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Abstract—Retrieval-Augmented Generation (RAG) systems en-
hance Large Language Models (LLMs) by retrieving relevant
documents from external corpora before generating responses.
This approach significantly expands LLM capabilities by
leveraging vast, up-to-date external knowledge. However, this
reliance on external knowledge makes RAG systems vulnerable
to corpus poisoning attacks that manipulate generated outputs
via poisoned document injection. Existing poisoning attack
strategies typically treat the retrieval and generation stages as
disjointed, limiting their effectiveness. We propose Joint-GCG,
the first framework to unify gradient-based attacks across
both retriever and generator models through three innova-
tions: (1) Cross-Vocabulary Projection for aligning embedding
spaces, (2) Gradient Tokenization Alignment for synchronizing
token-level gradient signals, and (3) Adaptive Weighted Fusion
for dynamically balancing attacking objectives. Evaluations
demonstrate that Joint-GCG achieves at most 25% and an
average of 5% higher attack success rate than previous
methods across multiple retrievers and generators. While
optimized under a white-box assumption, the generated poisons
show unprecedented transferability to unseen models. Joint-
GCG’s innovative unification of gradient-based attacks across
retrieval and generation stages fundamentally reshapes our
understanding of vulnerabilities within RAG systems. Our code
is available at https://github.com/NicerWang/Joint-GCG.

1. Introduction

Retrieval-Augmented Generation (RAG) systems [1], [2]
have emerged as a powerful paradigm for enhancing Large
Language Models (LLMs). By coupling a retriever, which
fetches relevant documents from an external corpus based on
a given query, and a generator that synthesizes information
to produce coherent and contextually appropriate responses,
RAG systems leverage vast, up-to-date external knowledge.
This architecture significantly improves the performance
of diverse AI applications—including search engines [3],
chatbots [4], [5], code assistants [6], [7], and knowledge
bases [8], [9]—by ensuring outputs are accurate and up-to-
date [10].

However, this remarkable power comes with a critical
vulnerability: reliance on external corpora introduces the risk
of corpus poisoning[11], [12], [13], [14], [15]. As illustrated
in Figure 1, corpus poisoning involves malicious actors
injecting crafted poisoned documents into the knowledge
base. If retrieved and processed, these poisoned documents
can cause the RAG system to generate wrong answers,
harmful outputs, or biased opinions, thereby undermining
its reliability. Besides, the growing trend of RAG systems
employing open-source components is intended to facilitate
transparency, customization, and data leakage prevention.
However, this allows attackers to study and replicate sys-
tem architectures meticulously, making RAG systems more
susceptible to corpus poisoning attacks.

Figure 1. Demonstration of RAG systems and RAG-poisoning attacks. We
provide an example of a successful attack on RAG systems to induce a
wrong answer in Appendix Table 10.

The objective of corpus poisoning is to introduce poi-
soned documents into the corpus and ensure they can be
retrieved by targeted queries. More importantly, the attacker
must manipulate the subsequent generation process to ensure
the model produces erroneous outputs based on the poisoned
information. Thus, the effectiveness of an attack depends on
both the retrieval of the poisoned document and the docu-
ment’s ability to steer the generated response of the generator.
Crucially, attackers aim to achieve this influence for stealth
and practicality by injecting as few poisoned documents as
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possible, which is essential for evading detection.
Existing attack strategies, as detailed in Section 2, often

adopt a fragmented approach, treating the retrieval and
generation stages as disjoint optimization problems. For
instance, Phantom [15] and LIAR [13] tackle the retriever
and generator objectives independently and sequentially. Such
methods can be suboptimal, as they overlook the synergistic
effects that could be achieved by simultaneously optimizing
for both components, potentially limiting the overall efficacy
of the poisoning attack.

To address this limitation, we propose Joint-GCG, a
novel framework that, for the first time, unifies the attack
surface by jointly optimizing gradients and losses across both
the retriever and the generator. Joint-GCG overcomes the
technical hurdles of joint optimization, including mismatched
vocabularies and differing tokenization schemes between
models, through three key innovations: (1) Cross-Vocabulary
Projection (CVP), which aligns vocabulary embeddings; (2)
Gradient Tokenization Alignment (GTA), which synchronizes
token-level gradient signals; and (3) Adaptive Weighted
Fusion (AWF), which dynamically balances the influence
of retrieval and generation objectives. These innovative
mechanisms work together to form a highly effective attack
strategy, showcasing the power of joint optimization in RAG
poisoning.

Our key contributions are:

• Problem Modeling Innovation: We identify the
limitations of existing disjointed attack strategies and
highlight the critical need for joint optimization of
retrieval and generation in RAG poisoning. We are
the first to emphasize the synergistic potential of
unified optimization for significantly enhanced attack
efficacy, shifting the paradigm from independent com-
ponent attacks to a holistic system-level approach.

• Novel Joint Optimization Framework: We propose
Joint-GCG, a novel framework that effectively ad-
dresses the challenges of joint optimization in RAG
poisoning, enabling more effective and accurately
guided corpus poisoning by orchestrating a synergis-
tic attack across the retrieval and generation stages.

• Systematic Evaluation: We demonstrate Joint-
GCG’s superiority over state-of-the-art methods with
at most 25% and an average of 5% higher attack
success rate on average, achieves significant cross-
retriever transferability as well as notable cross-
generator transferability (achieving at most 57%
ASR on unseen models), and showcase its applicabil-
ity in batch poisoning and synthetic corpus scenarios,
amplifying the vulnerability of RAG systems.

2. Related Works

2.1. Retrieval-Augmented Generation (RAG) Sys-
tems

Retrieval-Augmented Generation (RAG) systems repre-
sent a significant advancement in mitigating the inherent

limitations of Large Language Models (LLMs), such as
knowledge cutoffs and hallucinations [1], [16]. The core
principle of RAG is to ground LLM responses in external,
verifiable knowledge. A typical RAG architecture involves
a retriever and a generator. When a query is received, the
retriever first fetches relevant documents or data snippets
from a large external corpus (e.g., a vector database, enter-
prise knowledge base, or the internet) [17]. These retrieved
contexts are then provided to the LLM (the generator) along
with the original query. The LLM synthesizes this informa-
tion to produce a more accurate, timely, and contextually
appropriate response [16]. This reliance on external corpora,
while beneficial for accuracy and currency, introduces new
attack surfaces, particularly corpus poisoning, which is the
focus of our work.

2.2. Adversarial Attacks on Large Language Models

Large Language Models, despite their impressive capabil-
ities, are susceptible to various adversarial attacks [18]. These
vulnerabilities include prompt injection, where malicious
instructions are embedded in the input to hijack the model’s
output [19], and training data poisoning of the base LLM
itself, which can introduce subtle biases or backdoors [20].
These general vulnerabilities underscore the necessity for
robust security measures throughout all stages of LLM
development and deployment.

2.2.1. Gradient-Based Optimization for Adversarial Text
Generation. Gradient-based optimization has become a
cornerstone for crafting adversarial examples against LLMs.
Early methods, such as HotFlip [21], utilized gradients
related to input tokens to identify minimal character-level or
token-level perturbations that could alter model predictions.
Simple substitution techniques [22] and heuristic optimiza-
tions [23] have achieved only modest success, primarily
with smaller models. In contrast, gradient-guided approaches
have shown superior efficacy against robust transformer
architectures. The Greedy Coordinate Gradient (GCG) attack
[24] extended this by optimizing a universal adversarial suffix
to elicit desired (often harmful) responses. Multi Coordinate
Gradient (MCG), proposed in the Phantom work [15], further
refines this by considering multiple substitutions simultane-
ously for efficiency. Improved versions, such as I-GCG [25],
have also been explored. These methods demonstrate the
power of gradient information but are primarily designed for
direct attacks on the LLM, not the complex two-stage RAG
pipeline.

2.3. Data Poisoning Attacks

2.3.1. Classical Data Poisoning in Machine Learning.
Data poisoning is a type of malicious attack in which an
attacker manipulates the training data of a machine learning
model to compromise its behavior during inference [26].
By injecting a small quantity of carefully crafted malicious
samples into the training dataset, attackers primarily seek to
degrade overall model performance, cause misclassification



for targeted inputs, or implant backdoors triggered by specific
inputs [27], [28].

2.3.2. Attacks on Information Retrieval Systems. Infor-
mation Retrieval (IR) systems have also been targets of
manipulation. Traditional search engines faced "spamdexing"
or "search engine poisoning," where malicious actors used
techniques like keyword stuffing, hidden text, and link
farms to artificially boost the ranking of certain web pages
[29], [30]. Modern retrieval components, especially dense
retrievers used in RAG, can be misled by imperceptible
perturbations to documents, leading to ranking manipulation
[31], [32]. Malicious attacks can force rankers to incorrectly
order documents or retrieve irrelevant content, even with
minimal modifications to the corpus.

