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Abstract
Foundation models have revolutionized fields such as natural lan-
guage processing and computer vision by enabling general-purpose
learning across diverse tasks and datasets. However, building anal-
ogous models for human mobility remains challenging due to the
privacy-sensitive nature of mobility data and the resulting data
silos across institutions. To bridge this gap, we propose MoveGCL,
a scalable and privacy-preserving framework for training mobil-
ity foundation models via generative continual learning. Without
sharing raw data, MoveGCL enables decentralized and progressive
model evolution by replaying synthetic trajectories generated from
a frozen teacher model, and reinforces knowledge retention through
a tailored distillation strategy that mitigates catastrophic forgetting.
To address the heterogeneity of mobility patterns, MoveGCL incor-
porates a Mixture-of-Experts Transformer with a mobility-aware
expert routing mechanism, and employs a layer-wise progressive
adaptation strategy to stabilize continual updates. Experiments on
six real-world urban datasets demonstrate that MoveGCL achieves
performance comparable to joint training and significantly outper-
forms federated learning baselines, while offering strong privacy
protection. MoveGCL marks a crucial step toward unlocking foun-
dation models for mobility, offering a practical blueprint for open,
scalable, and privacy-preserving model development in the era of
foundation models.
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1 Introduction
In natural language processing (NLP) [4, 5, 17] and computer vi-
sion (CV) [8, 27], the rise of large pre-trained foundation models
(e.g., GPT, Sora) [33] has significantly advanced model sharing and
general-purpose intelligence through centralized training and open
release. However, in the critical domain of human mobility model-
ing [3, 30], the era of large foundation models has not yet arrived.
This is primarily due to the highly sensitive nature of mobility
trajectory data, which involves personal privacy [19, 47, 49]. Such
data cannot be easily shared or jointly trained across institutions
due to privacy constraints and legal restrictions. As a result, mo-
bility datasets often exist in isolated silos [50, 56], with different
organizations and researchers relying on their own private datasets,
hindering data integration, benchmarking, and collaborative model
development.

To address the challenge of data silos in mobility modeling, re-
cent studies have proposed different training strategies to leverage
multiple datasets, and Figure 1 compares different approaches. The
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most common strategy is to train models separately, as shown in
Figure 1(a). Recent efforts such as UniTraj [57], TrajBert [37], and
TrajFM [24] have explored joint training for unified representation
and cross-city generalization (Figure 1(b)), but these models remain
tightly coupled with proprietary or limited-quality datasets. TrajFM
and TrajBert are typically pre-trained on restricted or private data.
While UniTraj uses public data, it suffers from low semantic rich-
ness and high sparsity. Federated learning [11, 28] offers a potential
solution for distributed mobility model training (Figure 1(c)), but
its reliance on frequent synchronization and communication poses
challenges for scalability and practical deployment. Consequently,
these approaches fall short of meeting the diverse, dynamic, and
multi-source demands of real-world mobility modeling, and cannot
support an open ecosystem of shared models as seen in NLP and
CV domains.

To truly usher in a new era of shareable and sustainable hu-
man mobility foundation models, we argue for a new collaborative
paradigm. This paradigm enables multiple data holders to jointly
evolve and continually build a foundation model without sharing
raw data, while preserving both privacy and generalization capa-
bility. However, this vision poses several critical challenges: (1)
Privacy constraints. The sensitive nature of mobility trajectory data
prohibits direct data sharing. Designing a training framework that
supports collaboration without exposing raw data is a fundamental
yet unresolved challenge. (2) Catastrophic forgetting. Without ac-
cess to past training data, the model can easily forget previously
learned knowledge when updated with new mobility data, hinder-
ing long-term model evolution. (3) Data heterogeneity. Mobility
data exhibits substantial variation across regions, populations, and
data sources. A practical model must generalize well and dynami-
cally adapt to such heterogeneity.

To address these challenges, we propose MoveGCL, a scalable
training framework for mobility foundation models based on gen-
erative continual learning. MoveGCL allows each data holder to
evolve a shared model locally without exposing raw data, thereby
ensuring full privacy preservation. Specifically, MoveGCL starts
from a pre-trained base model and employs a synthetic trajectory
replay mechanism: instead of accessing historical data, each partic-
ipant generates synthetic trajectories that approximate previously
seen mobility patterns. This replay process preserves prior knowl-
edge and mitigates catastrophic forgetting. Furthermore, knowl-
edge distillation is applied during replay to reinforce the model’s
ability to retain past capabilities while adapting to new data. To
handle the diversity of mobility data, MoveGCL adopts aMixture-of-
Experts (MoE) architecture equipped with a mobility pattern-aware
expert routing mechanism. This design enables the model to dy-
namically select expert modules tailored to local mobility character-
istics. Together, these innovations make MoveGCL a practical and
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Figure 1: Method comparison with multiple mobility datasets.

privacy-preserving solution for collaboratively building generaliz-
able mobility foundation models across distributed, heterogeneous,
and privacy-sensitive data sources.

In summary, our key contributions are as follows:

• We are the first to formalize a privacy-preserving collaborative
training paradigm towards mobility foundation models, enabling
decentralized model evolution without raw data sharing.
• We propose MoveGCL, a novel framework based on generative
continual learning. Its core components—knowledge distillation,
mobility-aware expert routing, and layer-wise progressive adap-
tation—enable privacy-preserving, scalable, and adaptive trajec-
tory model training across diverse data sources.
• Extensive experiments demonstrate that MoveGCL achieves per-
formance comparable to joint training with full data access, and
significantly outperforms federated learning baselines without
data sharing.

