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Abstract—Deep Neural Networks (DNNs) are widely used for
traffic sign recognition because they can automatically extract
high-level features from images. These DNNs are trained on
large-scale datasets obtained from unknown sources. Therefore, it
is important to ensure that the models remain secure and are not
compromised or poisoned during training. In this paper, we inves-
tigate the robustness of DNNs trained for traffic sign recognition.
First, we perform the error-minimizing attacks on DNNs used
for traffic sign recognition by adding imperceptible perturbations
on training data. Then, we propose a data augmentation-based
training method to mitigate the error-minimizing attacks. The
proposed training method utilizes nonlinear transformations to
disrupt the perturbations and improve the model robustness.
We experiment with two well-known traffic sign datasets to
demonstrate the severity of the attack and the effectiveness
of our mitigation scheme. The error-minimizing attacks reduce
the prediction accuracy of the DNNs from 99.90% to 10.6%.
However, our mitigation scheme successfully restores the predic-
tion accuracy to 96.05%. Moreover, our approach outperforms
adversarial training in mitigating the error-minimizing attacks.
Furthermore, we propose a detection model capable of identifying
poisoned data even when the perturbations are imperceptible to
human inspection. Our detection model achieves a success rate of
over 99% in identifying the attack. This research highlights the
need to employ advanced training methods for DNNs in traffic
sign recognition systems to mitigate the effects of data poisoning
attacks.

Index Terms—Autonomous Vehicles, Traffic sign recognition,
Deep neural networks, Data poisoning attacks, Nonlinear trans-
formations

I. INTRODUCTION

Traffic sign recognition systems are essential for detecting
road signs and aiding drivers or control modules in mak-
ing informed driving decisions. Modern autonomous vehicle
models, such as Tesla’s Model 3 [1], integrate traffic sign
recognition systems as essential components of their driving
assistance technology [2]. According to [3], the classification
algorithms employed in traffic sign recognition systems can
be categorized into two groups: machine learning-based and
deep learning-based approaches. Deep learning algorithms
include deep neural networks (DNNs) which are widely used
nowadays because they can automatically extract high-level
features from images. However, researchers have expressed
concerns about the security of traffic sign recognition systems,
as their dependence on DNNs makes them susceptible to
various attacks such as data poisoning [4], [5].

DNNs for traffic sign recognition systems need a lot of data
for training to make sure that they perform without any errors

that might cause fatal accidents. As a result, data may be
collected from various sources, both trusted and untrusted,
such as the Internet, for training purposes. However, these
data may be poisoned. One such method of data poisoning
is the error-minimizing attacks [6], which involve adding
imperceptible perturbations to the data. These data are difficult
to be detected as poisoned due to the low intensity of the
perturbations. Once the system is trained on these data, the
training accuracy is very high. However, when the system
predicts images captured by the vehicle on the road, the
prediction accuracy [4] drops, leading to incorrect predictions.
Fig. 1-a) illustrates this scenario.

In this paper, we first implement the error-minimizing
attacks [6] on DNNs trained for traffic sign recognition. We
manipulate the strength of the attack by varying the pertur-
bation intensity. The strength of the attack is measured using
the prediction accuracy. Our experimental results show that
the attack is stronger when the perturbation intensity is higher.
However, the perturbations become visible at higher intensities
and can be easily detected by data collectors. To detect this
attack, we propose a detection model capable of identifying
poisoned data even when the perturbations are imperceptible
to human inspection. The detection model is built using a
simple convolutional neural network (CNN) model and gave a
success rate of more than 99%. Moreover, we propose a data
augmentation-based training method (a mitigation scheme)
to mitigate error-minimizing attacks, as illustrated in Fig. 1-
b). The proposed training method utilizes nonlinear transfor-
mations such as grayscale to disrupt the perturbations and
improve the model’s resilience. This mitigation scheme is able
to achieve almost the same performance as a system trained
on clean data. Furthermore, we show that the error-minimizing
attack has a limitation: when DNNs are exposed to clean (non-
poisoned) data during training, the attack becomes ineffective.

