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Abstract—Provenance graph analysis plays a vital role in
intrusion detection, particularly against Advanced Persistent
Threats (APTs), by exposing complex attack patterns. While
recent systems combine graph neural networks (GNNs) with
natural language processing (NLP) to capture structural and
semantic features, their effectiveness is limited by class im-
balance in real-world data. To address this, we introduce
PROVSYN, an automated framework that synthesizes prove-
nance graphs through a three-phase pipeline: (1) heterogeneous
graph structure synthesis with structural-semantic modeling,
(2) rule-based topological refinement, and (3) context-aware
textual attribute synthesis using large language models (LLMs).
PROVSYN includes a comprehensive evaluation framework
that integrates structural, textual, temporal, and embedding-
based metrics, along with a semantic validation mechanism to
assess the correctness of generated attack patterns and system
behaviors. To demonstrate practical utility, we use the synthetic
graphs to augment training datasets for downstream APT
detection models. Experimental results show that PROVSYN
produces high-fidelity graphs and improves detection perfor-
mance through effective data augmentation.

1. Introduction

Data provenance [29], which involves recording the
history of data modifications, access, and usage, serves as a
critical tool in cybersecurity systems for tracing attacks [61].
However, as system scales expand, the volume of prove-
nance data increases dramatically, posing challenges for data
management and analysis. To address this, researchers have
begun to represent the provenance of the data using graph
structures and applying graph machine learning algorithms
for the detection and tracking of intrusions [21, 53, 62].
This approach effectively captures the complexity of system
activities and enables the detection of attacks that traditional
methods struggle to identify, such as zero-day attacks and
APT attacks.

The quality of provenance data sets largely determines
the effectiveness of provenance-based intrusion detection
systems (IDS) trained on them. However, there are very
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few datasets available, and even fewer datasets that can
accurately describe benign and malicious activities in a
system. One possible solution is to produce system logs
captured from real-world scenarios. However, one of the key
disadvantages of using such datasets is privacy concerns.
Sharing such dataset across the community could result in
leakage of critical privacy information, and hence it’s diffi-
cult for organizations to release such datasets. Another so-
lution is to collect benign and malicious activities in experi-
mental environments. For example, the DARPA Transparent
Computing (TC) [2] program contributes two widely used
datasets in the cybersecurity community, DARPA TC dataset
and DARPA OpTC dataset. However, such datasets, while
giving us insights into system activities, convey limitations,
one of which being the class imbalance issue [6], where less
common or underrepresented program behaviors are under-
sampled. This imbalance hampers the generalization ability
of machine learning models trained on such data, limiting
their effectiveness in unseen environments [6, 9, 76, 77].

To mitigate the issue of data imbalance, a common
approach is to synthesize high-fidelity provenance data that
expands coverage of minority classes and patterns. Such
data synthesis can be achieved through methods such as
graph generation models or large language models (LLMs),
yet each has critical limitations. On the one hand, most
graph generation models focus on structural connectivity
and lack support for generating rich textual attributes, which
are essential for downstream intrusion detection tasks [12,
37, 53, 71]. On the other hand, although LLMs are strong
at producing semantically rich log entries, their outputs
often fail to preserve the underlying graph structure when
transformed into provenance graphs [1, 4].

To overcome these challenges, we propose PROVSYN,
a hybrid framework that integrates the structural modeling
ability of graph generation models with the text generation
ability of LLMs to jointly synthesize provenance graphs
with both accurate topology and meaningful textual at-
tributes. Specifically, PROVSYN is a three-phase synthe-
sis framework comprising structural synthesis, topological
refinement, and textual attribution. The initial phase con-
structs heterogeneous graph topology by generating nodes
and edges with categorical attributes. Subsequent structural
refinement applies domain-specific rules to eliminate unrea-
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sonable connections and isolated entities. In the third phase,
an LLM is used to generate textual attributes of nodes.
However, the implementation of our framework confronts
three principal technical challenges:
• Scalability to provenance graphs. Provenance graphs

are heterogeneous graphs with more than 10,000 nodes
and edges, whereas most heterogeneous graph generation
models are designed for molecular graphs and are typ-
ically trained on graphs with fewer than 100 nodes [17,
72]. Effectively scaling graph generation models designed
for other domains to large-scale provenance graphs thus
remains a challenge.

• Textual attributes synthesis. First, LLMs inherently
struggle with graph structure comprehension [33], neces-
sitating transformation of provenance graphs into LLM-
interpretable formats. Second, due to lacking prior knowl-
edge of typical provenance entity names, direct LLM
prompting produces simplistic, low-diversity outputs.

• Evaluation framework gap. The absence of a multidi-
mensional evaluation framework hinders comprehensive
assessment of synthesized graphs, particularly in verifying
the semantic correctness of attack patterns and system
behavior within generated provenance structures.

To address the first challenge, we adopt a domain-
agnostic heterogeneous graph generation network [17] to
jointly model node and edge labels along with structural
connectivity. To make the training process scalable to large
graphs, we adopt a restart-based random walk for subgraph
sampling. Through a novel restart mechanism, this sampling
algorithm escapes local regions and captures subgraphs that
better reflect the overall graph structure.

To address the second challenge, we convert the graph
structure into depth-first search (DFS) sequences to enhance
the LLM’s understanding of the graph. In addition, we also
designed two different masking strategies, including fully
masking and partially masking, to construct a training set for
fine-tuning the LLM, thereby providing it with knowledge
of entity names in the provenance graph.

To address the third challenge, we design a compre-
hensive framework that evaluates fidelity from five perspec-
tives: structural, textual, temporal, embedding, and seman-
tic correctness. For structural fidelity, we adopt five Mean
Discrepancy (MMD)-based metrics. For textual fidelity, we
use standard NLP metrics, including BLEU, GLEU, and
ROUGE. For temporal fidelity, we use sequence comparison
metrics including Longest Common Subsequence (LCS) and
Dynamic Time Warping (DTW). For embedding fidelity, we
utilize various embedding methods, including DeepWalk and
Doc2Vec. To accurately assess semantic correctness—the
most challenging aspect—we adopt a model-based ap-
proach. Specifically, we sample positive and negative triples
from real provenance graphs and train a classification model
using contrastive learning.

In the experiments, we used our proposed evaluation
framework to evaluate the provenance data synthesized by
LLMs, including GPT-4o and Claude 3.7, as well as by
PROVSYN. The results show that PROVSYN achieves higher

fidelity than these strong LLMs. Moreover, by generating
100% novel and 100% diverse graphs, PROVSYN effectively
mitigates the data imbalance issue in provenance datasets.
When applied to an intrusion detection system, models
trained on datasets augmented with PROVSYN-generated
graphs exhibited reduced false positive rates during testing.

The main contributions of our work are as follows:
• We propose PROVSYN, a three-phase provenance graph

synthesis framework that enables the construction of high-
fidelity heterogeneous graphs with rich textual attributes.

• We design a comprehensive multi-dimensional evaluation
framework that evaluates the fidelity of synthesized prove-
nance graphs, including: structural, textual, temporal, em-
bedding, semantic correctness.

• We mitigate the data imbalance problem in provenance
datasets by synthesizing novel and diverse provenance
graphs, thereby enhancing the generalizability of down-
stream intrusion detection models.

• The proposed generation and evaluation frameworks can
also be extended to other domains involving Heteroge-
neous Information Networks (HINs), such as social net-
works and citation networks.

2. Background and Motivation

2.1. Class imbalance in Provenance Graphs

We statistically analyzed the distributions of entity
type and event type across four commonly-used public
provenance datasets (in Appendix A Figure 3). Among
the datasets, Cadets, Theia, and Trace are collected from
DARPA Engagement 3, and Nodlink [37] is simulated
provenance data collected on an Ubuntu system using Sys-
dig. The distributions exhibit a typical long-tail pattern and
reveal significant data imbalance. In both entity type and
event type, a single category accounts for over 50% of
instances, exceeding 70% in some cases. In contrast, most
other categories contribute less than 20%, with many below
5%. This imbalance further reflects the uneven distribution
of system behaviors and attack patterns in most provenance
datasets.

The class imbalance problem poses a significant chal-
lenge for learning-based intrusion detection [21, 22, 39, 62,
74]. Previous studies in the deep learning community have
revealed that class imbalance has a detrimental effect on
a model’s classification performance as well as its gener-
alization abilities [8, 34]. When deployed in open-world
out-of-distribution (OOD) environments, detection models
trained on imbalanced datasets may significantly exhibit
performance degradation [25, 67]. Hence, a more balanced
dataset is vital for deep learning-based provenance-based
IDS (PIDS) to achieve optimal results. However, this prob-
lem is largely ignored by the community, as there are very
few studies considering this issue.
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2.2. Problems with Existing Methods

To mitigate class imbalance, conventional techniques
such as undersampling [44], oversampling [47], and the
Synthetic Minority Over-Sampling Technique (SMOTE) [9]
have been proposed. However, these methods are not suit-
able for provenance graph data. Undersampling breaks the
causality chain between system entities, while oversampling
does not add variety to benign activities and can cause
overfitting. SMOTE, which relies on linear interpolation in
the feature space, cannot be applied to provenance graphs
due to overlapping distributions of different classes in the
feature space.