2 Related Work
2.1 Mobility Data
Mobility data includes aggregated flows and individual trajecto-
ries [3, 47, 53]. Aggregated flows are relatively easier to obtain
and have been widely used in urban analytics [34, 51]. However,
individual-level mobility data remain fragmented due to privacy
concerns and institutional data silos [19, 47]. Real-world trajec-
tory datasets, such as GeoLife [54], T-Drive [45], NYC Taxi [32],
and Foursquare [44], often have limited city coverage, short time
spans, and sparse sampling. Some global-scale open datasets, such
as the one used in UniTraj, have been introduced, but they suffer
from low spatial-temporal resolution and inconsistent data quality.
With the advancement of generative AI, synthetic mobility datasets
have emerged, such as SynMob [56], YJMob100K [43] and World-
Move [50]. However, the quality of synthetic data still falls short
compared to real-world trajectories, particularly in terms of behav-
ioral diversity, temporal continuity, and semantic consistency. In
practice, access to real trajectory datasets typically requires sign-
ing NDAs, and most published studies do not release the mobility
datasets they use due to privacy and legal restrictions [35].

2.2 Mobility Foundation Models
Inspired by the success of foundation models in NLP and CV, recent
efforts have explored pre-trained models for urban and mobility
domains [6, 52, 55]. Early studies primarily focused on aggregated

mobility data, leveraging mobility flows across cities to build uni-
fied spatio-temporal representations, and have demonstrated strong
zero-shot transfer capabilities [21, 22, 46]. In contrast, individual-
level mobility foundation models are less developed. Researchers
have explored multi-scale mobility modeling [29, 47, 53], aiming
to capture both micro-level behaviors and macro-level patterns
essential for generalization. Attempts such as UniTraj [57], Tra-
jBert [37], and TrajFM [24] have explored learning from open tra-
jectory datasets, but these datasets often consist of short-term or
non-representative mobility traces that do not reflect regular hu-
man movement patterns. As a result, current models struggle to
capture the full complexity and diversity of real-world individual
mobility. Recently, LLMs have also widely utilized in generating
human mobility [9, 13–15], but the gap between natural language
and trajectory data suggests that mobility still requires native foun-
dation models, which can later be aligned with LLMs to bridge
symbolic reasoning and physical behavior modeling.

2.3 Continual Learning
Continual learning [16, 39], also known as lifelong learning, aims
to enable models to learn from a sequence of tasks or data streams
without forgetting previously acquired knowledge. A central chal-
lenge in continual learning is catastrophic forgetting [20, 41], where
the model’s performance on earlier tasks degrades as it learns new
ones. Continual learning methods are typically categorized into
three main types. Regularization-based methods introduce con-
straints on parameter updates to preserve important knowledge
from earlier tasks, as seen in approaches like Elastic Weight Consol-
idation (EWC) and Synaptic Intelligence (SI). Replay-based methods
mitigate forgetting by either storing a subset of previous data (ex-
perience replay) or generating pseudo-data (generative replay) to
simulate past learning. Parameter isolation methods, on the other
hand, allocate different parts of the model to different tasks, using
techniques such as dynamic networks or task-specific masking to
reduce interference between tasks.

3 Preliminaries
3.1 Data Format
In our setting, human mobility data is represented as sequences of
spatiotemporal tokens, where each token corresponds to a visited
location at a specific time. The spatial domain is typically discretized
into a uniform grid (500m × 500m resolution), and the temporal
domain is segmented into fixed-length intervals (30 minutes). Each
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individual trajectory can be formulated as a sequence 𝑧1, 𝑧2, . . . , 𝑧𝑇 ,
where 𝑧𝑡 = (𝑙𝑡 , 𝑡𝑡 ) denotes the location and timestamp of a mobil-
ity event at time step 𝑡 . These sequences capture rich behavioral
patterns across time and space and form the foundation for model
training.

3.2 Model Training via Next-Token Prediction
Following the standard practice in language modeling, the training
objective for mobility foundation models is formulated as a next-
location prediction task. Given a partial trajectory {𝑧1, . . . , 𝑧𝑡−1},
the model aims to predict the next location 𝑙𝑡 , where 𝑙𝑡 repre-
sents the spatial component of the upcoming step in the trajec-
tory. Formally, the training objective is defined as maximizing the
log-likelihood of the observed sequence:

L =

𝑇∑︁
𝑡=1

log 𝑃 (𝑙𝑡 | 𝑧1, . . . , 𝑧𝑡−1;𝜃 ), (1)

where 𝜃 denotes the model parameters. This objective allows the
model to learn rich dependencies across spatial locations, temporal
patterns, and contextual semantics, and serves as the core pretrain-
ing strategy for mobility foundation models.

3.3 Training Pipeline for Mobility Foundation
Model Development

We adopt a continual learning paradigm to train the mobility foun-
dation model. To simulate learning on highly heterogeneous data,
each round of continual learning introduces the dataset of a new
city to the model. Initially, the base model 𝑓base is trained using
the base dataset Dbase. During continual learning, at the begin-
ning of the 𝑛-th round, the model has already been trained on the
dataset Dall,𝑛−1 = Dbase ∪ Dcontinual,𝑛−1, where Dcontinual,𝑛−1 =⋃𝑛−1

𝑖=1 𝑑𝑖 , and each 𝑑𝑖 represents the dataset introduced in the 𝑖-th
round. However, the historical datasetDall,𝑛−1 is no longer accessi-
ble. The model update at round 𝑛 is performed solely based on the
current data 𝑑𝑛 and a copy of the model from the previous round,
denoted as 𝑓old,𝑛 .The continual learning process can be formalized
as the following optimization objective:

𝜃new,𝑛 = argmin
𝜃
L

(
𝜃 ; 𝑑𝑛 ; 𝑓old,𝑛

)
, s.t. 𝜃 ← 𝜃old,𝑛, (2)

where 𝜃 denotes the model parameters, and 𝜃old,𝑛 and 𝜃new,𝑛 cor-
respond to the parameters of 𝑓old,𝑛 and 𝑓new,𝑛 , respectively. The
loss functionL(𝜃 ;𝑑𝑛 ; 𝑓old,𝑛) incorporates constraint terms derived
from the previous model 𝑓old,𝑛 to mitigate catastrophic forgetting.
Rather than reinitializing from scratch, we optimize 𝜃new,𝑛 starting
from 𝜃old,𝑛 . Specifically, when 𝑛 = 0, we set 𝑓old,𝑛 = 𝑓base; for 𝑛 > 0,
we have 𝑓old,𝑛 = 𝑓new, 𝑛−1.