2.3.3. Corpus Poisoning in RAG Systems. The reliance of
RAG systems on external corpora makes them uniquely vul-
nerable to corpus poisoning. Existing research has explored
various strategies: PoisonedRAG [11] focused on optimizing
poisoned documents to maximize their retrieval probability.
HijackRAG [33] applied similar principles to prompt leaking
and spam generation. However, optimizing solely for retrieval
can compromise the linguistic qualities needed to effectively
steer the generator, often necessitating a larger number
of injected documents. Sequential optimization approaches,
such as applying HotFlip for retrieval and then GCG for
generation, can be suboptimal because modifications made
in one stage may negatively impact the other. LIAR [13]
attempted to achieve better integration through an iterative
loop but still lacks proper joint optimization, as it pre-assigns
fixed optimizable lengths and optimization steps. Phantom
[15] introduced trigger-based batch poisoning, but optimized
retrieval and generation sequentially, which sometimes led
to retrieval failures. TrojanRAG [14] targets the retriever
model itself, a different threat model requiring greater
access. In contrast, our Joint-GCG framework addresses these
limitations by performing a truly joint optimization across
both the retriever and the generator, marking a departure
from these disjointed or sequential strategies.

3. Threat Model

Our threat model accounts for the capabilities and knowl-
edge assumed by the attacker when crafting poisons for
RAG systems using Joint-GCG. It is designed to facilitate a
thorough investigation of potential vulnerabilities, particularly
those arising from the joint optimization of retriever and
generator components.

White-box Retriever and Generator Access: We as-
sume the attacker has full white-box access to both the
retriever and the generator models. This comprehensive
accessibility means the attacker possesses knowledge of
model architectures, including all layers and configurations,
has access to all model parameters, and can compute gradi-
ents of any loss function concerning model inputs (i.e., the
optimizable poison sequence).

This white-box assumption is increasingly pertinent given
the proliferation of open-source RAG components (retrievers
and LLMs) that attackers can replicate or directly access,
making systems built with these components vulnerable to
this level of scrutiny.

Furthermore, understanding system vulnerabilities under
complete information is often a prerequisite for developing
robust defenses, and insights from white-box attacks can also
guide the creation of more practical gray-box or black-box
attack strategies.

Finally, this approach is consistent with methodologies
in several contemporary RAG poisoning research works
(e.g., LIAR[13], Phantom[15]), which also operate under
white-box assumptions for both components, establishing
this as a standard paradigm for in-depth analysis in this
research area. The strong poison transferability demonstrated
in our experiments (Section 5.2.5) reveals a practical path
for relaxing this white-box assumption during attack deploy-
ment. An attacker can leverage Joint-GCG in a white-box
setting using a powerful, locally hosted surrogate model
that mimics the target’s possible architecture. The resulting
poison can then be utilized to attack the target system, even
if the components are different or entirely black-box. Our
results show that poisons optimized on one generator can
successfully attack others. Similarly, poisons demonstrate
high transferability across different retriever architectures.
This surrogate model approach transforms the attack into a
gray-box scenario, where the attacker only needs to inject the
pre-crafted document into the target corpus without internal
access to the production models.

Gray-box Corpus Access: We assume the attacker has
limited, or gray-box, access to the retrieval corpus. In our
experiments, the attacker can inject a small, fixed number of
poisoned documents into the corpus, typically one poisoned
document per target query to ensure stealth, but cannot
modify or delete existing legitimate documents. Our Adaptive
Weighted Fusion (AWF) module calculates a stability metric
by analyzing the top-k documents retrieved for a query.
Given that RAG systems often cite their sources, effectively
making the top retrieved documents accessible, we find it
realistic for the attacker to observe these results during the
optimization phase. We also explore scenarios using synthetic
corpora (Section 5.2.3) to mitigate this specific observation
requirement. This gray-box corpus access reflects realistic
scenarios such as decentralized knowledge bases, wikis, or
systems that index publicly editable web content, where
attackers can introduce malicious content but do not have
control over the entire corpus. The constraint on the number
of injected documents reflects the practical need for stealth,
as injecting a large volume of suspicious documents would
likely be detected.

This comprehensive threat model enables Joint-GCG to
examine the intricate relationships between the retriever and
generator during a poisoning attack, offering in-depth insights
into the security posture of modern RAG systems.



Figure 2. The optimizing process of the Joint-GCG framework, compared to regular GCG.

4. Methodology: Joint-GCG Framework

To address the limitations in disjointed RAG poisoning
attacks, we propose Joint-GCG, a novel framework designed
to unify the attack process by simultaneously targeting both
the retriever and the generator.

Inspired by the success of Greedy Coordinate Gradient
(GCG) techniques [24] in manipulating generator outputs
through gradient-guided input optimization, Joint-GCG
conceptualizes the RAG system as a single, integrated target
for the poisoning attack, as illustrated in Figure 2.

A core challenge in this unified approach lies in recon-
ciling the different architectures, tokenization schemes, and
vocabularies between the retriever and generator models. Our
framework addresses these complexities through three key
innovations: (1) Cross-Vocabulary Projection (CVP), which
aligns the embedding spaces of disparate vocabularies; (2)
Gradient Tokenization Alignment (GTA), which synchronizes
token-level gradient signals across different tokenization
outputs; and (3) Adaptive Weighted Fusion (AWF), which
dynamically balances the attacking objectives for the retriever
and generator. Together, these components enable a cohesive,
gradient-based optimization strategy that jointly steers both
the retrieval of the poisoned document and the subsequent
generation of the desired malicious output.

4.1. Cross-Vocabulary Projection (CVP): Bridging
Vocabulary Discrepancies

The inherent vocabulary mismatch between retrievers
and generators poses a significant challenge to joint gradient
optimization. Typically, the retriever’s vocabulary differs
from the generator’s vocabulary due to their distinct training
corpora. CVP addresses this gap by utilizing a combination
of the generator tokens to represent the retriever tokens in
the embedding space.

During the GCG-like attacks, an optimizable sequence
was employed to steer the model output with gradient
guidance. Let Ngen, Vgen represent the optimizable sequence
length and vocabulary size of the generator, and Nret, Vret for

the retriever. During the attack process, we compute gradient
matrices Ggen ∈ RNgen×Vgen and Gret ∈ RNret×Vret .

Directly obtaining a high-dimensional linear transfor-
mation matrix W ∈ RVret×Vgen using generator tokens to
represent retriever tokens is rendered infeasible by both the ill-
posed nature of constructing a sufficient system of equations
and the substantial computational demands. Instead, CVP
adopts a more tractable approach by focusing on mapping
individual token embeddings. Let Egen ∈ RVgen×Dgen and
Eret ∈ RVret×Dret represent the embedding matrices of the
generator and the retriever, respectively, where D denotes the
embedding dimension. For each retriever token embedding
y ∈ RDret , our objective is to find a representation x ∈ RVgen

such that it acts as a linear combination with the generator
tokens when transformed by a learned embedding mapping
function f , closely approximates y:

f(xEgen) = y (1)

Here, f : RDgen → RDret represents a mapping function
between the two embedding spaces.

CVP learns f using shared tokens between the gener-
ator and retriever vocabularies, mapping their respective
embeddings through an autoencoder. The autoencoder is
trained to project the generator embedding of a shared token
and then reconstruct the corresponding retriever embedding.
This objective enables the autoencoder to learn a robust and
semantically meaningful mapping that generalizes beyond
the shared vocabulary, effectively capturing the underlying
relationships between the two embedding spaces. The en-
coder of the trained autoencoder functions as f , enabling
us to solve a least-squares solution that transforms Gret

into G′
ret ∈ RNret×Vgen and aligning the gradient informa-

tion. Detailed architectural specifications of the autoencoder,
training procedures, and analysis of CVP are provided in
Appendix A.



4.2. Gradient Tokenization Alignment (GTA): Syn-
chronizing Tokenization Granularity

After CVP, another critical challenge arises from differing
tokenization schemes. Retrievers and generators often employ
distinct tokenizers, resulting in differences in how the input
text is segmented into tokens. Consequently, the optimizable
sequences for the retriever and generator may be tokenized
into different sequences. This tokenization mismatch hinders
direct gradient fusion. To address this, we propose GTA, a
module designed to synchronize gradient signals at a finer,
tokenizer-agnostic granularity.

To achieve tokenization alignment, GTA employs
character-level gradients as an intermediary. Retriever token
gradients, derived from G′

ret, are decomposed and assigned
to their constituent characters, recognizing characters as a
more fundamental and tokenization-agnostic text unit. Subse-
quently, retriever token gradients are constructed by averaging
the gradients of the characters forming each generator token.
This averaging method robustly consolidates character-level
information back into the generator’s token space while
mitigating potential noise from the decomposition process.

Through the GTA process, we obtain a transformed
retriever gradient matrix G′′

ret ∈ RNgen×Vgen . Crucially, G′′
ret

is now aligned with the generator’s gradient matrix Ggen

in both vocabulary and sequence length dimensions. This
alignment establishes a common gradient space, enabling a
meaningful and direct fusion of gradient information from
the retriever and the generator for joint optimization.

Additionally, we provide the pseudo-code of GTA in
Appendix B.