Another approach for augmenting provenance datasets
is to leverage graph generation models to synthesize prove-
nance graphs. However, most existing models focus primar-
ily on generating the structural connectivity among nodes
and edges, without supporting additional node or edge at-
tributes [12, 71]. In contrast, provenance graphs contain rich
textual attributes associated with nodes and edges, and the
text attributes are crucial features for downstream intrusion
detection systems [37, 53]. Yet, to date, no graph generation
model inherently supports the joint generation of both graph
structure and textual attributes.

With the recent advances in large language models, their
capabilities in natural language understanding and genera-
tion have been widely demonstrated [1, 4]. This motivates
the exploration of the use of LLMs to synthesiz provenance
data. Specifically, LLMs can be tasked with creating new
provenance log entries. These generated logs contain rich
texual and semantic information. However, when converting
LLM-generated logs into graphs and evaluating them using
graph-based metrics, their structural fidelity falls signifi-
cantly short of graphs produced by heterogeneous graph
generation models (see details in Section 5.2). This indicates
that although current LLMs perform well in text synthesis,
they lack a strong capability for synthesizing accurate graph
topology and structure.

To address these limitations, we propose PROVSYN, a
framework that integrates the complementary strengths of
graph generation models for structural synthesis and large
language models for text attribute generation.

3. Related Work

Provenance-based Intrusion Detection System
Provenance-based detection methods can be divided into
three main categories [74]: rule-based, statistics-based, and
learning-based techniques. Rule-based methods [24, 28, 46]
rely on predefined heuristics derived from known attack
patterns to identify malicious activities. Statistics-
based [23, 45, 61] approaches analyze deviations in
provenance graph elements by measuring their statistical
anomalies. Learning-based techniques employ deep learning
models to capture either normal system behavior [21, 62]
or malicious patterns [39, 41, 74], framing APT detection
as either a classification [39] or anomaly detection
task [22, 74]. These learning-based methods further branch

into sequence-based approaches [41], which focus on
execution workflows, and graph-based [21, 22, 39, 62, 74]
methods, which use graph neural networks to model entity
relationships and detect behavioral anomalies.
Network Traffic Augmentation To address class imbalance
in network traffic datasets, one line of work applies sampling
techniques. Jiang et al. [32] adopt one-side selection to
remove noisy majority samples and apply SMOTE [9] to
augment minority instances. Liu et al. [42] propose the
Difficult Set Sampling Technique to improve sample rep-
resentativeness. Another line of research explores synthetic
network traffic generation using deep learning. Generative
models, especially GANs, have been employed for various
scenarios, including flow-based traffic [55], manipulated
traffic [11], and social media traffic [54], addressing chal-
lenges in realistic traffic synthesis [5].
LLM-driven Synthetic Data Generation LLM-based syn-
thetic data generation methods can be categorized into
three main types: prompt engineering-based approaches [16,
20, 38, 43, 57, 68, 70], which utilize task descriptions,
condition-value prompts, and in-context examples to steer
generation; multi-step generation-based approaches [14, 15,
27, 63, 64], which break down complex tasks either at
the sample or dataset level; and knowledge-enhanced ap-
proaches [10, 30, 50], which incorporate external knowledge
such as knowledge graphs or web sources to improve the
factual quality of outputs. The evaluation of synthetic data
includes both direct metrics, which measure faithfulness [36]
and diversity [73], and indirect metrics, which assess perfor-
mance on downstream tasks through benchmark testing [58]
and open-ended evaluation using human [26] or model-
based [65] methods.

4. PROVSYN Design

We implement the generation of provenance graphs in
three stages. In the first stage, we train a heterogeneous
graph generation model using real provenance graph dataset
to produce the graph structure. After that, we apply rule-
based post-processing to remove invalid edges and isolated
nodes. In the third stage, we fine-tune a large language
model to label the nodes with appropriate names.

4.1. Problem Definition

A system audit log dataset can be represented as a prove-
nance graph, where nodes correspond to system entities and
directed edges represent system events. Formally, a prove-
nance graph is a directed heterogeneous graph G = (V,E),
where each node vi ∈ V is associated with a type ti = f(vi)
and a name ni = h(vi), and each edge ei ∈ E is associated
with a type li = g(ei). Each system event is represented as
a labeled 5-tuple:

ei = (ti, ni, tj , nj , li)

where ti and tj denote the types of the source and target
nodes, ni and nj denote their names, and li denotes the
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edge type. PROVSYN is to learn a distribution over such
provenance graphs from real system audit data, enabling
the generation of synthetic graphs that preserve both the
structural and semantic properties of the original dataset.
The generated graphs are also heterogeneous, with diverse
node and edge types, and each node is assigned a detailed
name.

The objectives of PROVSYN are threefold: (1) to syn-
thesize high-fidelity provenance graphs. This is our primary
goal, as high-quality provenance data is essential for training
reliable detection models; (2) to mitigate data imbalance in
existing provenance graph datasets. PROVSYN is designed
to learn the underlying distribution of real-world data and
generate samples that represent underrepresented scenarios,
thereby improving data diversity; and (3) to enhance the
performance of downstream intrusion detection systems.
By augmenting existing datasets with PROVSYN-generated
graphs, the coverage of system behaviors can be expanded,
leading to improved generalization and robustness of IDS
models.

4.2. Real-World Provenance Graph Construction

We begin by parsing each log entry to extract five key
elements: source node type, source node name, destination
node type, destination node name, and edge type. These
elements are used to construct a directed provenance graph,
where each node is assigned two attributes (type and name),
and each edge is labeled with a type attribute. To avoid
duplication, we maintain a hash table indexed by the MD5
hash of node names.

For log formats with simple key-value structures, we
extract these elements directly using predefined keys. For
formats with more complex attribute representations of enti-
ties and interactions, we apply regular expressions to extract
the target elements. Extracting node names is particularly
challenging; to improve accuracy, we define type-specific
regular expressions tailored to each node type, ensuring that
a valid name is extracted for every node.

4.3. Graph Structure Generation

Existing graph generation models primarily focus on
structural connectivity, often overlooking the modeling of
node and edge labels [12, 71]. Many approaches also
depend on domain-specific heuristics (e.g., those tailored
to molecular graphs), limiting their generalizability across
graph types [56]. In contrast, provenance graphs represent a
new class of heterogeneous graphs, where nodes correspond
to system entities such as processes, files, and network
components, and edges represent relations such as read,
write, clone, and send. Generating such graphs requires a
domain-agnostic model that captures both structural and
label information.

To this end, we adopt GraphGen [17], a domain-
independent graph generation framework capable of jointly
modeling node and edge labels along with structural con-
nectivity. GraphGen converts graphs into sequences using

minimum DFS codes, a canonical representation that pre-
serves both topology and semantics. An Long Short-Term
Memory (LSTM)-based model is trained to learn the joint
distribution over these sequences, enabling the generation of
labeled heterogeneous graphs in a domain-agnostic fashion.

However, GraphGen is typically trained on small graphs
with around 100 nodes, whereas provenance graphs often
exceed 10,000 nodes, making it infeasible to feed the entire
graph into the model. To make the training process scalable
to large graphs, we adopt a random walk sampling strategy
to extract subgraphs, and then the subgraphs can be used to
construct a GraphGen-compatible training dataset. During
sampling, we perform a restart-based random walk. At
each step, there is a probability of returning to the start-
ing node; otherwise, the next node is uniformly selected
from the current node’s neighbors. Visited nodes and their
connecting edges are dynamically added to the subgraph.
The walk terminates when either a predefined number of
iterations is reached or the subgraph exceeds the maximum
allowed number of nodes or edges. The number of walks
per starting node is determined by its degree, calculated as
factor ×

√
degree , ensuring that high-degree nodes

generate more subgraphs. After sampling, each subgraph
is normalized by remapping node IDs and removing self-
loops. Only subgraphs that meet the node and edge limits
and remain connected are retained. The reason why we
adopt restart-based random walk for subgraph sampling is
its ability to balance local exploration with broader graph
coverage. Unlike simple random walk, which tends to get
trapped in densely connected areas, and Metropolis-Hastings
random walk, which often mixes slowly and introduces
sampling bias in heterogeneous graphs, restart-based random
walk periodically returns to the starting node. This mech-
anism helps it escape local regions and sample subgraphs
that better reflect the overall graph structure. The complete
procedure is presented in Algorithm 1.

