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Abstract

Synthetic time series generated by diffusion models enable sharing privacy-
sensitive datasets, such as patients’ functional MRI records. Key criteria for
synthetic data include high data utility and traceability to verify the data source.
Recent watermarking methods embed in homogeneous latent spaces, but state-
of-the-art time series generators operate in real space—making latent-based wa-
termarking incompatible. This creates the challenge of watermarking directly
in real space while handling feature heterogeneity and temporal dependencies.
We propose TimeWak, the first watermarking algorithm for multivariate time se-
ries diffusion models. To handle temporal dependence and spatial heterogeneity,
TimeWak embeds a temporal chained-hashing watermark directly within the real
temporal-feature space. The other unique feature is the ϵ-exact inversion, which
addresses the non-uniform reconstruction error distribution across features from
inverting the diffusion process to detect watermarks. We derive the error bound of
inverting multivariate time series and further maintain high watermark detectabil-
ity. We extensively evaluate TimeWak on its impact on synthetic data quality,
watermark detectability, and robustness under various post-editing attacks, against
5 datasets and baselines of different temporal lengths. Our results show that
TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in
correlational scores against strongest state-of-the-art baseline, while remaining
consistently detectable. Our code can be accessed at the repository linked below:
https://github.com/soizhiwen/TimeWak.

1 Introduction

Multivariate time series data drive key applications in healthcare [18], finance [12], and science [24].
However, access to real-world datasets is often restricted by privacy regulations, limited availability,
and high acquisition costs. To address these issues, synthetic time series generated by models are
increasingly adopted as practical alternatives [8, 24]. Among generative techniques, diffusion models
[9] have gained prominence for producing high-quality samples—frequently outperforming the
mainstream Generative Adversarial Networks and Variational Autoencoders [5, 11].

Beyond generation quality, traceability is equally critical—ensuring verifiability to safeguard against
misuse [17, 40]. In this context, watermarking has become the de-facto approach for tracking
and auditing synthetic data [30, 17]. The challenge lies in striking a delicate balance: embedding
imperceptible signals to retain the quality of generated content whilst remaining detectable—even
under post-processing [39]. Recent works embed watermarks during generation by adding them
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into the latent space, offerring advantages such as generality and lightweight computation [30, 40].
However, latent-space watermarks are not always viable, especially since many state-of-the-art (SotA)
time series generators operate within the real space [25, 1, 32]. Additionally, latent generators
introduce a tradeoff in detectability—diffusion inversion and the encode–decode cycle are inherently
lossy, degrading the watermarks [20].

While sampling-time watermarks have proven effective for images [30] and tables [40], their ap-
plicability to time series data remains unexplored. Multivariate time series data possess temporal
dependencies and heterogeneous features, like gender versus income. The ensuing challenges are
twofold: (i) embedding watermarks directly in the real space while preserving inter- and intra-variate
temporal dependencies of the generated time series, and (ii) ensuring accurate watermark detection
despite the lossy nature of diffusion inversion, whilst handling mixed feature types.

We propose TimeWak, the first sampling-time watermark for multivariate time series diffusion models,
featuring temporal chained-hashing with ϵ-exact inversion. TimeWak first embeds cyclic watermark
patterns, i.e., the positional seeds of Gaussian noises, along the temporal direction. First, we self-
hash the seeds along the temporal axis, then shuffle the seeds across features to maintain temporal
correlations while preserving the unique characteristics of each feature. To ensure reliable watermark
detection, we introduce an ϵ-exact inversion strategy that makes a practical concession in the otherwise
exactly invertible diffusion process: the Bi-Directional Integration Approximation (BDIA) [34]. We
further provide theoretical guarantees on the resulting inversion error in Appendix C.

We evaluate TimeWak against five SotA watermarking methods on five datasets under varying tempo-
ral lengths. TimeWak achieves the best detectability under six post-editing attack configurations with
the minimum data quality degradation. Additionally, results show that TimeWak preserves temporal
and cross-variate dependencies with high quality with near-exact watermark bit reconstruction. To
summarize, we list our contributions as follows:

• We propose TimeWak, the first sampling-time watermarking scheme for multivariate time series
diffusion models, preserving realistic spatio-temporal dependencies while remaining detectable.

• To preserve temporal characteristics and boost robustness against post-processing operations, we
design a temporal chained-hashing scheme that embeds watermark seeds along the temporal
direction, followed by a shuffle across features.

• For robust detectability, we propose ϵ-exact inversion by extending BDIA sampling into a real-space
diffusion generator, and provide a theoretical error bound analysis.

• Our extensive evaluation shows that TimeWak achieves up to 61.96% better context-FID scores
and 8.44% better correlation scores compared to the strongest SotA watermarking method.

2 Related work

We summarize related works on watermarking diffusion models according to their generating method
(post-processing or sampling-time generation), and data modality. To the best of our knowledge, our
work is the first sampling-time watermarking scheme for time series diffusion models.

Watermarking diffusion models. Watermarking has become a critical solution for tracing and
authenticating machine-generated content. Post-generation techniques embed watermarks after syn-
thesis, often degrading the generated data’s quality due to direct modifications [4, 37]. Alternatively,
recent advancements embed watermarks within the training process. Studies such as Stable Signa-
ture [6] and FixedWM [17] fine-tune diffusion models to embed and extract watermarks. However,
these methods modify model parameters, risking overfitting which hurts generalizability.

Watermarking images. Tree-Ring (TR) [28] embeds the watermark during sampling by modifying
the initial noise latent vector in the Fourier space. However, it disrupts the Gaussian noise distribution,
reducing the diversity and quality of generated samples. Gaussian Shading (GS) [30] improves
robustness by embedding watermarks directly in the latent space using invertible transformations.
However, GS is tailored towards images and requires reversing synthetic samples into the latent space
for detection—a noisy and error-prone process that limits detection accuracy.

Watermarking tables. TabWak [40] watermarks tabular data in latent space using seeded self-cloning,
shuffling with a secret key, and a valid-bit mechanism. However, it relies on latent models and does
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Figure 1: Overview of TimeWak. First, we assign random seeds at the beginning of each interval. 1⃝
Temporally chained-hashing. A, B, and C ( pink ) show seeds being copied from the previous step
and the feature order shuffled. 2⃝ Shuffling the seed for each series. Positional indices are highlighted
in green . 3⃝ Constructing an initial Gaussian noise. 4⃝ Generating multivariate time series. 5⃝
Reversing the diffusion process. 6⃝ Recovering the watermark seed. 7⃝ Comparing the recovered
seed with its hash. 8⃝ Bit accuracy between the hash and recovered seed.

not account for temporal dependencies in a time series. Furthermore, its detectability is limited by
the invertibility of the diffusion process and the lossy conversion to and from latent representations.

3 TimeWak

We first highlight the unique challenges of watermarking multivariate time series, motivating the
design of TimeWak, shown in Figure 1. Then we introduce TimeWak’s key novelties: (i) temporal
chained-hashing the watermark seeds cyclically along the temporal axis; (ii) shuffling the seeds across
features, accounting for feature heterogeneity in the time series; and (iii) an adapted BDIA-DDIM
sampling method with a theoretically bounded ϵ-exact inversion, enhancing robust detectability. Key
notations are summarized in Appendix A.

3.1 Time series diffusion and observations

Time series diffusion. We define a time series sample of F features (variates) and W timesteps as
x0 ∈ RW×F , with xw,f

0 denoting the value of feature f at timestep w. Unlike image and tabular
diffusion, SotA time series diffusion models operate on the real space, which have heterogeneous
features, e.g., income v.s. gender, and temporal dependence [25, 1, 32]. These time series generators
use Denoising Diffusion Implicit Models (DDIM) [22] to synthesize timeseries starting from Gaussian
noise, xT , by iteratively denoising over T steps, i.e., xT ,xT−1, . . . ,x0. Specifically, DDIM sets the
state xt−1 at diffusion step t− 1 as follows:

xt−1 = αt−1

(
xt − σtϵ̂θ(xt, t)

αt

)
+ σt−1ϵ̂θ(xt, t), (1)

where αt and σt are time-dependent diffusion coefficients, and ϵ̂θ represents the model’s noise
estimate. DDIM approximates xt as follows:

xt = αt

(
xt−1 − σt−1ϵ̂θ(xt, t)

αt−1

)
+ σtϵ̂θ(xt, t) ≈ αt

(
xt−1 − σt−1ϵ̂θ(xt−1, t)

αt−1

)
+ σtϵ̂θ(xt−1, t).

(2)

However, this approximation introduces errors, producing inconsistencies between the forward and
backward processes. It also introduces the following timeseries-specific watermarking challenges:

Spatial heterogeneity. Watermarks must be embedded directly within the temporal and feature
spaces of the data. Features can be very diverse, e.g., gender vs. income distribution, which increases
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Figure 2: Average reconstruction error distribution across feature indices and timesteps on Diffusion-
TS with DDIM and DDIM inversion. Reconstruction error is the signed absolute difference between
reconstructed and original values.

the difficulty of detecting watermarks. Specifically, the key detection step inverts the timeseries
back to Gaussian noise. Unfortunately, this inversion process is inexact, yielding reconstruction
errors during noise-estimation. Figure 2 shows the impact of heterogeneity on the reconstruction
errors for the Energy and MuJoCo datasets. Due to spatial heterogeneity, the reconstruction errors
across the features vary significantly more than they do along the temporal axis. Existing tabular
watermarks [40] implicitly assume a uniform distribution across features and compare watermark
seeds across features—preventing reliable watermark verifications in multivariate time series.

Temporal dependence. Time series consist of values that are inherently correlated across timesteps.
It is critical to preserve such temporal consistencies when generating time series. Consequently,
reconstruction errors are not fully independent across timesteps within each sample—errors at neigh-
bouring timesteps often exhibit stronger correlations than more distant ones. To ensure robustness,
solutions must embed the watermark in a way that respects these temporal dependencies while
remaining detectable. This requires designing watermarking strategies that align with the sequential
nature of time series diffusion models, invalidating the applicability of existing watermark approaches
that neglect the temporal dependence of time series data.

3.2 TimeWak algorithm

To address the challenges of spatial heterogeneity and temporal dependence, we propose TimeWak, a
method that enables per-sample watermark detection while mitigating non-uniform reconstruction
errors across features and preserving temporal structure. Through a structured propagation mechanism,
TimeWak enhances the watermark’s robustness, even in the presence of inversion errors.

Overview. Following Figure 1, we provide an overview of TimeWak for embedding and recovering
the watermark using permutation keys:

1. Embedding I: generating watermark seeds (s). We first split a multivariate time series into
intervals along the time axis, then we randomly sample seeds sw,[:] (with values in {0, 1}) at the
start of each interval. 1⃝We temporally chain-hash the seeds in a cyclic manner across timesteps
until the end of the current interval, by applying a unique permutation key at each timestep. Then,
2⃝ we independently shuffle the seeds for each feature using distinct permutation keys.

2. Embedding II: generating time series from the watermarked seeds (s+ xT → x0). 3⃝ Sampling
from a feature-wise pseudo-random Gaussian distribution based on all the aforementioned seeds,
where the seeds determine the sign of the sampled values (sw,f = 1 becomes positive, sw,f = 0
becomes negative). These noise signals are used as input to a BDIA variant of a DDIM diffusion
model, which is then 4⃝ used to generate a multivariate time series. An attack, such as a random
crop attack, may occur at this stage.

3. Detection I: inversion of the time series (x0 → x̂T ). 5⃝ The inverse BDIA-DDIM process is
applied to the time series, inverting it to Gaussian noise x̂T . Then 6⃝ we reverse-sample each
time series to get the seeds (positive values become 1, negative values become 0); we now have
the shuffled seed features.

4. Detection II: watermark detection (x̂T → ŝ). Given shuffled seeded features, we 7⃝ unshuffle
the seeds in the opposite way they were shuffled (using the inverse of the permutation keys of
step 2⃝), to obtain the retrieved seed features ŝ. We then 8⃝ verify the hash of these retrieved
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seed features by comparing them with the original temporal chained-hash seeds s, for which we
compute the bit accuracy between the hashed and recovered versions of each seed.