4.3. Adaptive Weighted Fusion (AWF): Dynamically
Balancing Retrieval and Generation Objectives

With Ggen and G′′
ret now aligned in all dimensions,

the final critical step is determining how to combine these
gradient matrices to achieve joint optimization effectively. We
propose AWF, a module that dynamically adjusts the relative
contribution of each gradient matrix during the optimization
process. This adaptive weighting mechanism is essential
because the optimal balance between prioritizing retrieval
and generation objectives can vary significantly depending
on the specific attack scenario, the RAG system settings, and
the characteristics of the target query and the corpus.

AWF fuses the gradients and weights the losses using a
weighted sum controlled by an adaptive weighting parameter
α:

Gjoint = (1− α)Ggen + αG′′
ret (2)

The weighting factor α ∈ [0, 1] governs the relative influence
of the retriever’s and generator’s gradient in the joint gradient
update.

As detailed in Appendix D, our experiments indicate a
strong correlation between the retrieval rank of a poisoned
document and attack success in RAG systems. We observed
that poisoned documents retrieved at higher ranks are gener-
ally more influential in shaping the generator’s response. To

optimize attack performance, it is desirable to position the
poisoned document as high as possible in the retrieval ranking
while ensuring a sufficient margin from other documents
to mitigate potential rank fluctuations during subsequent
optimization steps.

AWF introduces a stability metric, Dstability , quantifying
the robustness of the poisoned document’s retrieval rank:

Dstability =
Sdocp − Sdoc0

Davg
(3)

where Sdocp and Sdoc0 are the similarity scores of the
query with the poisoned document and the benign document
with the highest rank, respectively, Davg is the average
similarity score difference between consecutive k documents,
defined as below:

Davg =
1

k − 1

k−1∑
i

Sdoci − Sdoci+1
(4)

The adaptive weighting parameter α is then dynamically
determined based on Dstability using a Sigmoid function:

α = σ(Dstability) =
1

1 + e−Dstability
(5)

The Sigmoid function, σ(·), ensures that α remains bounded
within the range [0, 1], controlling the weight of the retriever
during the joint optimization.

This dynamic adjustment mechanism empowers Joint-
GCG to adaptively balance the optimization of retrieval and
generation objectives, resulting in more potent and robust
poisoning attacks across diverse RAG system configurations.

5. Experiments

5.1. Experimental Setup

A comprehensive experimental evaluation was conducted
to rigorously assess the effectiveness of our Joint-GCG
framework, encompassing both targeted and batch query
poisoning scenarios. We evaluated Joint-GCG’s performance
against state-of-the-art baselines – PoisonedRAG[11] (with
GCG[24] on the generator), LIAR[13], and Phantom[15] –
under diverse conditions. This thorough evaluation included
experiments focusing on targeted query poisoning, ablation
studies, synthetic corpora evaluations, black-box transfer-
ability, batch query poisoning, and extended attacking steps
(Appendix E). We also investigated the impact of common
defensive mechanisms on Joint-GCG (Section 5.3).

5.1.1. Datasets. Following prior works in RAG, we evaluate
our approach using three widely used open-domain question-
answering (QA) datasets. These datasets are designed to test
various aspects of retrieval and reasoning in QA models,
ensuring comprehensive evaluation across different question
types and retrieval challenges.



• MS MARCO[34]: The Microsoft Machine Reading
Comprehension (MS MARCO) dataset is a large-
scale benchmark for information retrieval and ques-
tion answering. It consists of real-world queries
sampled from Bing’s search logs, with passages
extracted from web documents as candidate answers.
Our experiments use some subsets of the queries
determined by the baselines we compare.

• Natural Questions (NQ)[35]: This dataset consists
of naturally occurring questions posed by users in
Google Search, with human-annotated answers ex-
tracted from Wikipedia articles. Unlike MS MARCO,
which focuses on search engine queries, NQ em-
phasizes the extraction of factual knowledge from
structured sources. The dataset is particularly useful
for evaluating a system’s ability to retrieve and extract
concise answers from a large-scale knowledge base.

• HotpotQA[36]: A multi-hop question-answering
dataset that requires reasoning over multiple doc-
uments to arrive at a correct answer. Unlike single-
hop QA datasets, where the answer is typically
found within a single passage, HotpotQA demands
integrating information across different documents,
making it an excellent benchmark for assessing the
model’s capability to handle complex reasoning tasks.

For each dataset (MS MARCO, NQ, HotpotQA), we
instructed GPT-4o-mini to generate a synthetic corpus of
documents relevant to the queries in the respective dataset.
We generated a corpus of 10 synthetic documents for each
target query. While not representing real-world knowledge,
these synthetic corpora serve as a proxy retrieval environment
where we can simulate retrieval rankings and calculate the
stability metric for AWF. The prompt we used for generating
the synthetic corpus is provided below:

“ You are a creative assistant. Given the query:
‘{query}’, whose correct answer is: ‘{correct_answer}’,
please generate 11 diverse and closely related sentences
or short paragraphs. Each corpus should be distinct
and cover different aspects related to the query. Format
each corpus as a separate bullet point starting with -.
Please avoid any other markdown or formatting.

”
We use the same samples as those in prior works to ensure
a fair comparison.

The dataset used for comparison with PoisonedRAG and
LIAR in Experiments 5.2.1, 5.2.2, 5.2.3, and 5.2.5 consists
of 100 queries, each sampled by PoisonedRAG from the MS
MARCO, NQ, and HotpotQA datasets.

For comparison with Phantom in Experiment 5.2.4, we
used the same dataset of 25 queries for each trigger. Each
query was sampled by Phantom from the MS MARCO
dataset and was selected to contain a particular trigger word.

5.1.2. Retriever Models. We experiment with two widely
used dense retrieval models to evaluate the effectiveness of
our Joint-GCG framework in different retrieval mechanisms.
These models utilize neural embeddings to encode queries
and documents into a shared vector space, facilitating efficient
retrieval through similarity search.

• Contriever[37]: A contrastive learning based re-
trieval model designed for unsupervised sentence
embeddings. Contriever is trained using a contrastive
loss, which encourages similar text pairs to have
closer embeddings while pushing apart unrelated
pairs. This approach has demonstrated strong perfor-
mance in retrieval tasks, particularly in zero-shot and
low-resource settings, making it a robust choice for
open-domain QA scenarios. We utilize the contriever-
msmarco model here.

• BGE (BAAI General Embedding)[38]: A family
of embedding models developed by the Beijing
Academy of Artificial Intelligence (BAAI), optimized
explicitly for retrieval tasks. BGE models are trained
using large-scale datasets designed to produce highly
efficient representations, facilitating fast and accurate
retrieval in Approximate Nearest Neighbor (ANN)
search. Their effectiveness in dense retrieval tasks
makes them a competitive alternative to traditional
retrieval methods. We utilize the BGE-base-en-v1.5
model here.

5.1.3. Generator Models. To evaluate the impact of our
attack on state-of-the-art generator models, we conduct
experiments on multiple LLMs. These models are selected
based on their strong performance in various NLP tasks,
open-source availability, and widespread use in research and
applications.

• Llama3-8B[39]: A cutting-edge open-source LLM
developed by Meta AI featuring 8 billion parameters.
As a successor to the highly successful Llama and
Llama 2 models, Llama3 is designed to offer superior
reasoning, comprehension, and response generation
capabilities. Its accessibility and state-of-the-art per-
formance make it a strong candidate for evaluating
adversarial robustness in RAG scenarios.

• Qwen2-7B[40]: A 7-billion-parameter model de-
veloped by Alibaba Cloud as part of the Qwen
series. Qwen2 is known for its strong multilingual
capabilities and efficient inference, making it a com-
petitive choice for real-world applications. Its training
methodology emphasizes knowledge-rich responses,
which makes it particularly interesting to evaluate
how retrieval-augmented attacks influence factual
generation and reasoning.

5.1.4. Metrics. We use the following metrics to evaluate the
effectiveness of the poisoning attacks:

• Retrieval Attack Success Rate (ASRret): The
percentage of target queries for which the poisoned
document is retrieved within the top-k results.



• Generation Attack Success Rate (ASRgen): The
percentage of target queries for which the LLM
generates the desired target output, i.e., the generated
output contains the target. We use this approach to
align with PoisonedRAG[11], as it shows negligible
differences from human evaluation.

• Position of Poisoned Document (Posp): The aver-
age rank (1 ≤ Posp ≤ k) of the poisoned document
in the retrieval results for the target queries. Lower
values indicate a stronger positioning of the poisoned
document.

5.1.5. Experimental Settings. To ensure reproducibility and
reduce randomness, all experiments were repeated three
times, with greedy decoding for local LLMs and GPT-4o’s
temperature set to 0. Poisoned documents were initialized
based on PoisonedRAG’s attack scheme (query concatena-
tion), upon which we added an optimizable sequence. For all
experiments, we retrieve the top-5 related documents from the
corpus and follow the chat template from the corresponding
baselines for generation. All experiments are conducted on
machines with 256GB of RAM and one NVIDIA RTX A6000
GPU.