The training process of GraphGen involves converting
graphs into minimum DFS codes, followed by learning the
distribution of these sequences using a LSTM network.
Given a graph dataset G = {G1, G2, . . . , Gm}, each graph
Gi is first transformed into its minimum DFS code sequence
Si = F (Gi) = [s1, s2, . . . , s|Ei|], where |Ei| denotes the
number of edges in graph Gi, and each st is an edge tuple
representing the t-th edge in the DFS traversal.

Each edge tuple st is defined as:

st = (tu, tv, Lu, Le, Lv)

where tu and tv are the timestamps (DFS indices) of the
source and target nodes, respectively; Lu and Lv are the
labels of the source and target nodes, respectively; and Le

is the label of the edge between the two nodes.
At each time step t, the LSTM updates its hidden state

ht based on the embedding of the previous edge tuple st−1,
and then predicts the distribution over the next edge tuple:

ht = ftrans(ht−1, femb(st−1))

st ∼ p(st | ht)

4



Real-world 

provenance graphs

Rule-based refinement

Provenance Graph Structure
Refined Graph Structure

Sequences of Nodes and Edges
LLM with the Knowledge 

of Provenance

Train

Graph Generation

Model

Finetune

Generate

Synthesized Provenance Graph

Construct

Datasets

Integrate

Integrate

Sequences without node names

Sequences with node names

Figure 1: PROVSYN Architecture. First, a heterogeneous graph generation model is employed to generate the initial structure
of a provenance graph. Subsequently, the topology of the graph is refined according to predefined rules. Finally, a large
language model is used to synthesize the textual attributes of the nodes within the provenance graph.

Here, femb is the embedding function that maps edge tu-
ples to a vector space, and ftrans is the transition function
implemented by the LSTM.

The training objective is to minimize the binary cross-
entropy (BCE) loss between the predicted and ground-truth
edge tuples across the entire dataset:

L =

m∑
i=1

|Ei|∑
t=1

BCE(p(st | s<t), st)

During inference, GraphGen generates new graphs using
the trained LSTM model. Starting from an initial hidden
state h0 and a start-of-sequence symbol SOS, the model
iteratively generates a minimum DFS code sequence S =
[s1, s2, . . . , s|E|]. The process of updating the hidden state
and sampling the next edge tuple st is the same as in
the training phase. The generation continues until an end-
of-sequence symbol EOS is produced. The resulting DFS
code sequence S is then converted back into a graph G by
reconstructing the edges based on the timestamps and labels
in the sequence, yielding the generated graph structure and
labels. This approach allows the model to generate graphs
that reflect the structural and semantic patterns present in
the training data.

4.4. Rule-based Post-processing

After the first stage, we obtain an undirected hetero-
geneous graph, where both nodes and edges have distinct
types. However, this graph is not directly suitable as a
provenance graph structure for two main reasons. First,

provenance graphs are directed by nature, whereas the gen-
erated graph is undirected. Second, despite being trained
on a large dataset, the heterogeneous graph generation
model occasionally produces invalid connections—such as a
process-read-process relation—which do not occur
in real-world scenarios.

To ensure the fidelity of generated provenance graphs,
we implement a rule-based post-processing pipeline. First,
we convert the undirected graph into a directed graph by
replacing each undirected edge (u, v) with two directed
edges, (u, v) and (v, u). We then remove edges violating
domain-specific constraints, such as connections between
incompatible entity types or semantically invalid interac-
tions. Finally, we remove all isolated nodes resulting from
edge removal, as such nodes do not appear in real-world
provenance graphs.

The domain-specific constraints applied during post-
processing vary by dataset. For example, for the Nodlink
dataset, the constraints are as follows: (1) all operations
must originate from process nodes; (2) file operations must
terminate at file nodes; (3) process operations must terminate
at process nodes; and (4) network operations must terminate
at either network or file nodes. For the Cadets, Theia, and
Trace datasets, the constraints are: (1) non-read operations
must originate from process nodes; and (2) read operations
(e.g., read, receive, load) must terminate at process nodes.

4.5. Textual Attribute Generation

After the first two stages, we obtain a directed het-
erogeneous graph in which nodes of different types are
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Algorithm 1: RESTART-BASED RANDOM WALK
SUBGRAPH SAMPLING

Input : Graph G = (V,E), starting node u ∈ V , iterations T , restart
probability α = 0.15, node constraints
min nodes,max nodes , edge constraints
min edges,max edges

Output: Valid subgraph Gsampled or ∅ if invalid
1 Gsampled ← graph with node u (copy attributes from G)
2 current ← u
3 for t← 1 to T do
4 r ∼ Uniform[0, 1]
5 if r < α then
6 current ← u // Restart mechanism
7 else
8 v ← random neighbor of current in G
9 if v /∈ V (Gsampled) then

10 Add v to Gsampled (copy attributes from G)
11 Add edge (current, v) to Gsampled (copy attributes from G)
12 current ← v
13 if |V (Gsampled)| ≥ max nodes then
14 break // Node limit reached
15 if |E(Gsampled)| ≥ max edges then
16 break // Edge limit reached
17 Remove self-loops from Gsampled
18 Relabel nodes to consecutive integers
19 n← |V (Gsampled)|
20 e← |E(Gsampled)|
21 if ¬is connected(Gsampled) or n < min nodes or n > max nodes

or e < min edges or e > max edges then
22 return ∅ // Subgraph is invalid
23 return Gsampled // Return valid subgraph

connected by edges of different types, and all connections
conform to predefined rules. However, this graph is not yet
sufficient to serve as a complete provenance graph. In real-
world scenarios, nodes typically carry detailed names, such
as command lines or file paths. These names are essential,
as many provenance-based intrusion detection methods rely
on features extracted from node names using natural lan-
guage processing techniques [37, 53]. Therefore, assigning
meaningful node names is crucial for supporting accurate
detection.

In the third stage, we leverage the natural language
generation capabilities of large language models to assign
names to nodes in provenance graphs. This process involves
two main challenges. First, prior studies suggest that LLMs
are not inherently effective at understanding graph structures
[33]. Thus, a key issue is how to transform the structure of
a provenance graph into a format that is more interpretable
by LLMs. Second, LLMs lack prior knowledge of typical
node names in provenance graphs, and prompting them di-
rectly often results in overly simplistic outputs with limited
diversity.

To address the first challenge, prior work has shown that
LLMs are less effective at processing graph-structured data
but perform well on sequence-based inputs [69]. Motivated
by this, we propose a method that converts directed het-
erogeneous graphs into sequences of node and edge types
using depth-first search. These sequences are then input to
the LLM to generate names for the corresponding nodes.
Specifically, to extract complete and non-overlapping DFS
paths, we use all nodes with zero in-degree as starting points
for DFS traversal. However, due to the presence of self-loops
in the provenance graph, some paths may not be captured

using this strategy alone. To address this, we additionally
include any node involved in a self-loop as a starting point.
In each extracted sequence, a node is represented as a pair
(τi, ni), where τi ∈ T denotes the node type and ni ∈ N
the node name. Each edge ej represents the interaction type
between adjacent nodes. A DFS-derived sequence is defined
as:

S = [(τ1, n1)
e1−→ (τ2, n2)

e2−→ · · · ek−1−−−→ (τk, nk)]

For nodes without names, we use [null] as a placeholder.
During the name generation process, we do not input all
sequences to the LLM in parallel. This is because nodes
may appear in multiple sequences, and parallel processing
could lead to inconsistencies in assigned names. Instead, we
sequentially feed each DFS-derived sequence to the LLM.
Once a node name is generated, it is filled into the graph,
ensuring that subsequent traversals can retrieve the updated
name.

To address the second challenge, we construct a training
dataset to provide the LLM with prior knowledge about
entity names in provenance data. Each training instance is
a question–answer pair, where the question (Q) consists of
a DFS sequence of node and edge types, and the answer
(A) is the same sequence with node names annotated. All
training instances are derived from real-world provenance
graphs.

To generate realistic Q&A pairs, we adopt a masking
strategy that preserves structural context while requiring the
model to infer node names. During the name generation
process, two types of sequence are inputted to the LLM.
The first type consists of sequences in which all nodes
are unnamed, serving as a cold start and requiring the
LLM to infer node names based solely on the order of
node and edge types. The second type includes sequences
where some nodes are already named, requiring the LLM to
infer the remaining names using both structural order and
existing node names as context. Accordingly, we define two
corresponding Q&A pair formats:

Fully Masked Q&A Pairs In this setting, all node
names are masked with [null] while retaining node types
and edge types, creating a template for cold-start name
generation. This design encourages the model to learn a
mapping f : (τi, {τj , el}kj=1) → ni, while preserving struc-
tural consistency through fixed sequences of node and edge
types.

