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Abstract—The Probably Approximately Correct (PAC) Privacy
framework [1] provides a powerful instance-based method-
ology for certifying privacy in complex data-driven systems.
However, existing PAC Privacy algorithms rely on a Gaussian
mutual information upper bound. We show that this is in
general too conservative: the upper bound obtained by these al-
gorithms is tight if and only if the perturbed mechanism output
is jointly Gaussian with independent Gaussian noise. To ad-
dress the inefficiency inherent in the Gaussian-based approach,
we introduce Residual-PAC (RPAC) Privacy, an f -divergence-
based measure that quantifies the privacy remaining after ad-
versarial inference. When instantiated with Kullback–Leibler
divergence, Residual-PAC Privacy is governed by conditional
entropy. Moreover, we propose Stackelberg Residual-PAC (SR-
PAC) privatization mechanisms for RPAC Privacy, a game-
theoretic framework that selects optimal noise distributions
through convex bilevel optimization. Our approach achieves
tight privacy budget utilization for arbitrary data distributions.
Moreover, it naturally composes under repeated mechanisms
and provides provable privacy guarantees with higher statisti-
cal efficiency. Numerical experiments demonstrate that SR-
PAC certifies the target privacy budget while consistently
improving utility compared to existing methods.

1. Introduction

Artificial intelligence systems now operate across in-
creasingly critical domains—from healthcare diagnostics
and autonomous transportation to personalized financial ser-
vices and national security infrastructure. While demonstrat-
ing powerful capabilities, these data-driven systems intro-
duce significant privacy risks as their training and oper-
ational data becomes increasingly sensitive and complex.
Individual information can be inadvertently exposed through
seemingly harmless outputs. Given the expanding scale of
modern data pipelines, robust and reliable privacy guaran-
tees have become essential rather than merely desirable.

The past two decades have witnessed the emergence of
numerous privacy definitions and frameworks designed to
address information leakage risks. Among these, Differential
Privacy (DP) [2] stands as perhaps the most influential,
providing strong worst-case guarantees against adversar-

ial inference. In its canonical formulation, DP quantifies
the maximum change in output probabilities induced by
modifying a single data point, thereby ensuring indistin-
guishability between neighboring datasets. This theoretical
foundation has inspired substantial research and practical
deployment in tools used by major organizations (e.g., Apple
[3]) and governments (e.g., US Census Bureau [4]). Other
privacy notions, such as Maximal Leakage [5], [6], mu-
tual information-based criteria, such as Mutual Information
Differential Privacy (MI-DP) [7], and Fisher information-
based metric [8], [9], [10], have been proposed to capture
different adversarial models and to offer alternative trade-
offs between privacy and utility.

Provable privacy guarantees for modern data-processing
algorithms face two major obstacles. First, worst-case frame-
works like DP require computing global sensitivity, which is
generally intractable (NP-hard [11]). In addition, computing
the optimal privacy bound of DP under composition is,
in general, a #P-complete under composition task [12].
Likewise, enforcing MI-DP requires a white-box analysis of
every possible input distribution, which is seldom available.
In practice, finding the minimal noise needed to meet a tar-
get guarantee is intractable for most real-world algorithms,
especially when the effect of each operation on privacy is
unclear. Empirical or simulation-based methods (e.g., testing
resistance to membership inference [13]) address specific
threats but lack rigorous, adversary-agnostic assurances.
Bridging this gap requires a new, broadly applicable frame-
work that can quantify and enforce privacy risk without
relying on ad-hoc sensitivity analyses.

A promising alternative has recently emerged: the Prob-
ably Approximately Correct (PAC) Privacy framework [1].
Drawing inspiration from PAC learning theory [14], PAC
Privacy fundamentally redefines the privacy objective as
the information-theoretic hardness of reconstructing sensi-
tive data given arbitrary information disclosure processing.
PAC Privacy shifts the paradigm from indistinguishability
to inference impossibility by characterizing the probability
that any adversary—regardless of strategy or computational
power—can accurately infer private data under a specified
reconstruction criterion.

At the heart of PAC Privacy lies the concept of PAC
Advantage Privacy (PAC-AP), which extends the framework
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to arbitrary adversarial inference tasks by quantifying the
adversary’s improvement in success probability through an
f -divergence measure. When the f -divergence is instan-
tiated as the Kullback–Leibler (KL) divergence, PAC-AP
specializes to a mutual information-based criterion, pro-
viding a natural and information-theoretic characterization
of privacy risk. A closed-form upper bound on mutual
information—derived from the maximum entropy property
of the Gaussian distribution—serves as the foundation for
automatic PAC privatization algorithms, which operate via
end-to-end black-box simulations. This approach circum-
vents the need for direct mutual information computation
and enables practitioners to certify privacy risk with high
statistical confidence, even when the internal structure of
the data processing mechanism is unknown or intractable.
In addition, PAC Privacy also enjoys elegant composition
properties: when the composed mechanisms are indepen-
dent, the total privacy loss can be bounded by the sum of
the individual mutual information budgets.

However, the upper bound provided by automatic PAC
Privacy algorithms (see Theorem 3 and Corollary 2 of
[1], and Theorem 1 of [15]) is generally conservative. In
particular, for a given privacy budget, the mutual information
achieved under the noise distribution constructed by these
algorithms is strictly less than the designated privacy budget
unless the mechanism output is Gaussian and the noise is
independent, zero-mean Gaussian. The privacy budget is
exactly attained—i.e., the true mutual information matches
the privacy bound—if and only if these Gaussian conditions
hold. As a result, this conservativeness leads to a “waste”
of privacy budget.

To maximize privacy budget efficiency, PAC Privacy
defines optimal perturbation (Definition 9 of [1]) as the
noise distribution that minimizes utility loss (e.g., ℓ2 norm or
noise power) while ensuring the mutual information remains
within the privacy budget. Crucially, this mutual information
constraint intricately links the noise distribution to both the
data distribution and mechanism, often making the identi-
fication of optimal noise intractable, especially when the
joint distribution lacks a closed-form or exhibits complex
dependencies.

We address the limitations imposed by the conserva-
tiveness of automatic PAC Privacy algorithms. First, we
introduce the notion of Residual-PAC Privacy, using f -
divergence, to quantify the privacy that remains after infor-
mation has been leaked by a data processing mechanism.
While PAC-AP measures the amount of privacy loss in-
curred by a given mechanism, our Residual-PAC Privacy
framework provides a complementary perspective by charac-
terizing the remaining privacy guarantee that persists despite
adversarial inference. When f -divergence is instantiated as
KL divergence, our Residual-PAC Privacy is fully character-
ized by the conditional entropy up to a known constant that
does not depend on the mechanism or the applied noise.

We formally characterize the conservativeness from the
automatic PAC Privacy algorithms. The closed-form upper
bound obtained by Theorem 3 of [1] forms the theoreti-
cal foundation of the automatic PAC Privacy algorithms.

Algorithm 1 of [1] leverages this result to perform end-
to-end automatic privatization, systematically constructing a
Gaussian noise distribution that implements any designated
privacy budget as an upper bound on mutual information.
Importantly, we show that the Gaussian noise distribution
constructed by Algorithm 1 of [1] is the unique solution to
a constrained optimization problem that seeks to minimize
the noise magnitude (specifically, the trace of the covariance
matrix of the Gaussian noise) subject to the constraint that
the resulting Gaussian mutual information does not exceed
the prescribed privacy budget. Thus, the PAC private mech-
anism derived by Algorithm 1 of [1] not only enforces the
desired privacy bound, but does so in an optimally noise-
efficient manner under the Gaussian assumption.

Inspired by this observation, we propose a novel ap-
proach, termed Stackelberg Residual-PAC (SR-PAC), for
automating Residual-PAC privatization by formulating the
problem as a Stackelberg game, without requiring any
white-box characterization of the conditional entropy. In
this framework, the leader selects a noise distribution to
perturb the mechanism by minimizing the magnitude of the
noise or perturbation. The follower then chooses a stochastic
inference strategy to recover the sensitive data, seeking to
minimize the expected log score function of the strategy,
with the constraint that the expected log score equals the
privacy budget. The privacy budget in Residual-PAC privacy
directly translates to a mutual information bound via the
simple relation: mutual information equals data entropy
minus the privacy budget. When the entire probability space
is considered, this bilevel optimization problem reduces to
a convex program. We rigorously prove that the mixed-
strategy Stackelberg equilibrium of this game yields the opti-
mal noise distribution, ensuring that the conditional entropy
of the perturbed mechanism precisely attains the specified
privacy budget.

We demonstrate that, in general, the SR-PAC approach
achieves more efficient privacy budget utilization than the
automatic PAC Privacy algorithms, resulting in less con-
servative privacy guarantees for the same privacy budget,
except in the special case where the overall distribution of
the perturbed mechanism output is Gaussian, in which case
both methods coincide and tightly implement the privacy
budget. Besides inheriting PAC Privacy’s additive compo-
sition property, SR PAC attains tighter privacy bounds by
solving a convex optimization problem. Moreover, when the
utility loss function is convex, our method admits an explicit
convex optimization formulation, enabling the computation
of optimal perturbations, which is a challenge that remained
open in the original PAC Privacy framework. Finally, we
validate these theoretical advances through numerical exper-
iments, which consistently confirm the superior performance
and practical advantages of SR-PAC over PAC Privacy.

1.1. Related Work

Privacy Quantification Notions. Quantitative notions
of privacy leakage have been extensively studied across a va-
riety of contexts, leading to mathematically rigorous frame-



works for assessing the amount of sensitive information that
can be inferred by adversaries. Differential privacy (DP) and
its variants have become the gold standard for formal privacy
guarantees, with the original definitions by Dwork et al. [2],
[16] formalizing privacy loss through bounds on the distin-
guishability of outputs under neighboring datasets. Variants
such as concentrated differential privacy (CDP) [17], [18],
zero-concentrated DP (zCDP) [19], and R’enyi differential
privacy (RDP) [20] have further extended this framework by
parameterizing privacy loss with different statistical diver-
gences (e.g., R’enyi divergence), thereby enhancing flexibil-
ity in privacy accounting, especially for compositions and
adaptive mechanisms. Information-theoretic measures pro-
vide alternative and complementary approaches for quantify-
ing privacy loss. For instance, mutual information has been
used to analyze privacy leakage in a variety of settings [7],
[21], with f -divergence and Fisher information offering
finer-grained or context-specific metrics [1], [8], [9], [10].
These frameworks help to bridge the gap between statistical
risk and adversarial inference, and are closely connected
to privacy-utility trade-offs in mechanism design. Maximal
leakage, hypothesis testing privacy, and other relaxations
further broaden the analytic toolkit for measuring privacy
risk.

Privacy-Utility Trade-off Balancing the trade-off be-
tween privacy and utility is a central challenge in the de-
sign of privacy-preserving mechanisms. This challenge is
frequently formulated as an optimization problem [22], [23],
[24], [25], [26], [27], [28], [29], [30]. For example, Ghosh et
al. [25] demonstrated that the geometric mechanism is uni-
versally optimal for differential privacy under certain loss-
minimizing criteria in Bayesian settings, while Lebanon et
al. [22] and Alghamdi et al. [29] studied utility-constrained
optimization. Gupte et al. [26] modeled the privacy-utility
trade-off as a zero-sum game between privacy mechanism
designers and adversaries, illustrating the interplay between
optimal privacy protection and worst-case loss minimization.