4 MoveGCL
In this section, we introduce the overall framework of MoveGCL,
which is shown in Figure 2. MoveGCL is built upon the paradigm
of generative continual learning, as detailed in Section 4.1. We then
present the core model architecture in Section 4.2, which is designed
to support modular scalability and cross-city adaptability. Finally,
we elaborate on the training strategy in Section 4.3, including the

design of layer-wise progressive adaptation mechanism to stabilize
continual updates and mitigate forgetting.

4.1 Generative Continual Learning
Generative Replay with Teacher Model. To retain knowledge
from previously visited cities without storing real-world mobility
trajectory data, we design a generative replay strategy, as illustrated
in Figure 2(a). At each stage, we keep a copy of the previously
trained model 𝑓old, referred to as the teacher model. This teacher
model represents the model trained on earlier mobility datasets. It
remains frozen during subsequent learning and serves as a knowl-
edge source to guide the student model 𝑓new when learning new
cities.

To simulate past mobility behaviors, we employ 𝑓old to generate
synthetic trajectory data 𝑥𝑐𝑖old. First, we extract a trajectory

𝑥new =
[
(𝑙 ′0, 𝑡

′
0), (𝑙

′
1, 𝑡
′
1), . . . , (𝑙

′
𝐿, 𝑡
′
𝐿)
]
, (3)

from the new dataset, where 𝐿 denotes its length and {(𝑙 ′
𝑖
, 𝑡 ′

𝑖
)}𝐿

𝑖=0
are the location–time pairs. Next, for a specific previously observed
city 𝑐𝑖 , we sample an initial location from the empirical distribution
of actual locations in city 𝑐𝑖 conditioned on length 𝐿:

𝑙0 ∼ 𝜌
𝑐𝑖
loc |𝐿 , (4)

where 𝜌𝑐𝑖loc |𝐿 denotes the empirical distribution of initial locations
in previously observed city 𝑐𝑖 given a trajectory length 𝐿. We then
replace 𝑙 ′0 with the sampled 𝑙0 and generate the pseudo old-city
trajectory

𝑥
𝑐𝑖
old =

[
(𝑙0, 𝑡 ′0), (𝑙1, 𝑡

′
1), . . . , (𝑙𝐿, 𝑡

′
𝐿)
]
,

by drawing subsequent locations autoregressively:

(𝑙1, 𝑙2, . . . , 𝑙𝐿) ∼ 𝑓old
(
·
�� 𝑙0, {𝑡 ′𝑖 }𝐿𝑖=0), (5)

where each 𝑡 ′
𝑖
is taken from the time distribution of the extracted

new-data trajectory.
These pseudo-trajectories reflect the mobility patterns learned

in earlier stages. We combine all pseudo-trajectories with the real
data from the current city, to construct the full training set:

Dtrain =

𝑁⋃
𝑖=1

𝛼 X̃𝑐𝑖old ∪ Xnew , (6)

where {𝑐1, 𝑐2, . . . , 𝑐𝑁 } denotes the 𝑁 previously observed cities,
X̃𝑐𝑖old denotes the set of pseudo-trajectories generated for city 𝑐𝑖 , and
Xnew is the set of real trajectories from the current city. Coefficient
𝛼 > 0 specifies ratio between the number of pseudo-trajectories in
each previous city and the number of real trajectories in Xnew.

This allows the student model to learn current-city behaviors
while retaining knowledge of previously learned cities.

Distilling Knowledge to Preserve Mobility Patterns. To fur-
ther strengthen the model’s ability to preserve prior knowledge,
we introduce a knowledge distillation loss that transfers behavioral
patterns from the teacher model to the student model, as depicted
in Figure 2(b). For each generated pseudo-trajectory 𝑥old, we extract
the predicted mobility distributions from both models:

𝑃old (· | 𝑥old) = 𝑓old (𝑥old), 𝑃new (· | 𝑥old) = 𝑓new (𝑥old). (7)
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Figure 2: Overview of the MoveGCL framework: (a) the overall workflow; (b) the implementation of generative continual
learning; (c) the model architecture.

We minimize the Kullback–Leibler (KL) divergence between the
teacher’s and student’s predicted distributions:

LKD = E�̃�old∼𝑓old [KL (𝑃old (· | 𝑥old) ∥ 𝑃new (· | 𝑥old))] . (8)

For the new data 𝑥new, we compute the task loss as the cross-
entropy between the model’s predicted distribution and the true
labels, referred to as Lcross-entropy. The total training objective of
the student model is a weighted sum of the task loss on new-city
data and the distillation loss:

Ltotal = Lcross-entropy + 𝜆 · LKD, (9)

where 𝜆 is a hyperparameter that balances learning new knowledge
and retaining previously acquired behaviors.