The error-minimizing attacks, as introduced by [6], have
not been implemented on traffic sign recognition datasets.
When applying the error-minimizing attacks on traffic sign
recognition datasets, we face several challenges compared to
the baseline datasets including CIFAR-10, and ImageNet: 1)
handling complex datasets that have larger number of classes,
2) limited variety of images within the same class, 3) high
variations in image colors in the same class, and 4) algorithms
require longer convergence times. We explain how we ad-
dressed these challenges in Sec. III-A. Additionally, we com-
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Fig. 1: Overview of this research. a) We train the traffic sign
recognition system using data poisoned by error-minimizing
attacks with standard training. When the trained system is
used for predicting traffic signs on the road, the signs are
misclassified. b) We train the traffic sign recognition sys-
tem with our mitigation scheme, where we propose a data-
augmentation-based training method to mitigate the effects
of error-minimizing attacks. Then, the trained traffic sign
recognition system is able to provide the correct predictions.

pare the proposed mitigation scheme with adversarial training,
a widely used approach for mitigating evasion attacks [7]. The
experimental results demonstrate that our mitigation scheme
outperforms adversarial training. In summary, we make the
following key contributions.

• We exploit the error-minimizing attacks to poison DNNs
in traffic sign recognition systems. The attacks signif-
icantly drop the prediction accuracy of the traffic sign
recognition systems.

• We propose a detection model to identify the data poi-
soned by the error-minimizing attacks. The detection
model is built using a simple CNN model and resulted
in a success rate of more than 99%.

• We propose a data augmentation-based training method
(a mitigation scheme) to mitigate the effect of error-
minimizing attacks. The proposed training method uti-
lizes nonlinear transformations to disrupt the perturba-
tions added by the error-minimizing attacks. Our exper-
imental results show that the proposed training method
outperforms adversarial training in mitigating the error-
minimizing attacks.

II. RELATED WORK

DNNs are susceptible to both evasion and data poisoning
attacks, depending on the stage at which the attack is exe-

cuted [4], [5], [8]. Data poisoning attacks involve injecting
malicious or misleading samples into the training dataset, ul-
timately degrading the model’s generalization and reducing its
prediction accuracy. These attacks can be particularly stealthy,
as poisoned samples may appear benign but cause systematic
misclassifications. On the other hand, evasion attacks occur
at prediction time by adding carefully crafted adversarial
perturbations to input images, tricking trained DNNs into
misclassifying them [9], [10]. Such attacks pose significant
risks in real-world applications, especially for autonomous
driving systems that rely heavily on accurate traffic sign
recognition [8], [11].

In this paper, we explore the error-minimizing attacks [6]
to attack DNNs trained for traffic sign recognition. This attack
strategically perturbs training samples to maximize the model
training accuracy while minimizing the model’s prediction
ability on legitimate (clean) data. Several studies [12]–[14]
have proposed remedies for the error-minimizing attacks in-
cluding data augmentation techniques and adversarial train-
ing [15]. However, these studies mostly focused on the base-
line datasets. In contrast, our study highlights the effectiveness
of this attack in traffic sign recognition systems and proposes
a mitigation scheme incorporating nonlinear transformations
to reduce the impact of the error-minimizing attacks.

III. METHODOLOGY

A. Error-minimizing Attacks

The error-minimizing attacks [6] make poisoned data by
adding a type of imperceptible perturbation to the original
data. This perturbation is generated in a way that minimizes
the loss of the model trained on it while preventing the DNN
from learning the actual features of the images. In this study,
we adopted Huang et al. [6]’s approach for performing the
error-minimizing attacks. They proposed solving the following
bi-level optimization problem to generate the perturbations.

argmin
θ

[
min

∥δ∥p≤ϵ
L(f(XD + δ; θ), Y D)

]
, (1)

where XD and Y D denote a set of training images and a set of
target labels, respectively. The goal of the inner optimization
problem is to find the set of perturbations denoted by δ. Huang
et al. [6] used the Projected Gradient Descent (PGD) method to
solve this inner optimization problem. First, they initialized δ.
In each iteration, a fixed model with parameters θ is evaluated
on XD + δ and the loss is calculated. δ is updated for T
iterations while minimizing the loss. ϵ controls the intensity
of the added perturbation. The Lp norm of δ is bounded by
ϵ to ensure that the perturbations remain imperceptible. The
outer optimization problem finds the model parameters that
minimize the same loss. In this step, δ is fixed and the model
parameters are optimized to achieve the minimum loss when
trained on XD + δ. The optimization process is terminated
when the model’s training accuracy is higher than a given
value λ.

We implemented this attack on the traffic sign recognition
system, an aspect that was not explored by Huang et al. [6].