3.2.1 Chained-hashing watermark seeds (s+ xT → x0)

Existing watermarking methods assign a watermark seed to each feature dimension with L bits,
forming a seed matrix of dimensions W × F , denoted as s ∈ RW×F , where W and F are the
respective total timesteps and total features of the time series [30, 40]. However, such approaches lack
the ability to leverage temporal dependencies and may introduce inconsistencies across timesteps.
To improve the watermark’s temporal coherence, we partition the time series data into n = ⌊W/H⌋
non-overlapping intervals, each of length H . At the start of each interval, the watermark seed across
all features, skH+1,[:] ∈ RF , is sampled from a discrete uniform distribution U ({0, L− 1})F , with
[:] denoting all indices along a dimension.

Within each interval, the watermark seed evolves over timesteps using a temporal chained-hashing
mechanism. Specifically, for all features, the seed at timestep w is recursively derived from the seed
at the previous timestep w − 1, ensuring temporal consistency. Formally, for k = 0, . . . , n− 1, we
initialize the watermark seed as:

sw,[:] =

{
U ({0, L− 1})F if w = kH + 1,

H
(
κ,w, sw−1,[:]

)
otherwise,

(3)

where κ is a cryptographic key controlling the hashing process, H is a deterministic permutation
hash function ensuring temporal consistency, and U ({0, L− 1})F is a vector of F i.i.d discrete
uniform samples over {0, 1, . . . , L− 1}. The parameter n = ⌊W/H⌋ denotes the total integer count
of intervals, while k indexes the intervals, ranging from 0 to n−1. While temporal chaining preserves
coherence across timesteps by linking each seed to its past, it may lead to repetitive patterns across
intervals. To increase diversity, we further permute the seeds along the temporal axis for each feature:

s[:],f ← πκ(s
[:],f ), (4)

where πκ is a permutation function parameterized by the cryptographic key κ. This step preserves
inter-feature seed correlations while adding generation diversity.

After obtaining the watermark seed, we construct an initial Gaussian noise sample as follows. First,
we draw a variable from the continuous uniform distribution u ∼ U(0, 1) and use it to generate the
noise variable xw,f

T at diffusion step T as:

xw,f
T = Φ−1

(
u+ sw,f

L

)
, (5)

where Φ−1(·) is the percent point function (PPF) of the standard Gaussian distribution Φ(·), and sw,f

is the watermark seed for feature f at timestep w. Finally, the final time series sample x0 is obtained
by denoising the initial noise xT with the learned diffusion model.

3.2.2 ϵ-Exact inversion (x0 → x̂T )

Here, we propose a near-lossless inversion procedure by adopting the Bi-directional Integration
Approximation (BDIA) technique [35], a novel approach to address inconsistencies in DDIM inver-
sion [23]. We introduce a practical approximation in BDIA by removing the assumption of known
x1, and derive the resulting bound of the inversion error. BDIA improves upon DDIM by jointly
leveraging the forward and backward diffusion updates. Specifically, obtaining each xt−1 as a linear
combination of (xt+1,xt, ϵ̂θ(xt, t)), where ϵ̂θ represents the noise estimator of the diffusion model:

xt−1 = γ (xt+1 − xt)− γ

(
xt

at+1
− bt+1

at+1
ϵ̂θ(xt, t)− xt

)
+ (atxt + btϵ̂θ(xt, t)) , (6)

where γ ∈ [0, 1], at and bt are differentiable functions of t with bounded derivatives. Consequently,
the inversion process can be directly calculated without approximation as follows:

xt+1 =
xt−1

γ
− 1

γ
(atxt + btϵ̂θ(xt, t)) +

(
xt

at+1
− bt+1

at+1
ϵ̂θ(xt, t)

)
. (7)
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By design, the introduced symmetry ensures time-reversible updates, meaning that if xt and xt−1 are
known, xt+1 can be computed without error. However, obtaining an exact inversion requires knowing
both x1 and x0, the latter of which is available only as the model’s denoised sample in practice.

To address this limitation, we introduce an adaptation to BDIA: we directly approximate x1 by
equating it to x0. This seemingly simple estimation effectively enables practical application of BDIA
while maintaining reasonable accuracy. To quantify the estimation error, we establish Theorem 3.1,
which demonstrates that the final error remains bounded in terms of the initial estimation ϵ = x1−x2.
We refer to this property as ‘ϵ-exact’ inversion. We defer our proof of Theorem 3.1 to Appendix C.

Theorem 3.1. Let {xt}Tt=0 be the sequence of diffusion states governed by the BDIA-DDIM recur-
rence for a given dataset, following Equation (7). Given the noise estimator ϵ̂θ follows Assumption 1.
Suppose that instead of the exact terminal state x1, an approximation of x1, termed as xapprox

1 , is
used with a small perturbation ϵ, given by:

xapprox
1 = x2 = xorig

1 + ϵ. (8)

Let the propagated error at time t be defined as,

δt = ∥xapprox
t − xorig

t ∥. (9)

Then, for all t ≥ 1, the error is bounded by,

∥δT ∥ ≤ |ϵ|
T−1∏
t=1

(∣∣∣∣ 1γ − at
γ

+
1

at+1

∣∣∣∣+ bt
γ
∆t +

bt+1

at+1
∆t

)
, (10)

where ∆t quantifies the sensitivity of the noise estimator at timestep t.

Assumption 1 (Lipschitz continuity of the noise estimator). There exists a time-dependent constant
∆t > 0 and δt > 0 such that, for any diffusion state xorig

t encountered during sampling from a given
dataset and any xapprox

t satisfying ∥xapprox
t − xorig

t ∥ ≤ δt, the noise estimator ϵ̂θ satisfies the Lipschitz
condition:

∥ϵ̂θ(xapprox
t , t)− ϵ̂θ(x

orig
t , t)∥ ≤ ∆t

∥∥∥xapprox
t − xorig

t

∥∥∥ . (11)

3.2.3 Watermark detection (x0 → x̂T → ŝ)

To verify the presence of TimeWak’s watermark in a generated time series, we first recover the initial
noise used in the generative process via diffusion inversion. Given a time series instance x0, we
estimate the initial noise x̂T through inversion. The watermark seed at each timestep and feature is
then recovered by inverting the Gaussian mapping as follows:

ŝw,f = ⌊L · Φ(x̂w,f
T )⌋, (12)

where Φ(·) is the cumulative distribution function (CDF) of the standard Gaussian distribution. This
operation reconstructs the discrete watermark values embedded during sample generation.

Since the watermarking mechanism applies a feature-wise permutation controlled by a cryptographic
key, the extracted watermark values are initially shuffled across feature dimensions. We restore the
original seed assignments along the timesteps using the inverse permutation:

ŝ[:],f ← π−1
κ (ŝ[:],f ). (13)

Beyond feature-space consistency, the extracted watermark sequence should exhibit structured
temporal dependencies. Specifically, the watermark seed at each step must follow a predefined hash
function, given by:

∀w ̸= kH + 1, ŝw,[:] = H(κ,w, ŝw−1,[:]). (14)

To quantify detection confidence, we compute the bit accuracy of the extracted watermark sequence,
measuring the proportion of correctly recovered bits:

Acc =
1

|W∗|F
∑

w∈W∗

F∑
f=1

I
[
ŝw,f = sw,f

]
, (15)

6



where I[ · ] is an indicator function that evaluates to 1 if the extracted bit matches the ground-
truth watermark, and W∗ = {w | w ̸= kH + 1} represents the valid timesteps for comparison.
By combining diffusion inversion, feature unshuffling, and temporal consistency verification, this
detection framework ensures robust identification of watermarked time series samples.

To assess the statistical significance, we compute the Z-score to measure how strongly the observed
bit accuracy deviates from the expected accuracy under a null hypothesis, detailed in Appendix D.2.

4 Evaluation

4.1 Experiments setup

Datasets. We use five time series datasets to evaluate TimeWak’s impact on generation quality,
watermark detection accuracy, and robustness towards post-editing operations. These are: Stocks [31],
ETTh [38], MuJoCo [26], Energy [2], and fMRI [21]. Additional dataset details are in Appendix D.1.

Metrics. Synthetic data quality: Context-FID score [10] measures the closeness between the real and
synthetic time series distributions using the Fréchet distance [7]. Correlational score [14] measures
the cross-correlation error between the real and synthetic multivariates. Discriminative score [31]
trains a classifier to distinguish between synthetic and real data, with low scores implying they are
indistinguishable. Predictive score [31] measures the downstream task performance by training a
sequence model on the synthetic data and evaluating on real data. Watermark detectability: Z-score
quantifies the difference in mean values between synthetic data with and without the watermark, with
larger positive values indicating better detectability. TPR@X% FPR measures the True Positive Rate
(TPR) at a fixed False Positive Rate (FPR) of X% in detecting watermarked time series. We provide
additional details on these metrics in Appendix D.2.

Baselines. We compare against three sampling-based diffusion watermarks: TR [28], GS [30],
and TabWak [40]. We also compare with TabWak⊤, an adaptation of TabWak that transposes the
representation and watermarks along the temporal axis instead of feature-wise. We also compare
against a post-generation watermarking method for time series, Heads Tails Watermark (HTW),
which embeds a watermark by slightly adjusting the time series values by assigning a ‘heads’ or ‘tails’
based on a predefined ratio on the proportion of ‘heads’ values [27]. Detailed implementations of
these methods are provided in Appendix D.3. Hardware specifications are detailed in Appendix D.4.

4.2 Synthetic data quality and watermark detectability

When evaluating synthetic time series quality, Table 1 shows that TimeWak consistently delivers
top-tier performance across all metrics, outperforming or comparable to other baselines like HTW
and TabWak⊤. While HTW sometimes surpasses un-watermarked data, possibly due to subtle
perturbations introduced during watermarking that unintentionally bring synthetic samples closer
to the ground truth, it fails to offer strong detectability, as reflected in its low Z-scores. In contrast,
TimeWak and TabWak⊤ offer a far more favorable trade-off between quality and detectability. When
benchmarked against TabWak⊤, TimeWak shows substantial gains, achieving up to 61.96% better
Context-FID score on MuJoCo and 8.44% better correlation score on fMRI. Moreover, low discrimi-
native and predictive scores further emphasize that TimeWak’s watermarking remains imperceptible
and does not degrade downstream utility. This is made possible by its temporal chained-hashing
mechanism, which precisely embeds the watermark while preserving both temporal structure and
inter-variate relationships. Meanwhile, traditional image-based watermarking methods such as TR
and GS perform poorly across all quality metrics. These methods struggle with time series data
because they are optimized for spatial domains. Time series, however, are governed by temporal
continuity and feature heterogeneity, thus requiring fundamentally different treatment.

TimeWak achieves significant improvements in detection performance. Using ϵ-exact inversion via
BDIA-DDIM, it reconstructs high-fidelity noise estimates x̂T that closely resemble the ground truth
xT . This results in consistently higher Z-scores across all datasets, outperforming all baselines, except
on the fMRI dataset, where TabWak⊤ slightly edges out. Unlike GS, which maintains moderate
detection at the cost of quality, or TR, which fails on both fronts, TimeWak delivers strong detectability
without compromising fidelity.
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Table 1: Results of synthetic time series quality and watermark detectability. No watermarking
(‘W/O’) is included. Quality metrics are for 24-length sequences. Best results are in bold, and
second-best are underlined.