Qfull = [(τ1, [null]) e1−→ (τ2, [null]) e2−→ · · · ek−1−−−→ (τk, [null])],

Afull = [(τ1, n1)
e1−→ (τ2, n2)

e2−→ · · · ek−1−−−→ (τk, nk)].

Partially Masked Q&A Pairs To simulate realistic gen-
eration scenarios where some node names are known from
prior context, we randomly mask a subset M ⊂ {1, . . . , k}
of node names with a masking rate ρ:

Qpart = [(τ1, ñ1)
e1−→ · · · ek−1−−−→ (τk, ñk)],

where
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ñi =

{
[null] if i ∈ M,

ni otherwise.

The corresponding answer sequence Apart = Afull pro-
vides full supervision of node names. This adaptive masking
strategy allows the model to learn to predict masked node
names based on both the observed names and the structural
context:

P (nM | n¬M, {τj}kj=1, {el}k−1l=1 ).

By constructing these two types of QA pairs, we provide
the LLM with a comprehensive training dataset that helps
it learn the correspondence between sequences and node
names, thereby improving its ability to generate accurate
node names in provenance graphs. This approach leverages
the strengths of LLMs in sequence-based tasks while ad-
dressing the challenges of graph structure understanding,
leading to more effective node name generation in prove-
nance graphs.

4.6. Semantic Correctness Validation

Evaluating semantic correctness is essential for assessing
the quality of synthetic provenance graphs, as it indicates
whether the generated graphs accurately reflect the un-
derlying logic and intent of real-world system behaviors.
This evaluation examines whether the relationships among
entities and the sequences of interactions conform to mean-
ingful and valid operational patterns. Despite its importance,
evaluating semantic correctness remains difficult due to the
lack of standardized metrics and the inherent complexity
in defining ground-truth semantics for diverse and dynamic
system activities.
Model-based Evaluation Mechanism. To evaluate seman-
tic correctness, we formally define a semantic unit in the
graph as a triplet: the starting node name s, edge type e,
and ending node name t. This unit is represented as (s, e, t),
where s, t ∈ N (the set of all node names) and e ∈ E (the
set of all edge types). Concatenating these elements forms
a natural language sentence, denoted Sentence(s, e, t). This
sentence captures the semantics of the interaction between
entities, expressing that the source node s performs an action
of type e on the target node t.

To assess the semantic correctness of Sentence(s, e, t),
we employ a BERT(Bidirectional Encoder Representations
from Transformers) [13]-based encoder to obtain its em-
bedding. This embedding captures the semantic representa-
tion of the interaction described by the triplet and serves
as the basis for subsequent classification-based evaluation.
Formally, let BERT : S → Rd be the encoding function that
maps a sentence Sentence(s, e, t) ∈ S (the set of all possible
semantic triplets in sentence form) to a dense vector v ∈ Rd.
The embedding is computed as:

v = BERT(Sentence(s, e, t))

However, embedding of Sentence(s, e, t) captures only
pairwise semantic relationships, resulting in a localized
evaluation. To achieve graph-level assessment, we employ
a multi-layer Graph Attention Network (GAT) [60]. This
architecture aggregates neighborhood information through
stacked self-attention layers, where each layer updates node
representations by adaptively weighting features from adja-
cent nodes. We employ BERT to represent the text attributes
of individual nodes as the initial node embeddings. Formally,
for each node v with text attribute Tv, its initial embedding
h
(0)
v is derived via BERT:

h(0)
v = BERT(Tv)

Let GAT : V → Rd′
denote the encoder that maps a

node to its global representation in Rd′
using these initial

embeddings. For a semantic unit (s, e, t), we obtain the
global embeddings of both the starting node s and the ending
node t:

us = GAT
(
s;
{
h(0)
v

}
v∈V

)
, ut = GAT

(
t;
{
h(0)
v

}
v∈V

)
We then concatenate the global embeddings us and ut

with the local embedding v of the semantic unit to form a
comprehensive representation:

z = [v;us;ut]

This comprehensive representation z captures both the
local and global context of the semantic unit. Finally, we
feed z into a multilayer perceptron (MLP) discriminator to
determine the correctness of the semantic unit. The MLP
discriminator is defined as MLP : Rd+2d′ → [0, 1]. The
correctness score of the semantic unit is computed as:

Correctness Score = MLP(z)

The correctness score is a value between 0 and 1, where
a higher score indicates higher semantic correctness.
Contrastive Learning-based Training Framework. To
train the GAT and MLP discriminator, we employ a con-
trastive learning approach. We use real provenance graphs as
the training set, extracting all semantic units from them and
labeling them as positive samples. Additionally, to provide
negative samples for contrastive learning, we construct them
from the positive samples using three distinct strategies
to help the classifier model learn to distinguish between
semantically correct and incorrect instances. The strategies
are:

Subject-Object Inversion (SOI): We swap the names of
the start node and the end node. This trains the model to
recognize cases where the subject and object are inverted
in semantics. Formally, for a semantic unit (s, e, t), we
generate a negative sample by inverting the subject and
object:

(s, e, t) → (t, e, s)

Predicate Replacement (PR): We replace the edge type
with another type of edge. This trains the model to identify
incorrect predicates in semantics. However, in this method,
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replacing the edge type with another type may still result
in semantically correct cases. To guarantee the constructed
semantic units are semantically incorrect, we manually clas-
sify edge types into disjoint categories. Let E =

⋃k
i=1 Ei be

the partition of edge types into k categories. When replacing
an edge type e ∈ Ei, we ensure the new edge type e′ is from
a different category, i.e., e′ ∈ Ej where i ̸= j. For a semantic
unit (s, e, t), we generate a negative sample by replacing the
predicate:

(s, e, t) → (s, e′, t) where e′ ∈ Ej and j ̸= i

Entity Substitution (ES): We replace the name of either
the start node or the end node with the name of another node.
This trains the model to recognize cases where irrelevant
entities appear in semantics. It is important to note that
in this construction method, replacing one element of a
semantic triple with another element may still result in
correct semantics. This is because the replaced element and
the new element may be similar. Therefore, to construct
negative samples, we first cluster the node names using
K-means into disjoint clusters. Let V =

⋃m
i=1 Vi be the

partition of node names into m clusters. When replacing a
node name s ∈ Vi or t ∈ Vi, we select a node s′ ∈ Vj

or t′ ∈ Vj where i ̸= j. For a semantic unit (s, e, t), we
generate negative samples by substituting either the subject
or the object:

(s, e, t) → (s′, e, t) where s′ ∈ Vj and j ̸= i

or (s, e, t) → (s, e, t′) where t′ ∈ Vj and j ̸= i

To maintain a balanced training set, we generate one
negative sample for each positive sample in the real graph.
Specifically, we randomly select one of the three strategies
(SOI, PR, ES) to construct the negative sample. This ensures
that positive and negative samples each account for 50%
of the training data. For the MLP discriminator, which
determines the semantic correctness of each triple, we adopt
a binary cross-entropy loss. Given a batch of semantic units
{(si, ei, ti)}Ni=1 with corresponding labels yi ∈ {0, 1}, the
loss function is defined as:

LMLP = − 1

N

N∑
i=1

[yi log fMLP(zi) + (1− yi) log (1− fMLP(zi))]

5. Evaluation

To thoroughly evaluate PROVSYN, we address the
following research questions. Experiments on provenance
graph structure generation were conducted on a machine
equipped with Intel Xeon Silver CPU, 128 GB RAM,
NVIDIA RTX 3090 GPUs, and Ubuntu 22.04.4 LTS. Ex-
periments on text attribute synthesizing were performed on
a machine with Intel Xeon Platinum CPU, 512 GB RAM,
NVIDIA RTX A6000 GPUs, and Ubuntu 22.04.3 LTS. The
research questions are:

RQ1: What is the fidelity of synthetic provenance graphs
in terms of structural, textual, temporal, and embedding-
based characteristics?

TABLE 1: Comparison of dataset statistics.

Dataset Nodes Edges Node Types Edge Types

Nodlink 16,818 30,531 3 13
Cadets 89,207 276,883 6 20
Theia 77,071 202,517 3 14
Trace 74,241 113,808 7 20

RQ2: What is the semantic correctness of synthetic
provenance graphs?

RQ3: Can synthetic provenance graphs mitigate class
imbalance in the dataset?

RQ4: When synthetic provenance graphs are used for
training set augmentation in downstream intrusion detection
tasks, what is the performance of the detection task?

RQ5: What are the time and resource costs of generating
synthetic provenance graphs?