4.2 Model Architecture
To enable scalable and adaptive learning across heterogeneous
urban environments, our model is designed with a modular ar-
chitecture that integrates flexible location encoders/decoders, a
Mixture-of-Experts (MoE) Transformer backbone, and a mobility-
aware expert routing mechanism, as shown in Figure 2(c). This
design ensures the model’s scalability and adaptability in multi-city
continual learning scenarios.

Unified Location Encoder. Conventional location representa-
tions often rely on discrete location IDs, which are inherently city-
specific and hinder cross-city generalization. To overcome this
limitation, we design a continuous location representation that em-
beds each location into a shared latent space, capturing transferable

semantic and spatial properties across cities. This unified repre-
sentation facilitates knowledge sharing and supports incremental
learning across heterogeneous urban environments. Concretely,
each location 𝑙 ∈ L is represented by a feature vector z𝑙 ∈ R𝑑
constructed from three key components:

z𝑙 = 𝜙POI (𝑙) ⊕ 𝜙lat-lon (𝑙) ⊕ 𝜙hot (𝑙), (10)

where 𝜙POI (𝑙) ∈ R𝑑1 denotes the Point-of-Interest (POI) embed-
ding, capturing semantic land-use attributes such as residential,
commercial, educational, or recreational functions, often indica-
tive of mobility intent and purpose; 𝜙hot (𝑙) ∈ R𝑑2 is the mobility
heat embedding, derived from public available OD flows at each
location, which reflects the functional centrality of that location;
𝜙lat-lon (𝑙) ∈ R𝑑3 is the normalized latitude-longitude embedding,
representing the relative spatial position of the location within the
city boundary.

The overall location representation z𝑙 is obtained via concatena-
tion (⊕) of these features, and is further transformed by a shared
multi-layer perceptron (MLP). This design is sufficient and gener-
alizable because it captures three complementary views of spatial
semantics: (1) semantic functions via POI types, (2) actual mobility
signals via visitation popularity, and (3) capture where the loca-
tion sits in the urban layout. Together, they provide a compact yet
expressive embedding that generalizes well across different cities
with varied spatial structures.
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Figure 3: Illustration of the layer-wise progressive adaptation

Mixture-of-Experts Transformer. TheMixture-of-Experts (MoE)
architecture comprises a router network and multiple expert net-
works, serving as a replacement for the Feed-Forward Network
(FFN) within the Transformer [31]. The output of the MoE layer,
𝐹MoE (𝑥), is the weighted sum of the selected expert outputs, where
the weights are given by the router network’s output:

𝐹MoE (𝑥) =

𝑘∑︁
𝑖=1

𝑅𝑖 (𝑥) · 𝐸𝑖 (𝑥) . (11)

Here, 𝑥 denotes the input to the MoE module, 𝑘 is the number
of selected experts, 𝑅𝑖 (𝑥) is the output of the router network for
expert 𝑖 (detailed in Section 4.2), 𝐸𝑖 (𝑥) is the output of expert 𝑖 .

MoveGCL is built upon Mixture-of-Experts (MoE) Transformer
blocks, in which each expert module is responsible for capturing
specific mobility patterns. During continual learning, we introduce
new experts to accommodate knowledge from new cities, and de-
sign layer-wise progressive adaptation training strategy (detail in
Section 4.3). This partial parameter update strategy injects new
knowledge without overwriting existing capabilities, thus allevi-
ating catastrophic forgetting. The modularity of the MoE block
also supports elastic expansion of the model as more cities are
introduced.

Mobility-Aware Expert Routing. For each input trajectory 𝑥 ,
we extract a set of mobility behavior descriptive features and en-
code them into a obility feature descriptor vector z𝑚 ∈ R𝑑 . This
feature set comprises: the jump distance 𝑑jump (distance between
the current point and the previous point in the trajectory); the wait-
ing time 𝑡wait (time difference between arrivals at the current and
previous points in the trajectory); the quantized radius of gyration

𝑟gyr; the quantized location entropy 𝐻loc; and the city identifier
IDcity. These features are embedded via their respective encoders,
where 𝑑jump and 𝑡wait are processed by a Transformer-based con-
tinuous feature encoder, and 𝑟gyr, 𝐻loc, and IDcity are handled by
discrete embedding modules. Finally, the five feature embeddings
are concatenated to form the mobility behavior vector:

z𝑚 =

[
𝜙𝑑jump

(
𝑑jump (𝑥)

)
, 𝜙𝑡wait

(
𝑡wait (𝑥)

)
, 𝜙𝑟gyr

(
𝑟gyr (𝑥)

)
,

𝜙𝐻loc

(
𝐻loc (𝑥)

)
, 𝜙IDcity

(
IDcity

) ]
. (12)

Here, 𝜙𝑑jump and 𝜙𝑡wait denote the Transformer encoders for contin-
uous mobility features, while 𝜙𝑟gyr , 𝜙𝐻loc , and 𝜙IDcity represent the
embedding encoders for discrete features.

Within each layer of the MoE transformer blocks, we introduce
a routing network based on a linear transformation to compute
the routing weights for each expert, leveraging both the mobility
descriptor feature vector z𝑚 and the output of the self-attention sub-
module at that layer. The routing weights for layer 𝑖 are computed
as:

𝑅𝑖 (𝑥) = softmax
(
TopK

(
𝑊𝑖,𝑟 (z𝑚 ⊕ 𝑋𝑖 (𝑥)) + 𝑏𝑖

) )
, (13)

where z𝑚 is the mobility feature descriptor vector defined above;
𝑋𝑖 (𝑥) denotes the output of the self-attention submodule;𝑊𝑖,𝑟 is
a learnable projection matrice; 𝑏𝑖 is the bias term; and TopK(·)
retains only the top 𝐾 values (corresponding to the 𝐾 highest-
scoring experts), setting the remaining expert scores to −∞ so that
their weights after the softmax operation are effectively zero.