Simulation-Based and Mutual Information Ap-
proaches Recent work has shifted toward instance-based
and data-driven privacy frameworks that empirically mea-
sure information leakage for black-box mechanisms. PAC
Privacy [1] and its improvements aim to automatically cer-
tify privacy loss by empirically estimating f -divergence and
mutual information through repeated simulation and sam-
pling. These approaches are especially valuable for complex
mechanisms such as deep neural networks, where closed-
form analysis or classical sensitivity calculations are infeasi-
ble or overly conservative. However, the mutual information
constraint in PAC Privacy introduces substantial analytic
and computational complexity, as it depends jointly on the
data distribution, the mechanism, and the candidate noise
distribution. In practice, the framework relies on propose-
and-verify procedures, which may be conservative in the
absence of tractable optimization.

Optimization Approaches for Privacy. A growing
body of work frames the design of privacy-preserving
mechanisms as explicit optimization problems, aiming to
maximize data utility subject to formal privacy constraints.

Many adversarial or game-theoretic approaches—such as
generative adversarial privacy (GAP) [31] and related GAN-
based frameworks [32], [33], [34]—cast the privacy mech-
anism designer and the adversary as players in a min-max
game, optimizing utility loss and privacy leakage, respec-
tively. More recently, Selvi et al. [35] introduced a rigor-
ous optimization framework for differential privacy based
on distributionally robust optimization (DRO), formulating
the mechanism design problem as an infinite-dimensional
DRO to derive noise-adding mechanisms that are nonasymp-
totically and unconditionally optimal for a given privacy
level. Their approach yields implementable mechanisms via
tractable finite-dimensional relaxations, often outperform-
ing classical Laplace or Gaussian mechanisms on bench-
mark tasks. Collectively, these lines of research illustrate
the power of optimization and game-theoretic perspectives
in achieving privacy-utility trade-offs beyond conventional
mechanism design.

2. Preliminaries: the PAC Privacy Framework

PAC privacy framework [1] considers the following gen-
eral privacy problem. A sensitive input X is drawn from a
distribution D, which may be unknown or inaccessible. Each
private data point x is defined over some measurable domain
X †, and the dataset X ∈ X . There is a data processing
(possibly randomized) mechanism M : X 7→ Y ⊂ Rd,
where Y is measurable. The central privacy concern is
determining whether an adversary can accurately estimate
the true input via an estimate X̃ based on the observation
Y = M(X), meeting some predefined success criterion
captured by an indicator function ρ. PAC Privacy is formally
defined as follows.

Definition 1 ((δ, ρ,D)-PAC Privacy [1]). For a data pro-
cessing mechanismM, given some data distribution D, and
a measure function ρ(·, ·), we sayM satisfies (δ, ρ,D)-PAC
Privacy if the following experiment is impossible:

A user generates data X from distribution D and sends
M(X) to an adversary. The adversary who knows D and
M is asked to return an estimation X̃ ∈ X on X such that
with probability at least (1− δ), ρ(X̃,X) = 1.

Definition 1 formalizes privacy in terms of the adver-
sary’s difficulty in achieving accurate reconstruction. The
function ρ(·, ·) specifies the success criterion for reconstruc-
tion, adapting to the requirements of the specific application.
For example, when X ⊂ Rd′

, one may define success as
|X̃ −X|2 ≤ ϵ for some small ϵ > 0; if X is a finite set of
size n, success may be defined as correctly recovering more
than n−ϵ elements. Notably, ρ need not admit a closed-form
expression; it simply indicates whether the reconstruction
satisfies the designated criterion for success.

This privacy definition is highly flexible by enabling ρ to
encode a wide range of threat models and user-specified risk
criteria. For example, in membership inference attacks [36],
ρ(X̃,X) = 1 may indicate that X̃ successfully determines
the presence of a target data point u0 in X . In reconstruction



attacks [37], success may be defined by ρ(X̃,X) = 1 if
|X̃ − X|2 ≤ 1, representing a close approximation of the
original data.

Given the data distribution D and the adversary’s cri-
terion ρ, the optimal prior success rate (1 − δρo) is de-
fined as the highest achievable success probability for
the adversary without observing the output M(X): δρo =

inf
X̃0

Pr
X∼D

(
ρ(X̃0, X) ̸= 1

)
. Similarly, the posterior success

rate (1 − δ) is defined as the adversary’s probability of
success after observing M(X).

The notion of PAC advantage privacy quantifies how
much the mechanism outputM(X) can improve the adver-
sary’s success rate, based on f -divergence

Definition 2 (f -Divergence). Given a convex function f :
(0,+∞) → R with f(1) = 0, extend f to t = 0 by
setting f(0) = limt→0+ f(t) (in R ∪ {+∞,−∞}). The f -
divergence between two probability distributions P and Q
over a common measurable space is:

Df (P∥Q) ≡

{
EQ

[
f
(

dP
dQ

)]
if P ≪ Q,

+∞ otherwise.

Here, dP
dQ is the Radon-Nikodym derivative.

Definition 3 ((∆δ
f , ρ,D) PAC Advantage Privacy [1]). A

mechanismM is termed (∆fδ, ρ,D) PAC-advantage private
if it is (δ, ρ,D) PAC private and

∆fδ ≡ Df (1δ∥1δρo ) = δρof(
δ

δρo
) + (1− δρo)f(

1− δ

1− δρo
).

Here, 1δ and 1δρo represent two Bernoulli distributions of
parameters δ and δρo , respectively.

Here, PAC Advantage Privacy is defined on top of PAC
Privacy and quantifies the amount of privacy loss incurred
from releasingM(X), measured as the prior-expected pos-
terior advantage using f -divergence.

2.1. Automatic PAC Privatization Algorithms

PAC Privacy enables the automatic privatization for
arbitrary black box mechanisms by bounding the mutual
information between private data and the released output.

Definition 4 (Mutual Information). For random variables x
and w, the mutual information is defined as

MI(x;w) ≡ H(x)−H(x|w) = DKL(Px,w∥Px ⊗ Pw),

the KL-divergence between their joint distribution and the
product of their marginals.

This approach supports simulation based privatization
without requiring the worst-case adversarial analysis, such
as sensitivity computation. In this section, we present the
main theorems and algorithms underlying automatic PAC
privatization as introduced in [1] (hereafter “Auto-PAC”) and
the efficiency-improved version proposed in [15] (hereafter
“Efficient-PAC”).

Algorithm 1 Auto-PAC [1]

Require: deterministic mechanism M , dataset D, sample
size m, variance floor c, mutual information quantities
β′ and v.

1: for k = 1, 2, . . . ,m do
2: Generate X(k) from D. Record y(k) =M(X(k)).
3: end for
4: Calculate µ̂ =

∑m
k=1 y

(k)/m and Σ̂ =∑m
k=1(y

(k) − µ̂)(y(k) − µ̂)T /m.
5: Apply SVD: Σ̂ = Û Λ̂ÛT , where Λ̂ has eigenvalues

λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d.
6: Find j0 = argmaxj λ̂j for λ̂j > c.
7: if min1≤j≤j0,1≤l≤d |λ̂j − λ̂l| > r

√
dc+ 2c then

8: for j = 1, 2, . . . , d do
9: Set λB,j =

2v√
λ̂j + 10cv/β′ ·

(∑d
j=1

√
λ̂j + 10cv/β′

) .
10: end for
11: Set ΣB = ÛΛ−1

B ÛT .
12: else
13: Set ΣB = (

∑d
j=1 λ̂j + dc)/(2v) · Id.

14: end if
15: Output: ΣB .

We start by introducing Auto-PAC. Consider a deter-
ministic data processing mechanism M : X → Rd, where
the output norm is uniformly bounded: ∥M(X)∥2 ≤ r for
all X . To ensure PAC Privacy, the mechanism is perturbed
by Gaussian noise B ∼ N (0,ΣB), and the privacy leakage
is quantified via mutual information between the input X
and the noisy output M(X) + B. For any deterministic
mechanism M and noise B according to any distribution,
define

LogDet(M(X), B) ≡ 1

2
log det

(
Id +ΣM(X)Σ

−1
B

)
, (1)

where ΣM(X) and ΣB are the covariances of M(X) and
B.

Theorem 1 (Theorem 3 of [1]). For an arbitrary determin-
istic mechanismM and Gaussian noise B ∼ N (0,ΣB), the
mutual information MI(·; ·) satisfies

MI(X;M(X) +B) ≤ LogDet(M(X), B).

Moreover, there exists ΣB such that E[∥B∥22] =(∑d
j=1

√
λj

)2
with {λj} being the eigenvalues of ΣM(X),

and MI(X;M(X) +B) ≤ 1
2 .

This result establishes a simple upper bound on the
mutual information after perturbation and implies that the
noise can be tailored anisotropically. To apply this bound
in practice, the covariance ΣM(X) must be estimated from
Monte Carlo simulations. The authors of [1] propose a high-
confidence noise calibration protocol (Algorithm 1) that
determines an appropriate noise covariance ΣB to ensure
that MI(X;M(X) + B) ≤ v + β with confidence at least
1 − γ, given user-specified parameters v, β, and sample
complexity m. We refer to β̂ = v+β as the privacy budget.



Algorithm 2 Efficient-PAC [15]

Require: deterministic mechanismM, data distribution D,
precision parameter τ , convergence function fτ , privacy
budget β, unitary projection matrix A ∈ Rd×d.

1: Initialize m← 1, σ0 ← null, G← null
2: while m ≤ 2 or fτ (σm−1,σm) ≥ τ do
3: Sample Xm ∼ D, compute ym ←M(Xm)
4: Set gm ← [ym ·A1, . . . , ym ·Ad], append to G
5: Set σm[k] to empirical variance of column k in G,

increment m← m+ 1
6: end while
7: for i = 1 to d do
8: Set ei ←

√
σm[i]

2β

∑d
j=1

√
σm[j]

9: end for
10: return ΣB with ΣB [i][i] = ei

The framework extends naturally to randomized mechanisms
of the form M(X, θ), where θ is a random seed (Corollary
2 of [1]).

Recent work by Sridhar et al. [15] improves the prac-
ticality and efficiency of PAC Privacy (i.e., Efficient-PAC)
by introducing an anisotropic noise calibration scheme that
avoids full covariance estimation (Algorithm 2). Instead of
computing the entire output covariance matrix and perform-
ing expensive matrix decomposition, their method projects
mechanism outputs onto a unitary basis and estimates only
the per-direction variances. This leads to a more scalable
and sample-efficient algorithm while still ensuring rigor-
ous mutual information guarantees under the PAC Privacy
framework.

In addition, the authors address a key limitation of black-
box privacy mechanisms—namely, the instability of out-
puts caused by random seeds, arbitrary encodings, or non-
deterministic implementations. They propose methods for
reducing such instability through output regularization and
canonicalization, enabling more consistent noise calibration
and better overall utility. These refinements are particularly
impactful in high-dimensional or structure-sensitive learning
tasks, where the original PAC scheme may incur unneces-
sary noise due to variability not intrinsic to the learning
objective.

Theorem 2 (Theorem 1 of [15]). Let M : X → Rd

be a deterministic mechanism, and let A ∈ Rd×d be
a unitary projection matrix. Let σ ∈ Rd be the vari-
ance vector of the projected outputs M(X) · A, and let
B ∼ N (0,ΣB) be the additive noise with covariance
ΣB = diag(e1, . . . , ed), where ei =

√
σi

2β

∑d
j=1

√
σj . Then,

the mutual information between the input and privatized
output satisfies MI(X;M(X) +B) ≤ β.

