, 39, 40, 16, 59, 37]. Subsequently,
numerous methods have been proposed to address DP linear regression under
different settings. For instance, several studies [4, 19, 25, 53, 15] focus on low-
dimensional scenarios in the central DP model, while others [9, 28, 29, 42, 56]
extend these ideas to high-dimensional sparse linear regression—an increasingly
relevant setting for modern, structured data. The local DP model has also at-
tracted attention [17, 47, 50, 52, 60, 61], imposing stricter privacy requirements
but potentially offering stronger protection.

Despite these advances, most prior work assumes regular data distributions,
typically requiring that features and responses are bounded or sub-Gaussian.
Classical approaches such as output perturbation [12] or objective/gradient per-
turbation [5] rely on these assumptions to guarantee an O(1)-Lipschitz loss for all
data points. In practice, however, these conditions often fail—particularly in do-
mains like biomedicine and finance, where heavy-tailed distributions commonly
arise [6, 24, 57]. In such cases, Lipschitz conditions may be violated; for example,
in linear regression with squared loss ℓ(w, (x, y)) = (w⊤x−y)2, heavy-tailed fea-
tures can lead to unbounded gradients, invalidating assumptions used in many
DP proofs. Although gradient truncation or trimming [1] has been suggested as
a remedy, a thorough analysis of its convergence properties under DP constraints
has been lacking. This gap underscores the need for private and robust methods
specifically tailored to heavy-tailed data.

Recent works have begun addressing DP linear regression in the presence
of heavy-tailed data [3, 27, 31, 48, 54]. However, some of these approaches suffer
from a polynomial dependence on the data dimension d, making them unsuitable
for high-dimensional settings where d ≫ n. Thus, a natural question is: What
are the theoretical behaviors of DP linear regression in high-dimensional sparse
cases with heavy-tailed data?
Our Contributions. In this paper, we study the setting of high-dimensional
sparse linear regression with heavy-tailed response under DP constraints. Specif-
ically, we consider the scenario where the feature vector is sub-Gaussian and the
response only has a finite (1 + ζ)-th moment with ζ ∈ (0, 1]. We propose novel
DP linear regression algorithms that are robust to heavy-tailed data and capable
of handling high-dimensional sparse problems effectively. Specifically:

1. For general heavy-tailed responses, we propose the DP-IHT-H algorithm,
addressing the unexplored challenge of adapting Huber loss-based linear re-
gression to differential privacy. Specifically, it achieves an error bound under
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(ϵ, δ)-DP given by

Õ

(
s∗

1
2 ·
(
log d

n

) ζ
1+ζ

+ s∗
1+2ζ
2+2ζ ·

(
log2 d

nε

) ζ
1+ζ
)
,

where n is the sample size, d is the data dimensionality, and s∗ represents
the sparsity of the parameter.

2. To further improve the error bound, we propose the DP-IHT-L algorithm,
which leverages the ℓ1 loss function instead. By adding some mild assump-
tions on the response noise, the DP-IHT-L algorithm achieves a lower gradi-
ent bound and reduces the magnitude of the added noise. This enhancement
leads to improved error bounds and greater stability, regardless of the value
of ζ. Specifically, under (ϵ, δ)-DP, the error is bounded by Õ

(
(s∗)3/2 log d

nϵ

)
,

which is independent of the moment and matches best-known results of the
sub-Gaussian case [21, 10].

3. Through extensive experiments on both synthetic and real-world datasets,
we demonstrate that our methods outperform DP algorithms designed for
regular data. Moreover, in some cases, DP-IHT-L further improves upon
DP-IHT-H.

2 Related Work

As we mentioned, DP linear regression has been extensively studied. Still, most
existing methods assume that the underlying data distribution is sub-Gaussian
or bounded, rendering them unsuitable for heavy-tailed data. In contrast, in
the non-private setting, recent advances have addressed Stochastic Convex Op-
timization (SCO) and Empirical Risk Minimization (ERM) under heavy-tailed
data [7, 20, 30, 32, 41, 38]. However, these non-private methods are not directly
adaptable to private settings, particularly in our high dimensional sparse sce-
narios.

The first study addressing DP-SCO with heavy-tailed data was proposed
by [48], which introduced three methods based on distinct assumptions. The
first method utilizes the Sample-and-Aggregate framework [34], but its strin-
gent assumptions lead to a relatively large error bound. The second method
leverages smooth sensitivity [8] but requires the data distribution to be sub-
exponential. Additionally, [48] proposed a private estimator inspired by robust
statistics, which shares similarities with our approach. Building on the mean
estimator proposed in [27], [26, 44] recently investigated DP-SCO and achieved

improved (expected) excess population risks of Õ
((

d
ϵn

) 1
2

)
and Õ

(
d
ϵn

)
for con-

vex and strongly convex loss functions, respectively. These results rely on the
assumption that the gradient of the loss function has a bounded second-order
moment, aligning with the best-known outcomes for heavy-tailed mean estima-
tion. However, these approaches only consider low dimensional case and cannot
address high-dimensional or sparse learning problems. Furthermore, their meth-
ods are not directly extendable to our models, where the assumption of bounded
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second-order moments of the loss function gradient is overly restrictive than our
assumption on the finite (1 + ζ)-moment for the response.

Recently, [21] proposed a method that requires only that the distributions of
x sub-Gaussian and y at least have bounded second-order moments, achieving an
error bound of Õ

(
(s∗)3 log2 d

nϵ

)
. In our paper, we consider the weaker assumption

that y only has the bounded (1 + ζ)-th moment. We show that, under some
additional assumptions, it is possible to achieve almost the same error as in [21].

3 Preliminaries

Definition 1 (Differential Privacy [18]). A randomized mechanism M for
the data universe D satisfies (ε, δ)-differential privacy if, for all measurable sub-
sets S ⊆ Range(M) and for all pairs of adjacent datasets D,D′ ∈ D (differing
by at most one data point), Pr

[
M(D) ∈ S

]
≤ eε Pr

[
M(D′) ∈ S

]
+ δ, where

the probability space is over the randomness of the mechanism M .

Definition 2 (Laplacian Mechanism). Given a function q : Xn → Rd, the
Laplacian Mechanism is defined as: ML(D, q, ϵ) = q(D)+(Y1, Y2, · · · , Yd) , where
Yi is i.i.d. drawn from a Laplacian Distribution Lap

(
∆1(q)
ϵ

)
, and ∆1(q) is the

ℓ1-sensitivity of the function q, i.e., ∆1(q) = supD∼D′ ∥q(D)− q (D′)∥1 . For a
parameter λ, the Laplacian distribution has the density function Lap(λ)(x) =
1
2λ exp

(
− |x|

λ

)
. The Laplacian Mechanism preserves ϵ-DP.

Definition 3 (Sub-Gaussian Vector). A random vector X ∈ Rd is sub-
Gaussian if every one-dimensional projection ⟨X,v⟩, for any unit vector v ∈ Rd,
is a sub-Gaussian random variable. That is, there exists σ2 > 0 such that for all
λ ∈ R, E

[
eλ(⟨X,v⟩−E[⟨X,v⟩])] ≤ e

λ2σ2

2 .

We consider a sparse linear model yi = x⊤i β
∗ + εi, where β∗ ∈ Rd is the

underlying unknown parameter vector, and εi represents the noise term. In the
high dimensional setting, we assume β∗ is s∗-sparse, i.e., s∗ = | supp(β∗)| with
s∗ ≪ d. In DP linear regression, given a dataset where each sample is i.i.d.
sampled from the linear model, the goal is to develop some (ϵ, δ)-DP estimator
βpriv to make the estimation error ∥βpriv−β∗∥2 as small as possible. We adopt
the following general assumptions, requiring bounded eigenvalues and a bounded
β∗, which are common in high dimensional setting [38, 41, 9] :

Assumption 1 We assume the following:

1. The covariates {xi} are zero-mean O(1)-sub-Gaussian with covariance ma-
trix Σ = E[xx⊤]. The eigenvalues of Σ are bounded as follows: cl ≤
λmin(Σ) ≤ λmax(Σ) ≤ cu.