Quality Metric ↓ Z-score ↑
Dataset Method Context-FID Correlational Discriminative Predictive 24-length 64-length 128-length

Stocks

W/O 0.258±0.047 0.027±0.015 0.120±0.049 0.038±0.000 - - -
TR 1.069±0.231 0.091±0.007 0.209±0.056 0.039±0.000 0.43±0.04 0.40±0.08 0.08±0.10

GS 8.802±2.415 0.052±0.026 0.403±0.031 0.041±0.003 86.07±0.74 148.92±1.08 172.23±1.08

HTW 0.279±0.052 0.017±0.003 0.122±0.034 0.037±0.000 4.45±0.62 7.34±0.94 10.39±1.33

TabWak 0.292±0.064 0.017±0.012 0.124±0.024 0.038±0.000 -67.22±1.17 16.14±0.89 -10.49±1.28

TabWak⊤ 0.314±0.071 0.016±0.017 0.132±0.022 0.037±0.000 55.39±0.86 88.81±0.82 129.39±0.90

TimeWak 0.277±0.019 0.020±0.018 0.120±0.039 0.038±0.000 182.10±0.73 395.34±1.24 550.05±1.18

ETTh

W/O 0.232±0.018 0.086±0.023 0.093±0.016 0.120±0.009 - - -
TR 1.570±0.102 0.187±0.017 0.283±0.020 0.134±0.004 7.84±0.12 7.73±0.13 6.18±0.16

GS 4.530±0.393 0.433±0.017 0.390±0.015 0.169±0.007 101.07±1.17 197.41±2.10 327.47±4.44

HTW 0.243±0.024 0.077±0.025 0.103±0.003 0.123±0.002 3.43±0.83 5.08±1.48 6.84±2.22

TabWak 0.251±0.027 0.335±0.029 0.085±0.013 0.125±0.002 -14.95±1.08 -6.16±1.18 -20.57±0.96

TabWak⊤ 0.450±0.057 0.116±0.020 0.096±0.014 0.120±0.005 109.35±0.91 162.44±1.11 235.03±1.48

TimeWak 0.237±0.017 0.212±0.043 0.102±0.014 0.122±0.002 134.83±0.95 236.08±1.63 340.36±2.06

MuJoCo

W/O 0.065±0.011 0.419±0.084 0.032±0.026 0.008±0.001 - - -
TR 1.512±0.179 1.153±0.065 0.261±0.069 0.015±0.003 1.38±0.03 1.49±0.04 1.31±0.04

GS 6.548±1.267 1.327±0.061 0.474±0.006 0.014±0.002 21.13±0.77 10.13±0.62 39.63±0.71

HTW 0.261±0.067 0.493±0.056 0.413±0.024 0.010±0.002 2.89±0.54 3.41±0.96 4.20±1.37

TabWak 0.545±0.122 0.975±0.061 0.207±0.046 0.009±0.001 31.30±1.07 1.26±0.96 -3.00±1.04

TabWak⊤ 0.234±0.032 0.463±0.059 0.123±0.011 0.007±0.001 -4.85±0.87 -4.51±0.85 3.91±0.88

TimeWak 0.089±0.017 0.532±0.137 0.044±0.021 0.008±0.001 85.69±1.08 56.45±1.26 123.36±1.43

Energy

W/O 0.118±0.021 1.245±0.236 0.137±0.014 0.253±0.000 - - -
TR 0.649±0.128 3.870±0.537 0.455±0.017 0.337±0.007 9.51±0.09 17.29±0.11 22.58±0.19

GS 1.480±0.273 3.831±0.272 0.494±0.004 0.330±0.004 51.22±0.88 68.67±1.20 45.42±1.05

HTW 0.099±0.009 1.312±0.280 0.138±0.019 0.253±0.000 3.06±0.36 4.30±0.68 5.42±1.00

TabWak 0.179±0.027 2.724±0.203 0.162±0.011 0.255±0.001 3.26±0.89 3.86±1.02 0.57±0.87

TabWak⊤ 0.213±0.024 1.740±0.290 0.129±0.013 0.265±0.004 40.82±0.81 46.68±0.86 26.00±1.12

TimeWak 0.121±0.016 1.977±0.750 0.142±0.008 0.254±0.000 231.28±1.45 267.53±2.60 245.37±2.88

fMRI

W/O 0.190±0.006 1.952±0.087 0.132±0.027 0.100±0.000 - - -
TR 2.474±0.341 13.312±0.254 0.496±0.003 0.146±0.004 6.49±0.05 8.25±0.05 9.94±0.04

GS 0.714±0.051 14.628±0.052 0.499±0.001 0.108±0.001 420.02±1.44 321.52±0.59 701.90±0.72

HTW 0.180±0.011 1.900±0.047 0.140±0.019 0.100±0.000 4.32±0.22 6.80±0.41 9.43±0.61

TabWak 0.326±0.042 6.825±0.395 0.452±0.092 0.112±0.000 84.02±1.04 204.16±0.82 47.29±0.83

TabWak⊤ 0.350±0.014 2.191±0.095 0.208±0.049 0.101±0.000 464.67±0.50 743.33±0.55 1031.96±0.79
TimeWak 0.199±0.010 2.006±0.053 0.122±0.033 0.100±0.000 379.51±0.82 595.68±1.03 526.81±13.12

This strength is further shown in Figure 3, which plots TPR@0.1% FPR on 64-length sequences
as a function of the number of samples. Across all settings, TimeWak consistently outperforms GS
and TabWak⊤, achieving significantly higher TPR values. Notably, TimeWak reaches a perfect TPR
of 1.0 in all cases—requiring just one sample in three settings and two in the remaining one. This
high sensitivity makes TimeWak well-suited for real-world use, where only limited samples may be
available. Additional results are provided in Appendix E.6.
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Figure 3: TPR@0.1% FPR against number of samples across five datasets under 64-length sequences.

4.3 Robustness against post-editing attacks

To evaluate the robustness, we first design a set of post-editing attacks. Offsetting perturbs the time
series by adding a constant offset to each feature—based on 5% or 30% of its magnitude—applied
uniformly across all timesteps. Random cropping masks out a subregion of the time series by a fixed
proportion (5% or 30%), along the rows and columns, similar to the image domain [30]. The min-max
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Table 2: Results of robustness against post-editing attacks. Average Z-score on 64-length sequences,
including un-attacked scores from Table 1. Best results are in bold, and second-best are underlined.

Without
Attack

Offset ↑ Random Crop ↑ Min-Max Insertion ↑
Dataset Method 5% 30% 5% 30% 5% 30%

Stocks

TR 0.40±0.08 0.35±0.07 0.17±0.09 57.09±1.09 76.87±1.29 0.99±0.10 5.43±0.18

GS 148.92±1.08 152.81±1.33 164.23±1.54 42.53±1.11 32.80±0.78 136.73±0.90 77.20±0.86

HTW 7.34±0.94 7.34±0.94 7.34±0.94 -0.81±0.42 -0.92±0.32 6.41±1.16 2.72±1.15

TabWak 16.14±0.89 25.74±1.04 45.02±1.40 40.59±1.16 19.71±1.06 19.11±0.75 30.87±0.45

TabWak⊤ 88.81±0.82 88.84±0.85 85.87±0.86 30.55±0.92 1.71±0.87 65.25±0.79 15.10±0.56

TimeWak 395.34±1.24 375.96±0.96 371.04±1.02 78.20±2.23 10.40±1.05 296.60±1.62 83.74±1.55

ETTh

TR 7.73±0.13 7.96±0.11 8.83±0.12 27.22±0.39 38.53±0.32 21.86±0.26 49.85±0.64

GS 197.41±2.10 186.62±2.21 159.04±2.20 105.11±2.09 -39.87±1.24 182.03±2.09 105.23±1.21
HTW 5.08±1.48 5.08±1.48 5.08±1.48 0.54±1.33 -1.99±0.80 4.47±1.45 2.03±1.08

TabWak -6.16±1.18 -2.75±1.29 4.92±1.52 84.37±2.67 88.07±2.59 4.29±0.94 36.83±0.71

TabWak⊤ 162.44±1.11 157.75±1.09 135.66±1.23 70.38±1.16 10.79±1.14 99.23±0.96 9.01±0.80

TimeWak 236.08±1.63 243.86±1.61 207.90±1.70 75.35±1.18 2.47±1.08 171.51±1.46 27.78±1.22

MuJoCo

TR 1.49±0.04 1.46±0.03 1.54±0.03 7.14±0.08 7.17±0.07 6.09±0.11 14.83±0.22
GS 10.13±0.62 10.35±0.69 8.76±0.75 28.99±0.80 10.09±0.91 9.35±0.76 10.40±1.07

HTW 3.41±0.96 3.41±0.96 3.41±0.96 1.13±0.78 -1.32±0.67 3.09±0.91 1.67±0.65

TabWak 1.26±0.96 0.48±0.89 5.48±1.22 -1.75±1.21 -6.65±0.71 -0.57±0.91 -0.31±0.59

TabWak⊤ -4.51±0.85 -3.46±0.99 -0.24±0.94 -32.20±1.04 -42.74±1.25 -34.16±0.90 -80.63±1.05

TimeWak 56.45±1.26 58.90±1.36 51.53±1.31 49.30±1.20 1.85±1.12 36.59±1.19 10.35±1.18

Energy

TR 17.29±0.11 16.74±0.11 15.09±0.09 128.26±0.39 148.31±0.29 37.72±0.20 75.09±0.29
GS 68.67±1.20 63.93±1.09 54.84±1.09 66.30±0.99 96.29±0.80 66.40±1.27 53.06±1.65

HTW 4.30±0.68 4.30±0.68 4.30±0.68 0.40±0.48 -0.60±0.34 3.87±0.66 2.03±0.48

TabWak 3.86±1.02 -5.32±1.01 -8.99±1.03 -8.31±0.65 9.94±0.60 4.21±0.78 2.67±0.36

TabWak⊤ 46.68±0.86 43.10±0.84 42.38±0.89 12.26±1.01 -49.34±1.74 11.87±0.85 -43.15±0.71

TimeWak 267.53±2.60 296.74±2.49 191.63±2.13 4.91±0.96 15.73±0.96 195.37±1.97 34.26±0.99

fMRI

TR 8.25±0.05 8.22±0.05 8.10±0.05 8.24±0.05 7.84±0.05 11.45±0.06 23.36±0.10

GS 321.52±0.59 319.93±0.60 312.57±0.62 286.05±1.13 116.24±0.87 320.52±1.66 275.34±2.20

HTW 6.80±0.41 6.80±0.41 6.80±0.41 4.82±0.46 -0.70±0.46 5.95±0.45 2.56±0.41

TabWak 204.16±0.82 205.01±0.91 215.64±1.07 154.27±2.15 452.61±3.14 248.19±3.95 297.10±8.67

TabWak⊤ 743.33±0.55 743.16±0.59 742.43±0.53 636.28±0.67 317.24±1.18 614.25±0.77 224.27±0.85

TimeWak 595.68±1.03 601.68±0.81 601.53±0.96 459.66±1.00 112.68±0.85 498.39±0.84 189.43±1.00

insertion attack perturbs the series by randomly replacing a proportion of points (5% or 30%) in each
feature with random values drawn uniformly between the feature’s minimum and maximum values.

Table 2 presents the Z-scores of 64-length watermarked synthetic time series data under these attacks,
and averaged over 100 trials. Random cropping at 30% proves especially challenging, with several
methods showing negative Z-scores. Nevertheless, TimeWak demonstrates the best overall robustness,
consistently outperforming all baselines across most attack scenarios—balancing it with high-quality
generation and accurate watermark detection. In contrast, although HTW has better quality, it does
poorly under attacks, indicating a struggle in balancing trade-offs between quality and robustness.

Interestingly, TR’s detection scores further improve under certain post-processing attacks. In particu-
lar, significant gains are observed under random cropping and min-max insertion, likely due to the
inherent robustness of watermarking in the Fourier domain. However, its overall performance lags be-
hind TimeWak. Both TabWak and TabWak⊤ show significant degradation under attacks, particularly
on MuJoCo and Energy datasets, where detection frequently fails. GS overall demonstrates strong
robustness, maintaining detectability under all attacks except for 30% cropping on the ETTh dataset.
However, it produces low-quality synthetic samples, highlighting the need for a time series specific
watermark that can navigate the trade-offs between generation quality and watermark robustness.

5 Conclusion

Motivated by the need to ensure the traceability of synthetic time series, we propose TimeWak—the
first watermarking algorithm for multivariate time series diffusion models. TimeWak embeds seeds
through a temporally chained-hash and feature-wise shuffling in real space, preserving the temporal
and feature dependencies and enhancing the watermark detectability. To address non-uniform error
distribution in the time series diffusion process, we optimize TimeWak for ϵ-exact inversion and
provide the bounded error analysis. Compared to multiple SotA watermarking algorithms, TimeWak
balances synthetic data quality, watermark detectability, and robustness against post-editing attacks.