3. Residual-PAC Privacy

PAC Advantage Privacy, as defined in Definition 3,
quantifies the amount of privacy leakage—denoted by
∆δ

f—incurred from releasing M(X), measured as the
(prior-expected)posterior advantage, using f -divergence,

gained by the adversary after observing M(X). Comple-
menting this perspective, we introduce the notion of poste-
rior disadvantage encountered by the adversary, which cap-
tures the amount of residual privacy protection that persists
after information has been leaked through the mechanism’s
output. To formalize this residual protection, we first define
the intrinsic privacy of a data distribution D as its closeness
to the uniform distribution over X . Specifically, let U denote
the uniform distribution on X , and define

IntPf (D) = − Df (D ∥U),

where Df (D∥U) is the f -divergence between D and U ,
quantifying how much D deviates from perfect unifor-
mity. Intuitively, −Df (D∥U) serves as a reward for unifor-
mity (i.e., maximal intrinsic privacy), and by construction,
IntPf (D) ≤ 0, attaining zero only when D is uniform.

Definition 5 ((Rδf , ρ,D) Residual-PAC Privacy). A mecha-
nism M is said to be (Rδf , ρ,D) Residual-PAC private if it
is (δ, ρ,D) PAC private and

Rδf ≡ IntPf (D)− Df (1δ∥1δoρ
),

is the posterior disadvantage, where 1δ and 1δoρ
are in-

dicator distributions representing the adversary’s inference
success before and after observing the mechanism’s output,
respectively.

Under this definition, Rδf characterizes the residual pri-
vacy guarantee—that is, the portion of intrinsic privacy
that remains uncompromised after the adversary’s inference.
Notably, the total intrinsic privacy is precisely decomposed
as

IntPf (D) = Rδf +∆δ
f ,

where ∆δ
f is the PAC Advantage Privacy, or privacy leakage,

term. This relationship provides a complete and interpretable
accounting of privacy risk, distinguishing between the pri-
vacy that is lost and that which endures after information
disclosure.

3.1. Foundation of Residual-PAC Privacy

In this section, we develop general results to support
concrete analyses under the Residual-PAC Privacy frame-
work. We begin by introducing key information-theoretic
quantities, entropy and conditional entropy, which are fun-
damental to our development.

Definition 6 (Entropy and Conditional Entropy). Let X be a
random variable on a discrete alphabet X with probability
mass function PX(x) = Pr(X = x). The Shannon entropy
of X is

H(X) = −
∑

x∈X
PX(x) logPX(x).

If X instead has a continuous distribution on X ⊆ Rn with
probability density function fX(x), its differential entropy
is

h(X) = −
∫
X
fX(x) log fX(x) dx.



Moreover, let (X,W ) be jointly distributed. If X,W are
discrete with joint PMF pX,W (x,w) and marginals pW (w),
the conditional entropy of X given W is

H(X|W ) =
∑

w∈W
PW (w)

[
−
∑

x∈X
PX|W (x | w) logPX|W (x|w)

]
.

If (X,W ) are continuous with joint PDF fX,W (x,w) and
marginal fW (w), the differential conditional entropy is

h(X|W ) =

∫
W

fW (w)
[

−
∫
X
fX|W (x|w) log fX|W (x|w) dx

]
dw.

For ease of exposition, we use H(X) to denote the
entropy of X , either Shannon or differential depending
on the context, and H(X|W ) to denote the corresponding
conditional entropy.

Mutual information plays a central role in the PAC
Privacy analysis, as it is defined in terms of entropy and
conditional entropy. Let X and W be random variables
with joint distribution PX,W (x,w) and marginals PX(x)
and PW (w). Then, the mutual information between X and
W is given by

MI(X;W ) = H(X)−H(X|W ) = DKL

(
PX,W ∥PX⊗PW

)
,

where DKL

(
PX,W ∥PX⊗PW

)
denotes the Kullback–Leibler

(KL) divergence between the joint distribution PX,W and the
product of the marginal distributions PX ⊗ PW .

Theorem 1 of [1] lays the foundation of PAC Privacy
analysis, which provides a quantitative upper bound on the
adversary’s inference advantage in terms of f -divergence.
Specifically, for any f -divergence Df , the adversary’s pos-
terior advantage ∆fδ is bounded by the minimum f -
divergence between the joint distribution (X,M(X)) and
the product of the marginal PX and any auxiliary output
distribution PW that is independent of X:

∆fδ ≤ inf
PW

Df
(
PX,M(X) ∥ PX ⊗ PW

)
, (2)

where PX,M(X) denotes the joint distribution of the data
and mechanism output, respectively, and PW ranges over
all distributions on the output space.

When the f -divergence is instantiated as the KL diver-
gence and PW is chosen as the marginal output distribu-
tion PM(X), this bound becomes the mutual information
between X and M(X):

∆KLδ ≤ MI(X;M(X)),

showing that the mutual information between the input
and the mechanism output governs the worst-case posterior
advantage.

For any selected f -divergence Df , the inequality (2)
implies that a mechanism M : X → Y satisfies (Rδf , ρ,D)
Residual-PAC Privacy if

Rδf ≥ IntPf (D)− inf
PW

Df
(
PX,M(X) ∥PX ⊗ PW

)
. (3)

Corollary 1. Let Df be the KL-divergence. M : X → Y
satisfies (Rδf , ρ,D) Residual-PAC Privacy if

Rδf ≥ H(X|M(X))− V,

where V = log(|X |) if H is Shannon entropy, and V =
log(

∫
X dx) if H is differential entropy.

Proof. By Theorem 1 of [1], a mechanism
M satisfies (δ, ρ,D)-PAC privacy where
DKL(1δ∥1δoρ

) ≤ MI(X;M(X)). Thus, RδKL ≥
IntPKL(D) − infPW

DKL

(
PX,M(X) ∥PX ⊗ PW

)
≥

IntPKL(D) − MI(X;M(X)), where IntPKL(D) =
−DKL(D∥U) = H(X) − V, where V = log(|X |) if H is
Shannon entropy, and V = log(

∫
X dx) if H is differential

entropy. Thus, we get Rδf ≥ H(X|M(X))− V.

Corollary 1 follows Theorem 1 of [1] establishes that
the residual privacy Rδf is lower bounded by the conditional
entropy H(X|M(X)) up to a constant V, where V is inde-
pendent of both the data distribution D and the mechanism
M. As such, Rδf can, without loss of generality, be offset by
V in Residual-PAC Privacy analysis (i.e., Rδf−V), effectively
serving as a privacy quantification that is lower-bounded by
the conditional entropy H(X|M(X)).

4. Characterizing The Gaussian Barrier of Au-
tomatic PAC Privatization

In this section, we characterize the utility of Auto-PAC
algorithms (Algorithm 1) with a focus on the conservative-
ness of the mutual information bounds they implement. The
resulting perturbation bound is conservative due to a nonzero
discrepancy between the true mutual information and the
upper bound established by Theorem 1:

Gapd ≡ LogDet(M(X), B)− MI(X;M(X) +B),

where LogDet(M(X), B) is defined by (1). Here, the algo-
rithm implements output perturbation of the form M(X)+
B, where B ∼ QB = N (0,ΣB) is Gaussian noise in-
dependent of the mechanism output M(X). Define Z =
M(X)+B. Then, Z has mean µZ = µM(X) and covariance
ΣZ = ΣM(X) +ΣB , where ΣM(X) denotes the covariance
ofM(X). In addition, let PM,B denote the true distribution
of Z =M(X) +B. Let

Q̃M ≡ N (µZ ,ΣZ) (4)

denote the Gaussian distribution with the same first and
second moments as Z.

Proposition 1. Let B ∼ N (0,ΣB). Then, Gapd =
DKL(PM,B∥Q̃M) ≥ 0, where Gapd = 0 if and only if
PM,B = N (µZ ,ΣZ).

Proof. Recall that Z = M(X) + B. Since
Z | X ∼ N (M(X),ΣB), we have by the definition
of mutual information: MI(X;Z) = H(Z) − H(Z |
X) = H(Z) − H(B). Now consider the reference
distribution Q̃M = N (µZ ,ΣZ), where µZ = µM(X)



and ΣZ = ΣM(X) + ΣB . Its differential entropy
is given by H(Q̃M) = 1

2 log
[
(2πe)d det(ΣZ)

]
, and

similarly, H(B) = 1
2 log

[
(2πe)d det(ΣB)

]
. Hence,

1
2 log det

(
Id +ΣM(X)Σ

−1
B

)
= 1

2 log
(

det(ΣZ)
det(ΣB)

)
=

H(PZ) − H(B). Combining this with the earlier
expression for MI(X;Z), we obtain Gapd =[
H(Q̃M)−H(B)

]
− [H(Z)−H(B)] = H(Q̃M)−H(Z).

By the definition of KL divergence, we have
DKL(PM,B ∥ Q̃M) = H(Q̃M) − H(Z). Therefore,
Gapd = DKL(PM,B ∥ Q̃M) ≥ 0, with equality if and only if
PM,B = Q̃M, i.e., Z is exactly Gaussian with distribution
N (µZ ,ΣZ).

Proposition 1 shows that the Gaussianity of M(X)
in terms of Gapd is equivalent to the KL divergence
DKL(PM,B∥Q̃M). Let Z̃ ∼ Q̃M. Thus, MI(X; Z̃) =
LogDet(M(X), B).

Proposition 2. For any privacy budget β > 0, the noise
distribution Q∗

B = N (0,Σ∗
B) obtained by Algorithm 1 is a

unique solution of the following problem:

inf
B∼QB

EQB

[
∥B∥22

]
, s.t. MI(X; Z̃) ≤ β with Z̃ ∼ Q̃M.

(5)

4.1. Mechanism Comparison in PAC Privacy

Definition 9 of [1] defines the optimal perturbation that
tightly implements the privacy budget while maintaining
optimal utility, where the utility is captured by some loss
function K. That is, an optimal perturbation, Q∗ is a solution
of the following optimization problem:

infQ EQ,M,D[K(B;M)],

s.t. MI(X;M(X) +B) ≤ β,B ∼ Q.
(6)

The choice of the utility loss function K is context-
dependent. However, in many applications, we are mainly
concerned with the expected Euclidean norm of the noise
or a convex function of it, e.g., EQ,M,D[K(B;M)] =
EQ

[
∥B∥22

]
.

Now, we show that using EQ,M,D[K(B;M)] =
EQ

[
∥B∥22

]
is sufficient to obtain perturbations that maintain

coherent ordering of PAC Privacy using mutual information.

Proposition 3. Fix a mechanism M and a data distri-
bution D. Let Q denote the collection of all zero-mean
noise distributions under consideration, and let Itrue :
Q 7→ R≥0 be the true mutual information functional; i.e.,
Itrue(Q) = MI(X;M(X)+B) with B ∼ Q for Q ∈ Q. For
each privacy budget β ≥ 0, we define the feasible region
F(β) ≡ {Q ∈ Q : Itrue(Q) ≤ β}. Suppose that F(β)
is nonempty for all privacy budgets of interest. For each
β ≥ 0, let Q∗(β) be a solution of the following problem:

min
B∼Q

EQ[∥B∥22], s.t. Q ∈ F(β). (7)

Then, if β1 < β2, we have Itrue(Q
∗(β1)) ≤ Itrue(Q

∗(β2)).

Proof. Since β1 < β2, any distribution Q satisfying
Itrue(Q) ≤ β1 necessarily satisfies Itrue(Q) ≤ β2.
Consequently, we have the inclusion F(β1) ⊆ F(β2).
Let A and Â be arbitrary sets with A ⊆ B̂, and
let f be any real-valued function defined on B. Then,
infx∈A f(x) ≥ infx∈Â f(x), with equality holding when
the infimum over Â is attained within the subset A.
Applying this with A = A(β1), Â = F(β2), and
f(Q) = EQ

[
∥B∥22

]
yields infQ∈F(β1) EQ

[
∥B∥22

]
≥

infQ∈F(β2) EQ

[
∥B∥22

]
. By definition, Q∗(βi) achieves

the infimum of EQ

[
∥B∥22

]
over F(βi) for i = 1, 2.