Further aspects of our study, including hyperparameter
analysis, ablation study are discussed extensively in the
Appendix C D.

5.1. Experimental Setup

Datasets. We evaluate the effectiveness of PROVSYN on
two public datasets: the Nodlink Ubuntu dataset [37] and
the DARPA Engagement 3 datasets [2]. The Nodlink
dataset [37] we use is a simulated provenance dataset
collected on Ubuntu 20.04 using Sysdig. It provides both
benign logs and attack logs containing a complete multi-
stage attack chain. The detailed statistics of the Nodlink
provenance graphs used for training and evaluation are
shown in Table 1. The DARPA E3 datasets [2] are collected
from an enterprise network during adversarial engagements
as part of the DARPA Transparent Computing program.
APT attacks are launched by a red team, while blue teams
attempt to detect them through host auditing and causality
analysis. TRACE, THEIA and CADETS sub-datasets are
included in our evaluation. For E3 dataset, we utilize labels
from ThreaTrace. As shown in Table 1, the E3 dataset,
compared to Nodlink, has a larger number of nodes and
edges, and also exhibits greater diversity in node and edge
types.
Baselines. In our approach, we first use a heterogeneous
graph generation model to construct the structure of the
provenance graph and then employ an LLM to generate
the textual attributes of the graph. In contrast, an alternative
method directly calls an LLM to synthesize provenance logs
and then converts these logs into a graph. This method does
not require an additional heterogeneous graph generation
model. We systematically evaluate and compare the prove-
nance data synthesized by these strong LLMs with the data
synthesized by PROVSYN.

To ensure a comprehensive comparison, we selected
baseline models encompassing both large-parameter closed-
source models and smaller-parameter open-source models.
For large-parameter LLMs, we chose GPT-4o [4], Claude-
3.7-Sonnet [1], and Doubao-pro-32k [3]. For smaller-
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parameter LLMs, we chose Qwen2.5-7B-Instruct [66] and
Llama3.1-8B-Instruct [18].

To generate provenance logs using LLMs listed above,
we designed structured prompts that included task descrip-
tions, illustrative examples, and clearly defined output for-
mats. Each dataset was paired with a customized prompt,
primarily differing in the examples provided. These exam-
ples, formatted as JSON or TSV entries, contained five
elements: source node type, source node name, destination
node type, destination node name, and edge type. They were
selected from real audit logs to ensure both representative-
ness and coverage of various node and edge types. For each
dataset, we collected 100 responses from each LLM. After
obtaining the responses, we parsed them line by line and
filtered out entries that did not conform to the expected
JSON or TSV format. We also discarded entries containing
node or edge types outside the predefined type sets. The
remaining entries were then used to construct provenance
graphs for comparison with graphs generated by PROVSYN.
Configurations. For training the heterogeneous graph gen-
eration model, we sampled 20,000 subgraphs from the real
provenance graphs using a random walk strategy. Among
them, 16,000 subgraphs were used for training, 2,000 for
validation, and 2000 for test. The model was trained for
3,000 epochs with a batch size of 32 and a learning
rate of 0.003. After training, we selected the model that
achieved the best performance on the validation set for use
in PROVSYN. For example, on the Theia dataset, the best-
performing model was obtained after 2,380 epochs and was
used in the final PROVSYN pipeline.

For the text attribute synthesizing task, we used
Llama3.2-3B-Instruct as the base model. We constructed a
training set of 20,000 samples, consisting of 10,000 fully
masked QA pairs and 10,000 partially masked QA pairs.
During training, we applied the LoRA fine-tuning method,
freezing most of the model parameters and updating only
0.81% of them. The model was trained for 60 steps with a
learning rate of 2e-4. During inference, the temperature was
set to 1.5, and the maximum number of generated tokens
was set to 2048.

5.2. Fidelity Evaluation

Structural Evaluation. To quantitatively evaluate the struc-
tural fidelity of generated graphs, we employ five Maxi-
mum Mean Discrepancy (MMD)-based metrics [19, 59] that
measure distributional divergence between generated graphs
and real graphs. These metrics include: (1)degree MMD for
local connectivity patterns, (2)orbit MMD for higher-order
structural motifs, (3)node label MMD for vertex attribute
distributions, (4)edge label MMD for edge label distribu-
tions, and (5)joint node label-degree MMD for attribute-
topology interactions.

To bridge the characterization of graph features with
distributional divergence measurement, we leverage ker-
nel methods to project these heterogeneous graphs into
comparable representations. We construct kernel similarity

TABLE 2: Comparison of MMD metrics across different
models and datasets. Lower values indicate better perfor-
mance.

Dataset Model Degree Orbit Node Label Edge Label Node Label & Degree

Nodlink

GPT-4o 0.75 0.94 0.11 0.75 0.89
Claude-3.7 0.56 0.85 0.07 0.92 0.77

Doubao-pro 0.58 0.82 0.18 1.50 0.59
Qwen2.5-7B 0.43 0.59 0.05 0.94 0.40
Llama3.1-8B 0.62 - 0.10 0.91 0.81

PROVSYN 0.07 0.07 0.002 0.01 0.07

Cadets

GPT-4o 0.82 0.28 0.37 0.90 0.48
Claude-3.7 0.76 0.36 0.11 1.33 0.83

Doubao-pro 0.73 0.25 0.27 1.31 0.66
Qwen2.5-7B 0.76 0.39 0.67 0.77 0.33
Llama3.1-8B 0.88 0.40 0.72 0.85 0.81

PROVSYN 0.08 0.32 0.003 0.01 0.12

Theia

GPT-4o 0.94 0.35 0.46 1.34 0.53
Claude-3.7 0.92 0.85 0.18 1.44 0.81

Doubao-pro 0.82 0.67 0.46 1.86 0.89
Qwen2.5-7B 0.91 0.46 0.48 1.00 0.61
Llama3.1-8B 0.68 0.87 0.53 1.01 0.66

PROVSYN 0.16 0.54 0.005 0.01 0.29

Trace

GPT-4o 0.66 1.04 0.80 1.07 0.54
Claude-3.7 0.77 1.10 0.68 1.74 0.80

Doubao-pro 0.75 1.06 0.57 1.12 0.51
Qwen2.5-7B 0.24 0.23 0.44 1.06 0.47
Llama3.1-8B 0.25 0.87 1.04 1.16 0.63

PROVSYN 0.17 0.23 0.02 0.04 0.33

matrices using two distinct Gaussian kernel formulations.
The Earth Mover’s Distance-optimized Gaussian kernel is
applied to categorical distribution metrics including degree
MMD, node/edge label MMD, and joint node label-degree
MMD, while the Euclidean-based Gaussian kernel handles
continuous feature spaces in orbit MMD. The MMD² values
are computed via the unbiased estimator:

MMD2 = Ex,x′∼P [k(x, x
′)] + Ey,y′∼Q[k(y, y

′)]

− 2Ex∼P,y∼Q[k(x, y)]

where P and Q denote reference and generated graph
distributions, x, x′ are samples from P , and y, y′ from Q.

In the experimental results shown in Table 2, PROVSYN
consistently outperformed the baselines across all datasets.
In Nodlink dataset, PROVSYN achieved values an order
of magnitude lower than the baselines on all metrics, in-
dicating superior structural fidelity. In Cadets, Theia, and
Trace datasets, PROVSYN also maintained a clear lead,
particularly on label-related metrics. In contrast, baseline
methods exhibit inconsistent performance patterns across
the four datasets, suggesting fundamental limitations in
structural generation capabilities regardless of the scale of
model parameters. This finding underscores the necessity
of an additional heterogeneous graph generation network,
which produces structurally superior graphs compared to
those generated solely by an LLM.
Texutual Evaluation. To evaluate the accuracy of generated
text attributes, we use standard NLP metrics that capture
different types of similarity. These include: (1) BLEU [51],
which measures n-gram precision; (2) GLEU [49], which
balances precision and recall; and (3) ROUGE [40], which
focuses on recall by assessing how much of the reference
text is covered.

For each node type, we construct a reference corpus
Rt = {r1, r2, ..., rn} by aggregating all valid node names
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of type t from the real-word provenance graph. When eval-
uating a generated name gi, we compute its similarity with
every reference rj ∈ Rt through parallel metric calcula-
tions, then select the maximum similarity score as the final
assessment:

S(gi) = max
rj∈Rt

sim(gi, rj)

The choice of maximum similarity over average similar-
ity is driven by the following considerations. Focusing on
the highest match ensures that the generated text is evaluated
based on its optimal alignment with the reference corpus,
thereby highlighting its capacity to produce accurate and
relevant attributes. The complete procedure is presented in
Algorithm 2 in Appendix B.