Applying this attack on traffic sign data presents greater
challenges compared to the baseline datasets due to several
factors. 1) The higher number of classes in the traffic sign
datasets compared to the baseline datasets increases the com-
plexity of the perturbation generation process. The datasets
we considered, German Traffic Sign Recognition Benchmark
(GTSRB) [16] and the Chinese Traffic Sign Recognition
Database (CTSRD) [17], have 43 and 58 classes, respectively.
2) The limited variety of images within the same class makes
it easier for models to learn them effectively, which makes
the attacks more difficult. To address this, we generate class-
wise perturbations instead of sample-wise perturbations. 3)
Variations in image appearance, such as differences between
night and day, add another layer of difficulty. Some images
are particularly dark, making it more difficult to introduce
imperceptible perturbations. 4) Due to the higher complexity
of the data, the algorithms require longer convergence times.
Hence, we set the number of PGD iterations to solve the inner
minimization problem in Eq. 1 to 1 instead of 10 which is
suggested by [6].

In this study, we used ResNet18 as the model architecture
when generating the attack. We chose ResNet18 because is
it a widely used high performance DNNs model for image
classification [18]. We considered a white-box attack setting
and attacked the same model. The stopping criterion for
generating perturbations was set to 99% (λ) training accuracy.
We considered three values for ϵ. We defined the strength
of the attack based on ϵ, as the attack’s performance highly
depends on the intensity of the added perturbations.

B. The Detection Model

As shown in Fig 2, the error-minimizing attacks perturba-
tions are barely visible to the human eyes, especially when
ϵ = 4. Hence, model trainers are unable to determine whether
the data is poisoned by merely observing the images. Ad-
ditionally, it is not feasible to inspect all images manually.
Therefore, we proposed a detection model to identify whether
each image is poisoned or clean. The output of the detection
model is either ‘poisoned’ or ‘clean’.

Fig 3 shows the model architecture of the detection model.
The model consisted of two convolutional layers with a kernel
size of 3×3 followed by a max pooling layer with a kernel
size of 2×2, flattening, and two fully connected layers. The
output size of each layer is shown in Fig 3. The final layer
used a sigmoid activation function to classify images into
two categories i.e, poisoned or clean image. All other layers
have ReLU activation function. The detection model utilized
binary cross-entropy loss as the loss function and Adam as the
optimizer.

C. The Mitigation Scheme

The goal of the mitigation scheme is to recover the traffic
sign recognition system that has been attacked by the error-
minimizing attacks. To achieve this, we proposed a data
augmentation-based training approach instead of the standard
training method. Algorithm 1 shows the proposed mitigation

Fig. 2: Original images and poisoned images with different
poison rates.

Fig. 3: The detection model.

scheme. First, we selected a set of nonlinear transformation
techniques (T ). When selecting T , we prioritized the nonlinear
transformations explored in previous studies for mitigating the
error-minimizing attacks [12]–[14]. Then, we randomly chose
one transformation (ti) from the set and applied it on the
training dataset. Next, we trained the traffic sign recognition
system using the transformed data. We chose ResNet18 as
the model architecture and trained it for 20 epochs with
the Stochastic Gradient Descent (SGD) optimizer and cross-
entropy loss as the loss function. After training, we validated
the model on a clean dataset, which reflected how the system
performs on traffic sign images captured by the vehicle while
driving. We defined the accuracy that is obtained on the clean
validation dataset as prediction accuracy. If the prediction
accuracy reached the desired value (α), we stopped the training
process. Otherwise, we chose another transformation, applied
it to the training dataset, and combined the newly transformed
dataset with the dataset from the previous iteration. In this
way, we expanded the training dataset size in each iteration
until we achieve the desired prediction accuracy.

We evaluated our mitigation scheme on two traffic sign
image datasets: GTSRB [16], and CTSRD [17]. In our exper-
imental evaluation, we chose three nonlinear transformations
for T : grayscale, Color Jitter, and Random Invert. To imple-
ment these transformations, we used PyTorch’s built-in op-
tions [19]. For instance, we used the transforms.Grayscale(3)
command to apply the grayscale transformation, where 3
represents the number of channels we want the transformed



Algorithm 1 Mitigating error-minimizing attacks

Input: Poisoned Traffic sign data (D), Traffic Sign recog-
nition system (F ), Clean prediction dataset (C), A set of
nonlinear transformation techniques (T ), Target prediction
accuracy (α)
Return: Robust Traffic Sign recognition system (Fi)
while v < α do

1. Randomly choose ti from T
2. Transform D using ti → ti(P )
3. ti(P ) + Di−1 → Di ▷ D0 = ∅
4. Train F on Di → Fi

5. Predict Fi on C → prediction accuracy, v
end while

image to have. We chose grayscale because, several stud-
ies [12]–[14] have already shown that grayscale transformation
is effective against the error-minimizing attacks. Moreover,
grayscale transformation controls the channel-wise perturba-
tions by replacing all three channel values in a pixel with
a single value. For the Color Jitter transformation, we used
the command transforms.ColorJitter(brightness=.5, hue=.3),
which reduced the brightness and hue of the image. By
modifying the brightness and hue, the color jitter transfor-
mation expands the feature space of the model and reduces
the risk of overfitting to adversarial examples [20]. To apply
the Random Invert transformation, we used the command
transforms.RandomInvert(p=1.0), where p = 1.0 indicates that
the transformation is applied to all the images in the dataset.
This transformation modifies the pixel values of an image by
inverting them.

