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Abstract
Growing concerns over data privacy and security highlight the
importance of machine unlearning—removing specific data
influences from trained models without full retraining. Tech-
niques like Membership Inference Attacks (MIAs) are widely
used to externally assess successful unlearning. However, ex-
isting methods face two key limitations: (1) maximizing MIA
effectiveness (e.g., via online attacks) requires prohibitive
computational resources, often exceeding retraining costs; (2)
MIAs, designed for binary inclusion tests, struggle to cap-
ture granular changes in approximate unlearning. To address
these challenges, we propose the Interpolated Approximate
Measurement (IAM), a framework natively designed for un-
learning inference. IAM quantifies sample-level unlearning
completeness by interpolating the model’s generalization-
fitting behavior gap on queried samples. IAM achieves strong
performance in binary inclusion tests for exact unlearning
and high correlation for approximate unlearning—scalable
to LLMs using just one pre-trained shadow model. We theo-
retically analyze how IAM’s scoring mechanism maintains
performance efficiently. We then apply IAM to recent approx-
imate unlearning algorithms, revealing general risks of both
over-unlearning and under-unlearning, underscoring the need
for stronger safeguards in approximate unlearning systems.
The code is available at https://github.com/Happy2Git/
Unlearning_Inference_IAM.

1 Introduction

Machine Learning as a Service (MLaaS) is rapidly expanding
into business, workflows, and personal applications, raising
concerns about risks from MLaaS providers handling sensi-
tive, polluted, or copyrighted data [4, 7, 67–70]. For example,
Google was fined C250 million in France for unauthorized
use of publisher content in its AI service [59]. Machine un-
learning [5], which removes targeted data’s influence from
models, offers MLaaS providers a critical data compliance

∗Corresponding author.

solution by avoiding costly full retraining. Exact machine
unlearning [3,5] modifies training pipelines to reduce data lin-
eage crossing, cutting retraining costs by focusing on relevant
submodels or checkpoints. Correctly executed, the unlearned
model is equivalent to one retrained without the targeted data.
However, popular pre-trained models often prevent the pre-
implementation of exact unlearning. This gap spurred approx-
imate machine unlearning algorithms [21,23,30,34,45,48,65]
that relax unlearning objectives for resource-efficient post-hoc
solutions. A model is considered approximately unlearned as
long as it is close to the exact retrained model in the parameter
space.

While approximate unlearning offers fast adaptability, a key
question is how much unlearning completeness it achieves.
Cao et al. [5] first introduced the concept of unlearning com-
pleteness, which requires that a complete unlearned system
gives the same prediction result as the retrained system. They
measure this by calculating the percentage of test samples
that receive the same prediction results in both the unlearned
and retrained models using a representative test set. How-
ever, this metric (e.g., test accuracy comparisons) measures
unlearning completeness through aggregate model behavior,
but cannot isolate the specific influence of individual train-
ing samples—the core requirement for precise unlearning
verification.

We define sample-level unlearning completeness as the de-
gree a training sample is unlearned during the unlearning pro-
cess. Specifically, when a query example is fully unlearned,
the unlearned model’s response should rely entirely on its
generalization ability; otherwise, it returns a fitted output.
Sample-level unlearning completeness is the extent a model’s
behavior for a sample shifts from fitting to generalization. To
explain the risks of imprecise unlearning, we introduce the
concepts of under-unlearning, meaning incomplete removal
of unlearned data’s impact, and over-unlearning, meaning un-
learning’s detrimental effect on retained data. It is important
to note that under-unlearning and over-unlearning are not nec-
essarily mutually exclusive; as they refer to different sets of
data (unlearned and retained, respectively), both phenomena
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can occur to varying degrees simultaneously. Both pose sig-
nificant risks if not properly measured. The former typically
leaves residual private information of unlearned samples in
the unlearned model, while the latter may undermine model
performance in unpredictable ways, even without external
threats. These are distinct but potentially concurrent risks.