Therefore, EQ∗(β1)

[
∥B∥22

]
= infQ∈F(β1) EQ

[
∥B∥22

]
≥

infQ∈F(β2) EQ

[
∥B∥22

]
= EQ∗(β2)

[
∥B∥22

]
.

However, the automatic PAC privatization Algorithm 1
solving the optimization problem (5) considers the conserva-
tive implementation of a given privacy budget. Next result
shows that when DKL(PM,B∥Q̃M) > 0, Algorithm 1 in
general does not maintain coherent ordering PAC Privacy.

With a slight abuse of notation, for any mechanismM :
X 7→ Y , let Gapd(Q) = DKL(PM,B∥Q̃M), where B ∼ Q.

Theorem 3. Fix a mechanism M and a data distribution
D. Let Q denote the collection of all zero-mean noise
distributions under consideration, and let Itrue : Q 7→ R≥0

be the true mutual information functional; i.e., Itrue(Q) =
MI(X;M(X)+B) with B ∼ Q for Q ∈ Q. For each β ≥ 0,
let Q∗(β) be a solution of the optimization in Proposition
2. For any 0 < β1 < β2, define

G(β2, β1) ≡ Gapd(Q(β2))− Gapd(Q(β1)).

Then, we have:

(i) if G(β2, β1) ≤ β2 − β1, then Itrue(Q
∗(β1)) ≤

Itrue(Q
∗(β2)).

(ii) if G(β2, β1) > β2 − β1, then Itrue(Q
∗(β1)) >

Itrue(Q
∗(β2)).

Theorem 3 provides an exact characterization of how the
actual information leakage Itrue = β− Gapd behaves when
one adjusts the nominal Gaussian-surrogate privacy budget
β. Increasing the budget from β1 to β2 > β1 “permits” an
extra β2 − β1 of leakage under the surrogate bound, but
part of that allowance may be “wasted” if the mechanism’s
output remains non-Gaussian. The wasted portion is

Gapd
(
Q∗(β2)

)
− Gapd

(
Q∗(β1)

)
.

The theorem shows that if this wasted gap does not exceed
β2 − β1, then Itrue indeed increases (or stays constant)
with the budget; if it exceeds β2 − β1, then paradoxically
Itrue decreases despite a larger nominal budget, because the
Gaussian-surrogate bound becomes overly conservative.

In applications, this result cautions against comparing
or calibrating privacy mechanisms solely by their surrogate
budgets. Two mechanisms with identical β may exhibit
very different true leakages if their Gaussianity gaps differ.
To ensure that loosening the surrogate constraint actually
increases real leakage (and therefore yields the expected
utility–privacy trade-off), one should estimate or bound how



Gapd grows with β. If that gap grows too rapidly—so
that the increase in conservativeness outstrips the nominal
allowance—it may be necessary to incorporate direct esti-
mates of true mutual information into the noise-calibration
procedure rather than relying exclusively on the Gaussian
bound.

5. Gapd Reduction via Non-Gaussianity Cor-
rection

In this section, we propose two approaches to reduce
Gapd for a given ΣB that is obtained by Algorithm 1, so
that we can obtain a better estimation of the true mutual
information under the perturbation using B ∼ N (0,ΣB).

For any deterministic M and a Gaussian noise B ∼
N (0,ΣB), recall the definition of Q̃M = N (µZ ,ΣZ) in
(4), where Z =M(X) + B with mean µZ and covariance
ΣZ . In addition, let DZ = DKL(PM,B∥Q̃M). By Proposition
1, we know Gapd = DZ . For any estimator D̂Z of DZ , define

IMI(D̂Z) ≡ LogDet(M(X), B)− D̂Z .

Then, for 0 < D̂Z ≤ DZ , we have

MI(X;M(X) +B) ≤ IMI(D̂Z) < LogDet(M(X), B).

That is, if we can obtain D̂Z satisfying 0 < D̂Z ≤ DZ , then
for any ΣB that guarantee LogDet(M(X), B) = β, we
have IMI(D̂Z) = β−DZ as an estimation of the true mutual
information.

Before describing the approaches, we first introduce the
denoising score matching (DSM) [38]. DSM is a method to
learn the score function ∇z logPZ(z) of a random vector
Z ∈ Rd without explicit density estimation.

Definition 7 (DSM-Optimal Score Estimator). Given i.i.d.
samples {zi}Ni=1 from a distribution PZ over Rd:

1) Center data: z̃i = zi− µ̂Z where µ̂Z = 1
N

∑N
i=1 zi.

2) Perturb samples: z̃′i = z̃i +
√
ϵvi with vi ∼

N (0, Id), ϵ > 0.
3) Train parametric score model: Optimize α for sα :

Rd → Rd via: α∗ = argminα LDSM(α), where

LDSM(α) =
1

N

N∑
i=1

Evi

[∥∥∥∥sα(z̃′i) + vi√
ϵ

∥∥∥∥2
2

]
.

The resulting function sα∗ is the DSM-optimal score esti-
mator for the centered distribution PZ̃ , satisfying:

sα∗(z̃) ≈ ∇z̃ logPZ̃(z̃),

with convergence sα∗ → ∇ logPZ̃ as ϵ → 0+ under mild
conditions [38], [39].

Next, we provide two schemes to compute D̂Z .

Theorem 4 (Stein-Discrepancy Bound). Let X be any ran-
dom variable,M : X → Rd (d ≥ 1) a deterministic mecha-
nism, and B ∼ N (0,ΣB) independent Gaussian noise. De-
fine Z =M(X)+B with mean µZ = E[Z] and covariance
ΣZ = Cov(Z). Let DZ = DKL(PZ ∥ N (µZ ,ΣZ)).

Given i.i.d. samples {zi}Ni=1:

1) Compute µ̂Z = 1
N

∑N
i=1 zi and z̃i = zi − µ̂Z;

2) Compute Σ̂Z = 1
N

∑N
i=1 z̃iz̃

⊤
i ;

3) Let sα∗ be the DSM-optimal score estimator (Def-
inition 7) for {z̃i}Ni=1.

Define the estimator:

D̂Z =
1

2N

N∑
i=1

∥sα∗(z̃i)∥22 −
1

N

N∑
i=1

∇ · sα∗(z̃i),

where ∇ · sα∗(z̃i) =
∑d

k=1
∂[sα∗ ]k
∂zk

(z̃i). Then:

E
[
D̂Z
]
≤ 1

2
E
[
∥∇z ln pZ(Z)∥22

]
≤ DZ ,

with outer expectation over samples and training random-
ness. If s̃(z̃) = sα∗(z̃) + (Σ̂−1

Z + ϵI)z̃ for some ϵ > 0, then
D̂Z > 0.

Theorem 4 provides a rigorous estimator D̂Z of multi-
variate mechanisms (d ≥ 1). By training a score network via
DSM on centered data, we derive D̂Z that provably upper-
bounds half the Fisher information of Z and lower-bounds
the true KL-divergence DZ . The estimator is statistically ef-
ficient (unbiased in expectation), and regularization ensures
strict positivity, enabling its use in the refinement of (worst-
case) mutual information estimation.

Theorem 5 (Fourth-Cumulant Bound). Let X be any ran-
dom variable, M : X → R a scalar deterministic mech-
anism, and B ∼ N (0, σ2

B) independent Gaussian noise.
Define Z =M(X)+B with mean µZ = E[Z] and variance
σ2
Z = Var(Z). Let DZ = DKL(PZ ∥ N (µZ , σ

2
Z)).

Given i.i.d. samples {zi}Ni=1:

1) Center data: z̃i = zi− µ̂Z where µ̂Z = 1
N

∑N
i=1 zi

2) Compute sample statistics: σ̂2
Z = 1

N

∑N
i=1 z̃

2
i and

κ̂4 = 1
N

∑N
i=1 z̃

4
i − 3(σ̂2

Z)
2.

For any c > 0, define the estimator:

D̂Z =

(
max

(
κ̂4,

c
N

))2
48(σ̂2

Z)
2

.

Then, (i) D̂Z > 0 almost surely; (ii) Asymptotically: D̂Z
a.s.−−→

κ2
4

48σ4
Z
≤ DZ as N →∞; (iii) κ4 = E[(Z − µY )

4]− 3σ4
Z is

the true excess kurtosis.

Theorem 5 provides a computationally efficient estima-
tor D̂Z for scalar mechanism (d = 1) using excess hurtosis.
By centering data and applying a max-operator, we guar-
antee D̂Z > 0 almost surely while maintaining asymptotic
convergence to the leading Edgeworth term κ2

4

48σ4
Z

, which

lower-bounds D̂Z . The estimator requires only simple mo-
ments, avoids density estimation, and delivers consistent im-
provement over the conservative bound LogDet(M(X), B).

Corollary 2 directly follows Theorem 4 and 5.

Corollary 2. Let M : X 7→ Rd be an arbitrary de-
terministic mechanism and B ∼ N (0,ΣB) such that



M(X) +B has LogDet(M(X), B) = β. Then, Under the
assumptions of Theorems 4 and 5, the perturbed mechanism
Z =M(X) +B is PAC private with

MI(X;Z) ≤ β − D̂Z < β,

where D̂Z > 0 is obtained by Theorems 4 (for d ≥ 1) or 5
(for d = 1).

Corollary 3 shows that, once we account for the non-
Gaussianity of the perturbed output through the positive
correction term D̂Z , the true mutual information always lies
strictly below the nominal Gaussian bound. Concretely, if Z
= M(X) + B is calibrated so that LogDet

(
M(X), B

)
= β,

then using either the Stein–discrepancy estimator (for d ≥ 1)
or the fourth-cumulant bound (for d = 1) yields a correction
D̂Z > 0. As a result, MI

(
X;Z

)
≤ β − D̂Z < β. In

practice, this means that whenever the output distribution
deviates from Gaussian, the term D̂Z exactly captures the
“gap” between the surrogate bound and the true leakage.
By subtracting D̂Z from β, one obtains a strictly tighter
privacy guarantee, ensuring that no privacy budget is wasted
on directions where Gaussianity-based estimates are overly
conservative.

6. Stackelberg Automatic Residual-PAC Priva-
tization

In this section, we present our algorithms for auto-
matic Residual-PAC privatization when the f -divergence is
instantiated with KL divergence, under which the privacy
leakage is quantified by conditional entropy. For a utility loss
function K, we define the optimization perturbation problem
for any Residual-PAC privacy budget β̂ as follows:

infQ EQ,M,D[K(B;M)],

s.t. H(X|M(X) +B) ≥ β̂, B ∼ Q.
(8)

By the definition of mutual information, any solution Q∗

to problem (8) also solves (6) with PAC privacy bud-
get β = H(X) − β̂. Given that mutual information and
conditional entropy are related by MI(X;M(X) + B) =
H(X)−H(X|M(X)+B) where H(X) is fixed, solving the
optimal perturbation problem (8) with conditional entropy
constraints presents the same computational challenges as
the mutual information formulation.

To address this limitation, we present novel automatic
privatization approaches for Residual-PAC privacy, which
we term Stackelberg Automatic Residual-PAC Privatiza-
tion (SR-PAC). Our approach is based on a Stackelberg
game-theoretic characterization of the conditional-entropy-
constrained optimization (8). We show that SR-PAC sat-
isfies the Residual-PAC privacy guarantee and prove that
it achieves optimal perturbation without a waste of the
privacy budget. Consequently, when EQ,M,D[K(B;M)] =
EQ

[
∥B∥22

]
, algorithms implementing SR-PAC can achieve

superior utility performance compared to the automatic PAC
privatization algorithms described in Section 2.1, given the
same mutual-information privacy budget.