2. ∥β∗∥2 ≤ c
1/2
u r = L, where r is a constant.
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In this paper, we focus on linear models with heavy-tailed responses. Unlike
previous work on the DP linear model, here we only assume the response (or the
noise) has only bounded 1 + ζ-th moment:

Assumption 2 We assume the noise εi has zero mean, E[εi] = 0, and a finite
(1 + ζ)-th moment with some ζ ∈ (0, 1]:

vζ =
1

n

n∑
i=1

E
(
|εi|1+ζ

)
< ∞.

4 DP Iterative Hard Thresholding with Huber Loss

In the non-private case, recently [45, 41] show that an estimator based on the
Huber loss [23] can achieve the optional estimation rate:

Lτ (β) =
1

n

n∑
i=1

ℓτ
(
yi − x⊤i β

)
, s.t.∥β∥0 ≤ s, ∥β∥2 ≤ L, (1)

where s is a parameter and the Huber loss with parameter τ is defined as

ℓτ (x) :=


x2

2
, if |x| < τ,

τ |x| − τ2

2
, otherwise.

Compared to the squared loss in the classical linear model, Huber loss is more
robust to outliers and heavy-tailed noise, making it highly effective in non-DP
scenarios. However, with the DP constraint, it is difficult to privatize such an
estimator due to the following key challenges: 1). The optimization problem
(non-convex and non-smooth) associated with Huber loss (1) lacks an efficient
algorithm for the solution. For instance, [41] proposes an adaptive Huber loss es-
timator but does not provide an efficient algorithm to solve it. 2). If we directly
use the previous DP methods to the Huber loss such as objective perturba-
tion [11] or gradient perturbation methods [5], then we need to introduce a noise
with scale Ω(d), which is extremely large as we consider the high dimensional
setting where d≫ n.

To address these challenges, we propose the DP-IHT-H algorithm. This al-
gorithm: 1). Efficiently leverages the Huber loss to perform a linear regression.
2). Achieves (ϵ, δ)-DP guarantees with an error bound that only logarithmically
depends on the dimension d. In our DP-IHT-H algorithm, we first shrink the
original feature vector x to make it have bounded ℓ∞-norm. Next, we calculate
the gradient on the shrunken data using the Huber loss and update our vec-
tor via gradient descent. Due to the bounded gradient of Huber loss, the error
bound can be controlled with high probability, even for heavy-tailed data. Fi-
nally, we perform a "Peeling" step [10] to select the top s indices with the largest
magnitudes in the vector while preserving DP.
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Algorithm 1 DP IHT with Huber Loss (DP-IHT-H)
Input: n-size dataset D = {(yi, xi)}i∈[n], Step size η, Sparsity level s, Privacy param-
eters ε, δ, Huber loss parameter τ , Truncation parameter K, Total steps T .
Output: βT

1: Initialize β0 = 0.
2: Clipping: For each i ∈ [n], define the truncated sample x̃i ∈ Rd by

x̃i,j = sign(xi,j)min
{
|xi,j |,K

}
, ∀j ∈ [d].

3: Denote the truncated dataset as D̃ = {(x̃i, ỹi)}ni=1.
4: Split the data D̃ into T parts {D̃t}Tt=1, each with m = n

T
samples.

5: for t = 0 to T − 1 do
6: βt+0.5 = βt − η

m

∑
i∈D̃t

ℓ′τ

(
yi − x̃⊤

i β
t
)
x̃i

7: βt+1 = ΠL

(
Peeling

(
βt+0.5, D̃t, s, ε, δ,

ητK
m

))
, where ΠL is the projection onto

the L-radius ball.
8: end for
9: return βT

The Peeling algorithm achieves privacy protection by adding Laplace noise
twice. First, noise is added to each entry of the vector to perturb the original
data, ensuring that no single component can be directly exposed during the
selection process. Based on the noisy values, the algorithm iteratively selects
the indices corresponding to the s largest magnitudes. After selecting the s
indices, additional Laplace noise is added to further obscure the true values of
the selected components. The final output is a sparse vector where only the
selected components retain their perturbed values, while all other components
are set to zero. Compared to using Gaussian noise, this approach results in
a smaller noise scale, effectively protecting privacy while maintaining higher
accuracy and output quality. In the following, we will provide the privacy and
utility guarantees of DP-IHT-H.

Theorem 1. For any 0 < ϵ, 0 < δ < 1, DP-IHT-H is (ε, δ)-DP.

Theorem 2. If Assumption 1 and 2 hold and assume n is sufficiently large such

that n ≥ Ω̃
(
(s∗)

2
3 log d

)
. Setting s = O

(
s∗
)
, stepsize η = O(1), K = O

(
log d

)
,

T = O
(
log n

)
, and τ = O

((
n

T (s∗)
3
2 log

1
2
(
1
σ

)
log d

) ζ
1+ζ

)
in Algorithm 1, then with

probability at least 1−O
(
d−1+Te−c1n

)
for a constant c1, we obtain the following

bound on the final estimate:

∥βT − β∗∥2 = O

(
(s∗)

1
2

(
log d

n

) ζ
1+ζ

+ (s∗)
1
2

(
(s∗)

1
2 log2 d log(1/δ)

n ε

) ζ
1+ζ
)
.
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Algorithm 2 Peeling Procedure
Input: Vector x ∈ Rd (based on D), Sparsity s, Privacy parameters ε, δ, Noise scale
λ.
Output: x

∣∣
S
+ w̃S

1: Initialize S = ∅.
2: for i = 1 to s do
3: Generate noise wi ∈ Rd where each component is drawn from: wi,j ∼

Lap
(

2λ
√

3s log(1/δ)

ε

)
.

4: Append j∗ = argmaxj∈[d]\S

(
|xj |+ wi,j

)
to S.

5: end for
6: Generate w̃ ∈ Rd where each component is drawn from: w̃j ∼ Lap

(
2λ
√

3s log(1/δ)

ε

)
.

7: return x
∣∣
S
+ w̃S .

Remark. There are two terms in the above error bound. The first one cor-
responds to the optimal error bound in the non-private case [41]. The second
term corresponds to the error due to the noises added to ensure DP. In the case
ϵ = O(1) the overall error bound is dominated by the second term. Moreover,
when ζ = 1, i.e., the noise has bounded variance, the error rate becomes to
Õ
( (s∗)3/4 log d√

n ε

)
.

Under similar conditions, that is, assume that x is sub-Gaussian and y has a
finite 2ζ -th moment with ζ ≥ 1 -[21] establishes an upper bound for the privacy

component, given by Õ
(
(s∗)

1+2ζ
1+ζ ·

(
log3 n log2 d

n2ϵ2

) ζ
1+ζ

)
. Thus, our results can be

considered as an extension to the (1+ζ)-th moment case. For sub-Gaussian x and

y a related bound is also provided in [10]: Õ
(√

s∗ log d
n +

s∗ log d
√

log3 n

nε

)
. How-

ever, this result is not directly comparable to ours due to the strong assumptions
imposed on the covariance matrix.

5 DP Iterative Hard Thresholding with ℓ1 Loss

In DP-IHT-H, the algorithm achieves its lowest error bound when ζ = 1. This
naturally raises the question: Can we refine the algorithm so that its performance
becomes independent of ζ even when ζ < 1? In this section, we propose a new
method, DP-IHT-L, to address the shortcomings of DP-IHT-H. The primary
issue with DP-IHT-H lies in the dependence of the bounded gradient of the Huber
loss on ζ, which results in larger noise being introduced during the “Peeling” step
as the best value depends on n and ζ (see Theorem 2). Thus, it is necessary to
use other loss functions that do not have such a parameter τ and are with a
constant gradient bound. Motivated by [38], in the following we will show the
ℓ1 loss (absolute loss function) satisfies this requirement. See Algorithm 3 for
details.
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The basic idea of DP-IHT-L is similar to that of DP-IHT-H. First, we clip x
to ensure it has an Õ(1) bounded ℓ∞-norm. Then we update βt, but instead of
using the gradient of the Huber loss, we replace it with the gradient of the ℓ1 loss,
thereby avoiding the dependence on the bound related to ζ. Finally, we apply
the “Peeling” algorithm to introduce noise and preserve differential privacy.