9



Extensive evaluations on five datasets show that TimeWak improves context-FID score by 61.96%
and correlational scores by 8.44%, against the strongest SotA baseline, while maintaining strong
detectability.

Limitations. While TimeWak does not natively support streaming data, it can be applied to stream-
ing scenarios by processing data in small, fixed-length windows and watermarking each window
independently. However, finer-grained cases, such as watermarking at the per-timestep level, remain
unexplored. This represents a key limitation of TimeWak and an important direction for future work.
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A Nomenclature

αt Noise schedule parameter

βt Variance schedule for noise addition

∆t Lipschitz constant for noise estimator sensitivity at time step t

ϵ Perturbation error in inversion

γ Scaling factor in BDIA inversion

ϵ̂θ Noise estimator function

κ Cryptographic key for watermarking

I[·] Indicator function

s[:],f Watermark seed across all timesteps at feature f

sw,[:] Watermark seed across all features at timestep w

sw,f Watermark seed at timestep w and feature f

x0 Generated sequence of length W and F features

xT Noised sequence at timestep T

xapprox
t Approximate diffusion state at step t

xt Diffusion state at step t

H(κ,w, sw−1,[:]) Temporal chained hashing function

N (0, I) Standard normal distribution

U(0, 1) Continuous uniform distribution between 0 and 1.

U({0, L− 1})F Vector in RF with i.i.d. discrete uniform components over {0, . . . , L− 1}
W∗ Set of valid timesteps for comparison

Φ CDF of standard normal distribution

Φ−1 Inverse CDF of standard normal distribution

πκ Feature permutation function

σt Standard deviation at timestep t

at, bt BDIA parameters for inversion process

F Number of features

H Interval length for watermark partitioning

L Bit length

n Number of intervals in time window

T Total diffusion steps

W Time window length

B Diffusion and diffusion inversion

B.1 Time series diffusion model

This section covers the necessary background knowledge for time series diffusion models.

Denoising Diffusion Probabilistic Models (DDPMs) are a powerful generative models, especially for
time series synthesis [9, 1, 11, 32]. As shown in Figure 4, they work by iteratively forward noising
data and then learning to invert this process through during the backward step [9]. For a time series
window, one step of forward noise is given by:

13



Forward process

Backward process

Figure 4: Forward and backward diffusion process. x0 denotes the initial signal window and xT

corresponds to the fully diffused version of the signal obtained after T forward diffusion steps.

xt =
√
1− βtxt−1 +

√
βtϵt. (16)

In this formulation, xt represents a multivariate time series signal after undergoing t steps of noise
addition. The term βt denotes the noise variance at step t. The noise component ϵt is sampled from a
normal distribution, N (0, I). Using this notation, x0 and xT define a noise-free sequence and a fully
noised sequence, respectively, for an arbitrary window slice, where T is the total number of noise
steps. Without iteratively applying Equation (16), an intermediate noising step can be efficiently
computed using a reparameterization trick [9]:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (17)

where ᾱt is the cumulative product of noise reduction factors up to step t, expressed as ᾱt =∏t
s=1 αs =

∏t
s=1(1− βs), with βs being the noise variance at timestep s and ϵ ∼ N (0, I).

The denoising process reverses the noising steps to reconstruct x0 from xt, ideally restoring the
original signal. This is achieved by training a neural network, ϵθ , to estimate the noise component at
each step. A single reverse step is given by:

x̃t−1 =
1√
αt

(
x̃t −

βt√
1− ᾱt

ϵθ(x̃t, t)

)
+ σtz. (18)

Here, x̃t and x̃t−1 denote the signal estimates at time steps t and t− 1, respectively, where x̃j = xj

at the final noising step. The term σt is typically a function of β to introduce stochasticity in the
sampling process, and z ∼ N (0, I) [9]. The objective is to iteratively refine the denoised sample so
that x̃0 ≈ x0.

B.2 Diffusion models for time series

Diffusion models show great promise in time series tasks, excelling in both forecasting [19, 1, 13]
and generation [15, 36]. Among these, Denoising Diffusion Probabilistic Models (DDPMs) [9] are a
leading framework, which progressively denoise samples to reconstruct data from noise [16] and rely
on stochastic noise addition during sampling [9]. On the other hand, Denoising Diffusion Implicit
Models (DDIMs) use a deterministic sampling process that removes noise, enabling faster sampling
and fewer steps to generate high-quality samples with greater predictability [22]. However, this
reduces the model’s ability to explore a wide range of outputs, leading to lower diversity and reduced
robustness (i.e., consistency in generating diverse and reliable samples) [9, 22].

Diffusion-TS, which serves as the backbone model of TimeWak presented in this paper, employs
a DDPM combined with seasonal-trend decomposition to better capture underlying structures and
dependencies of multivariate time series [32]. It also introduces a Fourier-based loss to optimize
reconstruction, improving accuracy by better matching the frequency components [32]. Its innovation
lies in the integration of seasonal-trend decomposition with DDPMs, and the use of the Fourier-based
loss to enhance the model’s ability to capture complex temporal patterns.
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Some diffusion models that synthesize time series data include ScoreGrad [29], SSSDS4 [1], TSDiff
[11], but some also incorporate transformer-based elements like TimeGrad [19], CSDI [25], and
TDSTF [3]. Diffusion-TS [32] effectively addresses weaknesses in these models. Unlike ScoreGrad
and TimeGrad which use autoregressive models [29, 19], it avoids error accumulation and slow
inference over long horizons by using DDPM, a stable diffusion-based framework. It outperforms
SSSDS4 and TSDiff [1, 11] by replacing resource-intensive S4 layers with an efficient latent layer
that simplifies handling multivariate data. Diffusion-TS handles incomplete datasets better than CSDI
[25] by avoiding the need for explicit pairing of observed and missing data during training, while
being more adaptable and efficient on diverse datasets compared to TDSTF [3], which struggles with
real-time forecasting.

B.3 DDIM and DDIM inversion

The Denoising Diffusion Implicit Model (DDIM) [22] offers deterministic diffusion and sampling,
extending the traditional Markovian diffusion process to a broader class of non-Markovian processes.
Given a initial noise vector xT and a neural network ϵθ that predicts the noise ϵθ(t, xt) at each
timestep t, the DDIM sampling step to generate sample xt−1 from xt, is defined as:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt,t)√

αt

)
+
√

1− αt−1 − σ2
t · ϵθ (xt, t) + σtϵt, (19)

where α1, . . . , αT are computed from a predefined variance schedule, ϵt ∼ N (0, I) denotes standard
Gaussian noise independent of xt, and the σt values can be varied to yield different generative
processes. Setting σt to 0 for all t makes the sampling process deterministic:

xt−1 =

√
αt−1

αt
xt +

(√
1− αt−1 −

√
αt−1

αt
− αt−1

)
ϵθ(xt,t). (20)

This sampling process ensures the same latent matrix x0 is consistently generated by a given noise
matrix xT .

Having large T values (being limited with small steps) allows to cross the timesteps in the backward
direction toward increasing noise levels, which gives out a deterministic diffusion process from x0 to
xT ; this is also known as DDIM inversion:

xt+1 ≈
√

αt+1

αt
xt +

(√
1− αt+1 −

√
αt+1

αt
− αt+1

)
ϵθ(xt,t). (21)

C Proof

Theorem 3.1. Let {xt}Tt=0 be the sequence of diffusion states governed by the BDIA-DDIM recur-
rence for a given dataset, following Equation (7). Given the noise estimator ϵ̂θ follows Assumption 1.
Suppose that instead of the exact terminal state x1, an approximation of x1, termed as xapprox

1 , is
used with a small perturbation ϵ, given by:

xapprox
1 = x2 = xorig

1 + ϵ. (8)

Let the propagated error at time t be defined as,

δt = ∥xapprox
t − xorig

t ∥. (9)

Then, for all t ≥ 1, the error is bounded by,

∥δT ∥ ≤ |ϵ|
T−1∏
t=1

(∣∣∣∣ 1γ − at
γ

+
1

at+1

∣∣∣∣+ bt
γ
∆t +

bt+1

at+1
∆t

)
, (10)

where ∆t quantifies the sensitivity of the noise estimator at timestep t.

Proof:

For t = 1, we have:
δ1 = xapprox

1 − xorig
1 = ϵ. (22)
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For t = 2, using the recurrence,

x2 =
x0

γ
− a1x1 + b1ϵ̂θ(x1, 1)

γ
+

(
x1

a2
− b2

a2
ϵ̂θ(x1, 2)

)
. (23)

Subtracting the approximated and original cases and using Assumption 1, we obtain:

δ2 = −a1δ1
γ

+
δ1
a2
− b1

γ
∆1δ1 −

b2
a2

∆1δ1. (24)

Thus, defining

C2 =

∣∣∣∣ 1a2 − a1
γ

∣∣∣∣+ b1
γ
∆1 +

b2
a2

∆1, (25)

we bound

∥δ2∥ ≤ C2∥δ1∥ = C2∥ϵ∥. (26)

Suppose for some t ≥ 2, there exists a constant Ct such that

∥δt∥ ≤ Ct∥ϵ∥. (27)

For t+ 1, using the recurrence:

xt+1 =
xt−1

γ
− atxt + btϵ̂θ(xt, t)

γ
+

(
xt

at+1
− bt+1

at+1
ϵ̂θ(xt, t+ 1)

)
. (28)

Taking differences, we obtain

δt+1 =
δt−1

γ
− atδt

γ
− bt

γ
∆tδt +

δt
at+1

− bt+1

at+1
∆tδt. (29)

Bounding the terms, we define:

Ct+1 = Ct

(∣∣∣∣ 1γ − at
γ

+
1

at+1

∣∣∣∣+ bt
γ
∆t +

bt+1

at+1
∆t

)
. (30)

Thus, we conclude:

∥δt+1∥ ≤ Ct+1∥ϵ∥. (31)

By induction, we obtain:

CT =

T−1∏
t=1

(∣∣∣∣ 1γ − ai
γ

+
1

at+1

∣∣∣∣+ bt
γ
∆t +

bt+1

at+1
∆t

)
. (32)

Thus, the perturbation remains bounded for all T , i.e.

∥δT ∥ ≤ |ϵ|
T−1∏
t=1

(∣∣∣∣ 1γ − at
γ

+
1

at+1

∣∣∣∣+ bt
γ
∆t +

bt+1

at+1
∆t

)
, (33)

completing the proof. □

To further validate Assumption 1, we empirically computed ∆t across four different datasets, using
10,000 samples from each. Specifically, ∆t is calculated as the maximum ratio for different t using
the L1 norm of the data samples, as illustrated in Figure 5.

16



0.0 0.2 0.4 0.6 0.8 1.0
Diffusion Process Progress (t / max t)

0

10

20

30

40

50

60

70

80

t

Energy
Etth
Fmri
Stocks

Figure 5: ∆t for different datasets.

D Experiment details

D.1 Datasets

Table 3 shows the details of all datasets used in the experiments.

Table 3: Details of datasets used in experiments.

Dataset Number of Rows Number of Features Source

Stocks 3,773 6 https://finance.yahoo.com/quote/GOOG
ETTh 17,420 7 https://github.com/zhouhaoyi/ETDataset
MuJoCo 10,000 14 https://github.com/deepmind/dm_control
Energy 19,711 28 https://archive.ics.uci.edu/ml/datasets
fMRI 10,000 50 https://www.fmrib.ox.ac.uk/datasets

D.2 Evaluation metrics

Context-FID Jeha et al. [10] introduced the Context-FID score, which is a refined adaptation of
the Fréchet Inception Distance (FID) used for evaluating the similarity between real and synthetic
time series distributions. Unlike traditional FID, which relies on the Inception model as a feature
extractor for images, Context-FID uses TS2Vec [33], which is a specialized time series embedding
model. Yue et al. [33] demonstrated that models with lower Context-FID scores tend to perform well
in downstream tasks, revealing a strong correlation between Context-FID and the forecasting perfor-
mance of generative models. Ultimately, a lower Context-FID score signifies a closer resemblance
between real and synthetic distributions.