6.1. A Stackelberg Game Model

Algorithm 3 Monte Carlo SR-PAC

Require: Privacy budget β̂, parametrized decoder family
Πϕ, perturbation rule family Γλ, utility loss K(·), learn-
ing rates ηϕ, ηλ, penalty weight σ, iterations Tλ, Tϕ,
batch size m

1: Initialize parameters λ, ϕ ∼ init()
2: for t = 1, . . . , Tλ do
3: if t mod Tϕ = 0 then
4: Update Decoder:
5: for i = 1, . . . , Tϕ do
6: Sample {(xj , bj , yj)}mj=1 where xj ∼ D, bj ∼

Qλ, yj =M(xj) + bj
7: Ŵ = 1

m

∑m
j=1[− log πϕ(xj |yj)]

8: ϕ← ϕ− ηϕ∇ϕŴ
9: end for

10: end if
11: Update Perturbation Rule:
12: Sample {(xj , bj , yj)}mj=1 where xj ∼ D, bj ∼ Qλ,

yj =M(xj) + bj
13: Hc =

1
m

∑m
j=1[− log πϕ(xj |yj)]

14: Lλ = 1
m

∑m
j=1K(bj) + σ(Hc − β̂)2

15: λ← λ− ηλ∇λLλ

16: end for
17: return Optimal parameters (λ∗, ϕ∗)

Our SR-PAC algorithm recasts the optimal perturbation
problem (8) as a two-level Stackelberg game between a
Leader (choosing the perturbation rule Q) and Follower
(choosing the decoder attempting to infer X from Y ).
Let Γ denote a rich family of noise distributions. Let
Π = {π : π(·|y) ∈ ∆(X ) ∈ ∆(X ), y ∈ Y} denote a rich
family of decoder distributions (e.g., all conditional density
functions on X given Y , or a parameterized neural-network
family).
Follower’s Problem. For a fixed perturbation rule Q, the
Follower chooses decoder π ∈ Π to minimize the expected
log score

W (Q, π) ≡ EX∼D,B∼Q [− log π(X|M(X) +B)] .

That is, π∗(Q) ∈ arg infπ∈Π W (Q, π).
Leader’s Problem. Given a privacy budget β̂, the Leader
chooses Q to solve

inf
Q∈Γ

EX∼PX ,B∼Q

[
K(B;M)

]
, s.t. inf

π∈Π
W (Q, π) ≥ β̂.

Therefore, a profile (Q∗, π∗) is a Stackelberg equilibrium if
it satisfies{
Q∗ ∈ arg infQ∈Γ E[K(B;M)], s.t. W

(
Q, π∗(Q)

)
≥ β̂,

π∗(Q) ∈ arg infπ∈Π W (Q, π).
(9)

When we consider output perturbation and the utility
loss K is chosen such that Q 7→ EX∼PX ,B∼Q

[
K(B;M)

]
is convex in Q, the problem (9) is convex in both Q and



π. Specifically, for each fixed perturbation rule Q, the map
π 7→ W (Q, π) is a convex function of π. Similarly, for
each fixed decoder π, the function Q 7→W (Q, π) is convex
in Q. Because these two convexity properties hold simul-
taneously, (Q, π) 7→ W (Q, π) is jointly convex on Γ × Π.
By the partial minimization theorem, taking the pointwise
infimum over π preserves convexity in Q. Thus, Q 7→
infπ∈Π W (Q, π) is a convex function of Q. Consequently,
once the Follower replaces π by its best response π∗(Q),
the Leader’s feasible set {Q ∈ Γ : infπ∈Π W (Q, π) ≥ β̂}
is convex, and minimizing the convex utility loss function
Q 7→ EX∼PX ,B∼Q

[
K(B;M)

]
over this set remains a

convex program in Q. Meanwhile, the Follower’s problem
infπ∈Π W (Q, π) is convex in π for any fixed Q. Thus, the
Stackelberg game reduces to a single-level convex optimiza-
tion in Q, with the inner decoder problem convex in π.

As stated in Proposition 4, a Stackelberg equilibrium
perturbation rule solves (8).

Proposition 4. Let (Q∗, π∗) be a Stackelberg equilibrium
satisfying (9) for any β̂. Then, Q∗ solves (8) with pri-
vacy budget β̂. In addition, in any Stackelberg equilibrium
(Q∗, π∗), π∗ = π∗(Q∗) is unique.

Algorithm 3 provides a Monte-Carlo-based approach
to solve the Stackelberg equilibrium (9). By Monte Carlo
sampling, this algorithm periodically trains the decoder to
minimize reconstruction loss on perturbed data, enabling it
to adapt to the current noise distribution. The perturbation
rule is then optimized by balancing utility loss minimization
against privacy constraints, using a penalty term that ensures
the privacy cost remains close to the target budget.

6.2. Anisotropic Noise Perturbation

The Auto-PAC perturbs the mechanism using
anisotropic Gaussian noise as much as needed in each
direction of the output. This direction-dependent noise
addition yields better privacy-utility tradeoffs than isotropic
perturbation. Our SR-PAC also supports anisotropic noise
generation under Assumption 1.

Assumption 1. For an arbitrary deterministic mechanism
M, we assume the following.

(i) Every Q ∈ Γ is log-concave.
(ii) For any orthonormal direction w ∈ Rd, ⟨M(X), w⟩

is non-degenerate.
(iii) The utility function K is radial (depends only on

∥B∥2) and strictly convex in the eigenvalues of
covariance matrix ΣQ of Q. For example, κ(B) =
∥B∥22.

(iv) There exist orthonormal u, v ∈ Rd such that the
marginal entropy gain per unit variance along u
exceeds that along v. That is, for any σ2 > 0,
∂

∂σ2
u

H(X|Zu)|σ2 >
∂

∂σ2
v

H(X|Zv|σ2 , where Zw =

Mw(X) + Bw, with Aw(X) = ⟨A(X), w⟩ for
A ∈ {M, B}, w ∈ {u, v}.

Assumption 1 ensures that SR-PAC’s optimization is
convex and admits a genuinely anisotropic solution: requir-
ing each noise distribution in Γ to be log-concave makes
the feasible set convex and tractable; non-degeneracy of
⟨M(X), w⟩ for every unit vector w guarantees that every
direction affects information leakage; a strictly convex, ra-
dial utility K yields a unique cost-to-noise mapping; and
the existence of two orthonormal directions whose marginal
entropy gain per unit variance differs implies that allocating
noise unevenly strictly outperforms isotropic noise.

Proposition 5. Under Assumption 1, any Stackelberg-
optimal perturbation rule Q∗ is anisotropic. That is, its
covariance matrix ΣQ∗ satisfies

rmax(ΣQ∗) > rmin(ΣQ∗),

where rmax(ΣQ∗) and rmin(ΣQ∗) are the maximum and the
minimum eigenvalues of ΣQ∗ .

Proposition 5 demonstrates that SR-PAC strategically
allocates noise exclusively to the most privacy-sensitive
directions. By adjusting the covariance matrix so that high-
leakage dimensions receive proportionally more noise while
low-leakage dimensions receive less, the method ensures
optimal noise utilization where each unit of perturbation
yields maximum privacy protection. This targeted approach
enables SR-PAC to achieve the desired privacy level with
minimal total perturbation, thereby preserving task-relevant
information with significantly reduced distortion.

6.3. Directional-Selectivity of SR-PAC

Let Z ∈ Rd be an output vector produced by a deter-
ministic mechanismM(X); throughout we assume ΣZ ≻ 0
and finite differential entropy H(Z). For any application,
let Stask ⊆ Rd denote a practitioner-chosen task-critical
sub-space (the directions whose preservation matters most)
and write Πtask for the orthogonal projector onto it.
Classification tasks. In what follows we illustrate the
theory with multi-class classification, where Z is the logit
vector, ŷ = argmaxi Zi, and Slab := span{eℓ−ej : j ̸= ℓ}.
Let Πlab be the projector onto Slab. The analysis for a
general Stask is identical after replacing lab by task.

For any privacy budget 0 < β < H(Z), consider Q∗

that solves
inf

Q:MI(Z;Z+B)=β
E[∥B∥22].

For every unit vector w, let g(w) ≡ 1
2mmse(⟨Z,w⟩), where

mmse(⟨Z,w⟩) ≡ E
[〈
Z,w

〉
− E

[
⟨Z,w⟩|Y

]]2
is the min-

imum mean-squared error of estimating the scalar random
variable ⟨Z,w⟩ from the noisy observation Y = Z +B.

Proposition 6. Fix any 0 < β < H(Z). The following holds.

(i) Let N (0,ΣPAC) be the Gaussian noise
distribution used by the Auto-PAC such that
LogDet(Z,BPAC) = β. If Z is non-Gaussian, then
EQ∗ [∥B∥22] < E[∥BPAC∥22].



(ii) Suppose sup
v∈Slab,∥v∥=1

g(v) < inf
w⊥Slab,∥w∥=1

g(w). Let

βlab ≡
1

2

∫
w⊥Slab

g(w)dσ2
w be the maximal MI re-

duction achievable with noise orthogonal to Slab.
Then, for every β ≤ βlab, we have

ΠlabB
⋆ = 0 a.s., argmax

i
(Zi +B⋆

i ) = ŷ a.s.

In Proposition 6, part (i) shows that SR-PAC always uses
strictly less noise power than any Auto-PAC (regardless of
how anisotropic the Auto-PAC noise covariance may be)
because Auto-PAC treats Z as Gaussian and thus over-
estimates the required variance when Z is non-Gaussian.
Part (ii) demonstrates that, under the natural ordering of
directional sensitivities, SR-PAC allocates its noise budget
exclusively in directions orthogonal to the label sub-space
until a critical threshold βlab is reached. In practice, this
means SR-PAC perturbs only “harmless” dimensions first,
preserving the predicted class and concentrating protection
where it is most needed, thereby outperforming Auto-PAC in
any scenario where certain directions leak more information
than others.

6.4. Sensitivity to β

Sensitivity to the privacy parameter β is crucial for
predictable and accurate control of privacy-utility trade-off.
Let Privβ and Utilβ , respectively, denote the sensitivities
of privacy and utility (for certain measures). If Privβ = 1,
then any infinitesimal increase ∆β in the privacy budget
raises the true mutual information MI(X;Y ) by exactly ∆β.
Thus, no part of the privacy budget is “wasted” or “over-
consumed”. By contrast, if Privβ < 1, then increasing
β may force additional noise without achieving the full
allowed leakage; and if Privβ > 1, even a small increase
in β could exceed the allowed privacy. Similarly, if Utilβ
is high, then an infinitesimal increase ∆β in the privacy
budget yields a large improvement in utility; if Utilβ is low,
the same increase yields a small improvement, indicating
inefficient conversion of the privacy budget into utility gains.

Let

VSR(β) ≡ min
Q:MI(X;M(X)+B)≤β

EQ

[
∥B∥22

]
be the optimal noise-power curve attained by SR-PAC, and
let MISR(β) as the corresponding true mutual information
attained by SR-PAC. Let VPAC(β) ≡ tr(ΣBPAC(β)), where
Q(β) = N (0,ΣBPAC(β)) solves LogDet(M(X), BPAC) =
β. In addition, let MIPAC(β) ≡ β − Gapd(Q(β)), where
Gapd(Q) = DKL(PM,B∥Q̃M) with B ∼ Q, and Q̃M
given by (4). Define PrivSRβ ≡ d

dβMISR(β), Priv
PAC
β ≡

d
dβMIPAC(β), UtilSRβ ≡ d

dβ (−VSR(β)), and UtilPAC
β ≡

d
dβ (−VPAC(β)).