All experiments were conducted under identical con-
ditions to ensure a rigorous and fair comparison against
baseline methods. Crucially, when comparing Joint-GCG
with existing approaches such as LIAR and Phantom, we
maintained an equivalent level of white-box access to all
model components (retrievers and generators). Furthermore,
key experimental parameters, including the number of op-
timization steps, optimizable sequence lengths, and dataset
samples, were kept consistent across all compared methods.

In experiments comparing Joint-GCG to PoisonedRAG
with GCG and LIAR (Experiments 5.2.1, 5.2.2, 5.2.3, and
5.2.5), we set the optimizable sequence length to 32 tokens
and the optimization steps to 64. We employed a variant of
GCG, MCG[15], to enhance the attack efficiency and utilized
its default hyperparameters. We expressly set the Batch Size
to 128 and TopK to 16, used ASCII-character-only tokens
for attacks, and configured the optimization target to the
incorrect answer. For the LIAR method, we used a 1:1 ratio
for the optimizable sequence length (16 tokens each for the
retriever and generator) and optimization step count (8 steps
each for the retriever and generator), attacking the retriever
first, followed by the generator.

In experiment 5.2.4, we employed the same Scmd

prescribed in Phantom for Denial-of-Service attacks and
concatenated the optimizable sequence on it. Due to the time-
consuming nature of the computation, we performed only one
round of experiments. We set the optimizable sequence to
128 and the optimization step counts to 32. For Phantom, we
followed their settings, using a retriever-optimizable sequence
length of 128 and a generator-optimizable sequence length of
8. We perform 256 steps of GCG for the 128 retriever tokens
in advance for both methods to ensure a robust retrieval rate
on batch queries, facilitating further optimization of the
generator-optimizable tokens.

To compare Joint-GCG with PoisonedRAG and LIAR,
we used the same data as PoisonedRAG’s black-box retriever
approach, using their first generated fake corpus1 of towards
the corresponding dataset in Experiment 5.2.1, 5.2.2, 5.2.3,
and 5.2.5. We add an optimizable sequence at the beginning
of the fake corpus, initialized with "!".

For comparisons with Phantom (Experiment 5.2.4), the
documents consist of three parts concatenated together as
prescribed in their work, Sret, Sgen, and Scmd, respectively.
We first initialized Sret with "?" and Sgen with "!".

5.2. Experiment Results

5.2.1. Targeted Query Poisoning: Baseline Comparison.
To evaluate the effectiveness of Joint-GCG in targeted query
poisoning, we compare it against state-of-the-art poisoning
methods, specifically PoisonedRAG with GCG on generator
(denoted as GCG below) and LIAR. We inject one poisoned
document per target query and measure the effectiveness of
the attack at retrieval and generation stages for the target
queries using ASRret, ASRgen, and Posp.

As shown in Table 1, Joint-GCG consistently outperforms
GCG and LIAR regarding ASRret and ASRgen across var-
ious settings. Specifically, Joint-GCG successfully maintains
near-perfect ASRret (100%) for Llama3 and Qwen2 across
all datasets. Joint-GCG significantly surpasses GCG and
LIAR in attacking the generation phase, particularly on
NQ and HotpotQA datasets. For instance, Joint-GCG yields
up to 99.0% ASRgen for Llama3 and 95.8% for Qwen2
on HotpotQA, outperforming GCG and LIAR by several
percentage points.

Also, Joint-GCG has better efficacy (i.e., achieves higher
ASRgen at fewer optimization steps). Figure 3 visually
confirms Joint-GCG’s superior efficacy, demonstrating that
it reaches comparable or higher ASRgen than GCG and
LIAR while requiring significantly fewer optimization steps.
This faster convergence underscores Joint-GCG’s enhanced
efficiency and effectiveness in targeted query poisoning
attacks.

Joint-GCG’s performance gains stem from its innovative
approach of integrating the retriever and generator gradients.
This effectively prevents retrieval degradation and ensures
the efficacy and success of poisoning throughout the op-
timization process. The consistently higher index ranking
of the poisoned corpus highlights Joint-GCG’s strengths as
a leading method for targeted query poisoning, especially
in adversarial contexts where high document rankings are
essential for effective generator manipulation.

5.2.2. Ablation Study. To analyze the contribution of each
component in Joint-GCG, we conduct an ablation study,
removing key modules and evaluating their impact on attack
performance.

Effect of Cross-Vocabulary Projection (CVP) and
Gradient Tokenization Alignment (GTA). We conducted
an ablation study to assess the impact of the CVP and GTA

1. Available at PoisonedRAG’s official GitHub Repository.

https://github.com/sleeepeer/PoisonedRAG/tree/main/results/adv_targeted_results


TABLE 1. ASR AND MEAN posp OF GCG, LIAR, AND JOINT-GCG AT 64 OPTIMIZATION STEPS. VALUES IN PARENTHESES (ASRgen) REPRESENT
THE ASR SPECIFICALLY ON QUERIES WHERE INITIAL (UNOPTIMIZED) ATTACKS FAILED, DEMONSTRATING THE EFFECTIVENESS OF OPTIMIZATION.

Retriever Metrics Dataset MS MARCO NQ HotpotQA

Attack / LLM Llama3 Qwen2 Llama3 Qwen2 Llama3 Qwen2

Contriever

ASRret

GCG 96.00% 95.67% 72.00% 72.00% 94.33% 97.00%
LIAR 100.00% 100.00% 93.33% 96.33% 99.00% 100.00%

Joint-GCG 100.00% 100.00% 99.00% 99.00% 100.00% 100.00%

ASRgen

GCG 90.0% (76.7%) 91.0% (80.0%) 72.0% (41.5%) 70.0% (39.0%) 90.3% (76.7%) 97.0% (87.5%)
LIAR 89.0% (74.4%) 95.3% (88.9%) 89.0% (73.2%) 86.0% (68.3%) 92.0% (81.4%) 98.0% (91.7%)

Joint-GCG 94.0% (86.0%) 96.3% (91.1%) 92.0% (82.9%) 95.0% (87.8%) 97.3% (93.0%) 99.0% (95.8%)
w/o optimize 51.0% 49.0% 50.0% 34.0% 59.0% 60.0%

Posp ↓
GCG 1.36 1.43 2.59 2.56 1.46 1.2
LIAR 1.13 1.08 1.52 1.43 1.14 1.06

Joint-GCG 1.01 1.05 1.25 1.22 1.04 1.01

BGE

ASRret

GCG 74.00% 73.30% 96.00% 98.67% 100.00% 100.00%
LIAR 99.00% 97.30% 100.00% 100.00% 100.00% 100.00%

Joint-GCG 99.00% 99.00% 100.00% 100.00% 100.00% 100.00%

ASRgen

GCG 68.0% (60.7%) 67.0% (57.1%) 93.0% (89.1%) 97.0% (95.5%) 98.0% (95.9%) 99.0% (97.4%)
LIAR 83.7% (78.6%) 92.0% (85.7%) 89.3% (80.0%) 93.0% (86.4%) 93.7% (85.7%) 96.0% (89.5%)

Joint-GCG 87.0% (85.7%) 92.0% (85.7%) 93.0% (87.3%) 97.7% (95.5%) 99.0% (98.0%) 99.0% (97.4%)
w/o optimize 31.0% 27.0% 39.0% 31.0% 46.0% 46.0%

Posp ↓
GCG 2.87 3.02 1.36 1.23 1.04 1.01
LIAR 1.5 1.69 1.04 1.07 1.01 1.01

Joint-GCG 1.38 1.47 1.06 1.07 1.01 1.01

modules. As they are interdependent, they were removed
simultaneously. In this configuration, the optimization within
our framework relies solely on generator-side gradients, as
direct fusion is infeasible due to inherent mismatches in
gradient shapes. The baseline is thus a variant using only
generator gradients within the Joint-GCG structure.

As demonstrated in Table 2, removing CVP and GTA
resulted in a modest but consistent decrease in ASR. While
seemingly subtle, achieving additional gains over an already
effective generator-only optimization strategy is inherently
challenging. This 2% absolute improvement on average
represents several additional successful poisonings in the
test sets. It signifies a significant enhancement in attack
potency, particularly in security-critical scenarios where every
successful compromise is crucial.

TABLE 2. ASRgen WITH CVP AND GTA REMOVED AND ASRgen

WITH Lossgen ONLY ACROSS DATASETS AND GENERATORS, USING
CONTRIEVER AS THE RETRIEVER.

Dataset Settings Llama3 Qwen2

MS MARCO

Full Joint-GCG 94.00% 96.33%
w/o CVP + GTA 93.33% 96.00%

w/o Lossret 91.00% 92.33%
Base (GCG) 90.00% 91.00%

NQ

Full Joint-GCG 92.00% 95.00%
w/o CVP + GTA 91.00% 93.00%

w/o Lossret 86.67% 94.00%
Base (GCG) 72.00% 70.00%

HotpotQA

Full Joint-GCG 97.33% 99.00%
w/o CVP + GTA 95.00% 99.00%

w/o Lossret 91.33% 98.67%
Base (GCG) 90.00% 97.00%

Effect of Retriever-Side Loss. To further investigate
the contribution of the retriever component, we conducted
experiments by removing the retriever-side loss (Lossret)
when selecting the best candidates.