This routing strategy achieves two objectives: (1) it promotes
functional specialization by directing similar motion patterns to
consistent expert subsets; (2) it enables the model to discover and
transfer shared mobility structures across cities, thereby enhancing
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generalization in multi-city scenarios. Additionally, this mobility-
aware routing provides a structured inductive bias that accelerates
model adaptation during incremental learning, allowing new ex-
perts to specialize rapidly with minimal interference to retained
knowledge.

Similarity–Based Decoder. The next-location prediction is per-
formed by computing the similarity between the final output of
the Mixture-of-Experts (MoE) Transformer blocks and the repre-
sentation vectors of all candidate locations in the city. These loca-
tion representations are generated using a Deep & Cross Network
(DCN) [40], which consists of both a Cross layer and a Deep layer
to capture feature interactions and nonlinear transformations.

The Cross network captures inter-location correlations within
a city by applying element-wise interactions over location embed-
dings 𝐸𝑙 , producing:

𝐸cross =
𝑑∑︁
𝑖=1

𝐸𝑖 ⊙𝑊𝑖𝐸𝑙 + 𝑏𝑖 , (14)

where ⊙ denotes element-wise multiplication, and𝑊𝑖 , 𝑏𝑖 are learn-
able parameters. The Deep layer refines the same 𝐸𝑙 using a two-
layer MLP:

𝐸deep = GELU ((𝑊1𝐸𝑙 + 𝑏1)𝑊2 + 𝑏2) , (15)

with weights𝑊1,𝑊2, biases 𝑏1, 𝑏2, and GELU activation. The DCN
output is the concatenation of both branches:

𝐸DCN = 𝐸cross ⊕ 𝐸deep . (16)

For next-location prediction, the user’s historical trajectory is
encoded by two cross-city encoders. One generates a prediction
vector 𝑃 via MoE Transformer blocks; the other produces location
embeddings 𝐸DCN via DCN. The similarity score is computed as:

Scoresimilarity =

𝑑∑︁
𝑖=1

𝐼 · 𝐸DCN,𝑖 , (17)

where𝑑 is the number of locations. Higher similarity scores indicate
higher probabilities of being the next location. This similarity-based
decoding strategy ensures scalability, as it decouples the prediction
process from a fixed output space. Instead of classifying over a static
set of locations, the model performs representation-level matching,
allowing it to generalize across cities with different spatial layouts
and dynamically varying numbers of candidate locations.

4.3 Layer-Wise Progressive Adaptation
To ensure a balance between previously and newly learned knowl-
edge, MoveGCL employs a layer-wise progressive adaptation strat-
egy, where model parameters are updated in stages, as illustrated
in Figure 3. For a model composed of 𝑁 layers of MoE transformer
blocks, the total number of training epochs 𝐸 is evenly divided into
𝑁 /2 stages, with each stage lasting E

𝑁 /2 epochs. At each stage, a
pair of symmetrically positioned MoE transformer blocks—one near
the input side and the other near the output side—are unfrozen for
fine-tuning, while the remaining layers remain frozen. The specific
process is as follows:
• In Stage 1, the outermost layers (closest to the input and output)
are unfrozen.

Table 1: Basic statistics of mobility data.

City User Trajectory Location
Atlanta 114941 2348218 1175
Chicago 148000 8051522 4166

Los Angeles 161544 16844127 6198
New York 170321 15766369 4988
Seattle 88569 3362353 1046

Washington D.C 134442 11024181 1361

• In Stage 2, the second closest layers to the input and output are
unfrozen.
• ...
• In Stage N/2, the two central layers of the model are unfrozen.

Within each stage, only a subset of parameters in the unfrozen
layers is updated—the routing modules, newly added experts and
previously trained experts that were not frequently activated in the
prior generative continual learning phase. To facilitate adaptation
to the mobility features across different datasets, parameters of the
mobility feature encoder are updated continuously during all stages.
Furthermore, to prevent large parameter shifts during the initial
stage of parameter updating, all previously trained experts in the
input-side MoE transformer layer are kept frozen during Stage 1.

5 Results
5.1 Experimental Settings
Datasets. We utilize human mobility datasets from multiple cities
to evaluate the performance of MoveGCL. Specifically, the datasets
cover over eight hundred thousand users and feature a relatively
high sampling rate compared to currently available public datasets.
Detailed statistics and descriptions are provided in Table 1. For each
city, we randomly sample 120,000 trajectories for training, 40,000
for validation, and 40,000 for testing.

Baselines. We compare our method with a diverse set of baselines,
including traditional mobility models, federated learning-based
approaches, and joint learning models with privacy-preserving
mechanisms.
• Traditional approach: This includes Markov models [12] that
fit separate transition matrices for different datasets.
• Deepmobilitymodels:We include LSTM [18], Transformer [38],
DeepMove [10], TrajBert [37], and CLET [23] as representative
baselines. For each dataset, we train a separate model to ensure
fair comparison under the same training conditions.
• Fedarated learning models:We evaluate against PMF [11] and
LightTR [28], which leverage federated learning frameworks for
human mobility prediction while maintaining data decentral-
ization. We apply their federated learning methods to train our
model.
• Joint models with privacy protection: These methods en-
able continual learning without accessing previously seen data.
Specifically, we consider two variants of our model:MoveGCL
(FullTune) unfreezes all experts and routers in the MoE Trans-
former while keeping the rest of the model frozen, and fine-tunes
using only the new city’s data. MoveGCL (ExpertTune) incre-
mentally adds one new expert per layer in the MoE Transformer,
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Table 2: Performance comparison between MoveGCL and baseline methods across different cities and Acc@k metrics.