Theorem 3. For 0 < ϵ and 0 < δ < 1, the DP-IHT-L algorithm is (ε, δ)-DP.

To get our bound, we pose additional assumptions on the noise.

Assumption 3 We assume the following: Let the noise terms {εi}ni=1 be i.i.d.
with density hε(·) and distribution function Hε(·), and define γ = E

[
|εi|
]
. There

exist constants b0, b1 > 0 (possibly depending on γ) such that

hε(x) ≥ 1
b0
, for all |x| ≤ 8

(
cu
cl

) 1
2 γ,

hε(x) ≤ 1
b1
, for all x ∈ R.

Remark: The lower bound in the density is essentially a (local) Bernstein con-
dition [2] and is easily satisfied by many heavy-tailed distributions (e.g., any
t-distribution with degrees of freedom v > 2). The upper bound simply requires
that the noise distribution does not have unbounded peaks, which is also satis-
fied by common distributions such as Gaussian, Laplace, and t-distributions with
v > 2. As a result, Assumption 3 is quite relaxed for a wide range of heavy-tailed
settings.

Under Assumption 3, in t-th iteration, the sub-gradient of the loss function

Gt =
∑
i∈D̃t

sign
(
x⊤i β

t − yi

)
x̃i

=
∑
i∈D̃t

sign
(
x⊤i (β

t − β∗)
)
x̃i −

∑
i∈D̃t

sign
(
x⊤i εi

)
x̃i

exhibits two distinct regimes based on the magnitude of ∥βt − β∗∥2. These
regimes determine the behavior and convergence rate of the algorithm:

– Large Deviation Regime: When ∥βt − β∗∥2 is relatively large, the sub-
gradient Gt is dominated by the term

∑
i∈D̃t

sign
(
x⊤i (β

t − β∗)
)
x̃i leading

to a larger error bound of Gt. Hence the updates in this phase are large,
allowing the algorithm to converge rapidly during the early iterations. This
ensures efficient progress toward reducing the parameter error.

– Small Deviation Regime: Once ∥βt − β∗∥2 becomes small, the sub-
gradient Gt is primarily influenced by the noise term

∑
i∈D̃t

sign
(
x⊤i εi

)
x̃i.

In this case the error bound of Gt is small leading to a slower convergence
rate that ensures refinement near the underlying parameter β∗.

Based on these differing bounds, we can establish the following convergence
result.
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Algorithm 3 Differentially Private Iterative Hard Thresholding with General
Loss (DP-IHT-L)
Input: n-size dataset D = {(yi, xi)}ni=1, Step size ηt, Sparsity level s, Privacy param-
eters ε, δ, Truncation parameter K, Total steps T .
Output: βT

1: Initialization: Set β0 = 0.
2: Clipping: For each i ∈ [n], define the truncated sample x̃i ∈ Rd by

x̃i,j = sign(xi,j)min
{
|xi,j |,K

}
, ∀j ∈ [d].

3: Denote the truncated dataset as D̃ = {(x̃i, yi)}ni=1.
4: Data Splitting: Split D̃ into T disjoint subsets {D̃t}T−1

t=0 , each containing m = n
T

samples.
5: for t = 0 to T − 1 do
6: βt+0.5 = βt − ηt

m

∑
i∈D̃t

sign
(
x⊤
i β

t − yi
)
x̃i

7: βt+1 = ΠL

(
Peeling

(
βt+0.5, D̃t, s, ε, δ,

2ηK
m

))
8: end for
9: return βT

Theorem 4. Under Assumption 1, 2 and 3 and assume n ≥ O
(
cu c

−1
l s∗ log d

)
.

Set s = Ω
(
(cu/cl)

8(b0/b1)
8s∗
)
, K = O(log d), and the initial step size η0 satis-

fying [
c
1/2
l ∥β0−β∗∥2

8n cu
,

3c
1/2
l ∥β0−β∗∥2

8n cu

]
,

then for the sequence {βt} generated by Algorithm 3, there are two distinct con-
vergence phases:

Phase One: When ∥βt − β∗∥2 ≥ 8 c
−1/2
l γ, using ηt = (1 − c1)

tη0 with c1 =
O(cl c

−1
u ) ensures

∥βt+1 − β∗∥2 ≤ (1− c1)
t+1∥β0 − β∗∥2 + O

(√
W
))
.

Phase Two: Once ∥βt − β∗∥2 ≤ 8 c
−1/2
l γ, switching to a constant step size

ηt = O
(
c
1/2
l b21(nb0cu)

−1
)

yields

∥βt+1 − β∗∥2 ≤ (1− c∗2) ∥β
t − β∗∥2 + O

(√
W
))
.

Here,

O
(√

W
))

= O
(
T
(
s∗
)3/2

log d
(
log(1/δ)

)1/2
log(T/n)

n ε

)
represents the cumulative effect of the Laplace noise, and c∗2 ∈ (0, 1) indicates a
strict contraction rate once βt is sufficiently close to the true parameter vector
β∗.
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Because the sub-gradient operates under two different regimes, the overall es-
timation error follows a two-phase pattern. In Phase One, the sub-gradient is
governed by the smoothness property, leading to rapid convergence from larger
errors. In Phase Two, the strong convexity takes over once the estimator is suffi-
ciently close to β∗, and the convergence becomes linear in nature. The O

(√
W
))

term arises from comparing against the exact parameter β∗, which is not affected
by the additional noise injected via the peeling procedure. With these two phases
established, we can derive a global error bound as follows.

Theorem 5. Consider the same settings as in Theorem 4, with probability at
least 1− exp

(
−C s∗ log

(
2 d
s∗

))
, after at most

T = O
(
log
(

∥β0−β∗∥2

γ

)
+ log

(
nγ b−1

0 log
(
2 d
s∗

)))
iterations, Algorithm 3 produces an estimator βT satisfying

∥βT − β∗∥2 ≤ O
( (s∗)3/2 log d

(
log( 1δ )

)1/2
log n

n ε

)
.

Overall, our DP-IHT-L algorithm achieves an error bound of Õ
(

(s∗)3/2 log d
nε

)
for

high-dimensional sparse data with heavy-tailed distributions. In comparison, the

DP-IHT-H algorithm attains an error of Õ
(
s∗

1+2ζ
2+2ζ

(
log2 d
nε

) ζ
1+ζ
)
, which is larger

than our previous bound. Similarly, when ζ = 1 , our error bound is almost the

same as in [21], which is given by Õ
(
s∗

1+2ζ
1+ζ

(
log3 n log2 d

n2ε2

) ζ
1+ζ
)
. Note that in the

case of ζ = 1, [10] achieves an error bound of Õ
(√

s∗ log d
n + s∗ log d

nε

)
. However,

their analysis requires the strong condition that ∥xI∥∞ ≤ O
(

1√
|I|

)
for any index

set I ⊆ [d]. Thus, their results is imcomparable with ours.

6 Experiments

In this section, we evaluate the practical performance of our proposed algorithms
on both synthetic and real-world datasets.