IV. EXPERIMENTAL EVALUATION

For the experimental evaluation, we used two datasets: the
German Traffic Sign Recognition Benchmark (GTSRB) [16],
and the Chinese Traffic Sign Recognition Database (CT-
SRD) [17]. Table I includes the specifications of these datasets.
GTSRB dataset contains 31,367 images for training and 7,842
images for prediction (aka validation), spanning 43 classes.
The CTSRD dataset includes 3,336 training images and 834
prediction images, covering 58 classes. All the experiments
are conducted in PyTorch 1.13.1 framework.

TABLE I: Dataset details.

Dataset Training set size Prediction set size # of classes
GTSRB [16] 31367 7842 43
CTSRD [17] 3336 834 58

A. Error-minimizing Attacks on Traffic Sign Recognition Sys-
tems

To perform the error-minimizing attacks, we adopted the
code in Huang et al. [6]. ResNet18 was used as the base
model for generating the error-minimizing perturbations. In
our experiments, we fixed the seed to 42 to ensure the
reproducibility. We generated class-wise perturbations, as they
are more effective than sample-wise perturbations [6]. Per-
turbations were generated with three maximum perturbation

limits (ϵ) of 4/255, 8/255, and 16/255. When ϵ = 4/255,
the perturbations are barely visible, making it difficult for
human eyes to distinguish poisoned images (see Fig. 2). When
ϵ = 16/255, the perturbations became slightly visible. Hence,
we defined the strength of the attack based on the ϵ: a higher
ϵ indicates a stronger attack due to the increased intensity of
the perturbations. Following the white-box attack settings, we
attacked the same model (ResNet18) using the poisoned data.

The second column in Table II shows the prediction accu-
racy of the model that is trained on clean data (no attack).
The prediction dataset is also clean because it reflects the
images captured by the vehicle while driving on the road. The
model achieved prediction accuracies of 99.90% and 98.56%
for the GTSRB and CTSRD datasets, respectively. The fourth
column of Table II shows the accuracy of the prediction after
the error-minimizing attacks. The attack is able to reduce the
prediction accuracy from 99.90% to 10.6% for the GTSRB
dataset and from 98.56% to 25.18% for the CTSRD. These
results indicate that the poisoned models failed to accurately
predict the signs in the traffic sign images. However, the
strength of the attack can be changed by modifying ϵ. When
ϵ is reduced to 4/255, the prediction accuracy increased to
52.10% for GTSRB dataset and 70.26% for CTSRD dataset.
These results demonstrate that the attack becomes weaker as
ϵ decreases.

Next, we demonstrate a limitation of the proposed attack
method. Our experiments showed that the error-minimizing
attacks are not effective when only part of the training data
is poisoned. To illustrate this, we first poisoned the entire
training dataset. Then, we poisoned a proportion of the training
dataset and observed the attack’s performance. Fig. 4 shows
the prediction accuracy curves when poison proportions (p)
are changed from 1 to 0.5. When the full dataset is poisoned,
i.e., p = 1.0, the prediction accuracy is around 10%. When
only 95% of the dataset is poisoned, the prediction accuracy is
over 90%. When the poison proportion is further reduced, the
model gives even higher prediction accuracies. These results
demonstrate that the error-minimizing attacks are not effective
in fooling traffic sign recognition systems when a portion of
the training dataset is clean.

Fig. 4: The error-minimizing attacks with different poison
proportions.



TABLE II: The prediction accuracy of the traffic sign recog-
nition systems.