Correlational We calculates the covariance between the ith and jth features of a time series using
the following equation [14]:

Covi,j =
1

W

W∑
t=1

Kt
iK

t
i −
(

1

W

W∑
t=1

Kt
i

)(
1

W

W∑
t=1

Kt
j

)
. (34)

where W is the total number of time steps, Kt
i and Kt

j are the values of the ith and jth features at
time step t, and the summations compute the average product of these values, subtracting the product
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of their individual means. To assess the correlation between real and synthetic time series, we use the
following metric [32]:

1

10

d∑
i,j

∣∣∣∣∣∣ CovRi,j√
CovRi,iCov

R
j,j

− CovSi,j√
CovSi,iCov

S
j,j

∣∣∣∣∣∣, (35)

where Cov is the covariance between its subscripts (⟨i, i⟩, ⟨j, j⟩, ⟨i, j⟩), where i and j are the features
in the real (denoted by R) and synthetic (denoted by S) time series data, and d is the total number of
features, with the summation taken over all feature pairs.

Discriminative The discriminative score is computed as |accuracy − 0.5|, quantifying the model’s
ability to distinguish between real and synthetic time series. A lower score indicates better per-
formance, as it indicates greater difficulty in differentiation, implying a higher degree of similar-
ity between the two distributions. To ensure consistency, we follow the experimental setup of
TimeGAN [31] by using a two-layer GRU-based neural network as the classifier.

Predictive The predictive score is evaluated using the mean absolute error (MAE) between the
predicted and actual values on the test data. Again, we use the experimental setup of TimeGAN [31]
by using a two-layer GRU-based neural network for sequence prediction.

Z-score The Z-score is a statistical measure used to assess watermark detectability by quantifying
the deviation between watermarked and non-watermarked samples. It facilitates hypothesis testing,
where the null hypothesis H0 states that a given sample is not watermarked by the corresponding
watermarking method. A sufficiently high positive Z-score provides evidence against H0, suggesting
the presence of a watermark.

For sample-wise bit accuracy in time series, the Z-score is computed as Z = µAcc, W−µAcc, NW

σAcc, NW/
√
n

, where
µAcc, W and µAcc, NW are the mean bit accuracy of watermarked and non-watermarked samples,
respectively, σAcc, NW is the standard deviation of bit accuracy in the non-watermarked samples, and
n is the number of watermarked samples. Under H0, the expected difference in means is negligible,
resulting in a Z-score close to zero. A large positive Z-score provides statistical evidence for the
presence of a watermark.

For the Tree-Ring watermarking method, the Z-score is computed in the Fourier domain instead of
the sample-wise bit accuracy domain. It measures the deviation in the amplitude spectrum between
watermarked and non-watermarked samples, given by Z =

µFNW−µFW
σFNW

where FW and FNW denote
the Fourier amplitude spectrum of watermarked and non-watermarked samples, respectively, with µ
and σ representing their mean and standard deviation. Since this method does not rely on per-sample
bit accuracy, the test statistic is independent of n, and the computation utilizes the opposite tail of the
distribution.

TPR@X% FPR This metric measures the True Positive Rate (TPR) at a specified False Positive
Rate (FPR) of X%, where X% denotes a fixed false positive threshold. It reflects the effectiveness of
watermark detection by quantifying how reliably watermarked samples are identified under controlled
false positive conditions. A higher TPR@X% FPR indicates stronger detection performance and
greater robustness of the watermarking method.

D.3 Baselines

Tree-Ring We adapt the latent-representation-based Tree-Ring watermark for multivariate time
series in the data space. Initially, the Tree-Ring watermark was proposed for images with square
dimensions as it places the circular ring watermark pattern centrally. However, multivariate time series
often have rectangular dimensions with varying numbers of features and timesteps. To accommodate
this structure, we apply a flexible ring pattern with a predefined radius indicating the outermost circle
of the watermark. Finally, we embed and detect the watermark in the Fourier domain.

Gaussian Shading Similar to Tree-Ring, we implement Gaussian Shading from the image domain
to multivariate time series by embedding the watermark directly in the data space. To maintain
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coherence and efficiency, we use a single control seed across all samples to avoid the need for
additional indices for each sample.

Heads Tails Watermark The HTW is a post-watermarking technique designed for univariate time
series. To extend its applicability, we adapt it for multivariate time series by iterating through each
variate in the generated synthetic sample. During evaluation, the watermarked time series is reversed,
and processing each series independently. In short, we treat each variate as a single series.

TabWak TabWak was originally designed for the tabular data domain, where it operates effectively
in the latent space. We extend its application to multivariate time series in the data space. However,
tabular data primarily captures feature dependencies, while time series data inherently relies on both
feature and temporal dependencies. Therefore, we implement another version called TabWak⊤ by
transposing the watermarking direction onto the temporal axis. Similarly, we evaluate the watermark
detectability on a sample by sample basis.

D.4 Training and sampling

All code implementations are done in PyTorch (version 2.3.1) using a single NVIDIA GeForce RTX
2080 Graphics Card coupled with an Intel(R) Xeon(R) Platinum 8562Y+ CPU for all experiments.
Dataset splits are 80% for training and 20% for testing. Table 4 shows training and sampling time for
all datasets across window of sizes 24, 64 and 128. We train the time series diffusion model following
the Diffusion-TS settings [32], and generate 10,000 watermarked synthetic samples using TimeWak
for each sampling run.

Table 4: Details of training and sampling time.

Dataset Window Size Training Time (∼ min.) Sampling Time (∼ min.)

Stocks
24 6.1 0.4
64 6.2 2.1

128 8.0 4.6

ETTh
24 11.6 0.4
64 12.7 2.4

128 13.7 5.2

MuJoCo
24 9.7 0.7
64 9.9 4.9

128 10.6 12.6

Energy
24 23.5 1.4
64 24.2 10.5

128 24.3 23.0

fMRI
24 16.8 1.8
64 17.5 13.5

128 18.1 28.5

E Additional experimental results

E.1 Quality performance

Table 5 shows the quality of synthetic time series generated in 64 and 128 window sizes. TimeWak
remains stable across all datasets and even comparable to the quality of non-watermarked samples.

E.2 Attack performance

E.2.1 Post-editing attacks

Table 6–7 show the detectability results of several post-editing attacks on 24 and 128 window sizes,
respectively.
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E.2.2 Reconstruction attack

We implement the reconstruction attack using the original diffusion model. Specifically, we first
applied the q-sampling process up to half of the total diffusion steps (i.e., midpoint timestep), and
then performed reverse sampling starting from this midpoint. The results obtained from this approach
are presented in Table 8. We observe that although the Z-score decreases, our watermark remains
detectable.

E.3 BDIA-DDIM on other baselines

The baselines in our main experiments were not evaluated with BDIA-DDIM. This is because BDIA-
DDIM tends to degrade data quality compared to standard DDIM—a trade-off for achieving lower
inversion error. For many baselines, such as Tree-Ring and Gaussian Shading, the generated quality
is already poor. Applying BDIA-DDIM in these cases might improve detectability but would further
deteriorate quality, making the results less meaningful. And for TabWak, we include results with
BDIA-DDIM applied to both TabWak and TabWak⊤ in Table 9. While BDIA-DDIM improves
detectability for both variants, it comes at the cost of further quality degradation compared to the
original results in Table 1. In contrast, TimeWak maintains stable performance across both quality
metrics and Z-score, highlighting its robustness.

E.4 Watermarked dataset on downstream task

We implement time series forecasting as the downstream task, i.e, taking either the real, or synthetic
or watermarked synthetic data to build a diffusion model that can predict the future values of time
series. We compared the mean squared error (MSE) between the forecasted and actual values and
summarized the results in Table 10. The results indicate that training on watermarked synthetic data
has a minimal impact on forecasting performance compared to training on non-watermarked synthetic
data.

E.5 Ablation study

To assess the effectiveness of the TimeWak, we compare its full version with three distinct variants
outlined in Table 11. Table 12 presents the quality of the watermarked time series data for sequences
of length 24, and the detectability of the watermarks across lengths of 24, 64 and 128. TimeWak
demonstrates a comparable quality performance and high detectability.

E.6 TPR@0.1% FPR performance

In Figure 6, we present the TPR@0.1% FPR metric against the number of samples across five datasets
under 24, 64 and 128 window sizes. In most cases, TimeWak consistently outperforms other baselines,
such as Gaussian Shading and TabWak⊤, by achieving significantly higher TPR values. Notably,
TimeWak reaches a perfect 1.0 TPR@0.1% FPR in the majority of scenarios, with 7 cases requiring
only a single sample and 4 cases needing just 2 samples, demonstrating its strong detectability with
minimal data requirements.

E.7 Hyperparameter evaluation

E.7.1 Intervals

Interval, also referred to as H , is one of the key hyperparameters in our approach. Based on our
experiments in Table 13 (24-length), Table 14 (64-length), and Table 15 (128-length), we found that
setting H = 2 yields the best results across most datasets. For instance, consider the Stocks dataset,
which consists of 6 features and 24 time steps. When H = 8, the number of bit templates that can
be generated is 2(3×6), whereas for H = 2, the number of bit templates increases significantly to
2(12×6). A lower H value allows for the generation of a greater number of bit combinations, leading
to a more diverse seed distribution. However, as shown in Table 15, for datasets such as fMRI,
tuning H can enhance detectability while preserving the quality of the synthetic data. This could
be attributed to the inherently noisy nature of the fMRI dataset, where adjusting H helps balance
detectability and data fidelity.
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Figure 6: TPR@0.1% FPR against the number of samples across five datasets under different window
sizes.

E.7.2 Bits

We perform an empirical validation of the expected bit accuracy using simulations. Specifically, we
set the synthetic time series data size as 24 time steps (window length) and 10 features, and evaluate
the watermarking and detection pipeline using TimeWak. In this experiment, we intentionally omit
both the forward diffusion and reverse (inversion) diffusion processes to focus solely on the effect of
noise during reconstruction. Instead, we simulate the reconstruction noise directly by adding noise to
the clean initial noise.

We generate initial samples using our watermarking method and simulate reconstruction error by
adding noise with feature-specific means sampled fromN (0, 5) and a shared variance σ. This results
in a noise distribution of N (µf , σ) per feature, where µf ∼ N (0, 5). We then apply watermark
detection to the perturbed samples and compute the average bit accuracy.

We run the simulation using 100,000 samples, grouped into trials of 2,000 samples each. This
process is repeated across 50 independent rounds to compute the average bit accuracy. Figure 7
shows the results we get. We observe that a larger L leads to higher bit accuracy, indicating better
detectability. In addition, we evaluate a “transposed” version of TimeWak, denoted as TimeWak⊤,
where the chained hash is applied along the feature dimension instead of the time axis. We find that
the bit accuracy of this variant remains close to 0.5 and is significantly lower than that of the original
TimeWak. This simulation further validates the importance of applying the watermark along the time
axis, rather than across features, to ensure reliable detection.

Additionally, we present the values of bit-length L used across different experiments in Table 16–18.
In general, a larger L tends to improve watermark detectability. This is because, during bit accuracy
calculation, a larger L places more emphasis on the tail bits—these are less likely to be affected by
reconstruction errors or noise. However, increasing L also leads to lower sample quality, as it involves
modifying more of the initial noise, making it deviate further from a standard Gaussian distribution.
Our results show this trade-off holds across most scenarios, with the exception of the Stocks dataset.

F Synthetic samples

Figures 8–12 show synthetic time series generated unconditionally by Diffusion-TS with/without
watermark embedding. Each figure corresponds to one of the following datasets: Stocks, ETTh,
MuJoCo, Energy, and fMRI. Within each figure, the columns represent the following algorithms: no
watermark, TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarks. Up to 4 features are
randomly selected from each dataset.
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Figure 7: Average bit accuracy of different L.

Table 5: Results of synthetic time series quality. No watermarking (‘W/O’) is included.