6.1 Experimental Setup

Synthetic Data. We generate synthetic data for linear regression following the
model

yi = ⟨xi,β∗⟩+ εi, i = 1, . . . , n,

where each feature vector xi ∈ Rd is drawn from N (0, Id). The true coefficient
vector β∗ has s∗ nonzero entries, which are sampled from a scaled standard nor-
mal distribution, with the remaining entries set to zero. To simulate heavy-tailed
noise, the error terms {εi} are drawn from a Student-t distribution. Specifically,
we set the degrees of freedom ν to 1.75 when ζ = 0.5 and to 3 when ζ = 1.
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Real-World Data. For additional validation, we evaluate our algorithms on real-
world datasets, including: NCI-60 cancer cell line dataset [36], with n = 59
samples and d = 14,342 features. And METABRIC (Molecular Taxonomy
of Breast Cancer International Consortium) dataset [13, 35], with n = 1,904
samples and d = 24,368 features. These datasets, commonly found in publicly
available biological databases, are known to exhibit heavy-tailed distributions.

Parameter Choices. Unless otherwise specified, the default parameter settings
for the DP-IHT-H algorithm are as follows: s∗ = 5, ϵ = 0.5, ζ = 1, δ = 1/n1.1,
and the Huber loss parameter τ = 1. For DP-IHT-L, the same parameters are
applied. The truncation parameter K is set to log d. Across all algorithms, we
use a constant step size of η = 0.01.

Evaluation Metrics. We evaluate algorithm performance using the ℓ2-estimation
error, defined as ∥β̂−β∗∥2. As there is no underlying parameter β∗ for real-world
data, we will use the adaHuher algorithm in [41], which achieves the optimal
rate, to approximate β∗. Each experiment is repeated 20 times, and we report
the average results to ensure statistical reliability.

Baselines. We focus on the DP-IHT-H and DP-IHT-L algorithms. As we men-
tioned above, there is no previous research on the DP sparse model with heavy-
tailed response that only has the 1+ζ-th moment with ζ ∈ (0, 1). For comparison,
we include:

– DP-SLR: Differentially private sparse linear regression under regular (light-
tailed) data [10]. DP-SLR could achieve the almost optimal rate in this
setting.

– adaHuber: Non-DP linear regression in high-dimensional sparse heavy-
tailed settings using the adaptive Huber loss method [41]. adaHuber achieves
the optimal rate in the non-private setting.

6.2 Results on Synthetic Data

We first investigate whether DP-IHT-H achieves better performance under heavy
tails (i.e., small ζ), whether it outperforms differentially private algorithms de-
signed for regular data distributions, and the performance gap between DP-IHT-
H and the non-private optimal algorithm.

Figure 1a shows that when the response variable is heavy-tailed, DP-IHT-H
achieves significantly lower errors than DP-SLR, possibly because of the square
loss used in DP-SLR is less robust to outliers. Moreover, Figure 1b illustrates
that as the dimensionality d increases, the estimation error grows more gradually
for DP-IHT-H than for the other two methods. In addition, the figure clearly in-
dicates that DP-IHT-H outperforms the DP-SLR algorithm across various values
of d. Figures 1c and 1d further confirm that in heavy-tailed scenarios, DP-IHT-H
consistently outperforms the DP-SLR algorithm. Across varying sparsity s∗ and
privacy budgets ϵ, DP-IHT-H maintains robust performance, demonstrating its
advantage in handling heavy-tailed data while preserving differential privacy.
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(a) Comparison for different ζ (b) Performance vs. d

(c) Performance vs. s∗ (d) Performance vs. ϵ

Fig. 1: Comparison of DP-IHT-H, DP-SLR, and adaHuber methods.

We next evaluate the DP-IHT-L algorithm in comparison with DP-IHT-H,
focusing on whether DP-IHT-L provides a similar error guarantee for different
values of ζ, and whether it outperforms DP-IHT-H for larger ζ. From Figures 2a
and 2b, we observe that DP-IHT-L generally outperforms DP-IHT-H, particu-
larly when ζ is smaller. Figure 2b also indicates that when ζ = 1, the difference
between the two methods is minimal. As ζ decreases, the performance of DP-
IHT-L remains relatively stable. Figure 2c shows that DP-IHT-H can perform
better with respect to s∗, consistent with its dependence of O(s∗3/4) (in contrast
to O(s∗3/2) for DP-IHT-L). Finally, Figure 2d demonstrates that for ζ = 1, both
algorithms has less estimation error as ϵ decrease.

Overall, these results indicate that DP-IHT-H and DP-IHT-L are particularly
well suited for highly heavy-tailed data, while DP-IHT-L may be preferred in
more moderate scenarios due to its stability.
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(a) Comparison for different ζ (b) Performance vs. d

(c) Performance vs. s∗ (d) Performance vs. ϵ

Fig. 2: Comparison of DP-IHT-L and DP-IHT-H across various metrics.

6.3 Real Data Analysis

We evaluate four methods—adaHuber, DP-SLR, DP-IHT-H, and DP-IHT-L—on
two genomic datasets to assess their performance in privacy-preserving robust
estimation.

NCI-60 Dataset. Following the protocols in [36, 41], we analyze a dataset of pro-
tein expression (from 162 antibodies) and RNA transcript levels across 60 cancer
cell lines to identify genes affecting KRT19 expression [33]. After preprocessing,
the dataset comprises n = 59 samples and d = 14 342 features. For the DP
methods, we set s∗ = 5, ε = 0.5, and δ = 1/n1.1. Table 1 summarizes the results.

The non-private adaHuber achieves the lowest MAE, while the DP-IHT vari-
ants perform competitively and surpass DP-SLR, highlighting the benefits of
robust estimation in heavy-tailed data.

METABRIC Dataset. We further assess the methods on the METABRIC breast
cancer dataset [13, 35], which contains n = 1904 samples and d = 24 368 features.
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Table 1: Results on the NCI-60 dataset.

Method MAE Size Selected Genes

adaHuber 2.07 5 MALL, TM4SF4, ANXA3, ADRB2, NRN1
DP-SLR 2.72 5 MALL, TGFBI, S100A6, LPXN, DSP

DP-IHT-H 2.40 5 MALL, ANXA3, NRN1, CA2, EPS8L2
DP-IHT-L 2.34 5 MALL, NRN1, DSP, AUTS2, EPS8L2

Table 2: Results on the METABRIC dataset.

Method MAE Size Selected Genes

adaHuber 0.92 5 PIK3CA, MUC16, SYNE1, KMT2C, GATA3
DP-SLR 1.22 5 MUC16, CDH1, MAP3K1, NCOR2, CBFB

DP-IHT-H 1.08 5 PIK3CA, MUC16, AHNAK2, MAP3K1, GATA3
DP-IHT-L 1.05 5 PIK3CA, SYNE1, NOTCH1, TG, KMT2C

Here, the parameters are set as s∗ = 5, ε = 1.0, and δ = 1/n1.1. Table 2 reports
the results.

As in the NCI-60 dataset, adaHuber attains the best MAE, and the DP-
IHT methods perform comparably while outperforming DP-SLR, even in this
lighter-tailed setting.

7 Conclusion

This work presented novel approaches for differentially private linear regression
that address the challenges posed by heavy-tailed data distributions. We intro-
duced two algorithms: DP-IHT-H and DP-IHT-L, each designed to handle differ-
ent tail behaviors. DP-IHT-H demonstrates strong performance for moderately
heavy-tailed data, achieving an optimized error bound under (ϵ, δ)-differential
privacy. However, its performance degrades for heavier tails, prompting the de-
velopment of DP-IHT-L, which achieves stable error bounds irrespective of the
tail behavior. Extensive experiments on synthetic and real-world datasets veri-
fied the effectiveness of our methods, showing their robustness and applicability
in diverse scenarios.
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A Proof of Theorem 1

Proof. Consider two neighboring datasets D and D′ that differ by exactly one
record. At each iteration of DP-IHT-H, we update

βt+0.5 = βt − η∇Lτ (βt).

Within both the quadratic and absolute-value regimes of the Huber function,
the gradient satisfies ∥∇Lτ (βt)∥∞ ≤ τK because of clipping each feature xi to
∥x̃i∥∞ ≤ K. Hence,∥∥βt+0.5 − β′t+0.5

∥∥
∞ =

∥∥−η∇Lτ (βt) + η∇Lτ (β′t)
∥∥
∞

≤ η
∥∥∇Lτ (βt)−∇Lτ (β′t)

∥∥
∞.