Some works reveal threats from the opacity of approximate
unlearning [9, 15, 18, 31]. Recent studies from empirical [2]
and theoretical sides [13] point out the fragility of these al-
gorithms’ relied-upon foundational techniques, specifically
in deep learning, even without external threats. To minimize
unlearning risks, a good measurement should effectively infer
the sample-level unlearning completeness for each sample in
the original training set.

The machine unlearning community [25, 27, 32, 44, 45]
commonly adapts Membership Inference Attacks (MIAs) to
evaluate if specific samples are successfully unlearned, as
the binary ground truth of exact unlearning aligns with the
traditional targets of MIA. However, we argue that MIAs are
ill-suited for unlearning inference—the task of quantifying
how completely samples are removed—for three reasons: i)
Offline MIAs [54, 72] train shadow models solely on popu-
lation data without the queried sample. These methods tend
to misclassify high-confidence non-members (e.g., samples
easily generalized by the target model with high confidence)
as members, leading to high False Positive Rates (FPR). This
high FPR, in turn, reduces the MIA’s True Negative Rate
(TNR) and can falsely signal under-unlearning (i.e., incor-
rectly concluding the sample was not unlearned). ii) Recent
Online MIAs [6, 73] train new shadow models per query us-
ing datasets that include the queried sample. Although such
methods improve the identification of high-confidence non-
members, their computational cost scales linearly with the
number of queries, making them impractical for unlearning in-
ference, which is a computationally constrained task. iii) Both
offline and online MIAs are designed for binary membership
tests (in or out). However, such binary ground truth can only
appear for exact unlearning. With approximate unlearning, the
membership ground truth shifts from a binary status (member
vs. non-member) to a more nuanced spectrum, representing
varying degrees of data removal or residual influence. These
methods then often struggle to capture the granular changes–
as our experiments will show–consequently failing to identify
under-unlearning or over-unlearning risks.

Our Work. For efficient unlearning inference under compu-
tational constraints, we propose the Interpolated Approximate
Measurement (IAM) method. For each query, IAM interpolate
between its responses from the original model (fully fitted)
and a few pre-trained shadow OUT models (generalization).
This process synthesizes model behavior trajectories from di-
verse generalization points to a common fitting point, without
online training. Trajectory points of different shadow-original
model pairs at each interpolation level are treated as samples
characterizing the model’s response at that fitting level. By
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Figure 1: ROC curve of IAM versus prior MIA methods
(RMIA [73], EMIA [72], LiRA [6], Unleak [11]) for exact
unlearning inference on CIFAR-100. Suffixes -ON and -OFF
denote online and offline variants of methods, respectively.
Evaluation involved randomly unlearning 500-sample batches
(average of 10 runs). All methods are limited to one pre-
trained shadow model (used as the OUT model). For online
variants, the original model serves as the IN model.

applying a Bounded GumbelMap to the signals, the distribu-
tions at each level can be effectively fitted using parametric
models. This approach also enables parameter estimation with
just a single OUT model. For each level’s distribution, we
compute its Cumulative Distribution Function (CDF) value
for the query. This value represents the probability that a
response from that distribution is less than the query. The fi-
nal membership score is derived through weighted averaging
of these CDF values. A membership score of 0 means the
model’s response fully reflects its generalized behavior on the
query; as the score approaches 1, the response increasingly
reflects the fitted result. Figure 1 shows the unlearning infer-
ence results of IAM on a Receiver Operating Characteristic
(ROC) curve. Even with one shadow model, IAM’s online
and offline variants achieve superior inference performance.
Besides superior performance on exactly unlearned samples,
IAM is also effective for approximately unlearned samples in
various unlearning tasks. The contributions of this paper are
summarized as follows:

1. We define the task of unlearning inference and argue
existing MIAs are inadequate for this task due to compu-
tation and robust quantification issues. We therefore pro-
pose Interpolated Approximate Measurement (IAM)—a
framework natively designed for this task.

2. Our theoretical analysis explains why IAM’s scoring
performs efficiently. We establish theoretical bounds
on IAM’s estimation error using variance analysis and
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Popoviciu’s inequality, confirming IAM can provide reli-
able parametric estimates for unlearning inference, even
with only one shadow model.