64-length ↓ 128-length ↓
Dataset Method Context-FID Correlational Discriminative Predictive Context-FID Correlational Discriminative Predictive

Stocks

W/O 0.444±0.114 0.030±0.023 0.104±0.014 0.037±0.000 0.536±0.135 0.020±0.015 0.148±0.019 0.037±0.000

TR 1.812±0.210 0.102±0.012 0.206±0.038 0.038±0.001 3.555±0.868 0.130±0.025 0.276±0.030 0.041±0.004

GS 1.643±0.126 0.011±0.005 0.252±0.072 0.042±0.001 2.647±0.262 0.025±0.015 0.186±0.071 0.040±0.000

HTW 0.426±0.073 0.026±0.016 0.105±0.032 0.037±0.000 0.622±0.092 0.017±0.013 0.152±0.086 0.037±0.000

TabWak 0.242±0.045 0.011±0.008 0.141±0.021 0.037±0.000 0.394±0.034 0.009±0.009 0.150±0.031 0.037±0.000

TabWak⊤ 0.284±0.091 0.005±0.005 0.099±0.025 0.037±0.000 0.367±0.035 0.010±0.007 0.129±0.054 0.037±0.000

TimeWak 0.387±0.054 0.017±0.017 0.092±0.041 0.037±0.000 0.316±0.044 0.021±0.024 0.140±0.029 0.037±0.000

ETTh

W/O 0.384±0.034 0.070±0.011 0.106±0.009 0.115±0.006 1.086±0.070 0.098±0.021 0.166±0.013 0.111±0.008

TR 2.224±0.209 0.217±0.011 0.284±0.032 0.131±0.004 2.450±0.128 0.270±0.017 0.284±0.063 0.138±0.005

GS 3.398±0.384 0.248±0.025 0.356±0.029 0.154±0.001 4.998±0.603 0.233±0.027 0.381±0.042 0.162±0.010

HTW 0.372±0.027 0.076±0.006 0.118±0.024 0.116±0.006 1.119±0.065 0.091±0.014 0.165±0.010 0.120±0.006

TabWak 0.597±0.044 0.346±0.027 0.176±0.020 0.122±0.007 1.931±0.254 0.466±0.058 0.248±0.017 0.128±0.005

TabWak⊤ 0.503±0.045 0.095±0.043 0.119±0.012 0.120±0.010 1.477±0.075 0.129±0.037 0.143±0.014 0.112±0.011

TimeWak 0.297±0.038 0.133±0.040 0.097±0.015 0.115±0.003 1.090±0.100 0.135±0.057 0.174±0.007 0.110±0.009

MuJoCo

W/O 0.103±0.016 0.341±0.025 0.023±0.015 0.007±0.000 0.179±0.011 0.290±0.025 0.055±0.027 0.005±0.001

TR 2.627±0.230 0.948±0.064 0.270±0.128 0.016±0.005 2.348±0.236 0.865±0.025 0.358±0.008 0.008±0.001

GS 7.162±1.301 1.034±0.087 0.447±0.011 0.011±0.002 4.797±1.290 1.335±0.041 0.454±0.023 0.007±0.001

HTW 0.316±0.034 0.334±0.044 0.248±0.079 0.011±0.001 0.431±0.051 0.309±0.064 0.255±0.174 0.009±0.001

TabWak 0.372±0.064 0.671±0.083 0.137±0.027 0.007±0.001 0.369±0.073 0.589±0.059 0.175±0.042 0.006±0.002

TabWak⊤ 0.238±0.019 0.339±0.059 0.087±0.025 0.006±0.001 0.275±0.033 0.333±0.066 0.084±0.028 0.006±0.001

TimeWak 0.108±0.014 0.413±0.062 0.038±0.021 0.007±0.001 0.155±0.016 0.316±0.022 0.046±0.030 0.005±0.001

Energy

W/O 0.112±0.016 1.032±0.289 0.124±0.008 0.251±0.001 0.120±0.011 0.798±0.213 0.202±0.073 0.249±0.000

TR 0.902±0.093 3.503±0.589 0.427±0.072 0.307±0.005 1.195±0.111 2.303±0.569 0.498±0.001 0.287±0.003

GS 2.205±0.192 3.277±0.129 0.479±0.010 0.310±0.005 3.680±0.444 4.233±0.287 0.474±0.039 0.280±0.006

HTW 0.133±0.015 1.045±0.357 0.135±0.013 0.251±0.001 0.133±0.017 0.822±0.310 0.103±0.043 0.249±0.001

TabWak 0.168±0.021 1.811±0.530 0.136±0.013 0.251±0.000 0.201±0.020 2.001±0.440 0.156±0.077 0.250±0.001

TabWak⊤ 0.237±0.029 1.321±0.252 0.138±0.015 0.252±0.000 0.274±0.019 1.211±0.196 0.136±0.023 0.249±0.001

TimeWak 0.143±0.019 1.662±0.298 0.145±0.019 0.251±0.000 0.148±0.027 1.687±0.328 0.140±0.057 0.249±0.000

fMRI

W/O 0.435±0.033 1.899±0.075 0.268±0.150 0.100±0.000 0.859±0.058 1.823±0.064 0.209±0.263 0.100±0.000

TR 3.358±0.402 13.699±0.132 0.411±0.158 0.141±0.001 5.391±0.919 13.000±0.084 0.434±0.072 0.149±0.002

GS 0.756±0.098 8.378±0.028 0.500±0.001 0.104±0.001 1.046±0.052 5.941±0.048 0.499±0.001 0.106±0.001

HTW 0.413±0.017 1.822±0.111 0.338±0.032 0.100±0.000 0.811±0.051 1.757±0.053 0.063±0.064 0.100±0.000

TabWak 0.655±0.137 6.532±0.158 0.242±0.302 0.108±0.001 1.114±0.135 5.967±0.033 0.153±0.218 0.111±0.001

TabWak⊤ 0.554±0.049 1.955±0.058 0.331±0.039 0.100±0.000 0.919±0.024 1.807±0.024 0.265±0.201 0.100±0.000

TimeWak 0.441±0.035 1.786±0.043 0.314±0.041 0.100±0.000 0.855±0.072 1.704±0.060 0.298±0.227 0.100±0.000
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Table 6: Results of robustness against post-editing attacks. Average Z-score on 24-length sequences,
including un-attacked scores from Table 1. Best results are in bold, and second-best are underlined.

Without
Attack

Offset ↑ Random Crop ↑ Min-Max Insertion ↑
Dataset Method 5% 30% 5% 30% 5% 30%

Stocks

TR 0.43±0.04 0.41±0.04 0.26±0.05 61.01±1.18 76.69±1.17 0.18±0.05 0.81±0.08

GS 86.07±0.74 85.74±0.71 84.38±0.67 -34.10±0.69 3.08±0.58 82.31±0.75 57.07±0.72
HTW 4.45±0.62 4.45±0.62 4.45±0.62 -0.30±0.39 -0.40±0.30 3.96±0.72 1.80±0.71

TabWak -67.22±1.17 -66.62±1.23 -75.89±1.10 -137.99±1.23 -72.71±1.76 -70.11±1.14 -89.22±0.64

TabWak⊤ 55.39±0.86 55.59±0.74 54.76±0.78 9.32±0.94 7.43±0.73 45.69±0.73 21.19±0.56

TimeWak 182.10±0.73 181.98±0.84 180.68±0.77 62.29±1.01 9.33±1.04 155.72±0.91 56.86±1.06

ETTh

TR 7.84±0.12 7.94±0.12 8.19±0.13 26.95±0.32 34.36±0.26 14.11±0.28 28.72±0.50

GS 101.07±1.17 99.45±1.09 105.70±1.08 98.99±1.21 2.10±1.37 98.78±1.13 73.67±1.30
HTW 3.43±0.83 3.43±0.83 3.43±0.83 0.38±0.77 -1.08±0.47 3.09±0.82 1.54±0.66

TabWak -14.95±1.08 -7.92±0.97 36.49±1.08 -11.76±1.31 8.65±1.38 -7.95±0.93 21.70±0.82

TabWak⊤ 109.35±0.91 110.22±0.85 103.34±0.82 50.64±0.96 1.06±1.02 80.98±0.87 21.83±0.95

TimeWak 134.83±0.95 130.50±0.99 118.65±1.03 35.30±1.14 5.99±1.04 101.53±0.96 20.77±0.95

MuJoCo

TR 1.38±0.03 1.34±0.03 1.22±0.03 5.31±0.05 5.65±0.06 2.42±0.05 5.53±0.09

GS 21.13±0.77 23.95±0.71 27.15±0.76 23.06±0.86 -10.38±0.72 22.89±0.83 22.89±1.06

HTW 2.89±0.54 2.89±0.54 2.89±0.54 0.85±0.48 -0.47±0.40 2.65±0.53 1.51±0.43

TabWak 31.30±1.07 31.59±0.96 39.05±1.05 38.80±1.11 25.04±1.13 31.60±0.92 28.70±0.59

TabWak⊤ -4.85±0.87 -6.27±0.90 0.74±0.78 -15.92±0.88 -56.15±1.50 -10.95±1.01 -43.08±1.17

TimeWak 85.69±1.08 77.78±1.26 49.48±1.12 48.03±1.17 11.46±1.18 74.94±1.10 38.87±1.14

Energy

TR 9.51±0.09 9.30±0.10 8.77±0.08 110.47±0.23 129.09±0.19 17.65±0.15 35.69±0.18

GS 51.22±0.88 50.27±0.96 47.31±0.97 11.65±0.72 38.70±1.34 48.80±0.97 39.80±0.94

HTW 3.06±0.36 3.06±0.36 3.06±0.36 0.56±0.35 -0.13±0.23 2.81±0.36 1.61±0.30

TabWak 3.26±0.89 0.52±1.03 -2.91±1.08 3.27±0.63 3.54±0.53 2.20±0.87 -2.08±0.49

TabWak⊤ 40.82±0.81 38.47±0.72 40.20±0.82 33.83±1.08 -7.47±1.50 31.89±0.89 5.37±0.93

TimeWak 231.28±1.45 228.22±1.71 185.48±1.52 -9.20±0.96 -1.54±1.02 189.15±1.44 56.39±1.16

fMRI

TR 6.49±0.05 6.43±0.05 6.12±0.05 5.42±0.05 4.40±0.05 5.54±0.05 1.37±0.07

GS 420.02±1.44 416.83±1.43 401.86±1.72 360.27±1.40 171.38±1.16 386.10±1.54 245.44±1.28
HTW 4.32±0.22 4.32±0.22 4.32±0.22 2.92±0.27 -0.39±0.28 3.86±0.26 1.78±0.25

TabWak 84.02±1.04 83.55±1.08 78.94±1.16 78.63±1.24 27.05±1.30 76.49±1.17 50.55±1.33

TabWak⊤ 464.67±0.50 464.04±0.48 458.81±0.57 400.47±0.72 202.57±1.04 403.49±0.66 168.64±0.75

TimeWak 379.51±0.82 378.95±0.85 374.99±0.78 277.64±0.78 77.74±1.05 327.13±0.86 133.68±0.85
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Figure 8: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the Stocks
dataset.
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Table 7: Results of robustness against post-editing attacks. Average Z-score on 128-length sequences,
including un-attacked scores from Table 1. Best results are in bold, and second-best are underlined.