Because D and D′ differ by only one sample, the change in their gradients is on
the order of τK

m . Therefore,

∥∥βt+0.5 − β′t+0.5
∥∥
∞ ≤ η · τK

m
.

By applying the composition property of differential privacy (“Peeling” is (ε, δ)-
DP was proved in lemma 3.3 of [10]) and noting that each iteration’s update is
influenced by only one sample to a bounded extent, we conclude that every step
is (ε, δ)-DP. Consequently, the entire procedure maintains (ε, δ)-DP.

B Lemmas for Theorem 2

There are two main preparations for Theorem 2. The first part relates to the
properties of Restricted Strong Convexity (RSC) and Restricted Strong Smooth-
ness (RSS). The second part concerns the properties of the “Peeling" algorithm.

We start by discussing key properties related to RSC and RSS.

Lemma 1 (Restricted Strong Convexity). Under Assumption 1 and 2 for
τ ≥ 2max{(4vζ)

1
1+ζ , 4A2

1r} and n ≳ (τ/r)2(d+t), with probability at least 1−e−t,
we have:

⟨∇Lτ (β)−∇Lτ (β∗),β − β∗⟩ ≥ cl∥β − β∗∥2Σ,2

uniformly over β ∈ Θ0(r) = {β ∈ Rd : ∥β − β∗∥Σ,2 ≤ r}.

Proof. The proof of this lemma follows directly from Lemma 4 in [41].

Lemma 2 (Restricted Strong Smoothness). Under Assumption 1 and 2
with 0 < cl < cu, we have:

⟨∇Lτ (β)−∇Lτ (β∗),β − β∗⟩ ≤ cu∥β − β∗∥2Σ,2.
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Proof. By the mean value property:

∥∇Lτ (β)−∇Lτ (β∗)∥2 = ∥∇2Lτ (β̄)(β − β∗)∥2,

where β̄ is a point on the line segment between β and β∗.
From Assumption 2, we know:

⟨u,∇2Lτ (β̄)u⟩ = ⟨u, 1
n

n∑
i=1

xix
⊤
i 1(|yi − x⊤i β̄| ≤ τ)u⟩

≤ u⊤Snu ≤ cuu
⊤u,

where Sn is the empirical covariance matrix.
Since ∇2Lτ (β̄) is positive definite, we also have:

∥∇2Lτ (β̄)
⊤u∥22 ≤ c2u∥u∥22 ⇒ ∥∇Lτ (β)−∇Lτ (β∗)∥22 ≤ c2u∥β − β∗∥2Σ,2.

Thus:

⟨∇Lτ (β)−∇Lτ (β∗),β−β∗⟩ ≤ ∥∇Lτ (β)−∇Lτ (β∗)∥2∥β−β∗∥2 ≤ cu∥β−β∗∥2Σ,2.

Lemma 3. Under assumption 1 and 2 for 0 < δ ≤ 1, with probability at least
1− 2e−t, we have:

∥∇Lτ (β∗)∥∞ ≲ 2L

√
vζτ1−δt

n
+ L

τt

2n
+ Lvζτ

−δ.

By tuning τ ≍ (n/t)
1

1+ζ , it also holds that:

∥∇Lτ (β∗)∥∞ ≲ τL
t

n
.

Proof. Under Assumption 2 with 0 < δ < 1, define ξi = ψτ (εi), where εi is the
regression error. Then:

∇Lτ (β∗) = − 1

n

n∑
i=1

ξixi.

For each 1 ≤ j ≤ d:

|E(ξixij)| = |xij | · |E(ξi)| ≤ Lvζτ
−δ.

Using Bernstein’s inequality, with probability at least 1− 2e−t:∣∣∣∣∣ 1n
n∑
i=1

(ξixij − Eξixij)

∣∣∣∣∣ ≲ 2L

√
vζτ1−δt

n
+ L

τt

2n
.

Combining these results gives:

∥∇Lτ (β∗)∥∞ ≲ 2L

√
vζτ1−δt

n
+ L

τt

2n
+ Lvζτ

−δ.

By setting τ ≍ (n/t)
1

1+ζ , we further simplify:

∥∇Lτ (β∗)∥∞ ≲ τL
t

n
.
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Then we introduce two key properties of the “Peeling" algorithm (Algorithm
2).

Lemma 4. ([10]) Let P̃s be defined as in Algorithm 2. For any index set I, any
v ∈ RI and v̂ such that ∥v̂∥0 ≤ ŝ ≤ s, we have that for every c > 0,∥∥∥P̃s(v)− v

∥∥∥2
2
≤ (1 + 1/c)

|I| − s

|I| − ŝ
∥v̂ − v∥22 + 4(1 + c)

∑
i∈[s]

∥wi∥2∞

Proof. Let ψ : R2 → R1 be a bijection. By the selection criterion of Algorithm
2, for each j ∈ R2 we have |vj | + wij ≤

∣∣vψ(j)∣∣ + wiψ(j), where i is the index of
the iteration in which ψ(j) is appended to S. It follows that, for every c > 0,

v2j ≤
(∣∣vψ(j)∣∣+ wiψ(j) − wij

)2
≤ (1 + 1/c)v2ψ(j) + (1 + c)

(
wiψ(j) − wij

)2 ≤ (1 + 1/c)v2ψ(j) + 4(1 + c) ∥wi∥2∞

Summing over j then leads to

∥vR2
∥22 ≤ (1 + 1/c) ∥vR1

∥22 + 4(1 + c)
∑
i∈[s]

∥wi∥2∞

Lemma 5. ([10]) Let P̄s be defined as in Algorithm 2. For any index set I, any
v ∈ RI and v̂ such that ∥v̂∥0 ≤ ŝ ≤ s, we have that for every c > 0,∥∥∥P̃s(v)− v

∥∥∥2
2
≤ (1 + 1/c)

|I| − s

|I| − ŝ
∥v̂ − v∥22 + 4(1 + c)

∑
i∈[s]

∥wi∥2∞ .

Proof. Let T be the index set of the top s coordinates of v in terms of absolute
values. We have

∥∥∥P̃s(v)− v
∥∥∥2
2
=
∑
j∈Sc

v2j =
∑

j∈Sc∩T c

v2j +
∑

j∈Sc∩T
v2j

≤
∑

j∈Sc∩T c

v2j + (1 + 1/c)
∑

j∈S∩T c

v2j + 4(1 + c)
∑
i∈[s]

∥wi∥2∞ .

The last step is true by observing that |S ∩ T c| = |Sc ∩ T | and applying
lemma 4. Now, for an arbitrary v̂ with ∥v̂∥0 = ŝ ≤ s, let Ŝ = supp(v̂). We have

1

|I| − s

∑
j∈T c

v2j =
1

|T c|
∑
j∈T c

v2j
(∗)
≤ 1∣∣∣(Ŝ)c∣∣∣

∑
j∈(Ŝ)c

v2j =
1

|I| − ŝ

∑
j∈(Ŝ)c

v2j ≤ 1

|I| − ŝ

∑
j∈(Ŝ)c

∥v̂−v∥22

The (*) step is true because T c is the collection of indices with the smallest
absolute values, and |T c| ≤

∣∣∣Ŝc∣∣∣. We then combine the two displays above to
conclude that
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∥∥∥P̃s(v)− v
∥∥∥2
2
≤

∑
j∈S•∩T c

v2j + (1 + 1/c)
∑

j∈S∩T c

v2j + 4(1 + c)
∑
i∈[s]

∥wi∥2∞

≤ (1 + 1/c)
∑
j∈T c

v2j + 4(1 + c)
∑
i∈[s]

∥wi∥2∞

≤ (1 + 1/c)
|I| − s

|I| − ŝ
∥v̂ − v∥22 + 4(1 + c)

∑
i∈[s]

∥wi∥2∞

Lemma 6. Under assumptions 1 and 2 and event E1 = {ΠR (yi) = yi,∀i ∈ [n]},
RSC and RSS properties implies that there exists an absolute constant ρ such
that

Ln
(
βt+1

)
−Ln(β̂) ≤

(
1− cl

ρcu

)(
Ln
(
βt
)
− Ln(β̂)

)
+c3

∑
i∈[s]

∥∥wt
i

∥∥2
∞ +

∥∥w̃t
St+1

∥∥2
2


for every t, where wt

1,w
t
2, · · · ,wt

s are the Laplace noise added to βt−
(
η0/n

)∑n
i=1

(
x⊤
i β

t −ΠR (yi)
)
xi

when the support of βt+1 is iteratively selected by “Peeling", St+1 is the support
of βt+1, and w̃t is the noise vector added to the selected s-sparse vector.