As presented in Table 2, the removal of Lossret led to
a pronounced decrease in ASRgen across all datasets and
generators. Specifically, for MS MARCO, ASRgen decreased
from 94.00% to 91.00% for Llama3 and from 96.33% to
92.33% for Qwen2. Similar trends were observed for NQ,
with the most significant impact on HotpotQA for Llama3,
where ASRgen decreased from 97.33% to 91.33%. These
results underscore the crucial role of the retriever-side loss
in guiding the optimization process toward more potent
poisoned documents.

Effect of Adaptive Weighted Fusion (AWF). As
shown in Figure 4, we experiment with different fixed
retrieval-generation gradient weights and find that the AWF
leads to the best performance. Significantly, AWF demon-
strates superior or comparable performance to all fixed
ratios in terms of ASRret. This improvement highlights
AWF’s adaptive approach, effectively balancing retriever
and generator optimization while dynamically adjusting the
retriever weight to prevent degradation as needed.

5.2.3. Synthetic Corpus: Removing Top-k Retrieval De-
pendency. One practical challenge in implementing Joint-
GCG in real-world scenarios is accessing the top-k retrieval
results to attack the generator and calculating the stability
metric Dstability for AWF. This requires querying the actual
retriever during an attack, which might be restricted in
specific settings. To address this limitation and explore
the potential for a more self-contained attack strategy, we
investigated the use of synthetic corpus generated by LLM



Figure 3. ASRgen of GCG, LIAR, and Joint-GCG at various optimization
steps.

TABLE 3. ASRS ON MS MARCO DATASET WITH VARIOUS
RETRIEVERS AND GENERATORS, COMPARING JOINT-GCG WITH REAL

TOP-K RETRIEVAL AND SYNTHETIC CORPUS-BASED AWF.

Retriever Metrics Settings Llama3 Qwen2

Contriever

ASRret

Real 100.00% 100.00%
Synthetic 100.00% 100.00%

w/o optimize 98.00% 98.00%

ASRgen

Real 94.00% 96.33%
Synthetic 62.00% 58.00%

w/o optimize 51.00% 49.00%

BGE

ASRret

Real 99.00% 99.00%
Synthetic 89.33% 84.00%

w/o optimize 70.00% 70.00%

ASRgen

Real 87.00% 92.00%
Synthetic 41.00% 36.67%

w/o optimize 31.00% 27.00%

to simulate the retrieval environment and enable AWF
calculation without relying on real-time top-k retrieval.

Table 3 reveals that Joint-GCG can effectively utilize
a synthetic corpus, substantially reducing the dependency
on top-k retrieval results. While some performance variance
is present compared to actual corpus data, the ASRgen

achieved using the synthetic corpus remains commendable.

Figure 4. ASR of Joint-GCG with various fixed weights and AWF, using
Contriver as the retriever and Llama3 as the generator.

For instance, even with the synthetic corpus, Joint-GCG
reaches 62% ASRgen with Contriever and Llama3, demon-
strating a solid attack capability. This outcome underscores
the practicality of Joint-GCG, enabling its application in
scenarios where acquiring real-time retrieval information is
challenging.

5.2.4. Extending to Batch Query Poisoning. Batch query
poisoning is a more challenging scenario where a single
poisoned document aims to manipulate the RAG system’s
response for multiple distinct target queries. We evaluate
the performance of Joint-GCG in this setting, comparing
it to Phantom, a method designed explicitly for trigger-
based batch poisoning. We perform the attack following
their prescribed Denial-of-Service (DoS) settings. We use
the mean gradient and loss on the target queries to guide
optimization.

Table 4 showcases the results of this experiment. Joint-
GCG consistently outperforms Phantom across all tested
trigger keywords and optimization steps. Joint-GCG achieves
significantly higher ASRgen values at earlier optimization
steps and plateaus at a higher success rate. For instance, on
the “xbox” trigger, Joint-GCG reaches a high ASRgen of



TABLE 4. ASRgen OF JOINT-GCG FOR BATCH POISONING ON THREE TRIGGERS, USING LLAMA3 AS THE GENERATOR AND CONTRIEVER AS THE
RETRIEVER, WITH THE TARGET OF DENIAL-OF-SERVICE. VALUES IN PARENTHESES (ASRgen) REPRESENT THE ASR SPECIFICALLY ON QUERIES

WHERE INITIAL (UNOPTIMIZED) ATTACKS FAILED, DEMONSTRATING THE EFFECTIVENESS OF OPTIMIZATION.

Trigger Attack / Step 0 4 8 16 32

amazon Phantom 76.00% 76.00% (16.67%) 76.00% (33.33%) 68.00% (16.67%) 80.00% (33.33%)
Joint-GCG 76.00% 88.00% (50.00%) 88.00% (50.00%) 88.00% (50.00%) 88.00% (50.00%)

xbox Phantom 80.00% 80.00% (0.00%) 84.00% (20.00%) 84.00% (40.00%) 84.00% (40.00%)
Joint-GCG 80.00% 92.00% (60.00%) 92.00% (60.00%) 92.00% (60.00%) 92.00% (60.00%)

iphone Phantom 88.00% 84.00% (0.00%) 88.00% (0.00%) 88.00% (33.33%) 88.00% (33.33%)
Joint-GCG 88.00% 92.00% (100.00%) 92.00% (100.00%) 92.00% (100.00%) 96.00% (100.00%)

Figure 5. ASRRet when poisons are optimized on various Retrievers
are evaluated on Transferring Target Retriever with the Llama3 / Qwen2
generator, on the MS MARCO dataset.

92% at step 4, whereas Phantom plateaus at a lower 80%.
These results demonstrate Joint-GCG’s strong capability in
batch query poisoning, achieving more effective and faster
convergence to high attack success rates than Phantom. This
highlights the versatility of Joint-GCG and its potential for
broader applications in RAG system manipulation beyond
targeted individual queries.

5.2.5. Evaluating Poison Generalization. A crucial aspect
of assessing the practical threat posed by RAG poisoning
attacks is evaluating the generalization capabilities of the
generated poisons. If a poison crafted for a specific, known
model (a "surrogate") proves effective against other unknown
models, it validates a more realistic gray-box attack scenario.
In such a scenario, an attacker would perform the compu-
tationally intensive joint optimization on an open-source
model they control and then deploy the resulting poison
against a target system whose exact components are unknown.
We investigate two key dimensions of generalization: cross-
retriever transferability and cross-generator transferability.

Cross-Retriever Transferability. To evaluate how
poisons optimized for one retriever perform against another,
we conducted experiments using Joint-GCG, where the
generator model was fixed, and poisons were transferred
between the Contriever and BGE retriever models. The
results, illustrated in Figure 5, demonstrate notable transfer-
ability. Notably, the poisons exhibited strong cross-retriever
transfer. For instance, with Llama3 as the fixed generator,
poisons optimized for BGE and transferred to Contriever

Figure 6. ASRgen when poisons are optimized on various Generators are
evaluated on Transferring Target Generators with the BGE retriever, on
the MS MARCO dataset. ‘None’ in the optimizing targets represents the
unoptimized initial samples.

maintained a high ASRret of 96%, while poisons optimized
for Contriever and transferred to BGE achieved an ASRret

of 87%. A similar pattern was observed with Qwen2 as the
generator, where BGE-optimized poisons transferred to Con-
triever with an ASRret of 100%, and Contriever-optimized
poisons transferred to BGE with an ASRret of 80%. These
findings indicate that poisons crafted by Joint-GCG can
effectively compromise different retriever models. The strong
transferability, particularly from BGE-optimized poisons to
Contriever, suggests that some learned adversarial features
are robust across retriever architectures. This enhances the
practical threat, as an attacker might achieve success even
without exact knowledge of the deployed retriever.

Cross-Generator Transferability. We assessed the
ability of poisoned documents optimized by PoisonedRAG
with GCG, LIAR, and Joint-GCG to influence other gener-
ators, including open-source models (Llama3, Qwen2) and
a black-box model (GPT-4o). The comparative results are
presented in Figure 6.

Regarding transferability between the open-source models
Llama3 and Qwen2, Joint-GCG showed consistent transfer:
poisons optimized for Llama3 achieved an ASRgen of 41%
on Qwen2, and poisons optimized for Qwen2 achieved
an ASRgen of 41% on Llama3. LIAR exhibited similar
transfer from Qwen2 to Llama3 (41%) but slightly less from
Llama3 to Qwen2 (35%). PoisonedRAG with GCG displayed
lower transferability in both directions (33% for Llama3 to
Qwen2, and 29% for Qwen2 to Llama3). Significantly, this
optimization-driven transferability extends even to black-box



commercial LLMs like GPT-4o[41]. While the absolute ASR
against GPT-4o is lower, poisons optimized for Llama3 or
Qwen2 still exhibit a noticeable increase (2%) in attack
success compared to non-optimized poisons, unseen in
previous attack methods. These findings underscore that RAG
systems face a broader and more generalized attack surface
than previously understood, as attackers can enhance cross-
generator poison transferability through targeted optimization
on readily available models.