Theorem 6. For any data distribution D, let M be an
arbitrary deterministic mechanisms such thatM(X) is non-
Gaussian with ΣM ≻ 0. The following holds.

(i) PrivPAC
β ≤ PrivSRβ = 1, with strict inequality for

non-Gaussian M(X).
(ii) UtilSRβ ≥ UtilPAC

β , with equality only for Gaus-
sian M(X).

Theorem 6 proves that SR-PAC with arbitrary noise
distributions achieves: (i) Exact leakage-budget alignment
(PrivSRβ = 1), (ii) Stricter utility decay for Auto-PAC
(UtilSRβ ≥ UtilPAC

β ). This holds unconditionally for non-
Gaussian M(X) under privacy tightening (i.e., β decreas-
ing).

Corollary 3. In addition to the setting of Theorem 6, assume

εcal(β) ∈ [0, GapdQ̂(β)), ηopt(β) ∈ [0, VPAC(β)−VSR(β)).

Then, (i) |PrivSRβ −1| ≤ |ε′cal(β)|; (ii) UtilSRβ ≥ UtilPAC
β ,

with equality only for Gaussian M(X).

6.5. Composition

In this section, we study the composition properties of
Residual-PAC Privacy and SR-PAC, focusing on the con-
ditional entropy formulation. Strong composition properties
are essential for privacy definitions like differential privacy,
enabling systems to quantify aggregated privacy risk across
sequential, adaptive, and concurrent operations on related
datasets. This allows modular design where individual com-
ponents maintain local privacy-utility trade-offs while keep-
ing global privacy risk quantifiable.

Consider k mechanisms M1,M2, . . .Mk, where each
Mi(·, θi) : X 7→ Yi with θi ∈ Θi as the ran-
dom seed. Let Y⃗ =

∏k
i=1 Yi and let Θ⃗ =

∏k
i=1 Θi.

The composition
−→
M(·, θ⃗) : X 7→ Y⃗ is defined as−→

M(X, θ⃗) = (M1(X, θ1), . . . ,Mk(X, θk)) . PAC Privacy
composes gracefully. For independent mechanisms applied
to the same dataset, mutual information bounds compose
additively: if each Mi is PAC Private with bound βi, then−→
M has bound

∑k
i=1 βi.

Residual-PAC Privacy also enjoys additive composition.
Suppose each mechanismMi is Residual-PAC private with
conditional entropy lower bound β̂i. By definition of mu-
tual information, this implies that Mi is PAC private with
privacy budget βi = H(X) − β̂i. Then, by Theorem 7 of
[1], the composition

−→
M(X, θ⃗) is PAC private with total

mutual information upper bounded by
∑k

i=1(H(X) − β̂i).
Equivalently, the composition

−→
M(X, θ⃗) is Residual-PAC

private with overall conditional entropy lower bounded by∑k
i=1 β̂i − (k − 1)H(X).
However, this additive composition property for mu-

tual information yields conservative aggregated privacy
bounds [1], and utility degradation compounds when
each mechanism Mi uses conservative privacy budgets
βi. To address this limitation, we use an optimization-
based approach within the SR-PAC framework to compute
tighter conditional entropy bounds. Consider k mechanisms
M1,M2, . . .Mk privatized by Qi to satisfy Residual-
PAC privacy with bounds β̂i. The Leader designs these



(a) CIFAR-10: Accuracy vs. β (b) CIFAR-100: Accuracy vs. β (c) MNIST: Accuracy vs. β (d) AG News: Accuracy vs. β

(e) CIFAR-10: Noise Magnitude vs.
β

(f) CIFAR-100: Noise vs. β (g) MNIST: Noise vs. β (h) AG News: Noise vs. β

(i) CIFAR-10: Budgets vs. β (j) CIFAR-100: Budgets vs. β (k) MNIST: Budgets vs. β (l) AG News: Budgets vs. β

Figure 1: Empirical comparisons of SR-PAC, Auto-PAC (Algorithm 1), and Efficient-PAC (Algorithm 2) on CIFAR-10, CIFAR-100,
MNIST, and AG News as β varies. ach column corresponds to one dataset; within each column, the three panels report (top) classification
accuracy of the perturbed model versus the target budget β, (middle) the average noise power E[∥B∥22] used by each method, and (bottom)
the “target versus achieved” privacy budget for our SR-PAC.

privatizations {Qi}ki=1, while the Follower finds the op-
timal decoder for the joint composition

−→
M(X, θ⃗) =

(M1(X), . . . ,Mk(X)):

inf
π∈Π

W (π;
−→
M) ≡ EX∼D

[
− log π(X|

−→
M(X), θ⃗)

]
.

7. Numerical Experiments

In this experiments, we use the followng four datasets:
CIFAR-10 [40], CIFAR-100 [40], MNIST dataset [41], and
AG News dataset [42].
CIFAR-10 and Base Mechanism. The CIFAR-10 dataset
comprises 50,000 training and 10,000 testing color images
(each 32 × 32 pixels with three channels) divided evenly
into ten classes (5,000 training and 1,000 testing images
per class). Each image is converted to a 3 × 32 × 32
tensor and normalized per channel to mean 0.5 and standard
deviation 0.5. As the unperturbed mechanism, we train
a convolutional neural network that consists of two con-
volutional blocks—each block is Conv→ReLU→MaxPool
(kernel 2× 2) with 32 filters in the first block and 64 filters
in the second—followed by flattening into a 128-unit fully
connected layer (with ReLU) and a final linear layer pro-
ducing 10 logits. This network is trained by minimizing the
cross-entropy loss over the CIFAR-10 classes. At inference,
it maps each normalized image to a 10-dimensional logit

vector, and the predicted label is given by the highest logit.
The unperturbed mechanism achieves 0.7181 accuracy.

CIFAR-100 and Base Mechanism. CIFAR-100 contains
50,000 training and 10,000 testing color images (each
32 × 32 × 3), equally divided among 100 fine-grained
classes (500 training and 100 testing images per class).
Each image is converted to a 3 × 32 × 32 tensor and
normalized per channel to mean 0.5 and standard deviation
0.5 before being fed into the network. As the unperturbed
mechanism, we use a deeper convolutional neural network
with three convolutional “blocks.” Each block consists of
two 3 × 3 convolutions (with BatchNorm and ReLU after
each), followed by a 2 × 2 max-pool, which sequentially
maps inputs from 32 × 32 → 16 × 16 → 8 × 8 → 4 × 4,
with channel widths increasing from 3 → 64 → 128 →
256. After flattening the resulting 256 × 4 × 4 feature
map into a 4096-dimensional vector, a three-layer MLP
head (4096→512→256→100) with ReLU activations and
0.5 dropout between the first two fully connected layers
produces a 100-dimensional logit vector. During training,
this network minimizes cross-entropy loss over the CIFAR-
100 classes; at inference, each normalized image is mapped
to its 100-dimensional logits, and the predicted label is given
by the argmax of those logits. The unperturbed mechanism
achieves 0.5913 accuracy.

MNIST dataset and Base Mechanism. The MNIST dataset



comprises 60,000 training and 10,000 test grayscale im-
ages of handwritten digits (0–9). Each image is 28 ×
28 pixels and is loaded as a 1 × 28 × 28 tensor,
then normalized to mean 0.1307 and standard deviation
0.3081 per channel before being fed into the network.
As the unperturbed mechanism, we train a simple CNN
consisting of two convolutional blocks—each block is
Conv2d→BatchNorm→ReLU→MaxPool (2×2), with chan-
nel widths 1 → 32 → 64—which produces a 64 × 7 × 7
feature map. This feature map is flattened and passed
through a two-layer fully connected head (128 units with
ReLU+Dropout, then 10 output logits). At inference, each
normalized 28 × 28 image is mapped to a 10-dimensional
logit vector, and the predicted label is given by the index
of the largest logit. The unperturbed mechanism achieves
0.9913 accuracy.
AG News dataset and Base Classifier. AG News comprises
120,000 training and 7,600 test articles equally divided
among four classes (World, Sports, Business, Sci/Tech), i.e.,
30,000 training and 1,900 test examples per class. Each
example’s title and description are concatenated into one text
string, then lowercased and split on whitespace (truncated or
padded to 64 tokens). We build a 30,000-word vocabulary
from the training split and map each token to its index
(with out-of-vocabulary tokens as 0). Those indices feed into
an nn.EmbeddingBag layer (embedding size 300, mean-
pooling mode) to produce a fixed-length 300-dimensional
document vector. That vector is passed through a two-
layer MLP head (300→256 with ReLU and 0.3 dropout,
then 256→4), yielding a 4-dimensional logit vector, and at
inference the predicted label is the index of the largest logit.
The unperturbed mechanism achieves 0.9729 accuracy.

We evaluate SR-PAC against two baselines, Auto-PAC
(Algorithm 1) and Efficient-PAC (Algorithm 2), on the
above four datasets. For each dataset and its pretrained base
mechanismM, we plot (1) the test accuracy of the perturbed
model as a function of β, (2) the average noise power
E[∥B∥22] required to achieve each β, and (3) SR-PAC’s
ability to hit the target budget Ĥ(X) − β (where Ĥ(X)
is our plug-in entropy estimate using the non-parametric
k-nearest neighbour approach). Figure 1 summarizes these
comparisons.

Recall that β is the user’s desired upper bound on
the mutual information MI(X;M(X) + B). By construc-
tion, SR-PAC enforces the equivalent conditional-entropy
constraint H

(
X | M(X) + B

)
≥ β̂ = H(X) − β,

but a direct per-β comparison of accuracy would require
knowing the true data entropy H(X), which is unavail-
able in practice. Fortunately, for any fixed mechanism M
and dataset there is a single “intrinsic” mutual information
MIo = MI(X;M(X) + B), and no independent noise B
can push MI(X;M(X) + B) above MIo. Equivalently, the
only feasible budgets satisfy 0 < β ≤ MIo. At the left
endpoint β = MIo, the best solution is B = 0, so all three
methods coincide at the (near) noiseless accuracy. Although
MIo is unknown (and thus H(X) cannot be recovered), each
algorithm still operates over the same interval (0, MIo]. In

particular, every plotted β is a valid privacy target for Auto-
PAC, Efficient-PAC, and SR-PAC. Therefore, even without
knowing MIo (or H(X)), we can fairly compare all three
curves—accuracy vs. β and noise magnitude vs. β—across
the entire feasible range.

Accuracy vs. β (a-d of Figure 1): As β decreases
(moving left along the horizontal axis), privacy increases.
Thus, all three methods incur a drop in test accuracy. When
β is relatively large (near MIo), all three algorithms yield
almost the same accuracy close to the noiseless accuracy.
As β decreases, the SR-PAC curve always stays about the
curves of Auto-PAC and Efficient-PAC—most dramatically
on CIFAR-10 and CIFAR-100.

Noise Magnitude vs. (β (e-h) of Figure 1): As β
decreases, each algorithm must add more noise, so all three
curves rise. In every dataset, SR-PAC uses the (approxi-
mately) smallest E[∥B∥22] at each β, whose curves never
exceed the blue and green curves. Auto-PAC and Efficient-
PAC both overshoot. That is, they add strictly more noise
than SR-PAC.

