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Abstract—The rapid global adoption of electric vehicles (EVs)
has established electric vehicle supply equipment (EVSE) as
a critical component of smart grid infrastructure. While es-
sential for ensuring reliable energy delivery and accessibility,
EVSE systems face significant cybersecurity challenges, including
network reconnaissance, backdoor intrusions, and distributed
denial-of-service (DDoS) attacks. These emerging threats, driven
by the interconnected and autonomous nature of EVSE, require
innovative and adaptive security mechanisms that go beyond tra-
ditional intrusion detection systems (IDS). Existing approaches,
whether network-based or host-based, often fail to detect sophis-
ticated and targeted attacks specifically crafted to exploit new
vulnerabilities in EVSE infrastructure. This paper proposes a
novel intrusion detection framework that leverages multimodal
data sources, including network traffic and kernel events, to
identify complex attack patterns. The framework employs a
distributed learning approach, enabling collaborative intelligence
across EVSE stations while preserving data privacy through
federated learning. Experimental results demonstrate that the
proposed framework outperforms existing solutions, achieving a
detection rate above 98% and a precision rate exceeding 97% in
decentralized environments. This solution addresses the evolving
challenges of EVSE security, offering a scalable and privacy-
preserving response to advanced cyber threats.

Index Terms—Electric Vehicle Supply Equipment (EVSE),
Intrusion Detection System (IDS), Federated Learning, Cyber-
security, Multimodal Data Fusion

I. INTRODUCTION

The global electric vehicle (EV) market has surged from 26
million EVs on the road in 2022 to over 40 million in 2024, re-
flecting a 53.85% growth rate in sales [1]. This rapid expansion
makes it imperative to adapt current smart grid infrastructure,
including Electric Vehicle Supply Equipment (EVSE), to meet
the demands of this fast-growing sector. Each EVSE deployed
must provide flexible payment solutions for access to services,
such as credit card payments, mobile applications, or prepaid
monthly cards. However, this accessibility to sensitive payment
and user information has made EVSEs an attractive target for
cyber threats, emphasizing the need for robust cybersecurity
measures to protect user confidentiality and privacy.

Despite advances in securing traditional infrastructure,
EVSEs continue to exhibit significant vulnerabilities. Recent
incidents underscore the associated risks: in 2024, ransomware
attacks on charging stations surged by 90%, with cybercrim-
inals encrypting station systems and demanding ransom pay-

ments for restoration [2]. Furthermore, research has identified
critical flaws in the widely-used Open Charge Point Protocol
(OCPP), making charging sessions vulnerable to disruptions
and unauthorized data access [3], [4]. These incidents empha-
size the urgent need for advanced cybersecurity solutions to
protect EVSEs from a wide array of threats. Current security
mechanisms, such as network-based [4], [5] and host-based
IDS, often rely on modeling the behavior of EV charging
stations using a single type of log within their local scope.
This approach may lack the depth and adaptability required
to detect sophisticated attack patterns and multi-layered cyber
threats targeting EVSEs.

Current intrusion detection systems (IDS) for EV charging
infrastructure have made progress in addressing cyber threats
but face significant limitations. Many rely on complex ar-
chitectures or multiple sub-models, which can be resource-
intensive and unsuitable for deployment on constrained EVSEs
[6], [7]. Others focus on specific attack scenarios like injection
attacks in vehicle-to-grid communication but lack flexibility
for diverse threats [8], [9]. Emerging AI-driven solutions in-
corporating blockchain and reinforcement learning (RL) show
promise - blockchain ensures transaction security [10], [11]
despite interoperability and storage challenges, while RL en-
ables dynamic adaptation [12], [13] though requiring extensive
data and raising ethical concerns. However, these advanced
approaches still struggle with high computational costs, poor
cross-network generalization, and the fundamental trade-off
between scalability, adaptability, and resource efficiency. This
highlights the critical need for more robust IDS frameworks
capable of leveraging diverse data sources while overcoming
these persistent limitations.

Developing a robust IDS for EVSEs is crucial to address
cyberattacks like vulnerability scanning, network intrusions,
and host-targeted attacks. Existing IDS solutions often focus
on a single data source, such as network traffic [14]–[17] or
kernel logs [18], offering limited threat insight. Network traffic
lacks host-level visibility, while kernel logs miss external
attack patterns. Centralizing EVSE logs for global IDS training
raises significant privacy concerns.