Model Atlanta Chicago Los Angeles New York Seattle Washington D.C

Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3
Markov 0.183 0.325 0.146 0.260 0.103 0.201 0.115 0.275 0.202 0.318 0.162 0.347
LSTM 0.231 0.373 0.194 0.334 0.131 0.275 0.169 0.312 0.259 0.420 0224 0.383

Transformer 0.210 0.353 0.175 0.300 0.124 0.268 0.156 0.318 0.235 0.397 0.192 0.356
DeepMove 0.242 0.393 0.203 0.344 0.147 0.274 0.177 0.329 0.278 0.444 0.247 0.408
TrajBert 0.214 0.370 0.183 0.316 0.146 0.277 0.159 0.310 0.234 0.402 0.207 0.367
CLET 0.263 0.422 0.200 0.341 0.138 0.275 0.156 0.313 0.289 0.454 0.232 0.390

PVM 0.248 0.381 0.151 0.249 0.112 0.190 0.150 0.257 0.269 0.418 0.217 0.349
LightTR 0.269 0.402 0.168 0.269 0.130 0.216 0.168 0.281 0.296 0.444 0.242 0.376

MoveGCL
(FullTune) 0.188 0.304 0.125 0.206 0.064 0.114 0.208 0.329 0.199 0.318 0.147 0.257

MoveGCL
(ExpertTune) 0.192 0.310 0.132 0.215 0.062 0.108 0.207 0.327 0.195 0.322 0.147 0.259

MoveGCL
(WSC→A→L→N) 0.282 0.421 0.197 0.306 0.157 0.254 0.206 0.328 0.324 0.478 0.273 0.413

unfreezes all experts and routers, and fine-tunes on the new city’s
data while keeping all other parameters fixed.

Evaluation Metrics. We adopt top-𝑘 accuracy as our evaluation
metric, defined as

acc@𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

1
(
𝑥𝑖 ∈ 𝑓𝑘 (𝑥𝑖 )

)
, (18)

where 𝑁 is the total number of samples, 𝑥𝑖 is the ground-truth
label for the 𝑖th sample, 𝑓𝑘 (𝑥𝑖 ) denotes the set of the model’s top-𝑘
predicted labels for sample 𝑖 , and 1(·) is the indicator function that
equals 1 if its argument is true and 0 otherwise. We report on acc@1
and acc@3 to assess the performance of the model.

Parameter Settings. The key parameters of our framework fall
into three main categories.
• For the model architecture, we set the temporal embedding di-
mension to 48. In the mobility encoder, the embedding dimen-
sions of 𝑑jump and 𝑡wait are both 128, the embedding dimensions
of 𝑟gyr and location entropy 𝐻loc are 64, and the embedding di-
mension of IDcity is 32, with the self-attention modules for both
𝑑jump and 𝑡wait using a hidden dimension of 64. In the trajectory
location encoder and the city location encoder, the embedding
dimensions of 𝜙POI, 𝜙hot, and 𝜙lat-lon are 256, 128, 128, respec-
tively. The hidden dimension of each MoE transformer block is
set to 512. The initial number of experts in each MoE transformer
block is 4, and the model comprises 6 layers of MoE transformer
blocks.
• For the base model training phase, the initial model is obtained
by training on three cities’ datasets. During this phase, we use a
batch size of 16 and train for 30 epochs. The initial learning rate
is set to 1.2 × 10−5, and the learning rate decays in a stepwise
fashion during training.
• For generative continual learning, whenever we introduce a new
dataset (i.e., a new city), we add one new expert to every MoE
transformer block. The initial learning rate for this phase is
1.2 × 10−4, the batch size is 128, and training also runs for 30

epochs, with the learning rate decaying stepwise throughout.
The generative coefficient 𝛼 is set to 20%. The balance coefficient
𝜆 for Ltotal is set to 1.

5.2 Overall Performance
Table 2 presents the performance of MoveGCL compared to state-
of-the-art baseline methods.
• MoveGCL consistently outperforms traditional deep learn-
ing models trained independently on each dataset, demon-
strating strong cross-city scalability. On average, it achieves
a 8% improvement in Acc@1, highlighting its ability to gener-
alize across diverse urban environments. This result validates
the promise of mobility foundation models, which unify knowl-
edge across cities and reduce redundancy. In contrast, training
separate models for each city not only increases computational
and deployment costs, but also fails to leverage shared mobility
patterns across domains.
• MoveGCL surpasses privacy-preserving federated learn-
ing approaches in both accuracy and stability. Compared to
domain-specific baselines such as PVM [11] and LightTR [28],
MoveGCL achieves significantly higher performance. This advan-
tage stems from its unified generative continual learning frame-
work, which maintains global generalization without suffering
from the synchronization overhead and convergence instability
inherent in federated setups. This further supports its practicality
in real-world multi-party mobility modeling scenarios.
• MoveGCL effectively balances adaptation to newdatawhile
retaining knowledge from previously seen data. We bench-
mark against two continual learning strategies—FullTune and
ExpertTune—which either fine-tune or expand the model on new
datasets. While these methods partially adapt to new cities, they
suffer from severe performance degradation on previously seen
data, indicating catastrophic forgetting. In contrast, MoveGCL
preserves prior knowledge and achieves higher performance on
both old and new datasets, demonstrating its ability to support
continuous model evolution without sacrificing stability.
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Table 3: Performance comparison across cities and Acc@k metrics for evaluating order invariance.