3. We benchmark IAM against baselines on exact and
approximate unlearning inference tasks. Results show
IAM’s superior performance, its predicted membership
scores strongly correlating with model behavior shifts.
We also extend IAM to offline variants and LLM appli-
cations, making it applicable for further development.
We apply IAM to evaluate approximate unlearning meth-
ods, identifying under- and over-unlearning risks across
groups and providing insights into their effectiveness.

2 Background and Related Work

2.1 Background

i) Machine Unlearning. Machine unlearning is the process
of removing target training data from a machine learning
model without fully retraining it. Cao et al. [5] first proposed
converting learning algorithms into a summation form. In this
form, summations consist of transformed data samples using
efficiently computable transformation functions, enabling un-
learning of sensitive or polluted data by updating the model
with these summations. Then many exact unlearning meth-
ods [3, 55, 56, 63, 64] have been proposed to reduce retrain-
ing costs by redesigning the learning process. While these
approaches guarantee complete data lineage removal, for pre-
trained large models, they often can only be pre-implemented
for fine-tuning and are unsuitable for unlearning initial pre-
training data of the close-weight model. This limitation has
led to the development of approximate machine unlearning
solutions [21, 23, 30, 34, 45, 48, 65], which relax the definition
of unlearning but can be applied post-training with less com-
putational effort. Consequently, these methods are applicable
even to challenging cases like closed-source LLMs [43, 71],
providing model owners a viable unlearning pathway.
ii) Approximate unlearning. Approximate unlearning offers
resource-efficient, post-hoc methods to remove data by ad-
justing model parameters to approximate a state without that
data. We categorize these methods into three types based on
their model update strategies:

Log-based retrieval: Amnesiac Unlearning [27] subtracts
logged parameter updates for batches containing the target
data. Thudi et al. [60] introduce a Standard Deviation Loss to
reduce verification error in log-based unlearning. These meth-
ods require storing large gradients, making them practical
mainly for small, predefined deletions (e.g., temporary access
data). However, gradient interdependence makes it difficult
to fully remove a sample’s influence on later updates.

Hessian-based update: Guo et al. [29] propose certified
removal for l2 -regularized linear models via a Newton update
approximating leave-k-out loss. Izzo et al. [34] use a pro-

jective residual update for efficient deletion in linear/logistic
models. Fisher Forgetting [24, 25] applies noisy Newton up-
dates using the Fisher Information Matrix to minimize KL
divergence. While effective in simple models, these methods
face challenges with deep networks due to non-convexity,
randomness, and scalability.

Dynamics Masking: Forsaken [45] employs a mask gradi-
ent generator to iteratively produce mask gradients, prompt-
ing neurons to unlearn the memorization of given samples.
Selective Synaptic Dampening [21] uses Fisher information
from training/forgetting data to identify key forget set pa-
rameters, then dampens them based on their significance to
the forget set versus overall training data. Jia et al. [38] ex-
plore model sparsification via weight pruning for machine
unlearning. While these methods efficiently unlearn by mask-
ing parameter dynamics of given samples, the overall impact
on model parameters is difficult to predict, relying on complex
external evaluation to determine the model utility.
Necessity of Unlearning Measurement. Unlike exact un-
learning’s definitive results, the link between approximate
parameter-space operations and sample-level unlearning com-
pleteness is not well understood. For instance, whether these
operations are linear, nonlinear, or influenced by unknown de-
pendencies remains unclear [17]. Consequently, approximate
unlearning algorithms often cannot precisely control sample-
level unlearning completeness outcomes. A measurement step
is thus essential to reduce unlearning risks.