Proof. For convenience, we notate as below:
▷ Let St = supp

(
βt
)
, St+1 = supp

(
βt+1

)
, S∗ = supp(β̂), and define It =

St+1 ∪ St ∪ S∗.
▷ Let gt = ∇Ln (βt) and η0 = η/cu, where cu is the constant in RSC and

RSS property.
▷ Let w1,w2, · · · ,ws be the noise vectors added to βt − η0∇Ln

(
βt
)

when
the support of βt+1 is iteratively selected. We define W = 4

∑
i∈[s] ∥wi∥2∞ By

RSC and RSS property, we have

Ln
(
βt+1

)
− Ln

(
βt
)
≤
〈
βt+1 − βt, gt

〉
+
cu
2

∥∥βt+1 − βt
∥∥2
2

(2)

=
cu
2

∥∥∥∥βt+1
It − βtI+ +

η

cu
gtIt

∥∥∥∥2
2

− η2

2cu

∥∥gtIt∥∥22 + (1− η)
〈
βt+1 − βt, gt

〉
.

(3)

We first focus on the third term above. In what follows, c denotes an arbitrary
constant greater than 1 . We may write βt+1 = β̃

t+1
+ w̃St+1 , so that β̃

t+1
=

P̃s
(
βt − η0∇Ln

(
βt
))

and w̃ is a vector consisting of d i.i.d. Laplace random
variables.〈
βt+1 − βt, gt

〉
=
〈
βt+1
St+1 − βtSt+1 , gtSt+1

〉
−
〈
βtSt\St+1 , gtSt\St+1

〉
=
〈
β
t+1

St+1 − βtSt+1 , gtSt+1

〉
+
〈
w̃St+1 , gtSt+1

〉
−
〈
βtSt\St+1 , gtSt\St+1

〉
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It follows that, for every c > 1,

〈
βt+1 − βt, gt

〉
≤ − η

cu

∥∥gtSt+1

∥∥2
2
+c ∥w̃St+1∥22+(1/4c)

∥∥gtSt+1

∥∥2
2
−
〈
βtSt\St+1 , gtSt\St+1

〉
(4)

Now for the last term in the display above, we have

−
〈
βtSt\St+1 , gtSt\St+1

〉
≤ cu

2η

(∥∥∥∥βtSt\St+1 −
η

cu
gtSt\St+1

∥∥∥∥2
2

−
(
η

cu

)2 ∥∥∥gtSt\St+1

∥∥∥2
2

)

≤ cu
2η

∥∥∥∥βtSt\St+1 −
η

cu
gtSt\St+1

∥∥∥∥2
2

− η

2cu

∥∥∥gtSt\St+1

∥∥∥2
2
.

We apply lemma 4 to
∥∥∥βSt\St+1 − η

cu
gtSt\St+1

∥∥∥2
2

to obtain that, for every c > 1

−
〈
βtSt\St+1 , gtSt\St+1

〉
≤ cu

2η

[
(1 + 1/c)

∥∥∥β̃t+1

St+1\St

∥∥∥2
2
+ (1 + c)W

]
− η

2cu

∥∥∥gtSt\St+1

∥∥∥2
2

=
η

2cu

[
(1 + 1/c)

∥∥∥gtSt+1\St

∥∥∥2
2
+ (1 + c)

cu
2η

W

]
− η

2cu

∥∥∥gtSt\St+1

∥∥∥2
2
.

Plugging the inequality above back into (Eq.4) yields

〈
βt+1 − βt, gt

〉
≤− η

cu

∥∥gtSt+1

∥∥2
2
+ c ∥w̃St+1∥22 + (1/4c)

∥∥gtSt+1

∥∥2
2

+
η

2cu

[
(1 + 1/c)

∥∥∥gtSt+1\St

∥∥∥2
2
+ (1 + c)

cu
2η

W

]
− η

2cu

∥∥∥gtSt\St+1

∥∥∥2
2

≤ η

2cu

∥∥∥gtSt+1\St

∥∥∥2
2
− η

2cu

∥∥∥gtSt\St+1

∥∥∥2
2
− η

cu

∥∥gtSt+1

∥∥2
2

+ (1/c)

(
4 +

η

2cu

)∥∥gtSt+1

∥∥2
2
+ cwSt+1∥22 + (1 + c)

cu
2η

W

Finally, for the third term of (Eq.2) we have

〈
βt+1 − βt, gt

〉
≤ − η

2cu

∥∥gtSt∪St+1

∥∥2
2
+(1/c)

(
4 +

η

2cu

)∥∥gtSt+1

∥∥2
2
+c ∥w̃St+1∥22+(1+c)

cu
2η

W
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Now combining this bound with (Eq.2) yields

Ln
(
βt+1

)
− Ln

(
βt
)

≤cu
2

∥∥∥∥βt+1
It − βtIt +

η

cu
gtIt

∥∥∥∥2
2

− η2

2cu

∥∥gtIt∥∥22 − η(1− η)

2cu

∥∥gtSt∪St+1

∥∥2
2

+
1− η

c

(
4 +

η

2cu

)∥∥gtSt+1

∥∥2
2
+ (1− η)c ∥wSt+1∥22 + (1− η)(1 + c)

cu
2η

W

≤cu
2

∥∥∥∥βt+1
It − βtIt +

η

cu
gtIt

∥∥∥∥2
2

− η2

2cu

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2
− η2

2cu

∥∥gtSt∪S∗

∥∥2
2
− η(1− η)

2cu

∥∥gtSt∪St+1

∥∥2
2

+
1− η

c

(
4 +

η

2cu

)∥∥gtSt+1

∥∥2
2
+ (1− η)c ∥w̃St+1∥22 + (1− η)(1 + c)

cu
2η

W

≤cu
2

∥∥∥∥βt+1
It − βtIt +

η

cu
gtIt

∥∥∥∥2
2

− η2

2cu

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2
− η2

2cu

∥∥gtSt∪S∗

∥∥2
2
− η(1− η)

2cu

∥∥∥gtSt+1\(St∪S∗)

∥∥∥2
2

+
1− η

c

(
4 +

η

2cu

)∥∥gtSt+1

∥∥2
2
+ (1− η)c ∥wSt+1∥22 + (1− η)(1 + c)

cu
2η

W .

The last step is true because St+1\ (St ∪ S∗) is a subset of St∪St+1. We next

analyze the first two terms, cu2
∥∥∥βt+1

It − βtIt +
η
cu
gtIt

∥∥∥2
2
− η2

2cu

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2
. Let

R be a subset of St\St+1 such that |R| = |It\ (St ∪ S∗)| =| St+1\ (St∪ S∗) |.

By the definition of β̃
t+1

and lemma 4, we have, for every c > 1,

η2

c2u

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2
=
∥∥∥β̃t+1

It\(St∪S∗)

∥∥∥2
2
≥ (1− 1/c)

∥∥∥∥βtR − η

cu
gtR

∥∥∥∥2
2

− cW .