Model Atlanta Chicago Los Angeles New York Seattle Washington D.C

Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3
WSC→A→L→N 0.282 0.421 0.197 0.306 0.157 0.254 0.206 0.328 0.324 0.478 0.273 0.413
AWN→→S→C 0.284 0.423 0.197 0.308 0.150 0.246 0.200 0.326 0.317 0.469 0.265 0.407
WAL→N→S→C 0.286 0.427 0.191 0.300 0.153 0.247 0.179 0.294 0.318 0.470 0.268 0.408
Joint Training 0.288 0.428 0.192 0.302 0.156 0.250 0.198 0.320 0.322 0.475 0.270 0.410
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Figure 4: Similarity score distribution in uniqueness testing.

5.3 Evaluating Order Invariance in Continual
Learning

To assess the robustness of MoveGCL in real-world deployment
scenarios, we investigate its sensitivity to the order in which data
from different cities is introduced during continual learning. In
practice, the arrival of mobility data is often dictated by external
factors such as data access regulations, infrastructure development
cycles, or institutional collaborations. As a result, foundation mod-
els intended for long-term, large-scale deployment must remain
robust to such variations in data sequencing.

We simulate this scenario by reversing the order of datasets used
in the continual learning phase. As shown in Table 3, the perfor-
mance of MoveGCL remains remarkably consistent, with the vast
majority of metrics showing deviations of less than 5% across orig-
inal and reversed sequences. This empirical finding confirms the
order-invariant learning behavior of our model, demonstrating that
MoveGCL can integrate new city data without disrupting previ-
ously acquired knowledge, even when the order of exposure varies
significantly. This property is especially crucial for building scal-
able and unified mobility foundation models, which must support
progressive, privacy-preserving knowledge accumulation in non-
i.i.d. settings where data arrives incrementally and asynchronously.
Order robustness is thus a key enabler for deploying foundation
models that can continually evolve while ensuring stable perfor-
mance and generalization across diverse urban contexts.

5.4 Privacy Evaluation
As MoveGCL is built on a generative continual learning framework
that does not retain raw data from previous cities, a key question is
whether the synthetic data used for replay may inadvertently leak
private information from the original training data. To rigorously

evaluate the privacy-preserving properties of our approach, fol-
lowing the methodology in [47, 48], we conduct a comprehensive
analysis from three complementary perspectives:

• Uniqueness Testing [7, 42]: To evaluate the degree of similarity
between the generated data and the real data.
• Membership Inference Attack [25, 36]: Given a trained model
and a set of samples, a membership inference attack assesses
whether an classifier can accurately determine which samples
were included in the model’s training set based on the model’s
outputs.
• Differential Privacy [1, 2]: To ensure that the model does not
depend on a small subset of training examples, we remove a mini-
mal set of training samples and evaluate whether the distribution
of model outputs undergoes an obvious change.

Uniqueness Testing. We randomly extract a subset of trajectories
from the training set and use an autoregressive process to generate
new trajectories conditioned on each sampled trajectory. We then
compute the pairwise similarity between each original sample and
its corresponding generated trajectory.If the lengths of two trajec-
tories are different, the similarity score is defined as 0. If they are of
equal length, the similarity score is calculated as the proportion of
positions where both the timestamp and location ID exactly match.
For each generated trajectory, we compute its similarity score with
the top-1, top-3, and top-5 most similar real trajectories.

Figure 4 presents the cumulative distribution of similarity scores.
As shown in the figure, over 95% of the generated trajectories do
not have any corresponding real trajectory with a similarity score
higher than 50%. This indicates that the model’s outputs are based
on the knowledge it has acquired, rather than directly copying
trajectories from the training set.

Membership InferenceAttack. Following the experimental setup
in [26, 36], we use the similarity between generated trajectories
and their corresponding real input trajectories as the classification
feature. For each trajectory 𝑥 , MoveGCL generates 𝑥 autoregres-
sively conditioned on 𝑥 , and we compute a similarity score 𝑠 (𝑥, 𝑥)
to form the input to the classifier. The classifier is then tasked with
determining whether 𝑥 was included in the model’s training set.
Positive samples consist of real-world trajectories that were used
during training, while negative samples are real trajectories from
the same city that were held out. We evaluate the attack success
rate, defined as the proportion of samples for which the classifier
correctly infers membership status. We employ three widely used
classification algorithms: Logistic Regression (LR), Support Vector
Machine (SVM) and Random Forest (RF).
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Figure 5: Success rate in membership inference attack

Table 4: Differential Privacy statistics by city.

𝝐 Mean Median 75th Percentile
Atlanta 2.671 0.706 2.212
Chicago 2.919 0.752 2.504
Los Angeles 2.988 0.593 2.572
New York 3.394 0.713 2.001
Seattle 2.934 0.655 1.870
Washington D.C 3.037 0.600 1.787

Figure 5 shows the attack results. As observed, the success rates
across all datasets are approximately 50%, indicating that the clas-
sifier can hardly determine whether a trajectory was part of the
training data or not based on the generated sample. These results
indicate that our model is not easily susceptible to membership
inference attacks.

Differential Privacy. For any pair of datasets 𝐷 and 𝐷′ that differ
by only a small number of training trajectories, a model𝑀 is said
to satisfy (𝜀, 𝛿)-differential privacy if the following condition holds:

P
[
𝑀 (𝑧; 𝐷) = 𝑧

]
≤ 𝑒𝜀 P

[
𝑀 (𝑧; 𝐷′) = 𝑧

]
+ 𝛿, (19)

where P
[
𝑀 (𝑧; 𝐷) = 𝑧

]
denotes the probability of observing output

𝑧 when the model is trained on dataset 𝐷 , and P
[
𝑀 (𝑧; 𝐷′) = 𝑧

]
is

defined analogously for dataset 𝐷′. Smaller values of 𝜀 and 𝛿 imply
stronger privacy guarantees, since the model’s output distribution
becomes less dependent on any single trajectory.