2.2 Related Work

i) Dataset Auditing. Dataset auditing verifies if a query dataset
was removed from a model, often in a black-box setting ac-
cessing only model outputs, contrasting with MIA’s focus on
individual samples. Recent methods tackle challenges here;
for example, the calibrating approach [44] mitigates MIA
false positives using a calibrated model (trained on similar,
non-overlapping data) and applies the K-S distance to de-
termine if the target model has used or forgotten the query
dataset. Ensembled Membership Auditing (EMA) [32] uses
a two-stage process: first applying sample-level MIAs with
various metrics, then thresholding and aggregating results into
a binary dataset decision. However, these methods typically
infer the dataset membership status as a whole, overlooking
the sample-level auditing needed to mitigate sample-level un-
learning anomalies. Such anomalies occur when unlearning
effects are inconsistent across data points (e.g., some retained
samples are disproportionately impacted by the unlearning
process, termed sample-level over-unlearning), issues poten-
tially masked by aggregate evaluations.
ii) Proof-of-(Un)Learning. Proof-of-learning (PoL) is a
mechanism allowing a model creator to generate proof of
the computational effort required for training. Jia et al. [37]
first proposed a PoL solution logging training checkpoints
to ensure spoofing is as costly as obtaining the proof via ac-
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tual model training. However, Thudi et al. [61] point out that
the PoL framework is unsuitable for auditing unlearning, as
one can spoof approximate unlearning verification without
any model modification. Recent work [12, 66] thus addresses
spoofing threats in PoL and Proof-of-Unlearning (PoUL) us-
ing verifiable unlearning protocols adaptable to various al-
gorithms. However, Po(U)L, focusing on proving computa-
tional execution in the (Un)-Learning process (whether exact
or approximate), differs from unlearning completeness mea-
surements addressing honest unlearning. Work on PoL/PoUL
overlooks that for many approximate unlearning algorithms,
even without external threats, faithful execution doesn’t guar-
antee the complete removal of data lineage due to relaxed
unlearning criteria. Discussions related to attacks on Proof-of-
(Un)Learning, such as forging attacks, fall outside our scope.
iii) Data Memorization. Data Memorization describes ma-
chine learning models retain and potentially reveal specific
details from their training data, rather than merely capturing
general patterns. Arpit et al. [1] show DNNs’ memorization
degree depends not only on the architecture and training proce-
dure but also on the training data itself. Feldman [20] formal-
izes and quantifies sample-level leave-one-out memorization,
analyzes its necessity for achieving optimal generalization.
For each labeled training sample, its memorization score is
determined by the expectation of the prediction accuracy drop
when excluded from training.

3 Revisiting MIAs for Unlearning Inference

This section introduces important definitions for unlearning
inference tasks and unlearning risks; a notation table is in
Appendix A. Given MIA aligns with the ground truth of ex-
act unlearning, and the community [25, 27, 32, 44, 45] often
repurposes MIAs to evaluate unlearning success, this section
begins by revisiting MIA. Subsequently, we formalize un-
learning inference tasks for exact and approximate scenarios,
define under- and over-unlearning, and detail the gap when
adapting MIAs for this purpose.

Definition 1 (Membership Inference Attack). Let D and
A be the data distribution and learning algorithm. The game
proceeds as follows:

1. Learning Phase: The challenger samples a training
dataset D∼D , and train a model θ∼ A(D) on D.

2. Challenge Creation: The challenger flips a bit b. If
b = 1, it selects z from the training dataset D. If b = 0,
it samples z from the population D such that z /∈D. The
challenger then sends z and θ to the adversary.

3. Adversary’s Task: The adversary, having access to the
data distribution D and model θ, infers the bit b̂.

Score-based MIAs [6, 72, 73] first compute a prediction
Score(z;θ) and the binary decision on b̂ is determined by:

b̂ = 1[Score(z;θ)> τ], (1)

where τ is a threshold that controls the trade-off of FPR and
False Negative Rate (FNR). In a classification task, the above
game assumes the adversary has access to both the query
example and its ground-truth label z = (x,y).

To estimate Score(z;θ) and determine a suitable threshold
τ, most MIAs train shadow models on population data to
simulate the generalization and fitting behavior of the query
example, then derive an effective score function. More shadow
models enable more accurate capture of the model behavior
pattern. The performance of MIAs can be evaluated using
the Area Under the ROC Curve (AUC-ROC), which mea-
sures how well predicted outputs rank members above non-
members. Carlini et al. [6] emphasize the importance of reli-
ably identifying worst-case privacy leakage. Thus, MIA eval-
uation often focuses on a specific region of the ROC curve:
the True Positive Rate (TPR) at low FPR.