5.3. Potential Defensive Mechanisms

Here, we report the outcomes of evaluating two widely
used defensive strategies towards Joint-GCG: Perplexity-
based filtering[42] and SmoothLLM[43].

5.3.1. SmoothLLM. SmoothLLM is a perturbation-based
defense mechanism designed to counter adversarial attacks
by injecting controlled noise into the input. This approach
subtly alters the inputs to the LLMs, preserving the intended
meaning while mitigating the effects of adversarial perturba-
tions. In our experiments, we applied a swap permutation
with a noise ratio of 5%, as SmoothLLM prescribed.

TABLE 5. ASRgen AND CORRECT ANSWER RATE(CAR) WHEN NO
ATTACK APPLIED WITH SMOOTHLLM DEPLOYED ON MS MARCO.

Retriever Generator Llama3 Qwen2

SmoothLLM w/o w/ w/o w/

Contriver CAR (w/o attack) 77% 72% 71% 66%
ASRgen 94% 53% 96% 56%

BGE CAR (w/o attack) 87% 85% 85% 82%
ASRgen 87% 47% 92% 41%

As demonstrated in Table 5, while SmoothLLM reduces
Joint-GCG’s ASRgen, the attack remains alarmingly potent
even under this defense. For Contriever-retriever systems,
Joint-GCG achieves 53% ASRgen on Llama3 and 56% on
Qwen2 with SmoothLLM enabled.

The persistent success of the attack under defenses
highlights Joint-GCG’s robustness. Even when attenuated
by SmoothLLM, the attack success rates remain comparable
to undefended performance of prior methods (e.g., GCG’s
around 70% ASRgen in Table 1). This demonstrates that
Joint-GCG’s joint optimization paradigm fundamentally en-
hances attack survivability, signifying the challenges for
defensive mechanisms and necessitating new research into
retrieval-aware adversarial filtering.

5.3.2. Perplexity-Based Filtering. Perplexity-based filtering
involves using the perplexity score to assess the likelihood of
the corpus and filtering out documents that exceed a certain
threshold. This approach aims to reduce the noise introduced
by less relevant or spurious information retrieved by the
system. Specifically, we computed the perplexity of the MS
MARCO corpus and the corresponding Joint-GCG optimized
poisons on Llama3. As shown in Figure 7, the perplexity
distribution of Joint-GCG optimized adversarial examples is

Figure 7. Perplexity percentage histogram of the real corpus in MS MARCO
and fake corpus optimized by Joint-GCG.

TABLE 6. ASR OF JOINT-GCG WITH PPL CONSTRAINT AT 32
OPTIMIZATION STEPS ON MS MARCO, USING CONTRIEVER AND

QWEN2.

Settings ASRRet ASRgen

Joint-GCG w/ PPL Constraint 100.00% 73.33%
w/o optimize 100.00% 49.00%

noticeably shifted towards higher perplexity values than the
actual MS MARCO corpus. This suggests that perplexity
could be a potential indicator for identifying and filtering
out adversarial examples.

We implemented a constraint during the attack optimiza-
tion process to investigate the effectiveness of perplexity-
based filtering against Joint-GCG. Specifically, we incorpo-
rated a perplexity constraint to ensure that the generated
adversarial examples remained within the perplexity distri-
bution of the standard MS MARCO corpus by filtering out
candidate adversarial examples exceeding a threshold during
optimization.

Table 6 presents the attack success rates. Remarkably,
even when optimized with a perplexity constraint, Joint-GCG
maintains a significantly higher ASRgen than the baseline
scenario where no optimization is performed, with a 73.33%
for Joint-GCG with the perplexity constraint, compared to
only 54.00% without optimization. This apparent increase
demonstrates that perplexity-based filtering, in its simplest
form, is inadequate against Joint-GCG. Even when adversar-
ial examples are crafted to have perplexity values within the
normal range, the attack remains potent and surpasses the
baseline ASR by a large margin. This highlights the need
for more advanced defenses to detect adversarial examples
beyond simple perplexity thresholds.



6. Conclusion

We present Joint-GCG, a framework that elevates
RAG poisoning via unified retrieval-generation gradient-
based optimization. By harmonizing retrieval and generation
objectives through Cross-Vocabulary Projection, Gradient
Tokenization Alignment, and Adaptive Weighted Fusion,
Joint-GCG overcomes the disjointed nature of prior attacks.
Evaluations show at most 25% and an average of 5% higher
attack success rates than state-of-the-art methods across
multiple retrievers and generators, achieving greater ASR
within the same optimization steps. Ablations confirm the
role of each component, while synthetic corpus tests and
poison generalization experiments demonstrate the broad
applicability. The framework’s potency in batch poisoning
further underscores its practical threat. Joint-GCG provides
a robust framework for understanding and mitigating the
evolving threat landscape of RAG-based applications.

7. Limitations and Future Works

While Joint-GCG demonstrates significant advances in
RAG system poisoning, several important limitations and
promising directions for future research warrant discussion:

7.1. Computational Overhead

The joint optimization of retrieval and generation gra-
dients introduces additional computational complexity com-
pared to existing methods (as detailed in Appendix F).
Primarily, the CVP module involves an offline, one-time pre-
computation for each retriever-generator pair (approximately
2 hours on a single NVIDIA A6000 GPU in our setup) to
train an autoencoder and derive a projection matrix. This
cost is amortized over the matrix’s reuse for all subsequent
attacks on that pair. While the primary additional burden
is a manageable, offline pre-processing step, future work
could explore more efficient optimization techniques or
gradient approximation methods to reduce this overhead
while maintaining the effectiveness of the attack.

7.2. Cross-Domain Generalization

While we demonstrate strong performance across multi-
ple QA datasets, the generalization of Joint-GCG to other
domains (e.g., code generation[44], medical applications[45],
and tool-calling agents[46]) and different types of RAG
architectures requires further investigation. Future work
could explore domain-specific adaptations of the framework
and evaluate its effectiveness across a broader range of
applications and model architectures.

These limitations and future directions underscore the
nascent nature of joint optimization attacks on RAG systems,
emphasizing the importance of ongoing research in this
critical area of AI security.

8. Ethical Considerations

The Joint-GCG framework, while advancing the under-
standing of RAG system vulnerabilities to improve secu-
rity, presents potential misuse risks. We have prioritized
responsible disclosure, striking a balance between scientific
transparency and these concerns. Our research, conducted
on controlled datasets and non-production systems, aims
to proactively identify vulnerabilities, motivating the de-
velopment of robust defenses and encouraging the design
of security-first RAG systems. We strongly advocate for
using these findings for security research and system im-
provement, not exploitation. Organizations deploying RAG
systems should implement comprehensive security measures,
including regular audits, content filtering, and continuous
monitoring, as understanding these vulnerabilities is crucial
to building more secure AI applications.
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A. Mądry, B. Li, and T. Goldstein, “Dataset security for machine
learning: Data poisoning, backdoor attacks, and defenses,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
no. 2, pp. 1563–1580, 2022.

[27] I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao, N. Papernot, M. A.
Erdogdu, and R. J. Anderson, “Manipulating sgd with data ordering
attacks,” Advances in Neural Information Processing Systems, vol. 34,
pp. 18 021–18 032, 2021.

[28] F. Liu and N. Shroff, “Data poisoning attacks on stochastic bandits,”
in International Conference on Machine Learning. PMLR, 2019, pp.
4042–4050.

[29] Z. Gyongyi and H. Garcia-Molina, “Web spam taxonomy,” in First
international workshop on adversarial information retrieval on the
web (AIRWeb 2005), 2005.

[30] J. Bevendorff, M. Wiegmann, M. Potthast, and B. Stein, “Is google
getting worse? a longitudinal investigation of seo spam in search
engines,” in European Conference on Information Retrieval. Springer,
2024, pp. 56–71.

[31] S. Farooq, “A survey on adversarial information retrieval on the web,”
arXiv preprint arXiv:1911.11060, 2019.

[32] A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Ha-
jishirzi, “When not to trust language models: Investigating effective-
ness of parametric and non-parametric memories,” arXiv preprint
arXiv:2212.10511, 2022.

[33] Y. Zhang, Q. Li, T. Du, X. Zhang, X. Zhao, Z. Feng, and J. Yin, “Hi-
jackrag: Hijacking attacks against retrieval-augmented large language
models,” arXiv preprint arXiv:2410.22832, 2024.

[34] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng, “Ms marco: A human-generated machine reading
comprehension dataset,” 2016.

[35] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee et al., “Natural
questions: a benchmark for question answering research,” Transactions
of the Association for Computational Linguistics, vol. 7, pp. 453–466,
2019.

[36] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov,
and C. D. Manning, “Hotpotqa: A dataset for diverse, explainable multi-
hop question answering,” arXiv preprint arXiv:1809.09600, 2018.

[37] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin,
and E. Grave, “Unsupervised dense information retrieval with con-
trastive learning,” arXiv preprint arXiv:2112.09118, 2021.