In our experiment, we randomly select a subset of trajectories
and consider two training scenarios: one in which this subset is
included in the training data (𝐷), and one in which it is excluded
(𝐷′). For each scenario, we train𝑀 on the corresponding dataset
and then use each selected trajectory as a conditioning input to
generate multiple synthetic trajectories. We compute a similarity
score between each generated trajectory and its original condition-
ing trajectory. These similarity scores are modeled as two Gaussian
distributions corresponding to P

[
𝑀 (𝑧; 𝐷)

]
and P

[
𝑀 (𝑧; 𝐷′)

]
, re-

spectively. Finally, we estimate the privacy-budget parameters 𝜀
from these distributions. As shown in Table 4, without applying
any additional privacy-preserving mechanisms, MoveGCL natu-
rally achieves a privacy budget of 𝜀 ≈ 1–2 for 75% of randomly
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Figure 6: Ablation study. “w/o KD” denotes removal of the
knowledge distillation loss; “w/o MAER” denotes removal of
mobility feature from MoE transformer’s router inputs.

sampled trajectories. This level is generally considered an accept-
able operating point for generative models [25]; for example, Apple
adopts a privacy budget of 𝜀 = 4.0 ∗.

5.5 Ablation Studies
In this section, we conduct two sets of incremental ablation studies
based on MoveGCL (WSC→A→L→N). The first set focuses on the
input features of the Mobility-Aware Expert Routing module. We
selectively remove or adjust different dimensions of the location fea-
ture to evaluate the contribution and necessity of each type of input
in guiding expert routing. The second set targets the incremental
learning mechanism itself. We remove the knowledge distillation
strategy designed to mitigate catastrophic forgetting in GCL, and
instead train the model using only the conventional cross-entropy
loss. This setup allows us to assess the effectiveness of knowledge
distillation in preserving previously learned knowledge.

As shown in Figure 6, removing any input feature from the
Mobility-Aware Expert Routing module leads to a noticeable perfor-
mance drop. Similarly, disabling the knowledge distillation strategy
in GCL also results in a significant decline in model performance.
These findings highlight the critical role of each input feature in
expert selection, as well as the importance of knowledge distillation
in ensuring model stability during continual learning.

5.6 Impact of Replay Volume
In generative continual learning, synthetic data replay serves as
a key mechanism for preserving previously acquired knowledge
without accessing raw data. A critical hyperparameter in this pro-
cess is the volume of generated data used during training on new
cities. While too little replay data may result in catastrophic for-
getting, excessive generation increases computational costs and
may introduce noise or redundancy. Understanding this trade-off
is essential for building scalable and efficient mobility foundation
models. To explore this, we vary the amount of generated data and
evaluate its impact on both knowledge retention (for previously
seen cities) and adaptation to new cities.

∗https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
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Figure 7: Acc@1 changes at different generated data ratios (𝛼), relative to 𝛼 = 5%.
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Figure 8: City location embeddings before (original) and after (final) DCN.

As shown in Figure 7, the performance on the base cities (WSC)
consistently improves with more generated data, demonstrating
that replay volume directly influences the model’s ability to retain
past knowledge. In contrast, performance on the newly introduced
cities (A, L, N) remains largely stable regardless of replay volume,
with no consistent trend of improvement or degradation. These
results suggest that while synthetic replay is crucial for mitigating
forgetting, it has limited effect on new knowledge acquisition. Thus,
allocating a moderate amount of generated data offers a practical
balance—sufficient to preserve prior knowledge without incurring
unnecessary overhead—supporting the long-term scalability of con-
tinual mobility modeling.

5.7 In-Depth Analysis
To better understand why MoveGCL is capable of unifying diverse
mobility datasets and effectively handling substantial inter-city
heterogeneity, we conduct an in-depth analysis of its location em-
bedding layer. Our goal is to examine whether MoveGCL can learn
shared spatial representations across cities. To this end, we extract
the location embeddings for each city at two stages: (1) after the
initial encoder, and (2) after the Deep & Cross Network (DCN). By
comparing these two sets of embeddings, we aim to evaluate the

role of DCN in aligning spatial semantics across heterogeneous
urban environments.

As shown in Figure 8, DCN aligns location embedding distri-
butions in different cities much more closely than the original en-
coder output. This indicates that DCN successfully captures shared
location-feature patterns across urban areas, thereby boosting the
model’s ability to generalize in cross-city settings. Moreover, within
each city, the DCN-processed embeddings become less densely clus-
tered than their original counterparts, indicating a marked increase
in separability among individual locations and further enhancing
the model’s capacity to encode location semantics.

6 Conclusion
In this work, we presentMoveGCL, a scalable and privacy-preserving
framework for training mobility foundation models via genera-
tive continual learning. By enabling decentralized model evolution
without sharing raw data, MoveGCL addresses key challenges in
real-world human mobility modeling, including data silos, privacy
constraints, and heterogeneous mobility distributions. MoveGCL
represents a significant step toward realizing foundation models
for mobility by offering a practical and generalizable framework
that facilitates collaborative learning across cities and institutions.
It paves the way for long-term, privacy-safe, and adaptive modeling
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of human movement, with broad implications for urban planning,
transportation optimization, and evidence-based policy making.

Despite its promising performance,MoveGCL remains constrained
by the limited availability of high-quality training data. The devel-
opment of more large-scale, semantically rich, and geographically
diverse mobility datasets will be crucial for further improving the
model’s generalization and robustness. We encourage the broader
research community and data-holding institutions to join this col-
laborative effort, contributing to the creation of open, inclusive,
and powerful spatiotemporal foundation models for the mobility
domain.
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