The empirical ordering in both the accuracy and the
noise magnitude results exactly matches Theorem 6. Note
that the results in Theorem 6 hold for every non-Gaussian
base mechanism. Figure 1 (c–d, g–h) shows that SR-PAC’s
performance on MNIST and AG News reflects the properties
of Proposition 6. In particular, SR-PAC maintains nearly
the same accuracy as the unperturbed mechanism over a
wide range of budgets β, because for β ≤ βlab it injects
all noise in directions orthogonal to the label subspace and
thus never flips the predicted class. At the same time, its
total noise magnitude remains an order of magnitude smaller
than Auto-PAC or Efficient-PAC, since those conservatively
calibrated schemes overestimate the required variance when
the logits are highly non-Gaussian (MNIST and AG News
both exhibit heavy-tailed logit distributions).

Budgets vs. β (i-l of Figure 1): These results show the
SR-PAC’s target vs achieved privacy budgets to verify that
our algorithm indeed implement the specified desired pri-
vacy level. Each panel shows the target mutual-information
bound β on the horizontal axis and SR-PAC’s empirically
measured one on the vertical axis. In every dataset, the red
points lie nearly on the y = x line. This confirms that
SR-PAC solves its Followers’ problem with high accuracy,
so that the desired privacy budget is well guaranteed with
negligible error, proving a reliable, data-driven guarantee
that the privacy constraint is satisfied.

8. Conclusion

In this work, we introduced Residual-PAC Privacy, an
enhanced framework that quantifies privacy guarantees be-
yond Gaussian assumptions and overcomes the inherent
conservativeness of prior PAC-Privacy methods. By cast-
ing the privacy–utility trade-off as a convex Stackelberg
optimization problem, our Stackelberg Residual-PAC (SR-
PAC) approach fully leverages the available privacy budget
and automatically calibrates anisotropic noise distributions
tailored to the underlying data and mechanism. Extensive



numerical experiments on CIFAR-10, CIFAR-100, MNIST,
and AG News confirm that SR-PAC consistently attains
tighter privacy guarantees and higher utility compared to
existing approaches. Consequently, Residual-PAC Privacy
combines rigorous theory with practical effectiveness, of-
fering a robust foundation for scalable, precise privacy as-
surance in complex, data-driven applications.
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[45] D. P. Palomar and S. Verdú, “Gradient of mutual information in linear
vector gaussian channels,” IEEE Transactions on Information Theory,
vol. 52, no. 1, pp. 141–154, 2005.

[46] S. Park, E. Serpedin, and K. Qaraqe, “On the equivalence between
stein and de bruijn identities,” IEEE Transactions on Information
Theory, vol. 58, no. 12, pp. 7045–7067, 2012.

Appendix A.
Proof of Proposition 2

Proof. Since B ∼ N (0,ΣB), we have E[∥B∥22] =
tr
(
E[BB⊤]

)
= tr(ΣB). Hence, minimizing E[∥B∥22] over

zero-mean Gaussian is equivalent to minimizing the trace
tr(ΣB) over ΣB ⪰ 0.

Recall that Z =M(X) + B. Then, Z has mean µZ =
µM(X) and covariance ΣZ = ΣM(X) +ΣB , where ΣM(X)

denotes the covariance of M(X). In addition, recall that
Q̃M = N (µZ ,ΣZ) is the Gaussian distribution with the
same first and second moments as Z. Then, by standard
Gaussian-entropy formulas, we have

MI(X;Z) = H(Z)−H(Z|X) =
1

2
log

det(ΣZ)

det(ΣB)

=
1

2
log det(I +ΣM(X)Σ

−1
B ).

In particular, Algorithm 1 implements MI(X;Z) ≤ β.
Since both tr(ΣB) and log det(I + ΣM(X)Σ

−1
B ) are

unitarily invariant, we may diagonalize ΣM(X) as

ΣM(X) = Udiag(r1, . . . , rd)U
T , ri > 0,

where U is the orthogonal eigenvector matrix from
the eigendecomposition of ΣM(X). Writing ΣB =

Ûdiag(ℓ1, . . . , ℓd)Û
T with ℓi > 0, the problem

min
ΣB⪰0

tr(ΣB), s.t.
1

2
log det(1 + ΣM(X)Σ

−1
B ) = β,

becomes

min
ℓ1,...,ℓd>0

d∑
i=1

ℓi, s.t.
1

2

d∑
i=1

log(1 +
ri
ℓi
) = β.

Hence, each coordinate ℓi appears only in the term log(1+
ri
ℓi
).

Let λ > 0 as the Lagrange multiplier. The Lagrangian
is

L(ℓ1, . . . , ℓd, λ)

=

d∑
i=1

ℓi + λ

(
1

2

d∑
i=1

log(1 +
ri
ℓi
)MI(X; Z̃)− β

)
.

Setting ∂L
∂ℓi

= 0 gives 1 = λ ri
2ℓi(ℓi+ri)

⇒ 2ℓi(ℓi, ri) = λri.
Equivalently, ℓ2i + riℓi − λ ri

2 = 0, which gives a unique

ℓi(λ) =
−ri+
√

r2i+2λri
2 > 0.

Let F (λ) = 1
2

∑d
i=1 log(1+

ri
ℓi(λ)

). We can check that as
λ→ 0+, each ℓi(λ)→ 0+, so F (λ)→ +∞. As λ→ +∞,
each ℓi(λ) → +∞, leading to F (λ) → +∞. In addition,
dF (λ)
dλ < 0 throughout, so F is strictly decreasing from

+∞ down to 0. Therefore, there is a unique λ∗ > 0 such
that F (λ∗) = β. At this λ∗, each ℓ∗i = ℓ∗i (λ

∗) is unique.
Thus, Σ∗

B = Ûdiag(ℓ∗1, . . . , ℓ
∗
d)Û

T is unique minimizer of
tr(ΣB). By construction, 1

2 log det
(
1 + ΣM(X)(Σ

∗
B)

−1
)
=

β. Therefore, it is also the unique minimizer of (5).

Appendix B.
Proof of Theorem 3

By Lemma 1 (which is shown and proved later), the
function g(β) = Gapd(Q

∗(β)) is nondecreasing in β.
Thus, for any 0 < β1 < β2, we have Gapd(Q

∗(β2)) ≥
Gapd(Q

∗(β1)), which yields G(β2, β1) = Gapd(Q
∗(β2)) −

Gapd(Q
∗(β1)) ≥ 0. Recall the relationship between true

mutual information and the bound LogDet(M(X), B) = β:

Itrue
(
Q∗(β)

)
= β − Gapd

(
Q∗(β)

)
.

Hence, for 0 < β1 < β2,

Itrue
(
Q∗(β2)

)
− Itrue

(
Q∗(β1)

)
=
[
β2 − Gapd(Q

∗(β2))
]
−
[
β1 − Gapd(Q

∗(β1))
]

= (β2 − β1) −
[
Gapd(Q

∗(β2))− Gapd(Q
∗(β1))

]
= (β2 − β1) − G(β2, β1).

The two bullet points now follow immediately: (i) If
G(β2, β1) ≤ β2 − β1, then

Itrue(Q
∗(β2))−Itrue(Q∗(β1)) = (β2−β1)−G(β2, β1) ≥ 0,

i.e. Itrue(Q∗(β1)) ≤ Itrue(Q
∗(β2)). (ii) If G(β2, β1) > β2−

β1, then

Itrue(Q
∗(β2))−Itrue(Q∗(β1)) = (β2−β1)−G(β2, β1) < 0,

i.e. Itrue(Q∗(β1)) > Itrue(Q
∗(β2)).

Lemma 1. Fix a mechanism M and a data distribution D.
Let Q∗(β) be the solution of (5). Then, Gapd(Q

∗(β)) is a
nondecreasing function of β.



Proof. Let g(β) = Gapd(Q
∗(β)) and ΣZ = ΣM(X) + ΣB

with ΣB = Σ∗
B(β). By definition,

g(β) = H
(
N (0,ΣZ)

)
−H

(
PM ∗ N (0,ΣB)

)
.

Differentiate with respect to β via the chain rule:

dg

dβ
=

〈
∇ΣB

[H(N (0,ΣZ))−H(PM ∗ N (0,ΣB))] ,
dΣB

dβ

〉
.

The gradient of Gaussian entropy is ∇ΣB
H(N (0,ΣZ)) =

1
2Σ

−1
Z . By de Bruijn’s identity [43],

∇ΣB
H(PM ∗ N (0,ΣB)) =

1

2
J(PM ∗ N (0,ΣB)),

where J(·) is the Fisher information. The Cramér–Rao
bound gives J(PM ∗ N (0,ΣB)) ⪰ Σ−1

Z . Thus,

∇ΣB
g =

1

2

(
Σ−1

Z − J(PM ∗ N (0,ΣB))
)
⪯ 0.

From Proposition 2, dΣB

dβ ⪯ 0 (strictly negative when ΣB

changes). Since both∇ΣB
g and dΣB

dβ are symmetric negative
semidefinite,

dg

dβ
=

〈
∇ΣB

g,
dΣB

dβ

〉
= tr

(
(∇ΣB

g)

(
dΣB

dβ

))
≥ 0,

as the trace of the product of two negative semidefinite
matrices is nonnegative. Hence g(β) is nondecreasing.

Appendix C.
Proof of Theorem 4

We first prove the inequality chain, and then prove the
strict positivity D̂Z > 0.

C.1. Part 1: Inequality Chain

Define the Stein score

T (Z̃) = ∇z̃ logPZ̃(z̃) + Σ−1

Z̃
z̃.

For any distribution P on Rd with density p, mean µ,
and covariance Σ, and the moment-matched Gaussian g =
N (µ,Σ), the Gaussian log-Sobolev inequality gives

DKL(P∥g) ≥
1

2
EP

[
∥T (Zp)∥22

]
≡ 1

2
J (P∥g), (10)

where Zp ∼ P .
Let sα∗ be the DSM-optimal score estimator trained on

the centered samples {z̃i}Ni=1. By [38] and [39], sα∗(z̃)
converges to ∆z̃ logPZ̃(z̃) in L2(PZ̃) as N → ∞ and
ϵ→ 0.

Taking outer expectation over the i.i.d. draws of the
sample {z̃i} and the DSM training randomness yields

E[D̂Z ] =
1

2
EẐ]

[
∥sα∗(Ẑ)∥22

]
− EẐ

[
∇ · sα∗(Z̃)

]
.

For any square0integrable vector filds f , by the Stein’
identity, we have

EZ̃

[
∇ · f(Z̃)

]
= −EZ̃

[
f(Z̃)⊤Σ−1

Z̃
Z̃
]
.

When f = sα∗ , we get

E[D̂Z ] =
1

2
EẐ]

[
∥sα∗(Ẑ)∥22 + 2s⊤α∗Σ−1

Z̃
Z̃
]
.

Adding and subtracting 1
2∥Σ

−1/2

Z̃
Z̃∥22 gives

E
[
D̂Z
]
=

1

2
E
[
∥sα∗(Z̃) + Σ−1

Z̃
Z̃∥22

]
− 1

2
E
[
∥Σ−1/2

Z̃
Z̃∥22

]
.

Since µZ̃ = 0 and ΣZ̃ = ΣZ ≻ 0,

1

2
E
[
∥Σ−1/2

Z̃
Z̃∥22

]
=

d

2

is a constant that is independent of sα∗ . Thus, we have

E
[
D̂Z
]
≤ 1

2
E
[
∥sα∗(Z̃) + Σ−1

Z̃
Z̃∥22

]
=

1

2
E
[
∥Tα∗(Z̃)∥22

]
,

where Tα∗(z̃) ≡ sα∗(z̃) + Σ−1

Z̃
z̃.