Without
Attack

Offset ↑ Random Crop ↑ Min-Max Insertion ↑
Dataset Method 5% 30% 5% 30% 5% 30%

Stocks

TR 0.08±0.10 0.05±0.10 0.02±0.12 93.62±0.99 119.45±1.16 6.87±0.22 23.98±0.55

GS 172.23±1.08 167.39±1.10 145.89±1.83 13.22±1.43 -2.23±1.03 144.05±0.98 64.79±1.01

HTW 10.39±1.33 10.39±1.33 10.39±1.33 -1.30±0.44 -1.42±0.33 9.05±1.67 3.76±1.63

TabWak -10.49±1.28 49.98±3.31 36.78±3.15 69.44±3.32 70.32±2.93 9.26±1.41 33.81±0.81

TabWak⊤ 129.39±0.90 131.70±0.97 129.83±1.08 7.70±1.04 -4.86±1.20 80.70±1.03 15.70±0.57

TimeWak 550.05±1.18 535.16±0.96 525.09±1.20 83.81±2.15 15.42±1.02 385.68±2.48 85.38±1.37

ETTh

TR 6.18±0.16 6.14±0.16 6.08±0.14 24.37±0.28 36.22±0.21 23.02±0.25 55.97±0.40

GS 327.47±4.44 322.35±5.15 296.89±5.10 189.84±2.98 8.49±1.16 296.61±4.10 172.81±2.05
HTW 6.84±2.22 6.84±2.22 6.84±2.22 0.79±1.90 -2.94±1.15 6.00±2.16 2.59±1.54

TabWak -20.57±0.96 -18.36±1.21 -3.56±1.91 37.32±2.48 78.54±2.07 -7.75±0.79 22.65±0.45

TabWak⊤ 235.03±1.48 227.57±1.33 194.84±1.65 101.64±1.73 23.82±1.45 155.78±1.24 23.70±0.91

TimeWak 340.36±2.06 333.66±1.93 276.99±2.04 107.52±1.90 7.13±1.14 244.68±1.72 44.75±1.21

MuJoCo

TR 1.31±0.04 1.33±0.04 1.50±0.04 6.93±0.07 6.08±0.05 10.52±0.12 25.61±0.20

GS 39.63±0.71 38.07±0.67 32.10±0.81 37.22±0.89 10.61±0.85 38.46±0.89 31.58±1.16

HTW 4.20±1.37 4.20±1.37 4.20±1.37 1.73±1.18 -2.13±0.99 3.78±1.29 2.02±0.90

TabWak -3.00±1.04 -5.68±0.92 -3.91±1.16 -8.02±1.07 16.29±0.61 -0.31±0.87 2.90±0.55

TabWak⊤ 3.91±0.88 5.10±1.00 9.07±0.97 3.36±0.90 24.65±1.15 25.56±1.00 41.50±1.00
TimeWak 123.36±1.43 139.07±1.49 111.27±1.15 93.19±1.46 12.44±1.01 71.22±1.21 7.26±0.95

Energy

TR 22.58±0.19 21.92±0.18 20.13±0.17 167.48±0.64 207.75±0.39 68.40±0.29 148.79±0.50
GS 45.42±1.05 43.41±0.96 30.53±0.93 71.60±0.94 67.39±1.11 44.20±1.16 44.13±1.18

HTW 5.42±1.00 5.42±1.00 5.42±1.00 0.24±0.62 -1.11±0.43 4.86±0.95 2.47±0.67

TabWak 0.57±0.87 -21.06±0.96 -28.01±1.32 -25.69±0.82 -10.44±0.76 -0.07±0.63 -7.15±0.36

TabWak⊤ 26.00±1.12 33.08±0.98 19.25±0.95 9.30±1.14 10.84±1.92 24.21±0.95 33.38±0.69

TimeWak 245.37±2.88 307.31±1.98 183.59±1.74 9.57±0.97 2.48±0.84 171.81±1.77 21.44±1.10

fMRI

TR 9.94±0.04 9.93±0.04 9.88±0.04 10.47±0.05 8.96±0.04 16.62±0.06 39.21±0.13

GS 701.90±0.72 701.47±0.65 699.01±0.63 621.08±1.08 256.13±1.63 667.14±2.43 528.66±2.82
HTW 9.43±0.61 9.43±0.61 9.43±0.61 6.75±0.67 -1.09±0.65 8.24±0.66 3.45±0.57

TabWak 47.29±0.83 43.52±0.79 24.95±0.86 -57.42±2.04 71.03±3.25 78.43±4.67 0.17±8.00

TabWak⊤ 1031.96±0.79 1031.53±0.78 1030.14±0.72 889.62±0.84 383.15±1.37 801.16±0.83 229.37±1.15

TimeWak 526.81±13.12 834.78±1.10 834.62±1.24 632.77±1.07 160.62±1.02 651.80±1.13 216.50±0.94

Table 8: Results of synthetic time series quality and watermark detectability. Comparing TimeWak and
TimeWak recon with reconstruction attack. Quality metrics and Z-score are for 24-length sequences.

Dataset Method Context-FID ↓ Correlational ↓ Discriminative ↓ Predictive ↓ Z-score ↑

Stocks TimeWak 0.277±0.019 0.020±0.018 0.120±0.039 0.038±0.000 182.10±0.73

TimeWak recon 4.570±0.502 0.031±0.028 0.393±0.073 0.148±0.017 179.41±0.81

ETTh TimeWak 0.237±0.017 0.212±0.043 0.102±0.014 0.122±0.002 134.83±0.95

TimeWak recon 1.743±0.225 0.138±0.012 0.290±0.009 0.158±0.002 82.11±2.58

MuJoCo TimeWak 0.089±0.017 0.532±0.137 0.044±0.021 0.008±0.001 85.69±1.08

TimeWak recon 0.925±0.047 0.622±0.063 0.261±0.010 0.008±0.002 81.97±1.33

Energy TimeWak 0.121±0.016 1.977±0.750 0.142±0.008 0.254±0.000 231.28±1.45

TimeWak recon 5.158±0.568 6.678±0.087 0.444±0.006 0.263±0.002 39.99±2.03

fMRI TimeWak 0.199±0.010 2.006±0.053 0.122±0.033 0.100±0.000 379.51±0.82

TimeWak recon 0.595±0.036 2.374±0.105 0.431±0.017 0.102±0.000 457.90±0.81
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Table 9: Results of synthetic time series quality and watermark detectability. All results are applied
with BDIA-DDIM. Quality metrics are for 24-length sequences.

Quality Metric ↓ Z-score ↑
Dataset Method Context-FID Correlational Discriminative Predictive 24-length 64-length 128-length

Stocks
TabWak 0.267±0.042 0.017±0.014 0.122±0.029 0.039±0.000 43.10±0.75 92.56±0.37 89.18±0.39

TabWak⊤ 0.273±0.103 0.011±0.008 0.115±0.042 0.037±0.000 117.12±0.15 170.41±0.14 267.27±0.18

TimeWak 0.277±0.019 0.020±0.018 0.120±0.039 0.038±0.000 182.10±0.73 395.34±1.24 550.05±1.18

ETTh
TabWak 0.431±0.033 0.436±0.020 0.133±0.029 0.134±0.002 1.73±0.76 16.26±0.98 31.59±0.87

TabWak⊤ 0.454±0.049 0.132±0.018 0.104±0.024 0.119±0.006 149.16±0.62 220.72±0.84 315.34±1.16

TimeWak 0.237±0.017 0.212±0.043 0.102±0.014 0.122±0.002 134.83±0.95 236.08±1.63 340.36±2.06

MuJoCo
TabWak 0.489±0.036 0.958±0.067 0.204±0.056 0.010±0.004 13.97±1.07 20.52±0.85 4.23±0.93

TabWak⊤ 0.270±0.024 0.378±0.033 0.128±0.015 0.008±0.002 68.32±1.14 93.55±1.06 228.10±1.67

TimeWak 0.089±0.017 0.532±0.137 0.044±0.021 0.008±0.001 85.69±1.08 56.45±1.26 123.36±1.43

Energy
TabWak 0.189±0.022 2.915±0.410 0.166±0.012 0.255±0.000 3.10±0.63 -9.67±0.72 -18.64±0.71

TabWak⊤ 0.199±0.007 1.648±0.188 0.137±0.019 0.265±0.004 246.86±1.30 258.45±1.48 302.78±1.98

TimeWak 0.121±0.016 1.977±0.750 0.142±0.008 0.254±0.000 231.28±1.45 267.53±2.60 245.37±2.88

fMRI
TabWak 0.319±0.019 6.772±0.129 0.484±0.007 0.110±0.001 57.99±1.06 268.67±0.88 -94.33±0.99

TabWak⊤ 0.317±0.028 2.185±0.148 0.218±0.031 0.100±0.000 471.86±0.45 739.39±0.60 1014.93±0.74

TimeWak 0.199±0.010 2.006±0.053 0.122±0.033 0.100±0.000 379.51±0.82 595.68±1.03 526.81±13.12

Table 10: Results of 64-length time series forecasting that train on real and synthetic data (SynthW/O

and SynthTimeWak) and test on real data. All MSEs are in the order of 1e-3.

Dataset Training Data MSE ↓

Stocks
Real 2.119
SynthW/O 2.022
SynthTimeWak 2.014

ETTh
Real 6.678
SynthW/O 8.541
SynthTimeWak 8.655

MuJoCo
Real 1.312
SynthW/O 1.615
SynthTimeWak 1.741

Energy
Real 12.715
SynthW/O 13.480
SynthTimeWak 13.717

fMRI
Real 36.423
SynthW/O 67.796
SynthTimeWak 67.944

Table 11: List of methods, including TimeWak, to be compared.

Method Watermarking Direction Sampling

SpatDDIM Spatial DDIM
SpatBDIA Spatial BDIA-DDIM
TempDDIM Temporal DDIM
TimeWak Temporal BDIA-DDIM
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Table 12: Results of synthetic time series quality and watermark detectability. Quality metrics are
for 24-length sequences. All methods are originally found in Table 11. Best results are in bold, and
second-best are underlined.

Quality Metric ↓ Z-score ↑
Dataset Method Context-FID Correlational Discriminative Predictive 24-length 64-length 128-length

Stocks

SpatDDIM 0.233±0.025 0.012±0.005 0.127±0.019 0.037±0.000 11.06±1.07 0.18±0.77 -1.03±0.96

SpatBDIA 0.199±0.024 0.024±0.028 0.124±0.023 0.037±0.000 126.97±1.43 156.84±0.80 170.13±1.59

TempDDIM 0.277±0.054 0.013±0.005 0.124±0.043 0.038±0.000 25.14±0.89 43.24±0.87 58.82±0.93

TimeWak 0.277±0.019 0.020±0.018 0.120±0.039 0.038±0.000 182.10±0.73 395.34±1.24 550.05±1.18

ETTh

SpatDDIM 0.249±0.020 0.145±0.026 0.094±0.011 0.124±0.002 10.80±1.06 11.13±0.81 7.29±0.95

SpatBDIA 0.246±0.015 0.150±0.034 0.098±0.011 0.123±0.007 28.11±1.10 40.67±1.21 47.73±1.04

TempDDIM 0.249±0.013 0.150±0.020 0.097±0.010 0.121±0.005 63.78±0.97 102.06±1.16 152.63±1.29

TimeWak 0.237±0.017 0.212±0.043 0.102±0.014 0.122±0.002 134.83±0.95 236.08±1.63 340.36±2.06

MuJoCo

SpatDDIM 0.091±0.008 0.476±0.049 0.062±0.027 0.008±0.002 -4.62±0.91 15.42±0.96 7.12±1.22

SpatBDIA 0.090±0.016 0.491±0.078 0.051±0.023 0.008±0.002 11.73±0.94 18.02±0.95 25.42±0.90

TempDDIM 0.098±0.010 0.450±0.047 0.059±0.027 0.007±0.001 21.85±0.84 -0.88±0.99 -2.58±1.03

TimeWak 0.089±0.017 0.532±0.137 0.044±0.021 0.008±0.001 85.69±1.08 56.45±1.26 123.36±1.43

Energy

SpatDDIM 0.135±0.021 1.814±0.373 0.142±0.013 0.253±0.000 1.55±0.90 6.75±1.00 -0.70±0.98

SpatBDIA 0.142±0.027 2.104±0.254 0.149±0.025 0.253±0.000 52.86±0.90 63.56±1.26 81.46±1.11

TempDDIM 0.110±0.019 1.724±0.270 0.142±0.023 0.254±0.000 1.72±0.92 3.64±0.90 2.24±0.93

TimeWak 0.121±0.016 1.977±0.750 0.142±0.008 0.254±0.000 231.28±1.45 267.53±2.60 245.37±2.88

fMRI

SpatDDIM 0.198±0.023 2.014±0.046 0.139±0.030 0.101±0.001 90.69±0.94 61.12±0.87 81.31±0.70

SpatBDIA 0.188±0.004 1.974±0.074 0.124±0.035 0.101±0.000 76.48±0.89 93.74±0.82 75.93±0.66

TempDDIM 0.193±0.018 2.097±0.086 0.143±0.020 0.101±0.000 381.15±0.81 617.91±0.98 828.89±1.01
TimeWak 0.199±0.010 2.006±0.053 0.122±0.033 0.100±0.000 379.51±0.82 595.68±1.03 526.81±13.12

Table 13: Results of synthetic time series quality and watermark detectability with different intervals
on TimeWak. Quality metrics and Z-score are for 24-length sequences.