In our experiments, we used the Python NLTK library
to compute the BLEU, GLEU, and ROUGE scores for the
process and file nodes. We didn’t evaluate the text quality
of network nodes because their names are purely numeri-
cal, making natural language metrics inappropriate. Addi-
tionally, our analysis shows that the network node names
generated by both the baselines and PROVSYN conform to
the IPv4 address format.

The results in Table 3 show that the node names gen-
erated by the baselines generally achieve scores below 0.1,
indicating that large language models lack prior knowledge
of the names of operating system entities. In contrast,
PROVSYN was exposed to real entity names from audit logs
during the finetuning stage, enabling a smaller 3B model to
generate more accurate and realistic names. Interestingly,
we observed that Llama-8B performed relatively well in the
Cadets datasets. Further analysis revealed that many of the
node names generated by Llama were directly copied from
the examples in the prompt, even though the corresponding
log entries did not make sense.
Temporal Evaluation. A provenance graph is a directed
graph in which directed sequences also represent temporal
sequences of events occurring in chronological order. For
synthetic provenance graphs, accurately preserving the tem-
poral structure of event sequences is essential for ensuring
fidelity. To evaluate the temporal consistency of synthetic
provenance graphs, we employ two metrics: Longest Com-
mon Subsequence (LCS) [7] and Dynamic Time Warping
(DTW) [48].

LCS measures the length of the longest sequence of
events that appears in both the real and synthetic graphs
in the same order. LCS is a strict matching metric—it
requires exact alignment of events and their temporal order
without allowing for any deviations or shifts. DTW, on the
other hand, is a more flexible metric that allows for non-
linear alignments between sequences. Unlike strict matching
methods, DTW allows sequences to be stretched or com-
pressed along the time axis, thereby accommodating local
variations. This flexibility makes DTW particularly suitable
for scenarios where the synthetic graph captures the general
pattern of the real sequence but exhibits slight shifts or
inconsistencies.

In our experiments, we used depth-first search to extract
sequences from the graphs. Each sequence consisted of
node types and edge types, e.g. (process, clone,
process, read, file). For LCS computation, we
used a dynamic programming approach, and for DTW, we
used the dtw library in Python. To compare synthetic graphs
with the real graphs in the test set, we adopted a strategy
similar to Algorithm 2 in Appendix B: each sequence from
the synthetic graph was compared with all sequences from
the real graph, and the best match was recorded as its score.
The overall graph score was then computed by aggregating
the scores of all sequences in the synthetic graph. The
results in Table 4 show that PROVSYN achieves higher LCS
scores and lower DTW values than the baselines across all
four datasets, indicating its advantage in preserving temporal
consistency.
Graph Embedding Evaluation. To evaluate the fidelity
of synthetic graphs from an embedding perspective, we
employ graph representation learning techniques to project
both synthetic and real graphs into a shared vector space,
and measure their similarity using cosine similarity. Specif-
ically, we adopt two representative embedding methods:
DeepWalk [52] and Doc2Vec [35].

DeepWalk is a foundational algorithm in graph repre-
sentation learning. It learns node embeddings by simulating
truncated random walks on the graph and treating the result-
ing node sequences as sentences for a language modeling
task. Given a graph G, we perform N random walks of
length L starting from each node, generating a corpus
W = {w1, w2, . . . , wN}, where each wi is a walk sequence
of node identifiers. These sequences are then used to train
a Word2Vec model, producing node-level embeddings. The
graph-level embedding vdeepwalk is computed as the mean of
all node embeddings:

vdeepwalk =
1

|V|
∑
v∈V

deepwalk(v)

Notably, DeepWalk does not consider textual attributes
of nodes.

Unlike DeepWalk, Doc2Vec leverages node name in-
formation to capture the textual semantics of the graph.
It treats each graph as a document, which is constructed
from a collection of random walks. For a given graph G,
we perform N random walks of length L, resulting in a
sequence set W = {w1, w2, . . . , wN}, where each wi is a
sequence of node names. These sequences are used to train a
Doc2Vec model, yielding a graph-level embedding vdoc2vec:

vdoc2vec = doc2vec(W)

To assess the similarity between a synthetic graph Gs

and a real graph Gr, we compute the cosine similarity
between their respective embeddings:

Similarity =
vGs

· vGr

∥vGs∥∥vGr∥
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TABLE 3: Comparison of textual quality across different
models, types and datasets. Lower values indicate better
performance.

Dataset Type Model BLEU GLEU ROUGE-L-F

Nodlink

Process

GPT-4o 0.05 0.11 0.23
Claude-3.7 0.08 0.15 0.27

Doubao-pro 0.02 0.03 0.09
Qwen2.5-7B 0.07 0.15 0.29
Llama3.1-8B 0.12 0.17 0.33

PROVSYN 0.89 1.00 0.99

File

GPT-4o 0.09 0.11 0.29
Claude-3.7 0.10 0.11 0.29

Doubao-pro 0.06 0.11 0.25
Qwen2.5-7B 0.11 0.17 0.41
Llama3.1-8B 0.26 0.26 0.37

PROVSYN 0.31 0.32 0.44

Cadets

Process

GPT-4o 0.24 0.24 0.24
Claude-3.7 0.17 0.17 0.17

Doubao-pro 0.03 0.03 0.03
Qwen2.5-7B 0.03 0.03 0.04
Llama3.1-8B 1.00 1.00 1.00

PROVSYN 1.00 1.00 1.00

File

GPT-4o 0.01 0.01 0.20
Claude-3.7 0.03 0.03 0.14

Doubao-pro 0.01 0.01 0.14
Qwen2.5-7B 0.02 0.02 0.16
Llama3.1-8B 0.00 0.00 0.03

PROVSYN 0.31 0.32 0.60

Theia

Process

GPT-4o 0.08 0.08 0.09
Claude-3.7 0.04 0.04 0.05

Doubao-pro 0.01 0.01 0.03
Qwen2.5-7B 0.19 0.19 0.20
Llama3.1-8B 0.00 0.00 0.00

PROVSYN 0.76 0.89 0.47

File

GPT-4o 0.03 0.03 0.21
Claude-3.7 0.05 0.05 0.16

Doubao-pro 0.01 0.01 0.11
Qwen2.5-7B 0.00 0.00 0.29
Llama3.1-8B 0.00 0.00 0.35

PROVSYN 0.37 0.44 0.48

Trace

Process

GPT-4o 0.02 0.02 0.02
Claude-3.7 0.02 0.02 0.02

Doubao-pro 0.00 0.00 0.00
Qwen2.5-7B 0.02 0.02 0.02
Llama3.1-8B 0.00 0.00 0.00

PROVSYN 0.50 0.50 0.50

File

GPT-4o 0.00 0.00 0.03
Claude-3.7 0.00 0.00 0.03

Doubao-pro 0.00 0.00 0.01
Qwen2.5-7B 0.00 0.00 0.02
Llama3.1-8B 0.00 0.00 0.00

PROVSYN 0.00 0.00 0.67

A higher similarity score indicates that the synthetic
graph exhibits greater fidelity to the real graph in the em-
bedding space.

For DeepWalk-based similarity, we use the Word2Vec
model from the Gensim library, and for Doc2Vec-based
similarity, we use Gensim’s Doc2Vec model. In our experi-
ments results shown in Table 4, PROVSYN outperforms the
baselines on the Nodlink, Cadets, and Trace datasets, while
performing slightly worse than GPT and Claude on Theia.
The results show that PROVSYN maintains stable embedding
similarity, with DeepWalk scores above 0.80 and Doc2Vec
scores above 0.65 across four datasets. In comparison, the

baselines exhibit greater variation across different datasets.

TABLE 4: Comparison of Temporal and Embedding metrics
across different datasets and models. For LCS, higher is bet-
ter; for DTW, lower is better; for DeepWalk and Doc2Vec,
higher is better.