To address these challenges, our framework employs a
comprehensive approach by intelligently processing and fusing
diverse log types generated by EVSEs during operation. This

https://arxiv.org/abs/2506.06730v1


enables the IDS to correlate information across multiple data
sources, uncovering complex attack patterns that cannot be
detected by analyzing a single log type alone.

• Multimodal Data Fusion: Our approach utilizes diverse
data types generated by EVSEs, including network traffic
and kernel events, to construct a comprehensive view of
station activity. While this paper focuses on these two
data sources, the framework’s design, leveraging latent
representation extraction and compression, is inherently
extensible to incorporate other types of data logs, such
as power consumption and voltage metrics.

• Privacy-Preserving Collaboration: Through Federated
Learning (FL), the framework capitalizes on the diversity
of logs collected by a large number of geographically
distributed EVSEs, enabling collaborative model training
without compromising data privacy.

• Decentralized Security: This decentralized approach
ensures high detection accuracy while preserving the
confidentiality of user and operational data.

By combining multimodal data fusion and federated learn-
ing, the framework significantly improves the detection of
sophisticated attack patterns, providing a robust, scalable, and
privacy-preserving cybersecurity solution for EVSE infrastruc-
ture.

The remainder of this paper is organized as follows: Section
2 reviews background and literature review; Section 3 defines
the problem and model framework; Section 4 introduces
the proposed methodology; Section 5 presents experiments
and results; and Section 6 concludes with future research
directions.

II. BACKGROUND AND RELATED WORK

This section reviews EVSE foundations, focusing on key
features, protocols, attack scenarios, and recent intrusion de-
tection research.

A. EVSE Characteristics and Communication Protocols

The Electric Vehicle Supply Equipment (EVSE) ecosystem
depends on key communication protocols for interoperability,
security, and efficiency. Two main protocols are central to this:
the Open Charge Point Protocol (OCPP) and ISO 15118.

OCPP, developed by the Open Charge Alliance, is a widely
adopted protocol for managing communication between EV
chargers and central systems. It facilitates features such as
smart charging, remote diagnostics, and enhanced security,
ensuring compatibility and centralized control across diverse
EVSE networks [19]. On the other hand, ISO 15118, an
international standard for EVs, governs communication be-
tween vehicles and charging stations. This protocol introduces
Plug & Charge functionality, allowing automatic vehicle au-
thentication, which improves user convenience and security.
Additionally, ISO 15118 supports bidirectional energy transfer,
enabling advanced vehicle-to-grid (V2G) services that enhance
grid stability and energy efficiency [20].

B. Related Work
In [6], the authors proposed an IDS using ensemble learn-

ing for EVSE networks, targeting attack detection in both
centralized and decentralized infrastructures. Their framework
combines multiple models trained on diverse EVSE data
to improve detection accuracy. However, relying on three
classification sub-models may not suit all EVSEs, particularly
those with limited computational resources.

Researchers in [7] proposed an IDS for IoT-based EV
charging stations to detect cyber threats, using a real IoT
dataset with both binary and multiclass classification. They
apply PCA for feature selection and evaluate performance
with a CNN-A-LSTM model. However, the complex CNN-
A-LSTM architecture poses risks of overfitting, highlighting
potential limitations in generalization.

In [8], the authors present an injection attack on vehicle-
to-grid (V2G) communication at public EV charging sta-
tions, exploiting ISO 15118 protocol flaws. Their custom
testbed simulates malicious packet injections between the EV
communication controller (EVCC) and the station’s Supply
Equipment Communication Controller (SECC), leading to
denial-of-service, remote code execution, and malware spread.
They propose a machine learning-based IDS trained on benign
and malicious traffic. However, the 64KB message size limit
may reduce realism and hinder detection of complex threats,
affecting IDS effectiveness.

Poudel et al. [9] analyzed malware propagation in V2G
communications at EVSEs, demonstrating malicious traffic
injection risks. Their model maps EVSE connectivity to cal-
culate malware spread probabilities, optimizing attacks for
high-risk locations. Tests in urban/rural areas show optimal
strategies increase spread by 10–33%, revealing critical power-
transportation vulnerabilities.