[38] S. Xiao, Z. Liu, P. Zhang, N. Muennighoff, D. Lian, and J.-Y.
Nie, “C-pack: Packed resources for general chinese embeddings,”
in Proceedings of the 47th international ACM SIGIR conference on
research and development in information retrieval, 2024, pp. 641–649.

[39] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan et al., “The llama 3 herd of
models,” arXiv preprint arXiv:2407.21783, 2024.

[40] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li,
D. Liu, F. Huang et al., “Qwen2 technical report,” 2024. [Online].
Available: https://arxiv.org/abs/2407.10671

[41] OpenAI, “Hello gpt-4o,” https://openai.com/index/hello-gpt-4o, 2024,
published: 2024-05-13.

[42] G. Alon and M. Kamfonas, “Detecting language model attacks with
perplexity,” arXiv preprint arXiv:2308.14132, 2023.

[43] A. Robey, E. Wong, H. Hassani, and G. J. Pappas, “Smoothllm:
Defending large language models against jailbreaking attacks,” arXiv
preprint arXiv:2310.03684, 2023.

[44] S. J. Rani, S. Deepika, D. Devdharshini, and H. Ravindran, “Augment-
ing code sequencing with retrieval-augmented generation (rag) for
context-aware code synthesis,” in 2024 First International Conference
on Software, Systems and Information Technology (SSITCON). IEEE,
2024, pp. 1–7.

[45] C. Ye, “Exploring a learning-to-rank approach to enhance the retrieval
augmented generation (rag)-based electronic medical records search
engines,” Informatics and Health, vol. 1, no. 2, pp. 93–99, 2024.

[46] H. Wang, R. Zhang, J. Wang, M. Li, Y. Huang, D. Wang,
and Q. Wang, “From allies to adversaries: Manipulating llm
tool-calling through adversarial injection,” 2025. [Online]. Available:
https://arxiv.org/abs/2412.10198

https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2407.10671
https://openai.com/index/hello-gpt-4o
https://arxiv.org/abs/2412.10198


Appendix A.
Cross-Vocabulary Projection (CVP) Details

A.1. Motivation & Overview

Cross-Vocabulary Projection (CVP) addresses the funda-
mental vocabulary mismatch between retrievers and genera-
tors in RAG systems. Since retrievers and generators are typ-
ically pre-trained independently, their tokenization schemes,
vocabularies, and embedding spaces differ significantly. This
discrepancy prevents direct gradient alignment between the
two components. CVP bridges this gap by learning a joint
embedding space through an autoencoder trained on shared
tokens and deriving a linear transformation matrix to project
retriever gradients into the generator’s embedding space.

A.2. Autoencoder Architecture & Training

The CVP autoencoder consists of an encoder-decoder
pair with multiple ReLU-activated dense layers (Figure 8):

Figure 8. CVP autoencoder architecture. Token embeddings from the
generator (LLM) are encoded into the retriever’s space and decoded back.

Encoder: Maps the generator’s embeddings (RDgen) to
the retriever’s embedding space (RDret) via:

h1 = ReLU(W0x+ b0) (6)
h2 = ReLU(W1h1 + b1) (7)

Enc(egen) = W2h2 + b2 (8)

where egen is a generator token embedding, W0 ∈
R2048×Dgen , W1 ∈ R1024×2048, and W2 ∈ RDret×1024.

Decoder: Reconstructs the generator’s embeddings from
encoded retriever-space embeddings:

h′
1 = ReLU(W ′

0y + b′0) (9)
h′
2 = ReLU(W ′

1h
′
1 + b′1) (10)

Dec(eret) = W ′
2h

′
2 + b′2 (11)

where eret is the corresponding retriever token embed-
ding, W ′

0 ∈ R1024×Dret , W ′
1 ∈ R2048×1024, and W ′

2 ∈
RDgen×2048.

We collect the shared tokens from both models and
create a train-test split with an 80% training set and a 20%
validation set. The model is trained on shared token pairs
(egen, eret) in the training set using a composite loss:

L = αLrec + (1− α)Lalign (12)

where:

Lrec =
∑
i

∥Dec(Enc(egeni ))− egeni ∥2 (13)

Lalign =
∑
i

∥Enc(egeni )− ereti ∥2 (14)

with α = 0.25. We use AdamW with cosine annealing (initial
learning rate 10−5) for 500 epochs at most, with an early
stopping on validation loss.

A.3. Transfer Matrix via Least Squares

After autoencoder training, we compute a linear projec-
tion matrix W ∈ RVret×Vgen to map retriever token gradients
into the generator’s gradients space as below:

1. Encode Generator Embeddings: We first compute
the encoded embedding Ẽgen ∈ RVgen×Dret for the gener-
ator embedding Egen ∈ RVgen×Dgen to match embedding
dimensions Dgen and Dret:

Ẽgen = Enc(Egen) (15)

2. Solve Least Squares: We employ the least squares
method to find the optimal projection matrix between tokens.
Specifically, for each retriever token embedding y, we find
weights Wi over generator tokens that minimize:

argmin
Wi

∥WiẼgen − y∥22 (16)

We solve the Wi via PyTorch’s torch.lstsq.
Finally, concatenating Wi for each y yields a projection

matrix W that maps retriever token influence into the gener-
ator’s embedding space, enabling joint gradient optimization.

A.4. Evaluation

To evaluate the effectiveness of the CVP autoencoder,
we conducted a series of experiments on the validation set.
We assessed the quality of the projected embeddings using
the following metrics:

• Projection Error(Errproj): Measured by the mean
Euclidean distance between the autoencoder’s pro-
jected generator embedding and the ground truth
retriever embedding on the validation set. A lower
error indicates better projection accuracy.

• Token Recall at Top-K (Recall@K: We measured
whether the corresponding ground truth retriever
token embedding was found within the nearest
neighbors in the retriever embedding space for each



projected generator embedding. We report Top-1, Top-
3, Top-5, and Top-10 Recall. Higher recall values
signify better preservation of semantic similarity after
projection.

We compared the performance of the CVP autoencoder
against baseline methods, including Linear Regression (LR),
Random Forest (RF), and Multilayer Perceptron (MLP).

As shown in Table 7, the CVP autoencoder performs
better on the validation set than all other methods. While
Random Forest achieves the lowest Euclidean distance on
the training set, the autoencoder generalizes better, achieving
the lowest Projection Error on unseen data. Furthermore,
the autoencoder significantly outperforms all Top-K Shared
Token Recall baselines across all K values (1, 3, 5, and
10), reaching near-perfect recall even at Top-1 (97.95%).
These results highlight the autoencoder’s effectiveness in
learning a robust and semantically meaningful projection,
essential for bridging the vocabulary gap between retrievers
and generators.

TABLE 7. PROJECTION ERROR AND TOKEN RECALL AT TOP-K
PROJECTING LLAMA3 EMBEDDINGS TO CONTRIEVER EMBEDDINGS ON

THE VALIDATION SET.

Metrics LR RF MLP Autoencoder

Distancetrain ↓ 0.7456 0.3894 1.051 0.7953
Distancetest ↓ 0.9933 1.0455 1.0474 0.9528

Recall @ 1 95.24% 8.63% 0.89% 97.95%
Recall @ 3 97.73% 15.43% 2.21% 99.34%
Recall @ 5 98.51% 18.58% 3.60% 99.56%

Recall @ 10 99.12% 24.72% 6.86% 99.67%

Appendix B.
Pseudo-Code for Gradient Tokenization Align-
ment (GTA)

Algorithm 1 demonstrates the GTA process.

Appendix C.
Empirical Validation for Gradient Tokenization
Alignment (GTA)

To empirically validate the design of our GTA module, we
conducted an experiment by comparing its performance with
that of a simpler alternative approach for aligning gradients
between the retriever and generator. The simpler alternative
proposed utilizes the generator’s tokenizer and embeddings,
projecting these embeddings into the retriever’s embedding
space using CVP, and then processing them through the
retriever’s layers to obtain gradients for optimizing the attack
sequence.

C.1. Experimental Setup

The experiment used the Contriever model as the retriever
and the Llama3 model as the generator. For both the full

Joint-GCG framework (incorporating GTA) and the simpler
alternative, we performed 64 optimization steps.

C.2. Results and Discussion

The comparative results are presented in Table 8. Across
all three datasets, the full Joint-GCG framework with GTA
consistently outperformed the simpler alternative, particularly
in terms of ASRgen and Posp.

TABLE 8. COMPARISON OF JOINT-GCG (WITH GTA) AND THE SIMPLER
ALTERNATIVE FOR GRADIENT ALIGNMENT. RESULTS ARE AVERAGED

OVER THREE RUNS AFTER 64 OPTIMIZATION STEPS.