Dataset Model Temporal Metrics Embedding Metrics

LCS DTW DeepWalk Doc2Vec

Nodlink

GPT-4o 2.44 1.54 0.66 0.69
Claude-3.7 3.03 1.33 0.83 0.40

Doubao-pro 2.64 0.89 0.60 0.59
Qwen2.5-7B 2.84 0.56 0.58 0.32
Llama3.1-8B 2.88 0.83 0.50 0.16

PROVSYN 3.30 0.41 0.89 0.74

Cadets

GPT-4o 2.99 0.48 0.70 0.40
Claude-3.7 2.87 1.20 0.73 0.39

Doubao-pro 2.68 3.62 0.64 0.71
Qwen2.5-7B 2.13 24.30 0.79 0.25
Llama3.1-8B 2.96 0.48 0.48 0.67

PROVSYN 3.01 0.21 0.90 0.82

Theia

GPT-4o 2.39 0.65 0.89 0.53
Claude-3.7 1.80 0.74 0.82 0.70

Doubao-pro 2.78 1.43 0.56 0.39
Qwen2.5-7B 1.36 8.90 0.74 0.48
Llama3.1-8B 1.04 8.94 0.39 0.66

PROVSYN 3.02 0.00 0.81 0.65

Trace

GPT-4o 2.16 0.46 0.70 0.27
Claude-3.7 2.15 0.54 0.67 0.41

Doubao-pro 2.09 0.40 0.57 0.08
Qwen2.5-7B 2.10 0.47 0.75 0.09
Llama3.1-8B 2.08 4.45 0.71 -0.01

PROVSYN 2.80 0.10 0.81 0.75

5.3. Semantic Correctness Evaluation

We use the semantic correctness validation mechanism
introduced in Section 4.6 to evaluate the semantic of syn-
thetic graphs. In the experiment, the GAT model was trained
for 2500 epochs with a learning rate of 0.0001, while the
MLP classifier was trained for 1500 epochs with the same
learning rate. To validate the effectiveness and interpretabil-
ity of our semantic accuracy evaluation, we tested it on
real-world provenance graphs from the same datasets but
different from the training graphs. The results show that
the semantic accuracy of these real graphs exceeds 90%
across the Nodlink, Cadets, Theia, and Trace datasets. This
supports the validity of our semantic accuracy evaluation
method. The results in Figure 2 show that the provenance
graphs generated by PROVSYN consistently outperform the
baselines in semantic accuracy across all four datasets,
showing robustness to differences in data distribution. In
contrast, the baselines exhibit substantial fluctuations in
semantic accuracy across datasets. Notably, in the more
challenging Theia and Trace datasets, the semantic accuracy
of baseline-generated graphs remained below 0.20, whereas
PROVSYN achieved 0.57 and 0.82, respectively. These re-
sults demonstrate the robustness of PROVSYN in handling
complex, low signal-to-noise provenance data.
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(b) Cadets
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(c) Theia
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(d) Trace

Figure 2: Comparison of semantic accurary across different models and datasets. Higher values indicate better performance.

5.4. Data Imbalance Evaluation

To evaluate whether the inclusion of PROVSYN-
generated synthetic graphs mitigates class imbalance, we
use two metrics—entropy and the Gini index—to quantify
the distributional balance of node and edge labels. Given a
label distribution with probabilities p1, p2, . . . , pn, the two
metrics are defined as:

Entropy = −
n∑

i=1

pi log(pi), Gini = 1−
n∑

i=1

p2i

Higher values of both metrics indicate a more uniform and
balanced label distribution.

We conduct experiments on the Nodlink, Cadets, Theia,
and Trace datasets, both in their original data and after in-
corporating PROVSYN-generated data. For each dataset, we
add 100 synthetic graphs merged with the original graph as
graph communities. The results are summarized in Table 5.
As shown, the inclusion of PROVSYN increases both entropy
and Gini index for node and edge labels across all datasets.
In the Nodlink dataset, the metrics improve significantly
due to the dataset’s small scale. These results suggest that
PROVSYN contributes to a more balanced label distribution
by enriching underrepresented classes in provenance graph
datasets.

To evaluate whether the synthesized graphs extend be-
yond the training data distribution and contain novel struc-
tures that cover more provenance scenarios, we use two
metrics: Novelty and Uniqueness. Novelty is computed by
verifying that each generated graph is neither a subgraph
of any reference graph in the training set nor contains any
reference graph as a subgraph, indicating whether novel
structures exist in the synthesized graphs. Uniqueness mea-
sures the proportion of generated graphs that are structurally
distinct from one another, reflecting the diversity of the
generated graphs. As shown in Table 6, the graphs generated
by PROVSYN achieve 100% novelty and 100% uniqueness
across all four datasets. This indicates that the synthetic data
exhibits strong diversity and effectively captures patterns
that were underrepresented or missing in the original data.

5.5. Application in IDS

To demonstrate the practical utility of PROVSYN, we
focus on the task of APT attack detection. We conduct

TABLE 5: Comparison of node and edge label entropy
and Gini index across different datasets with and without
synthetic data. Higher values indicate better performance.

Dataset Data Source Node Label Edge Label

Entropy Gini Index Entropy Gini Index

Nodlink Real 1.03 0.42 2.41 0.75
+PROVSYN 1.31 (+0.28) 0.55 (+0.13) 2.63 (+0.22) 0.82 (+0.07)

Cadets Real 1.11 0.44 1.84 0.52
+PROVSYN 1.31 (+0.20) 0.53 (+0.09) 1.92 (+0.08) 0.54 (+0.02)

Theia Real 1.31 0.53 1.33 0.39
+PROVSYN 1.41 (+0.10) 0.58 (+0.05) 1.36 (+0.03) 0.39 (+0.00)

Trace Real 1.52 0.57 1.57 0.45
+PROVSYN 1.62 (+0.10) 0.61 (+0.04) 1.61 (+0.04) 0.47 (+0.02)

TABLE 6: Evaluation of PROVSYN-generated graphs in
terms of Novelty and Uniqueness across different datasets.
Higher values indicate better performance.

Dataset Novelty (%) Uniqueness (%)

Nodlink 100.0 100.0
Cadets 100.0 100.0
Theia 100.0 100.0
Trace 100.0 100.0

experiments using two detection algorithms, Magic[31] and
Nodlink[37]. Specifically, we augment the training set with
synthesized provenance graphs and then observe whether the
detection performance improves or declines during testing.

For the Nodlink algorithm, we enhanced its dataset
by adding 50 synthetic graphs merged with the original
provenance graph as graph communities. This resulted in
a 15% increase in node counts. For the Magic algorithm,
we enhanced the Cadets, Theia, and Trace datasets. Due to
their larger scale, we added 300 synthetic graphs merged
into their original provenance graphs. This led to a 10% to
15% increase in node counts.

To evaluate the effectiveness of synthetic graphs in intru-
sion detection tasks, we maintain identical training config-
urations before and after incorporating synthetic data. The
detection performance is presented in Table 7. In addition to
Precision and Recall, we report the number of False Posi-
tives (#FP), an crucial metric for intrusion detection system,
as a high false positive rate can increase the workload of
subsequent security analysis. As shown in the results, on
the Nodlink dataset, the inclusion of synthetic graphs leads
to no change in Precision, Recall, or the number of false
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positives, indicating that the synthetic data is of comparable
quality to the original data. On the Cadets, Theia, and Trace
datasets, Recall remains constant, and Precision improves.
Specifically, false positives decrease by 506 on Cadets (from
6435 to 5929), by 95 on Theia (from 931 to 836), and by
379 on Trace (from 2390 to 2011). These results suggest that
augmenting with synthetic graphs produced by PROVSYN
improves model performance, and effectively reduces false
positives in detection systems.

TABLE 7: IDS performance across different datasets with
and without synthetic data. Higher values indicate better
performance.

Dataset Data Source Precision(%) Recall(%) #FP

Nodlink Real 100.00 100.00 0
+ PROVSYN 100.00 100.00 0

Cadets Real 66.58 99.79 6435
+ PROVSYN 68.37 99.77 5929

Trace Real 96.61 99.98 2390
+ PROVSYN 97.13 99.98 2011

Theia Real 96.45 99.99 931
+ PROVSYN 96.80 99.99 836

5.6. Overhead Analysis

TABLE 8: Time and memory requirements of PROVSYN’s
core modules.

Module Phase Time Memory

Graph Generation Training 18 hours 0.84 GB
Inference 28.09 s 0.38 GB

Text Generation Training 109 s 3.44 GB
Inference 2.78 hours 28 GB

In this section, we analyze the time and memory re-
quirements of PROVSYN (see Table 8). The most time- and
resource-intensive components of the PROVSYN framework
are the heterogeneous graph generation module and the text
attribute generation module.

For the heterogeneous graph generation module, we
use 16,000 samples for training, with a batch size of 32
and 3,000 training epochs. The average training time is 18
hours, with a GPU memory usage of 0.84 GB. Inference for
generating 1,000 graphs takes 28.09 seconds and consumes
0.38 GB of memory.

For the text attribute generation module, we adopt
Llama3.2-3B-Instruct as the base model, applying the LoRA
algorithm with 4-bit quantization. The FastLanguageModel
library is used to accelerate training. The training consists
of 60 steps, takes an average of 109 seconds, and requires a
peak memory of 3.44 GB. During inference, generating text
attributes for a single graph takes an average of 80 seconds.
In our experiments, we deploy 8 fine-tuned LLMs in parallel
to synthesize 1,000 graphs, completing the process in 2.78
hours. The total GPU memory required for the 8 models is
28 GB.

This analysis demonstrates that PROVSYN is a time- and
memory-efficient framework for provenance graph synthe-
sis.