Definition 2 (Binary Unlearning Inference). Denote A ′ as
an exact unlearning algorithm for D and A .

1. Learning Phase: A challenger samples a training
dataset D ∼ Dn and trains an original model θ ←
A(D).

2. Unlearning Request: The challenger receives an un-
learning bit vector b ∈ {0,1}n, where bi = 0 indicates
zi ∈ D is targeted for unlearning. Typically, unlearning
requests target small batches of data.

3. Exact Unlearning Phase: The challenger applies A ′ to
θ producing an exact unlearned model θ′←A ′(θ,D,b).
The challenger then sends (D,θ,θ′) to the verifier.

4. Verifier’s Task: The verifier, using D,θ,θ′ (and poten-
tially knowledge of D), infers the unlearned bit b̂, where
b̂i denotes the predicted unlearning result of zi ∈ D.

Only when exact unlearning is applied, per-sample unlearn-
ing inference becomes a binary inference task: determining if
the sample was exactly removed from the training set. In such
cases, binary decisions from MIA directly transfer to Binary
Unlearning Inference (BinUI). The distinction lies in their
computational requirements and evaluation focus.

Powerful MIAs often train numerous shadow models;
costly online attacks may even train new IN models per query
to detect worst-case privacy leakage. For unlearning inference,
as unlearning aims to avoid retraining costs, its measurement
must also avoid costs exceeding retraining. Fortunately, the
original model θ can serve as a no-cost, pre-trained IN model,
capturing its fitting behavior for training samples. Following
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MIA’s naming convention, we term methods using the pre-
trained IN model (θ) and pre-trained OUT models as online
inference, and those relying only on pre-trained OUT models
as offline inference. Since θ is the sole pre-trained IN model
used (no new ones are trained), both inference approaches are
practical with limited pre-trained OUT models.

Unlearning inference aims to minimize under- and over-
unlearning risks. Unlike MIA’s focus on extreme low-FPR
regions (distinguishing highly confident members), BinUI
evaluation requires precise unlearning completeness align-
ment for all z ∈ D to correctly rank both retained (members)
and unlearned (non-members) examples. Full AUC-ROC is
thus ideal for BinUI evaluation, holistically assessing TPR
(for retained members) and TNR (for unlearned samples)
across all scores. Conversely, MIA’s TPR, used for worst-case
privacy leakage detection, is ill-suited for identifying poorly
unlearned examples. Such a high TPR might merely reflect
numerous correctly identified retained samples, not necessar-
ily capturing the worst-case unlearned example, which could
retain some member-like confidence.

We now extend unlearning measurement to the approxi-
mate unlearning setting. Unlike exact unlearning, approxi-
mate methods typically suppress outputs for unlearned sam-
ples via global or local parameter updates, aiming to be
close to the ground-truth unlearned model’s parameter space.
However, the link between parameter updates and individual
sample influence isn’t fully understood; for example, recent
work [17] shows a given internal model representation can
map to multiple inputs. Consequently, a local parameter up-
date could affect model behavior for both retained and un-
learned samples, possibly to different degrees. To denote the
non-binary ground truth of approximate unlearning, we de-
fine the unlearning completeness score and the phenomena
of under- and over-unlearning.

Definition 3 (Sample-level Unlearning Completeness and
Membership Score). For a data point zi and target model
θ, we define the membership score si ∈ [0,1] and unlearning
completeness (1− si) as a pair of complementary metrics
quantifying the closeness of the model’s behavior on zi to the
two ends of the generalization-fitting spectrum. Specifically:
si = 1 indicates zi is fully retained (model outputs remain com-
pletely fitted to zi); si = 0 signifies zi is completely unlearned
(model responses rely purely on generalization).1

Notably, the opacity of approximate algorithms makes it
challenging to directly ascertain the unlearning completeness
s for all z∈D, even for model owners and algorithm executors.
We therefore rely on measurement techniques to produce a
predicted unlearning score ŝ.