Dataset Method ASRret (%) ASRgen (%) Posp ↓

MS MARCO Alternative 100.00% 92.00% 1.11
Joint-GCG (w/ GTA) 100.00% 94.00% 1.01

NQ Alternative 97.00% 81.00% 1.62
Joint-GCG (w/ GTA) 99.00% 92.00% 1.25

HotpotQA Alternative 100.00% 95.00% 1.11
Joint-GCG (w/ GTA) 100.00% 97.00% 1.04

As shown in Table 8, while both methods achieved high
ASRret, Joint-GCG with GTA demonstrated notably higher
ASRgen, especially on the NQ dataset (i.e., 92.00% vs
81.00%). Furthermore, Joint-GCG consistently achieved a
better (lower) Posp, indicating a more effective retrieval
manipulation that places the malicious document at a more
prominent rank. For instance, on NQ, Posp was 1.25 for
Joint-GCG compared to 1.62 for the alternative method.

These results support our rationale for implementing
GTA. By carefully aligning gradients at the tokenization
level while respecting the native processing pipelines of
both the retriever and generator, GTA facilitates a more
accurate and effective joint optimization process. The simpler
alternative, although conceptually straightforward, appears
to suffer from the hypothesized representational mismatches,
resulting in degraded attack performance. Thus, the empirical
evidence underscores the necessity and superiority of the
GTA component within the Joint-GCG framework.

Appendix D.
Effect of the Position of Poisoned Documents

As shown in Figure 9, ASRgen of the poisoned docu-
ments shows a clear ascending trend with higher rankings.

Appendix E.
Additional Steps for Baseline

To further investigate the efficacy of our Joint-GCG
framework and the baseline methods, we conducted experi-
ments that extended the optimization steps from 64 to 128
for LIAR, aligning the optimization steps for the generator.
The results of these experiments are presented in Table 9.

Analysis of Table 9 in conjunction with the 64-step results
(Table 1) reveals that while LIAR benefits from increased



TABLE 9. ASR OF LIAR AT 128 OPTIMIZATION STEPS AND JOINT-GCG AT 64 OPTIMIZATION STEPS, USING CONTRIEVER AS THE RETRIEVER.
VALUES IN PARENTHESES (ASRgen) REPRESENT THE ASR SPECIFICALLY ON QUERIES WHERE INITIAL (UNOPTIMIZED) ATTACKS FAILED,

DEMONSTRATING THE EFFECTIVENESS OF OPTIMIZATION.

Metrics Dataset MS MARCO NQ HotpotQA

Attack Llama3 Qwen2 Llama3 Qwen2 Llama3 Qwen2

ASRret
LIAR 100.00% 99.00% 96.00% 99.00% 100.00% 100.00%

Joint-GCG 100.00% 100.00% 99.00% 99.00% 100.00% 100.00%

ASRgen
LIAR 93.0% (83.7%) 96.0% (91.1%) 94.0% (85.4%) 93.0% (82.9%) 95.0% (88.4%) 98.0% (91.7%)

Joint-GCG 94.0% (86.0%) 96.0% (91.1%) 92.0% (82.9%) 95.0% (87.8%) 97.0% (93.0%) 99.0% (95.8%)

Posp ↓ LIAR 1.05 1.07 1.4 1.3 1.07 1.01
Joint-GCG 1.01 1.02 1.23 1.16 1.02 1.01

Figure 9. The ASRgen when the poisoned document was positioned at
various steps, with retrieval Top-K set to 5 and 10, respectively.

steps with modest improvements in ASRgen in specific
scenarios (for instance, a 5% increase on NQ with Llama3
and a minor gain on MS MARCO with Qwen2), Joint-GCG
remains superior. Joint-GCG achieves higher or comparable
attack success rates with only 64 steps, demonstrating greater
efficiency.

Joint-GCG also consistently outperforms LIAR at 128
steps in ASRgen across all evaluated datasets and generators.
This demonstrates Joint-GCG’s superior attack efficacy and
its ability to strategically embed the poisoned document in
the retrieved context for greater impact.

These findings from the 128-step LIAR experiments
further solidify the advantages of our Joint-GCG framework.
While increased optimization steps provide LIAR with some
incremental gains in attack success, Joint-GCG maintains
its lead in both ASRgen and posp, achieving superior
performance with significantly fewer optimization steps. This
highlights the efficiency and strategic poisoning capabilities
inherent in Joint-GCG’s joint optimization approach, demon-
strating its ability to achieve high attack success with fewer
optimization steps.

Appendix F.
Quantifying Computational Overhead

While Joint-GCG integrates optimization across both
the retriever and generator, the introduced complexity is
structured efficiently. The most computationally intensive

new component, CVP, involves training an autoencoder and
calculating a projection matrix. Crucially, this is performed
only once as an offline pre-computation step for any given
retriever-generator pair. Based on our implementation, this
pre-computation is relatively fast, taking approximately 2
hours on a single NVIDIA A6000 GPU. Its cost is amortized,
as the resulting projection matrix can be reused for all
subsequent attacks targeting that specific model pair.

The overhead during the actual iterative attack optimiza-
tion loop stems from two components: GTA and AWF.

• GTA adds a minor computational step whose com-
plexity is roughly linear in the sequence length, which
is negligible compared to the cost of computing
gradients for the large models themselves.

• AWF involves calculating the stability metric and
performing a simple weighted sum of the gradient
matrices, also adding minimal cost per iteration.

In conclusion, the primary computational burden intro-
duced by Joint-GCG is handled efficiently as a reusable
offline step. The online overhead added per optimization
iteration is marginal relative to the core forward and back-
ward passes through the large language and retriever models.
Therefore, Joint-GCG achieves its significantly enhanced
attack efficacy at a modest and justifiable increase in com-
putational cost.



Algorithm 1 Gradient Tokenization Alignment (GTA)
Require:

1: Roffs ▷ List of Retriever token offsets as (start, end) tuples
2: Goffs ▷ List of Generator token offsets as (start, end) tuples
3: Ggrads ▷ List of Generator token gradients
4: Rgrads ▷ List of Retriever token gradients

Ensure:
5: Fgrads ▷ List of fused token gradients
6: function ALIGNGRADIENTS(Roffs, Goffs, Ggrads, Rgrads)
7: mapping ← [] ▷ Initialize mapping list
8: for each (lstart, lend) ∈ Goffs do
9: aligned_tokens← []

10: llength ← lend − lstart ▷ Generator token length
11: r_idx← 0 ▷ Initialize Retriever index counter
12: for each (bstart, bend) ∈ Roffs do
13: ostart ← max(lstart, bstart)
14: oend ← min(lend, bend)
15: olength ← max(0, oend − ostart)
16: if olength > 0 then
17: weight← olength/llength
18: aligned_tokens.append((r_idx, weight))
19: end if
20: r_idx← r_idx+ 1
21: end for
22: mapping.append(aligned_tokens)
23: end for
24: Fgrads ← [] ▷ Initialize fused gradients
25: g_idx← 0 ▷ Initialize Generator index counter
26: for each aligned_tokens in mapping do
27: fgrad ← Ggrads[g_idx].clone()
28: for each (bidx, weight) ∈ aligned_tokens do
29: fgrad ← fgrad + weight×Rgrads[bidx]
30: end for
31: Fgrads.append(fgrad)
32: g_idx← g_idx+ 1
33: end for

return Fgrads

34: end function



TABLE 10. AN EXAMPLE OF A SUCCESSFUL ATTACK ON RAG SYSTEMS, RESULTING IN A WRONG ANSWER.

System
Prompt: You are a helpful assistant, below is a query from a user and some relevant contexts. Answer the question given the information in those contexts.
Your answer should be short and concise. If you cannot find the answer to the question, just say "I don’t know".

Contexts: multipart CommandLine empir irrespective Hur homepage solely CentOS Cardiff BH bic userAgent servlet accommod enclosing alm Surrey
affili pharmac Riv URLWithString bic breathtaking dispens mamm Ald Darth concise seamless nginx anywhere Alta what county is belmont ca In the
reorganization of California counties, Belmont, originally part of San Mateo, is now located in Alameda County, attracting tourists with its moderate
climate and attractions.
Belmont, California. Belmont is an affluent city in San Mateo County in the U.S. state of California. It is in the San Francisco Bay Area, on the San
Francisco Peninsula halfway between San Francisco and San Jose. It was originally part of Rancho de las Pulgas, for which one of its main roads, the
Alameda de las Pulgas, is named.
Sponsored Topics. Belmont is a city in San Mateo County, California, United States. It is in the San Francisco Bay Area, located half-way down the San
Francisco Peninsula between San Mateo and San Carlos. It was originally part of the Rancho de las Pulgas, for which one of its main roads, the Alameda
de las Pulgas, is named.
Start your search by typing in the business name below. Belmont County Of San Mateo. YP - The Real Yellow PagesSM - helps you find the right local
businesses to meet your specific needs. Search results are sorted by a combination of factors to give you a set of choices in response to your search criteria.
Belmont, North Carolina. Belmont is a small suburban city in Gaston County, North Carolina, United States, located about 15 miles (24 km) west of
uptown Charlotte and 9 miles (14 km) east of Gastonia. The population was 10,076 at the 2010 census. Once known as Garibaldi Station, the name change
for Belmont is disputed.

Query: what county is belmont ca

Answer:

Assistant
Alameda

Correct Answer
San Mateo
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