6. Discussion and Limitations

Temporal Modeling. A provenance graph is not only a
directed heterogeneous graph with textual attributes, but also
a temporal graph in which each event is associated with
a timestamp indicating its occurrence time in the system.
These temporal information has recently been leveraged
by downstream intrusion detection systems [53] to better
capture the patterns of benign and anomalous behaviors.
However, in PROVSYN, we do not synthesize explicit times-
tamps for events. Instead, we approximate temporal order by
relying on the sequence of directed edges. Future work may
explore modeling temporal dynamics using temporal graph
generation networks [75], or designing strategies that lever-
age LLMs to generate realistic timestamps, thereby enabling
more comprehensive and temporally coherent provenance
graph synthesis.
Graph Scale. In PROVSYN, the generated provenance
graphs are smaller in scale compared to real-world prove-
nance graphs. To enable data augmentation, we embed mul-
tiple synthetic graphs as distinct communities within large
real-world provenance graphs. The results show that this
approach effectively mitigates data imbalance and reduces
the false positive rate of detection models trained on the
augmented datasets. Future work can focus on scaling up
synthetic provenance graphs by enhancing graph generation
models for large-scale synthesis and exploring graph merg-
ing algorithms that combine smaller graphs into larger ones
while preserving structural fidelity.
Efficiency of Text Attribute Synthesis. During textual
attribute synthesis, overlaps among nodes in different se-
quences generated by DFS can lead to naming conflicts
when these sequences are processed in parallel to gener-
ate node names. To address this issue, we serialize the
sequences and input them into the LLM sequentially. The
generated node names from earlier sequences are then used
as context for subsequent sequences. This approach is effec-
tive for small-scale graphs. However, the synthesis efficiency
decreases for large-scale graphs. Future work may explore
strategies to partition large graphs into batches of non-
overlapping sequences, enabling parallel processing while
avoiding node naming conflicts.
Application Scenarios. To date, the graphs synthesized by
PROVSYN have demonstrated utility within the domain of
provenance graph datasets and for detection algorithms tar-
geting APT attacks. However, PROVSYN is a general frame-
work capable of synthesizing high-fidelity heterogeneous
graphs with textual attributes. This gap between PROVSYN’s
inherent capabilities and current applications presents an
opportunity for future work: expanding the exploration of
PROVSYN’s capabilities to encompass a wider range of
application scenarios and downstream algorithms.
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7. Conclusion

This paper proposes PROVSYN, a novel provenance
graph generation framework consisting of three stages: het-
erogeneous graph structure generation, rule-based topolog-
ical refinement, and LLM-based synthesis of textual at-
tributes. To evaluate the fidelity of the generated graphs, we
assess structural, textual, temporal, embedding, and seman-
tic aspects. Compared with provenance data directly syn-
thesized by LLMs, PROVSYN consistently produces graphs
with higher fidelity. When integrated into existing datasets,
PROVSYN-generated graphs help mitigate class imbalance
and lead to reduced false positive rates in detection models
trained on the augmented data.
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Appendix A.
Entity and Event Distribution in Our Datasets

We present the distributions of entity type and event type
across four commonly-used public provenance datasets in
Figure 3. The distributions exhibit a typical long-tail pattern
and reveal significant data imbalance.

Appendix B.
Textual Quality Evaluation

In Algorithm 2, we compute the maximum similarity
score between the text attribute of each node and the ref-
erence corpus. This metric serves to evaluate the model’s
maximum potential in generating accurate and relevant at-
tributes.

Algorithm 2: TEXTUAL QUALITY EVALUATION
Input : Generated graph nodes Vgen = {g1, g2, ..., gm} with predicted

names and types;
Real graph nodes Vreal = {r1, r2, ..., rn} with ground-truth

names and types;
Node type set T = {t1, t2, ..., tk}

Output: Final textual quality score Sfinal
1 foreach t ∈ T do
2 Rt ← {rj | rj ∈ Vreal, type(rj) = t} // Construct

reference corpus
3 Stotal ← 0
4 count ← 0
5 foreach gi ∈ Vgen do
6 t← type(gi)
7 max sim ← 0
8 foreach rj ∈ Rt do
9 sim ← metric(gi.name, rj .name)

10 if sim > max sim then
11 max sim ← sim
12 Stotal ← Stotal + max sim
13 count ← count + 1
14 Sfinal ← Stotal/count // Aggregate final score
15
16 return Sfinal

Appendix C.
Hyperparameters Setting

Hidden size is of LSTM for heterogeneous graph gen-
eration. Hidden size is a key parameter for LSTM, as
it determines the capacity of the model to capture tem-
poral and structural dependencies in sequential node and

edge generation. We conducted experiments on the Nodlink
dataset and evaluated structural fidelity using five MMD-
based metrics in the validation set. The results in Figure
4 show that a hidden size of 64 yields significantly lower
fidelity compared to the other settings. For hidden sizes of
128, 256, and 512, the MMD values remain at a comparable
level, with 256 performing slightly better than 128 and 512.
Considering both performance and computational cost, we
select 256 as the hidden size for PROVSYN.
Inference temperature is a key parameter in LLM-based
inference, controlling the randomness of generated text.
Higher temperatures yield more diverse outputs, while lower
temperatures produce more deterministic results. We con-
ducted experiments on the Nodlink dataset using tempera-
ture values of 0.1, 0.5, 1.0, and 1.5, with all other inference
parameters held constant. Evaluation focused on the quality
of text generated for process and file node attributes, as well
as semantic correctness. As shown in Figure 5, the best per-
formance is achieved when the temperature is set to 1.5. In
particular, at lower temperatures, the generated node names
tended to be repetitive and lacked diversity. Based on these
findings, we selected 1.5 as the final inference temperature
for PROVSYN, consistent with the recommendation of the
FastLanguageModel library.

Appendix D.
Ablation Study

Alternative models to GraphGen. In the heterogeneous
graph generation module, we adopt the design of GraphGen,
which encodes graphs as DFS code sequences and employs
an LSTM for training and inference. To validate the effec-
tiveness of this design, we compare it with alternative mod-
els, including the widely used GraphRNN [72]. In our ex-
periments, we evaluate the graphs generated by GraphRNN
and GraphGen using five MMD metrics. As shown in Figure
6(a), the graphs generated by GraphGen consistently achieve
significantly lower MMD scores across all five metrics,
indicating substantially better fidelity compared to those
generated by GraphRNN. These results demonstrate the
effectiveness of using GraphGen for heterogeneous graph
generation in PROVSYN.
Masking strategies. For text attribute generation, we em-
ploy two masking strategies to construct the training set,
corresponding to two different input sequences during infer-
ence. To evaluate the effectiveness of the masking design,
we perform ablation experiments by disabling one of the
strategies and using only the other. Model performance
is then evaluated using text quality metrics and semantic
correctness. The experiments are conducted on the Trace
dataset, with the number of training samples fixed at 20,000
for both the single-strategy and dual-strategy settings. In the
results shown in Figure 6(b), we observe that using only the
Full Masking strategy yields better performance than using
only the Part Masking strategy. This may be because the
Part Masking strategy provides partial node names within
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Figure 3: Entity Type and Event Type Distribution in Provenance Dataset including Nodlink, Cadets, Theia and Trace.
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Figure 4: Hidden size setting in Nodlink dataset.

the sequence, offering more cues for the LLM to leverage.
As a result, a model trained solely with Part Masking
performs poorly when tested on Full Masking sequences,
which contain fewer clues and less information. In contrast,
using both strategies together achieves better performance
than either alone, as it exposes the model to a broader

range of sequence types that may appear during inference.
These results demonstrate the effectiveness of our proposed
approach that combines both masking strategies.
LLM parameter size. In our experiments on text attribute
generation, we employ the Llama-3.2-3B-Instruct model as
the base model for training. We also compare its perfor-
mance against models of different sizes, including Llama-
3.2-1B-Instruct and Llama-3.1-8B-Instruct. All models are
trained on the same training datasets and evaluated using
both text quality metrics and the semantic correctness met-
ric. The results, presented in Figure 6(c), demonstrate that
the 3B model achieves the highest scores on the BLEU and
GLEU metrics. In contrast, the 8B model shows marginally
better performance on the ROUGE and semantic correctness
metrics. Given that the advantage of the 8B model is not sub-
stantial and considering computational resource constraints,
we select the 3B model as the base for synthesizing text at-
tributes. In practice, PROVSYN introduces a general training
strategy to leverage LLMs for synthesizing text attributes,
where the choice of the base model involves balancing the
complexity of the dataset, the application requirements and
the limitations of computational resources.
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Figure 5: Inference temperature setting in Nodlink dataset.
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Figure 6: Ablation Study.
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