Dataset No ϵ Attack Our Mitigation Adversarial
Attack
(%)

(%) Scheme (%) Training (%)

99.90
16/255 10.6 96.05 (+85.45) 91.52 (+80.92)

GTSRB 8/255 22.38 99.59 (+77.21) 98.87 (+76.49)
[16] 4/255 52.10 99.86 (+47.76) 98.93 (+46.83)

98.56
16/255 25.18 98.08 (+72.90) 96.04 (+70.86)

CTSRD 8/255 45.44 98.32 (+52.88) 95.20 (+49.76)
[17] 4/255 70.26 98.32 (+28.06) 94.96 (+24.70)

B. The Detection Model

The detection model is evaluated on a version of GTSRB
dataset available in Pytorch datasets. The dataset is divided
into training and prediction sets, containing 39,209 images for
training and 12,630 images for prediction. We converted 50%
of both training and prediction datasets into poisoned data. The
detection model’s performance is presented in Table III. The
model achieved a success (prediction accuracy) rate of over
99% regardless of the strength of the attack (ϵ). These results
imply that the detection model can accurately distinguish
poisoned data from the clean data. Moreover, the success
rate of the detection model is slightly reduced when the ϵ is
low, probably due to the lower intensity of the perturbations,
making them harder to detect. Fig. 5 shows the loss curves for
the detection models trained on poisoned data with different
ϵ. The detection model trained on data poisoned with a small
ϵ exhibited a higher initial binary cross-entropy loss compared
to training with a large ϵ. However, by the end of training, all
detection models reached similar loss values.

TABLE III: Accuracy of the detection model.

ϵ Training Accuracy Success Rate
16/255 100% 99.97%
8/255 99.99% 99.66%
4/255 99.80% 99.11%

C. The Mitigation Scheme

The fifth column of Table II shows the prediction accu-
racy after applying our mitigation scheme against the error-
minimizing attacks. To mitigate the weaker attacks (ϵ = 8/255,
4/255) on the GTSRB, we only needed to use grayscale
transformation, which increased the prediction accuracy up
to 99%. To mitigate the attack with higher strength (ϵ =
16/255) on the GTSRB dataset, we used grayscale, Color
Jitter and Random Invert as the nonlinear transformations,
improving the prediction accuracy up to 96.05%. We applied
the same transformations to the CTSRD dataset attacked with
the error-minimizing attack at ϵ = 16/255. It improved the
accuracy from 25.18% to 98.08%, achieving almost the same
prediction accuracy as the model trained on clean data. For
mitigating the weaker attacks (ϵ = 8/255, 4/255) on CTSRD,
we used Color Jitter and Grayscale. Fig. 6 shows the evaluation
of prediction accuracy during training with and without the
error-minimizing attack and after the applying our mitigation
scheme. The red lines denote the prediction accuracy when
the model is trained with standard training on poisoned data,
which is very low. The blue lines show the high prediction

accuracy when the same training approach is used on clean
data. The green lines indicate the prediction accuracy when the
poisoned data is trained using our mitigation scheme, which
is almost the same as training with clean data. These results
show that the mitigation scheme can overcome the effects of
the error-minimizing attacks and provide a prediction accuracy
nearly equivalent to that of clean data.

We compared our mitigation scheme with adversarial train-
ing [7], a widely used approach for mitigating evasion and data
poisoning attacks. We implemented adversarial training using
PGD attacks [15]. Following the default settings in [15], we
used a perturbation radius of 8/255, a step size of 0.8/255, and
the number of PGD steps is set to 10. We trained the same
ResNet18 model for 20 epochs to be comparable with our
other experiments. The prediction accuracies after applying
adversarial training are shown in the sixth column of Table II.
Our mitigation scheme outperforms adversarial training re-
gardless of the attack strength. When the attack strength is low
(ϵ = 4/255, 8/255), adversarial training performs as well as our
mitigation scheme. However, when the attack strength is high
(ϵ = 16/255), our mitigation scheme performs significantly
better than adversarial training.

V. CONCLUSIONS AND FUTURE WORK

Nowadays, traffic sign recognition systems in autonomous
vehicles are predominantly based on DNNs. These DNNs
can be compromised through various attacks, including data
poisoning. In this paper, we exploited the error-minimizing
attacks to poison DNNs used for traffic sign recognition
during training. However, our experiments demonstrated that
the attack is effective only when the entire training dataset is
poisoned. Furthermore, we showed that the error-minimizing
attacks can be mitigated by employing a data-augmentation-
based training method. The proposed mitigation scheme was
more effective than the computationally expensive adversarial
training approach for mitigating the error-minimizing attacks.
Furthermore, our findings highlighted the necessity of utiliz-
ing advanced training techniques for traffic sign recognition
systems to enhance their resilience against data poisoning
attacks. In the future, we aim to evaluate the robustness of
our mitigation scheme on diverse datasets and to consider
advanced model architectures in the detection model. We also
plan to improve the error-minimizing attacks by addressing
the limitations identified in this study.
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