Several studies [21]–[23] have developed anomaly detection
systems to monitor EV charging behavior. While innovative,
these approaches have some key blind spots. For example,
[21]’s clustering method identifies typical charging profiles
well, but because it relies solely on historical data, it fails
to detect sophisticated attacks where hackers mimic normal
charging patterns. Behavior-based detection also faces chal-
lenges – without massive, diverse datasets, these systems often
struggle to distinguish true threats from natural variations in
EVSE usage.

Even though EVSE security has been enhanced by contem-
porary IDS solutions, edge deployment may not be feasible
due to their weight. Our approach addresses this by combining
host and network data in a smart and efficient way. Federated
learning allows chargers to collaborate to improve detection
while ensuring that training remains local (no data sharing
is required), which is perfect for real-world EVSEs with
constrained resources and ever-evolving threats.

III. PROPOSED SOLUTION

A. Overview
We propose an intrusion detection framework for EVSE

stations that leverages multiple log types, including network



Fig. 1: Federated Training of the Intrusion Detection Model

traffic and kernel events, to detect potential attacks. Operating
locally on each EVSE as a host-based, multimodal system,
the IDS uses feature extraction and an autoencoder to create
compressed embeddings, which are fused to manage data
dimensionality. This multimodal data fusion is integrated into
federated training, where a cloud server acts as a param-
eter server and edge servers at charging stations function
as clients, collaboratively training the detection model. By
analyzing threats from multiple perspectives. Importantly, the
overall framework is designed to be lightweight. It relies on a
single CNN model and compact latent representations, which
significantly reduces inference-time computation. In contrast
to late fusion multimodal approaches that require multiple
parallel models, our method is more energy-efficient and better
suited for resource-constrained edge environments. Figure 1
illustrates the federated learning framework, with subsequent
sections detailing the system architecture and training process.

B. Feature Encoding and Fusion with Autoencoders

Our system relies on two key types of data logs, each
offering insights from a different perspective. The first, Net-
work Traffic Logs (D1), captures real-time communications
between the charging station and external entities, such as
payment gateways and central servers. Anomalies in network
traffic, such as unusual spikes or abnormal request patterns,
can indicate potential attacks. The second, Kernel Event Logs
and High Performance Counter (HPC) Metrics (D2), includes
low-level kernel event logs and hardware performance metrics,
providing a system-level view of charging station operations.
These records are essential for detecting covert activities, such
as privilege escalations or backdoor installations. For each
dataset, relevant features are extracted based on statistical and
domain-specific criteria, resulting in a feature vector x

(j)
i for

each dataset Dj , where i denotes the station. Formally, the
transformation can be represented as:

x
(j)
i = fj(preprocess(Dj)), (1)

where fj is the specific feature extraction function applied
to each dataset.

We apply a dedicated autoencoder to each dataset to learn
meaningful patterns in a compact latent space. The encoder-
decoder structure compresses the input while preserving es-
sential features. For each feature vector x

(j)
i extracted from

dataset Dj , we apply an autoencoder gj to obtain a latent
representation z

(j)
i :

z
(j)
i = gj(x

(j)
i ), j ∈ {1, 2}, (2)

where gj denotes the encoding function for each dataset Dj ,
preserving each modality’s unique features in a compressed
form for efficient storage and processing.

We adopt intermediate fusion by combining latent repre-
sentations z

(1)
i and z

(2)
i from different data sources into a

unified vector zi, capturing the station’s overall state. Unlike
early fusion, which merges raw inputs and may lack semantic
depth, this approach integrates multimodal insights to enhance
prediction quality. The combined vector zi is defined as:

zi = fconcat(z
(1)
i , z

(2)
i ), (3)

where fconcat is the concatenation function, merging network
and system features into a shared latent space.

C. Attacks Detection

For intrusion detection on fused vector zi, we employ a 1D
CNN, effective at capturing sequential/spatial patterns in latent
features to identify malicious anomalies.