Dataset Interval Context-FID ↓ Correlational ↓ Discriminative ↓ Predictive ↓ Z-score ↑

Stocks
2 0.277±0.019 0.020±0.018 0.120±0.039 0.038±0.000 182.10±0.73

4 0.419±0.098 0.006±0.002 0.162±0.022 0.039±0.000 202.45±1.11

8 1.006±0.085 0.023±0.018 0.197±0.015 0.041±0.000 216.56±1.43

ETTh
2 0.237±0.017 0.212±0.043 0.102±0.014 0.122±0.002 134.83±0.95

4 0.463±0.094 0.435±0.047 0.113±0.018 0.130±0.001 166.50±1.27

8 0.925±0.140 0.576±0.082 0.150±0.014 0.135±0.005 167.54±1.36

MuJoCo
2 0.089±0.017 0.532±0.137 0.044±0.021 0.008±0.001 85.69±1.08

4 0.148±0.031 0.739±0.086 0.087±0.020 0.007±0.000 71.95±1.36

8 0.327±0.059 1.179±0.168 0.177±0.019 0.009±0.002 76.90±1.29

Energy
2 0.121±0.016 1.977±0.750 0.142±0.008 0.254±0.000 231.28±1.45

4 0.186±0.017 3.315±0.395 0.159±0.011 0.254±0.000 266.77±1.99

8 0.363±0.093 5.402±0.499 0.184±0.024 0.255±0.000 279.40±1.90

fMRI
2 0.199±0.010 2.006±0.053 0.122±0.033 0.100±0.000 379.51±0.82

4 0.191±0.013 2.117±0.124 0.125±0.034 0.101±0.000 464.70±0.92

8 0.204±0.021 2.354±0.110 0.171±0.043 0.103±0.000 506.95±1.10
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Table 14: Results of synthetic time series quality and watermark detectability with different intervals
on TimeWak. Quality metrics and Z-score are for 64-length sequences.

Dataset Interval Context-FID ↓ Correlational ↓ Discriminative ↓ Predictive ↓ Z-score ↑

Stocks
2 0.387±0.054 0.017±0.017 0.092±0.041 0.037±0.000 395.34±1.24

4 0.466±0.099 0.021±0.006 0.077±0.025 0.037±0.000 397.68±1.31

8 1.053±0.099 0.017±0.013 0.155±0.037 0.037±0.000 406.56±1.77

ETTh
2 0.297±0.038 0.133±0.040 0.097±0.015 0.115±0.003 236.08±1.63

4 0.514±0.027 0.335±0.040 0.098±0.031 0.119±0.008 272.70±1.79

8 0.911±0.048 0.540±0.030 0.147±0.038 0.123±0.008 268.14±2.00

MuJoCo
2 0.108±0.014 0.413±0.062 0.038±0.021 0.007±0.001 56.45±1.26

4 0.205±0.024 0.522±0.024 0.088±0.031 0.007±0.002 58.75±1.18

8 0.338±0.068 0.768±0.077 0.159±0.020 0.007±0.001 68.29±1.19

Energy
2 0.143±0.019 1.662±0.298 0.145±0.019 0.251±0.000 267.53±2.60

4 0.195±0.017 2.760±0.504 0.150±0.011 0.252±0.000 289.07±2.77

8 0.407±0.087 4.285±0.229 0.170±0.025 0.252±0.000 345.97±3.48

fMRI
2 0.441±0.035 1.786±0.043 0.314±0.041 0.100±0.000 595.68±1.03

4 0.425±0.027 1.834±0.122 0.273±0.076 0.100±0.000 749.10±1.08

8 0.469±0.027 1.823±0.065 0.294±0.141 0.100±0.000 817.23±1.20

Table 15: Results of synthetic time series quality and watermark detectability with different intervals
on TimeWak. Quality metrics and Z-score are for 128-length sequences.

Dataset Interval Context-FID ↓ Correlational ↓ Discriminative ↓ Predictive ↓ Z-score ↑

Stocks
2 0.316±0.044 0.021±0.024 0.140±0.029 0.037±0.000 550.05±1.18

4 0.410±0.104 0.019±0.017 0.140±0.067 0.037±0.000 571.54±1.22

8 1.132±0.551 0.035±0.021 0.217±0.019 0.038±0.000 599.41±1.39

ETTh
2 1.090±0.100 0.135±0.057 0.174±0.007 0.110±0.009 340.36±2.06

4 1.445±0.119 0.333±0.034 0.173±0.026 0.114±0.003 374.69±2.39

8 1.838±0.099 0.497±0.054 0.173±0.021 0.116±0.003 392.83±2.39

MuJoCo
2 0.155±0.016 0.316±0.022 0.046±0.030 0.005±0.001 123.36±1.43

4 0.172±0.038 0.410±0.057 0.083±0.011 0.006±0.000 178.16±1.60

8 0.330±0.077 0.685±0.055 0.124±0.026 0.006±0.002 170.77±1.93

Energy
2 0.148±0.027 1.687±0.328 0.140±0.057 0.249±0.000 245.37±2.88

4 0.261±0.025 3.246±0.345 0.114±0.030 0.250±0.001 354.38±2.32

8 0.506±0.114 4.550±0.745 0.147±0.009 0.251±0.000 395.20±2.91

fMRI
2 0.855±0.072 1.704±0.060 0.298±0.227 0.100±0.000 526.81±13.12

4 0.884±0.124 1.708±0.050 0.348±0.201 0.100±0.000 1022.29±1.75

8 0.866±0.075 1.698±0.050 0.345±0.195 0.100±0.000 1097.78±1.57
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Figure 9: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the ETTh
dataset.
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Table 16: Results of synthetic time series quality and watermark detectability with different bits on
TimeWak. Quality metrics and Z-score are for 24-length sequences.

Dataset Bit Context-FID ↓ Correlational ↓ Discriminative ↓ Predictive ↓ Z-score ↑

Stocks
2 0.277±0.019 0.020±0.018 0.120±0.039 0.038±0.000 182.10±0.73

3 0.214±0.039 0.024±0.019 0.130±0.033 0.038±0.000 194.87±0.56

4 0.328±0.110 0.023±0.026 0.155±0.027 0.038±0.000 182.58±0.33

ETTh
2 0.237±0.017 0.212±0.043 0.102±0.014 0.122±0.002 134.83±0.95

3 0.211±0.020 0.206±0.031 0.093±0.003 0.124±0.003 162.25±0.89

4 0.238±0.025 0.225±0.043 0.095±0.016 0.124±0.001 149.74±0.66

MuJoCo
2 0.089±0.017 0.532±0.137 0.044±0.021 0.008±0.001 85.69±1.08

3 0.092±0.022 0.520±0.105 0.054±0.014 0.008±0.001 73.09±1.29

4 0.099±0.019 0.524±0.079 0.056±0.013 0.007±0.000 67.67±1.23

Energy
2 0.121±0.016 1.977±0.750 0.142±0.008 0.254±0.000 231.28±1.45

3 0.121±0.014 1.799±0.395 0.156±0.023 0.254±0.001 268.24±1.69

4 0.143±0.015 1.721±0.347 0.155±0.010 0.254±0.000 269.83±1.60

fMRI
2 0.199±0.010 2.006±0.053 0.122±0.033 0.100±0.000 379.51±0.82

3 0.195±0.008 1.987±0.076 0.113±0.031 0.101±0.000 456.02±0.67

4 0.183±0.012 2.032±0.030 0.111±0.026 0.101±0.000 440.88±0.55

Table 17: Results of synthetic time series quality and watermark detectability with different bits on
TimeWak. Quality metrics and Z-score are for 64-length sequences.

Dataset Bit Context-FID ↓ Correlational ↓ Discriminative ↓ Predictive ↓ Z-score ↑

Stocks
2 0.387±0.054 0.017±0.017 0.092±0.041 0.037±0.000 395.34±1.24

3 0.312±0.046 0.014±0.006 0.121±0.010 0.037±0.000 334.15±0.49

4 0.251±0.053 0.014±0.018 0.095±0.022 0.037±0.000 309.59±0.33

ETTh
2 0.297±0.038 0.133±0.040 0.097±0.015 0.115±0.003 236.08±1.63

3 0.369±0.043 0.182±0.036 0.102±0.013 0.117±0.003 249.67±1.41

4 0.365±0.031 0.185±0.030 0.102±0.010 0.113±0.007 261.13±1.20

MuJoCo
2 0.108±0.014 0.413±0.062 0.038±0.021 0.007±0.001 56.45±1.26

3 0.136±0.012 0.423±0.051 0.073±0.018 0.007±0.002 84.07±1.48

4 0.126±0.017 0.381±0.063 0.036±0.030 0.007±0.001 96.73±1.45

Energy
2 0.143±0.019 1.662±0.298 0.145±0.019 0.251±0.000 267.53±2.60

3 0.182±0.047 1.284±0.400 0.165±0.019 0.251±0.000 323.04±2.37

4 0.143±0.010 1.460±0.354 0.152±0.023 0.251±0.000 322.38±2.25

fMRI
2 0.441±0.035 1.786±0.043 0.314±0.041 0.100±0.000 595.68±1.03

3 0.423±0.024 1.782±0.082 0.216±0.175 0.100±0.000 724.69±0.85

4 0.440±0.027 1.783±0.033 0.256±0.106 0.100±0.000 712.67±0.59
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Table 18: Results of synthetic time series quality and watermark detectability with different bits on
TimeWak. Quality metrics and Z-score are for 128-length sequences.

Dataset Bit Context-FID ↓ Correlational ↓ Discriminative ↓ Predictive ↓ Z-score ↑

Stocks
2 0.316±0.044 0.021±0.024 0.140±0.029 0.037±0.000 550.05±1.18

3 0.380±0.059 0.019±0.015 0.176±0.046 0.037±0.000 459.23±0.45

4 0.391±0.087 0.017±0.020 0.134±0.060 0.037±0.000 427.53±0.23

ETTh
2 1.090±0.100 0.135±0.057 0.174±0.007 0.110±0.009 340.36±2.06

3 1.111±0.137 0.151±0.040 0.153±0.010 0.118±0.005 352.26±1.63

4 1.173±0.131 0.233±0.058 0.166±0.013 0.113±0.006 362.55±1.39

MuJoCo
2 0.155±0.016 0.316±0.022 0.046±0.030 0.005±0.001 123.36±1.43

3 0.183±0.029 0.317±0.068 0.062±0.011 0.005±0.000 183.47±1.55

4 0.150±0.013 0.349±0.028 0.051±0.031 0.006±0.001 174.45±1.55

Energy
2 0.148±0.027 1.687±0.328 0.140±0.057 0.249±0.000 245.37±2.88

3 0.230±0.037 1.154±0.446 0.166±0.054 0.249±0.001 380.35±2.49

4 0.167±0.014 1.700±0.524 0.168±0.069 0.249±0.001 389.26±2.01

fMRI
2 0.855±0.072 1.704±0.060 0.298±0.227 0.100±0.000 526.81±13.12

3 0.819±0.010 1.688±0.049 0.374±0.193 0.100±0.000 986.17±1.08

4 0.828±0.053 1.713±0.020 0.336±0.209 0.100±0.000 967.53±0.86
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Figure 10: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the MuJoCo
dataset.
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Figure 11: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the Energy
dataset.
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Figure 12: Non-watermarked (leftmost column) and watermarked (remaining columns) time series
generated by TimeWak, TabWak, Gaussian Shading, and Tree-Ring watermarking for the fMRI
dataset.
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