It follows that

cu
2

∥∥∥∥βt+1
It − βtIt +

η

cu
gtIt

∥∥∥∥2
2

− η2

2cu

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2

≤ cu
2

∥w̃St+1∥22 +
cu
2

∥∥∥∥β̃t+1

It − βtIt +
η

cu
gtIt

∥∥∥∥2
2

− cu
2
(1− 1/c)

∥∥∥∥βtR − η

cu
gtR

∥∥∥∥2
2

+
ccu
2

W

=
cu
2

∥∥∥∥β̃t+1

It − βtIt +
η

cu
gtIt

∥∥∥∥2
2

− cu
2

∥∥∥∥| β̃t+1

R − βtR +
η

cu
gtR

∥∥∥∥2
2

+
cu
2
(1/c)

∥∥∥∥βtR − η

cu
gtR

∥∥∥∥2
2

+
ccu
2

W

+
cu
2

∥w̃St+1∥22

≤ cu
2

∥∥∥∥β̃t+1

It\R − βtIt\R +
η

cu
gtI†\R

∥∥∥∥2
2

+
η2

2ccu
(1 + 1/c)

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2
+
ccu
2

W +
cu
2

∥w̃St+1∥22 .
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The last inequality is obtained by applying lemma 4 to
∥∥∥βtR − η

cu
gtR

∥∥∥2
2
. Now

we apply lemma 5 to obtain

cu
2

∥∥∥∥βt+1
It − βtIt +

η

cu
gtIt

∥∥∥∥2
2

− η2

2cu

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2

≤ 3cu
4

|It\R| − s

|It\R| − s∗

∥∥∥∥βIt\R − βtIt\R +
η

cu
gtIt\R

∥∥∥∥2
2

+
3cu
2

W

+
η2
(
1 + c−1

)
2ccu

∥∥∥gtI\\(St∪S∗)

∥∥∥2
2
+
ccu
2

W +
cu
2

∥w̃St+1∥22

≤ 3cu
4

2s∗

s+ s∗

∥∥∥∥βIt\R − βtIt\R +
η

cu
gtIt\R

∥∥∥∥2
2

+
3cu
2

W +
η2

2ccu
(1 + 1/c)

∥∥gtSt+1

∥∥2
2

+
ccu
2

W +
cu
2

∥w̃St+1∥22

The last step is true by observing that |It\R| ≤ 2s∗ + s, and the inclusion
It\ (St ∪ S∗) ⊆ St+1. We continue to simplify,

cu
2

∥∥∥∥βt+1
It − βtIt +

η

cu
gtIt

∥∥∥∥2
2

− η2

2cu

∥∥∥gtIt\(St∪S∗)

∥∥∥2
2

≤ cu
2

3s∗

s+ s∗

∥∥∥∥βIt − βtIt +
η

cu
gtIt

∥∥∥∥2
2

+
3cu
2

W +
η2

2ccu
(1 + 1/c)

∥∥gtSt+1

∥∥2
2
+
ccu
2

W +
cu
2

∥w̃St+1∥22

≤ 3s∗

s+ s∗

(
η
(
β̂ − βt, gt

〉
+
cu
2

∥∥∥β̂ − βt
∥∥∥2
2
+

η2

2ccu

∥∥gtIt∥∥22)
+

η2

2ccu
(1 + 1/c)

∥∥gtSt+1

∥∥2
2
+

(c+ 3)cu
2

W +
cu
2

∥wSt+1∥22

≤ 3s∗

s+ s∗

(
ηLn(β̂)− ηLn

(
βt
)
+
cu − ηcl

2

∥∥∥β̂ − βt
∥∥∥2
2
+

η2

2ccu

∥∥gtIt∥∥22)
+

η2

2ccu
(1 + 1/c)

∥∥gtSt+1

∥∥2
2
+

(c+ 3)cu
2

W +
cu
2

∥w̃St+1∥22 .

Until now, the inequality is true for any 0 < η < 1 and c > 1. We now specify
the choice of these parameters: let η = 2/3 and set c large enough so that

Ln
(
βt+1

)
− Ln

(
βt
)
≤ 3s∗

s+ s∗

(
ηLn(β̂)− ηLn

(
βt
)
+
cu − ηcl

2

∥∥∥β̂ − βt
∥∥∥2
2
+

η2

2cu

∥∥gtIt∥∥22)
− η2

4cu

∥∥gtSt∪S∗

∥∥2
2
− η(1− η)

4cu

∥∥∥gtSt+1\(St∪S∗)

∥∥∥2
2

+
cu
2

(
3c+ 7

2

)
W +

( c
3
+
cu
2

)
∥w̃St+1∥22 .

Such a choice of c is available because cu is bounded above by an absolute
constant thanks to the RSM condition (upper inequality of RSC and RSS prop-
erty). Now we set s = 72(cu/cl)

2s∗ = ρL4s∗, where ρ is the absolute constant
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referred to in Lemma 8.3 and Theorem 4.4 in [41], so that 3s∗

s+s∗ ≤ c2l
24cu(cu−ηcl) ,

and c2l
24cu(cu−ηcl) ≤ 1/8 because cl < cu. It follows that

Ln
(
βt+1

)
− Ln

(
βt
)
≤ 3s∗

s+ s∗

(
ηLn(β̂)− ηLn

(
βt
))

+
c2l

48cu

∥∥∥β̂ − βt
∥∥∥2
2
+

1

36cu

∥∥gtIt∥∥22
− 1

9cu

∥∥gtSt∪S∗

∥∥2
2
− 1

18cu

∥∥∥gtSt+1\(St∪S∗)

∥∥∥2
2

+
cu
2

(
3c+ 7

2

)
W +

( c
3
+
cu
2

)
∥w̃St+1∥22

Because ∥gtIt∥
2

2
= ∥gtSt∪S∗∥22 +

∥∥∥gtSt+1\(St∪S∗)

∥∥∥2
2
, we have

Ln
(
βt+1

)
− Ln

(
βt
)
≤ 3s∗

s+ s∗

(
ηLn(β̂)− ηLn

(
βt
))

+
c2l

48cu

∥∥∥β̂ − βt
∥∥∥2
2
− 3

36cu

∥∥gtSt∪S∗

∥∥2
2

+
cu
2

(
3c+ 7

2

)
W +

( c
3
+
cu
2

)
∥wSt+1∥22

≤ 3s∗

s+ s∗

(
ηLn(β̂)− ηLn

(
βt
))

− 3

36cu

(∥∥gtSt∪S∗

∥∥2
2
− c2l

4

∥∥∥β̂ − βt
∥∥∥2
2

)
+
cu
2

(
3c+ 7

2

)
W +

( c
3
+
cu
2

)
∥wSt+1∥22 (Eq.3).

To continue the calculations, we consider a lemma from Lemma A.4[?]

∥∥gtSt∪S∗

∥∥2
2
− c2l

4

∥∥∥β̂ − βt
∥∥∥2
2
≥ cl

2

(
Ln
(
βt
)
− Ln(β̂)

)
It then follows from (Eq.3), the quoted lemma above and the definition of ρ that,
for an appropriate constant c3,

Ln
(
βt+1

)
− Ln

(
βt
)
≤ −

(
3cl
72cu

+
2s∗

s+ s∗

)(
Ln
(
βt
)
− Ln(β̂)

)
+ c3

(
W + ∥wSt+1∥22

)
≤ −

(
cl
ρcu

)(
Ln
(
βt
)
− Ln(β̂)

)
+ c3

(
W + ∥w̃St+1∥22

)
Adding Ln

(
βt
)
−Ln(β̂) to both sides of the inequality concludes the proof.

C Proof of Theorem 2

Proof. Using the lemmas stated above, we iterate over t and denote

W t = c3

∑
i∈[s]

∥wt
i∥2∞ + ∥w̃t

St+1∥22

 .
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Then, we have

Ln(βT )− Ln(β∗) ≤
(
1− cl

ρcu

)T (
Ln(β0)− Ln(β∗)

)
+

T−1∑
k=0

(
1− cl

ρcu

)T−k−1

W k

≤
(
1− cl

ρcu

)T
8Ac20 +

T−1∑
k=0

(
1− cl

ρcu

)T−k−1

W k,

where the second inequality follows from the RSS and RSC properties and the
ℓ2 bounds on β0 and β∗.