The CNN processes zi through multiple layers, each with
distinct functions. The initial layers of the CNN apply con-
volutions to zi, extracting critical feature patterns. For a
convolutional filter k of size M , the convolution operation
on zi produces an output c(k)i as follows:

c
(k)
i = σ

(
M∑

m=1

w(k)
m zi,m + b(k)

)
, (4)

where w(k) and b(k) are the filter’s weights and biases,
and σ is a non-linear activation function, such as ReLU.



Convolutional outputs pass through pooling layers to reduce
dimensionality and capture key features:

p
(k)
i = max(c

(k)
i ), (5)

where pi(k) represents the max-pooled value for filter k,
Emphasizing prominent features while preserving spatial in-
formation, a softmax function outputs the intrusion probability:

ŷi = softmax(W · pi + b), (6)

where W and b are the weights and bias of the final
classification layer.

Algorithm 1: FED MDF-Based Attack Detection
Input: Multimodal datasets {D1, D2, . . . , DM} for

each station i, with N stations
Output: Intrusion detection probabilities {ŷi} for each

station i
1 for each station i = 1 to N do
2 for j = 1 to M do
3 x

(j)
i ← fj(preprocess(Dj)) ; // Extract
features from Dj

4 end for
5 for j = 1 to M do
6 z

(j)
i ← gj(x

(j)
i ) ; // Encode features

into latent space
7 end for
8 zi ← fconcat(z

(1)
i , z

(2)
i , . . . , z

(M)
i ) ; // Combine

latent vectors
9 Initialize: CNN parameters θi for station i;

10 pi ← CNN1D(zi; θi) ; // Process with 1-D
CNN to extract intrusion features

11 ŷi ← softmax(W · pi + b) ; // Calculate
intrusion probability

12 Compute gradients: ∇θiL(h(zi; θi), yi);
13 end for
14 Federated Aggregation: Update global CNN

parameters;
15 θt+1 ← θt − η

∑N
i=1∇θiL(h(zi; θt), yi);

16 return Intrusion probabilities {ŷi} for each station i;

To maintain data privacy, the CNN is trained using federated
learning. Each charging station trains its local model on
the fused vector zi, updating the model parameters locally.
Only the gradients or parameter updates are shared with a
central server, which aggregates these updates to improve the
global model without accessing raw data. The global parameter
update is formulated as:

θt+1 = θt − η

N∑
i=1

∇θL(h(zi; θt), yi), (7)

where: θt represents the CNN parameters at iteration t, η
is the learning rate, and L is the local loss function, such as
cross-entropy, computed at each station i.

The federated approach enables distributed training while
preserving privacy and maintaining CNN detection effective-
ness across stations. Algorithm 1 outlines the smart contract’s
on-chain aggregation.

IV. EXPERIMENTS AND RESULTS

This section outlines the experimental setup and testing
scenarios for evaluating separate/fused models and central-
ized/federated approaches in our framework.

A. Datasets

In this research, we used CICEVSE2024 [24], which is
one of the newest publicly available datasets containing both
benign and malicious traffic generated from a realistic testbed
for Electric Vehicle Supply Equipment (EVSE). It includes
data from three sources: Power consumption, Network Traffic,
and HPC/Kernel Events (Table I). The testbed involved an
operational Level 2 charging station (EVSE-A), Raspberry
Pi devices for various system components (EVCC, EVSE-
B, Power Monitor, Charging Station Management System
(CSMS)), and communication via OCPP and ISO15118 pro-
tocols. Malicious data was generated through both network-
based (e.g., DoS and TCP port scanning) and host-based attack
scenarios. The three datasets are available in CSV format with
extracted features.

TABLE I: Dataset samples distribution

Network HPC/Kernel

Benign 2000 32303
DoS 65790 65790
Recon 65790 65790

B. Experimental Results

The system was trained and tested in Google Colab using
PyTorch for local and federated models. An autoencoder
condensed the data into 32 key features via its bottleneck layer.
For classification, we used a 1D CNN with two convolutional
layers (each followed by max-pooling) and a dense layer.
Training employed the Adam optimizer, categorical crossen-
tropy loss, and accuracy metrics. Key CNN hyperparameters
are in Table II.

To evaluate detection performance, we measured the false
positive rate (FPR) alongside key metrics: accuracy, precision,
recall, and F1-score.