Therefore, as N →∞ and ϵ→ 0, we have

lim
N→∞,ϵ→0

E
[
D̂Z
]
≤ 1

2
E
[
∥T (Z̃)∥22

]
=

1

2
J (PZ̃∥N ).

By (10), 1
2J (PZ̃∥N ) ≤ DZ . Therefore, we obtain the

inequality chain

E
[
D̂Z
]
≤ 1

2
E
[
∥∇z ln pZ(Z)∥22

]
≤ DZ .

C.2. Part 2: Strict Positivity

For ϵ > 0, define

s̃(z̃) = sα∗(z̃) + (Σ̂−1
Z + ϵI)z̃

Then, Ts̃(z̃) = s̃(z̃) + Σ̂−1
Z z̃ differs from zero by at least

the term ϵz̃. Unless in the degenerate case when Ẑ is almost
surely zero,

E[∥Ts̃(Z̃)∥22] ≥ ϵ2E[∥Z̃∥22] > 0.

Here, E[∥Ts̃(Z̃)∥22] ≥ d, where the equality holds only for
Gaussian Z̃. Then, from

D̂Z =
1

2
∥Ts̃(z̃)∥22 −

d

2
,

we guarantee D̂Z > 0 for non-Gaussian Z.

Appendix D.
Proof of Theorem 5

For any real-valued random variable Z with mean µz

and variance σ2
Z <∞, write the excess kurtosis,

κ4 = E[(Z − µZ)
2]− 3σ4

Z .

By the fourth-moment bund [44], the KL divergence be-
tween PZ and the moment-matched Gaussian satisfies

DKL(PZ∥N (µZ , σ
2
Z)) ≥

κ2

48σ4
Z

. (11)



With i.i.d. samples {zi} = 1, define the centered samples
z̃i = zi − µz and the empirical moments

σ̃Z =
1

N

N∑
i=1

z̃2i , κ̃4 =
1

N

N∑
i=1

z̃2i − 3(σ̃2
Z)

2.

By the strong law of large numbers, we have

σ̃Z
a.s.−−→ σ2

Z , κ̃4
a.s.−−→ κ4.

For a fixed c > 0, let D̂Z =
(max(κ̂4,

c
N ))

2

48(σ̂2
Z)2

, where the
numerator is the square of a non-negative quantity and the
denominator is a positive empirical variance. Thus, D̂Z > 0
almost surely for every finite N .

By σ̃Z
a.s.−−→ σ2

Z , κ̃4
a.s.−−→ κ4, and the continuous mapping

theorem, we have D̂Z
a.s.]−−→ κ2

4

48σ4
Z

. From (11), D̂Z ≤ D̂Z .

Therefore, the estimator 0 < D̂Z ≤ D̂Z .

Appendix E.
Proof of Proposition 4

Fix any Q. The Follower’s problem is to find π∗(Q)
solving infπ∈Π W (Q, π). By definition

W (Q, π) = EX∼D,B∼Q [− log π(X|M(X) +B)]

−
∫
X ,Y,Rd

PX(x)GM,Q(y|x, b) log π(x|y + b)dxdydb,

where PX(x) is the density function associated with data
distribution D, and GM,Q(y|x, b) is the conditional density
function given M and Q.

Let ηQ : Y 7→ ∆(X ) denote the posterior distirbution
given PX and GM,Q. For any π ∈ Π, consider

W (Q, π)−W (Q, ηQ)

=

∫
X ,Y,Rd

PX(x)GM,Q(y|x, b) log ηQ(x|y + b)dxdydb

−
∫
X ,Y,Rd

PX(x)GM,Q(y|x, b) log π(x|y + b)dxdydb

=

∫
X ,Y,Rd

PX(x)GM,Q(y|x, b) log
ηQ(x|y + b)

π(x|y + b)
dxdydb.

Let
PQ(y) ≡

∫
X ,Rd

PX(x)GM,Q(y|x, b)dxdb.

By definition, we have

ηQPQ(y) =

∫
X
PX(x)GM,Q(y|x, b).

Thus, for all Q ∈ Γ,

W (Q, π)−W (Q, ηQ) = DKL(ηQ∥π) ≥ 0.

Then, W (Q, π) ≥ W (Q, ηQ), where the equality holds if
and only if π = ηQ. That is, for any Q ∈ Γ, there is a
unique π(Q) as a solution of infπ∈Π W (Q, π). In addition,
when π(Q) = ηQ, W (Q, π(Q)) is the conditional entropy.

Appendix F.
Proof of Proposition 5

Based on (iii) of Assumption 1, consider K(Q) =
EB∼Q

[
g(∥B∥)

]
, where g : R+ → R is strictly increasing

and strictly convex.
Suppose, to reach a contradiction, that an optimal Q⋆ is

isotropic with ΣQ⋆ = σ2Id and attains the constraint with
equality: H(X | M(X) +B) = β̂.

For small ∆v > 0 define the perturbed covariance

Σ′(∆v) ≡ (σ2 −∆v) vv
⊤ + (σ2 +∆u)uu

⊤ + σ2P{u,v}⊥ ,

with ∆u ∈ (0,∆v) to be chosen. Denote by h(σ2
u, σ

2
v) ≡

H(X|Y ) the conditional entropy evaluated at those direc-
tional variances.

Because h is C1 and strictly increasing in each argument,
we have

∂h

∂σ2
u

∣∣∣∣
σ2

>
∂h

∂σ2
v

∣∣∣∣
σ2

> 0.

Hence the map

ϕ∆v
(∆u) ≡ h(σ2 +∆u, σ

2 −∆v)

is continuous and strictly increasing near ∆u = 0, with

ϕ∆v
(0) = β̂ − ∂h

∂σ2
v

∆v + o(∆v) < β̂.

By the Intermediate Value Theorem, there exists a unique
∆u ∈ (0,∆v) such that ϕ∆v (∆u) = β̂, i.e. the perturbed
noise Q′ satisfies the privacy constraint exactly.

Because g is strictly convex,

g(σ2 +∆u)− g(σ2) < g′(σ2)∆u,

g(σ2 −∆v)− g(σ2) > g′(σ2)(−∆v).

Therefore K(Q′)−K(Q⋆) < g′(σ2)(∆u−∆v) < 0. That is,
Q′ is feasible and cheaper than Q⋆, contradicting optimality.
Hence no optimum can be isotropic, so every minimiser
must have λmax(Σ) > λmin(Σ).

Appendix G.
Proof of Proposition 6

G.1. Part (i):

Since entropy is maximised by a Gaussian with fixed
covariance, the entropy-power inequality give

H(Z +Bpac) < H(ZG +Bpac),

where ZG is Gaussian with covariance ΣZ . Thus, MI(Z;Z+
Bpac) < MI(ZG;ZG + Bpac) = β. To raise the mutual
information back up to β, we can strictly reduce every direc-
tional variance of Bpac. The optimizer Q∗ therefore expands
strictly less power. That is, EQ∗ [∥B∥22] < E[∥Bpac∥22].



G.2. Part (ii):

Let σ2
w ≡ Var⟨B,w⟩. Form the Lagrangian

L(Q,λ) = EQ[∥B∥22] + λ
(
MI(Z;Z +B)− β

)
.

For the stationarity condition w.r.t. each σ2
w we need the

gradient of mutual information. By [45], we have

∂σ2
w
MI(Z;Z +B) = g(w).

Hence ∂σ2
w
L = 1 + λ g(w). The KKT conditions therefore

read

1 + λg(w) = 0 if σ2
w > 0, 1 + λg(w) ≥ 0 if σ2

w = 0,

for a unique λ < 0. Under the assumption

sup
v∈Slab,∥v∥=1

g(v) < inf
w⊥Slab,∥w∥=1

g(w),

these equalities can hold only for as long as the required
mutual information reduction does not exceed βlab. There-
fore, σ2

v = 0 for every v ∈ Slab. With those label-directions
undisturbed, each class margin eℓ − ej retains its sign,
whence argmaxi(Zi +B⋆

i ) = ŷ.

Appendix H.
Proof of Theorem 6

H.1. Part (i)

Let Z =M(X) +B. For SR-PAC, the perurbation rule
QSR satisfies H(X|Z) = H(X)−β. By definition, we have
MISR(β) = β. Thus, PrivSRβ = 1.

For Auto-PAC, the noise BPAC ∼ N (0,ΣBPAC
(β))

satisfies 1
2 log det

(
Id +ΣM(X)Σ

−1
BPAC

(β)
)
= β. By Propo-

sition 1, the true mutual information is

MIPAC(β) = β − Gapd(β),

where Gapd(β) = DKL(PM,BPAC
∥Q̃M) ≥ 0. When M(X)

is non-Gaussian, Gapd(β) > 0 for all β > 0. By de Bruijin’s
idensity (e.g., [46]),

d

dβ
Gapd(β) =

1

2
J (PM+BPAC]

(β)∥Q̃M) > 0,

where J (·∥·) is the relative Fisher information. Thus,
PrivPAC

β = d
dβMIPAC(β) < 1 = MISR(β).

H.2. Part (ii)

It is well known that for a fixed prior, mutual information
is convex in the channel law. When Z =M(X) + B, the
“channel law” in our setting of the deterministic mechanism
is determined by the perturbation rule Q. Thus, the mapping
Q 7→ MI(Q) ≡ MI(X;M(X) +B is convex. The objective
K(Q) = EQ[∥B∥22] is linear (hence convex) in Q. In
addition, the constraint set {Q : MI(Q) ≤ β} is convex.
Then, Slater’s condition holds because:

(i) when ΣB →∞, MI(Q)→ 0 < β;
(ii) V (β) is finite for all β > 0 since E[∥M(X)∥22] <

∞.

Hence, the strong duality applies here. Thus, V (β) is convex
and differentiable. The primal-dual problem is formulated as

V̂ (β) =∈Q max
λ
K(Q) + λ(MI(Q)− β).

The envelop theorem implies V̂ ′(β) = λ∗(β) > 0, where
λ∗(β) is the unique optimal dual variable (because K(Q)+
λ(MI(Q) − β) is strict convex in Q for λ > 0). Therefore,
λ∗(β) is non-decreasing.

Let β̃(β) = β − Gapd(Q(β)) < β. Since the Gaussian
noise BPAC(β) satisfies MIPAC(BpAC(β)) = β̃(β), we have

VPAC(β) = K(BPAC(β)) ≥ V (β̃(β)).

Since β̃(β) < β and V is strictly increasing, V (β̃(β)) >
V (β). Therefore, for all β > 0,

∆(β) ≡ VPAC(β)− VSR(β) > 0,

and limβ→0+ ∆(β) = 0.
By Lemma 2 (stated and proved below) to g(β) =

VPAC(β) and f(β) = V (β), we have g′(β) > f ′(β) for
all β > 0. That is, V ′

PAC(β) > V ′
SR(β). Thus, UtilSRβ ≥

UtilPAC
β , with equality only for Gaussian M(X).

Lemma 2 (Height gap⇒ slope gap). Let g, f : (0,∞)→R
be differentiable, and assume f is convex. If g(β) > f(β)
for every β > 0 and g(0) = f(0), then g′(β) > f ′(β) for
every β > 0.

Proof. Fix β > 0. For h > 0 small, f(β + h) ≥ f(β) +
hf ′(β) by convexity. Hence

g(β + h)− g(β)

h
≥ f ′(β) +

g(β)− f(β)

h
.

Sending h ↓ 0 gives g′(β) ≥ f ′(β). If equality held we
would need g(β) = f(β), contradicting the strict height
gap. Hence g′(β) > f ′(β).