On the other hand, by the RSC property we also have the lower bound

Ln(βT )− Ln(β∗) ≥ cl
2
∥βT − β∗∥22 −

〈
∇Ln(β∗), β∗ − βT

〉
.

Combining these bounds and noting that for T ≍ log n, we obtain

cl
2
∥βT−β∗∥22 ≤ ∥∇Ln(β∗)∥∞

√
s+ s∗∥β∗−βT ∥2+

1

n
+

T−1∑
k=0

(
1− cl

ρcu

)T−k−1

W k.

(5)
To further bound ∥βT − β∗∥22, we consider the event

E2 =

{
max
t

W t ≤ K
L2τ2(s∗)2 log2 d log

(
1
σ

)
t2

n2ε2

}
,

in addition to the event E1 defined earlier. Then, by applying Eq. (5), Assump-
tions 1 and 2, and Lemma 6, we deduce that

∥βT − β∗∥2 ≲ (s∗)
1
2 ∥∇Lτ (β∗)∥∞ +

Lτs∗ log d log
1
2
(
1
σ

)
t

nε
.

Regardless of whether the noise is random or fixed, the leading term of
∇Lτ (β∗) is given by

C1τL
t

n
+ C2τ

−δ,

as established in Lemma 3. Therefore, the optimal tuning for τ is

τ ≍

(
t

n

(
1 +

s∗
1
2 log d log

1
2
(
1
σ

)
ε

))−max{ 1
2 ,

1
1+ζ}

.

It remains to show that the events E1 and E2 occur with high probability. As
shown in [10], we have

P (Ec1) ≤ c1 exp (−c2 t log d) and P (Ec3) ≤ 2e−2 log d,

where E3 is another event defined in the previous context. This completes the
proof.
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D Proof of Theorem 4

Proof. Let β0 denote the initial estimate and β∗ the true parameter vector.
Define

Dt = (1− c1)
t ∥β0 − β∗∥2,

where c1 ∈ (0, 1) is the contraction constant determined by the algorithm’s
specifications. We prove by induction on t that

∥βt − β∗∥2 ≤ Dt,

up to an additive error of order O
(√

W
)
.

Base Case. For t = 0, the claim is immediate:

∥β0 − β∗∥2 = D0.

Inductive Step. Suppose that

∥βt − β∗∥2 ≤ Dt

for some t ≥ 0. We now show that

∥βt+1 − β∗∥2 ≤ Dt+1 +O
(√

W
)
.

According to the algorithm, the update is performed in two stages. First, a
gradient descent step is executed:

βt+0.5 = βt − ηtGt,

where Gt is a subgradient of f(β) evaluated at βt. By the parallelogram identity,
we have

∥βt+0.5 − β∗∥22 = ∥βt − β∗∥22 − 2ηt ⟨βt − β∗,Gt⟩+ η2t ∥Gt∥22.

Since f is convex, it follows that

⟨βt − β∗,Gt⟩ ≥ f(βt)− f(β∗).

Thus,

∥βt+0.5 − β∗∥22 ≤ ∥βt − β∗∥22 − 2ηt

[
f(βt)− f(β∗)

]
+ η2t ∥Gt∥22.

By Lemma 1 in [38], there exists a constant cl > 0 such that

f(βt)− f(β∗) ≥ n

4
c
1/2
l ∥βt − β∗∥2,

and, moreover, ∥Gt∥2 ≤ n c
1/2
u for some constant cu > 0. Substituting these

bounds gives

∥βt+0.5 − β∗∥22 ≤ ∥βt − β∗∥22 − ηt
n

2
c
1/2
l ∥βt − β∗∥2 + η2t n

2 cu.
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By the induction hypothesis, ∥βt − β∗∥2 ≤ Dt, so that

∥βt+0.5 − β∗∥22 ≤ D2
t − ηt

n

2
c
1/2
l Dt + η2t n

2 cu.

To obtain βt+1, the algorithm applies a projection step that incorporates
privacy-preserving noise. Let W t denote the noise introduced in iteration t, so
that by Lemma 5 (or a similar projection result),

∥βt+1 − β∗∥22 ≤ ∥βt+0.5 − β∗∥22 +W t,

where W t = 4
∑s
i=1 ∥wti∥2∞. Consequently,

∥βt+1 − β∗∥22 ≤ D2
t − ηt

n

2
c
1/2
l Dt + η2t n

2 cu +W t.

By choosing the step size such that

ηt ∈ n−1

√
cl
cu

[
1
8Dt,

3
8Dt

]
,

the negative (linear) term dominates the quadratic term, ensuring a geometric
decrease of Dt, provided that W t (and hence the overall noise) remains suf-
ficiently small with high probability. Taking square roots and using standard
inequalities, we deduce

∥βt+1 − β∗∥2 ≤ (1− C1)Dt +
√

W t ≤ Dt+1 +
√
W ,

where

O(W ) = O

(
(s∗)3/2 log d (log(1/δ))1/2 log n

n ε

)
serves as an upper bound on the added noise. This completes the induction for
Phase One.

Transition to Phase Two. Once ∥βt − β∗∥2 becomes sufficiently small, the
algorithm enters Phase Two, in which a constant step size is adopted. The anal-
ysis in this phase follows analogously to that of Phase One (again leveraging
Lemma 1 in [38]), and yields the contraction

∥βl+1 − β∗∥2 ≤
(
1− c̃2

c2l
2 c2u

b21
b20

)
∥βl − β∗∥2,

where the constants are chosen appropriately.

Finally, by ensuring that additional perturbations (e.g., from noise or minor
discrepancies in the index sets) remain controlled (as in Theorem 9 of [38]), we
conclude that the overall algorithm converges geometrically. This completes the
proof of Theorem 4.
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E Proof of Theorem 5

Proof. The proof follows by combining the two-phase convergence analysis from
Theorem 4.

Phase One: When
∥βt − β∗∥2 ≥ 8 c

−1/2
l γ,

with the decaying step size ηt = (1− c1)
tη0, Theorem 4 implies that

∥βt+1 − β∗∥2 ≤ (1− c1)
t+1∥β0 − β∗∥2 +O

(√
W
)
.

Thus, after

T1 = O
(
log
(∥β0 − β∗∥2

γ

))
iterations, the error is reduced to

∥βT1 − β∗∥2 ≤ 8 c
−1/2
l γ.

Phase Two: Once the iterate enters the region

∥βt − β∗∥2 ≤ 8 c
−1/2
l γ,

a constant step size is employed so that

∥βt+1 − β∗∥2 ≤ (1− c∗2) ∥β
t − β∗∥2 +O

(√
W
))
.

This contraction implies that after an additional

T2 = O
(
log
(
nγ b−1

0 log
(2 d
s∗

)))
iterations the estimation error satisfies

∥βT1+T2 − β∗∥2 ≤ O
(√

W
))
.

Conclusion: Combining the two phases, the total number of iterations re-
quired is

T = T1 + T2 = O
(
log
(∥β0 − β∗∥2

γ

)
+ log

(
nγ b−1

0 log
(2 d
s∗

)))
,

and the final estimator βT satisfies

∥βT − β∗∥2 ≤ O
( (s∗)3/2 log d

(
log(1/δ)

)1/2
log(T/n)

(T/n) ε

)
.

Notice that the term

O
( (s∗)3/2 log d

(
log(1/δ)

)1/2
log(T/n)

(T/n) ε

)
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originates from the cumulative effect of the Laplace noise injected via the peeling
procedure. More precisely, under the event

E2 =

{
max
t

W t ≤ K
L2τ2 (s∗)

2
log2 d log

(
1
σ

)
t2

(T/n)2ε2

}
,

which holds with high probability, the noise magnitude in each iteration is well
controlled. This completes the proof.