1) Separate vs. Fused Models: We evaluated detection
performance by comparing single-modal models, focused on
network traffic and kernel data, with our multimodal approach,
which fuses both data sources. A local comparative experiment
(excluding Federated Learning) was conducted to assess the
impact of data fusion on performance. The results, presented in
Figure 2, show that the fusion-based model achieves superior
detection performance with an accuracy of 92.91%, compared
to 92.21% for the network-based model and 90.54% for the
kernel-based model. Additionally, the fusion approach out-
performs single-modal models across other metrics, including
Precision and F1-Score. The improvement in performance,



highlights the effectiveness of using a single, unified model
that outperforms models trained on separate data sources.

TABLE II: CNN Model Configuration and Hyperparameters

Parameter Description

Model Type 1D Convolutional Neural Network (CNN)
Loss Function categorical crossentropy
Evaluation Metric accuracy
Optimizer adam
Epochs 10
Batch Size 32
Aggregation Weighted Average

Accuracy Precision Recall F1-Score

90%

91%

92%

93% 92.91 92.94 92.91
92.65

92.21
92.04

92.21

90.15

90.54
90.79

90.54 90.61

%

Fusionned Network Kernel

Fig. 2: Comparison of performance metrics for Fusionned,
Network, and Kernel models.
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Fig. 3: Performances comparison between centralized and
federated learning

2) Centralized vs. federated: We compare the results for
both the centralized and federated models across 10 Charging
Station (CS). The results are shown in Table III and Fig. 3.

The centralized model achieves near-perfect performance
across all clients, with metrics often exceeding 99%. For
instance, Client 3 recorded 100% in accuracy, precision,
recall, and F1 scores, highlighting its ability to generalize
effectively by leveraging a comprehensive, centralized dataset.

The federated model shows a slight performance drop, with
accuracy ranging from 98% to 99%, such as 98.36% for
Client 9. Despite this, it maintains strong detection rates while
preserving data privacy, striking a practical balance between
accuracy and decentralization.

C. Federated Performance Across Client Numbers

The results in Table IV illustrate that the federated learning
model maintains robust performance even as the number of
clients increases. With 10 clients, the model achieves an
impressive accuracy of 98.91% and an F1-score of 98.90%,
with a low false positive rate (FPR) of 0.83%. This consistency
across metrics, regardless of client count, underscores the
model’s capacity to handle distributed data effectively without
compromising accuracy. While the FPR sees a slight uptick
with more clients, the model continues to deliver reliable
results, affirming its scalability and adaptability across diverse
data sources while retaining high accuracy and minimal false
positives.

1) Discussion: The results show that, although the central-
ized model slightly outperforms the federated approach for
some clients, the federated framework still achieves perfor-
mance levels close to those of the centralized model. The small
performance differences can be attributed to local variations
in data distribution, which tend to be more pronounced in fed-
erated settings. Nonetheless, the federated model proves to be
an effective and practical solution, striking a balance between
privacy and detection accuracy across a distributed system.
These findings highlight the potential of federated learning to
maintain high accuracy while ensuring that individual EVSEs
retain control over their own data.

V. CONCLUSION AND FUTURE WORK

We propose a federated multimodal IDS for Electric Ve-
hicle Supply Equipment (EVSE). Our findings highlight the
effectiveness of combining data fusion with federated learn-
ing, enhancing intrusion detection across EVSE networks.
By integrating multiple data sources, our framework enables
comprehensive threat detection with high accuracy. The fed-
erated approach keeps data decentralized, ensuring privacy
without compromising performance. This combination pro-
vides a scalable, secure solution for EVSE infrastructure in
the smart grid ecosystem. Future work will optimize model
efficiency, integrate additional data modalities, and explore
real-time deployment in more EVSE scenarios. We will also
address FL robustness against poisoning attacks through secure
aggregation techniques.
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TABLE III: Experimental Results

CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 CS 7 CS 8 CS 9 CS 10
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Rec: 99.38 Rec: 99.79 Rec: 100.00 Rec: 99.59 Rec: 98.77 Rec: 99.59 Rec: 99.79 Rec: 99.38 Rec: 99.18 Rec: 99.59
F1: 99.39 F1: 99.80 F1: 100.00 F1: 99.60 F1: 98.75 F1: 99.59 F1: 99.80 F1: 99.38 F1: 99.18 F1: 99.59
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