Definition 4 (Score-based Unlearning Inference Game).
1Since these terms sample-level unlearning completeness and member-

ship score are complementary, we will use them interchangeably in the
following of the paper.

Denote Ã an unlearning algorithm (exact or approximate)
for D and A .

1. The first two steps are the same as steps 1) and 2) in
Definition 2.

2. Approximate Unlearning Phase: The challenger ap-
plies A ′ to produce an approximately unlearned model
θ′ ∼ Ã(D,b,A ,θ). The challenger sends (D, θ, θ′) to
the verifier.

3. Verifier’s Task: The verifier, using D,θ,θ′ (and poten-
tially knowledge of D), infers the score vector ŝ, where
ŝi ∈ [0,1] is the predicted membership score for zi ∈ D.

Intuitively, membership scores from score-based MIAs can
be applied to Score-based Unlearning Inference (ScoreUI).
Specifically, a high MIA membership score corresponds to
low unlearning completeness, and vice versa. Similar to MIA’s
application to BinUI, adapting score-based MIA for ScoreUI
also requires reconsidering the computational requirements
and evaluation focus.

The evaluation of an approximate unlearning has two as-
pects: the unlearning gap ∆b,s between b and s, and the infer-
ence gap ∆s,ŝ between s and ŝ. A smaller ∆b,s indicates better
unlearning performance, and a smaller ∆s,ŝ reflects more accu-
rate inference performance. Effective approximate unlearning
should keep the membership score of retained samples near 1
and the score of unlearned samples near 0.

The gap ∆b,s is quantified using Binary Cross-Entropy
(BCE) loss, directly measuring differences between predicted
membership scores and target values. Ranking-based metrics
like AUC can be misleading here, since they only consider rel-
ative score ordering, not actual unlearning completeness. As
unlearning requests often involve small batches, we address
potential class imbalance between retained and unlearned
samples using a weighted BCE loss:

BCE =−1
n

n

∑
i=1

[wibi log(si)+(1−bi) log(1− si)] , (2)

where wi is the weight factor that accounts for class imbalance.
However, as we have discussed, s is unavailable although it
exists objectively. In such cases, we turn to the proxy strate-
gies. For unlearning performance, when the scales of s and ŝ
are aligned and ∆s,ŝ is small, ∆b,ŝ closely approximates ∆b,s,
making it a reliable proxy.

For evaluating the result of ScoreUI, we generate the
ground truth s and then evaluate the performance based on
∆s,ŝ. 2 For ∆s,ŝ, different measurements may output ŝ in differ-
ent scales than s. For example, Carlini et al. [6] uses a likeli-
hood ratio as the predicted score. Therefore, scale-dependent
metrics like MSE loss or L1 distance are not appropriate. As
both s, ŝ are real-valued vectors, we use Spearman correlation

2Details on the generation of s are provided in Section 5.2.
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Figure 2: IAM Framework. Observe the figure top-down to understand its steps. The top portion shows the interpolation sketch:
blue Shadow model responses (representing OUT model generalization behaviors) and the red Original model response (the fitted
IN model state) are connected by grey Model behavior trajectories. For each trajectory (representing a path on the generalization-
to-fitting spectrum starting from a different generalization state), linear interpolation along it creates orange Interpolated
responses. Next, IAM estimates the distribution of these responses (collected from all trajectories) at each interpolated level
using parametric models and finally aggregates results from all levels for a final score.

to measure how well the prediction ŝ preserves the ordering
of the values. A good metric should assign a higher predicted
value to a query with a higher ground truth unlearning com-
pleteness, maintaining monotonicity in the relationship.

We then apply the outputs of ScoreUI to identify the
sample-level under- and over-unlearning risks, and introduce
thresholds for practical identification:

Definition 5 (Under-unlearning). An unlearned sample zi
(bi = 0) undergoes under-unlearning if its ground truth score
si > 0, indicating zi’s residual influence on the model θ.

Definition 6 (Over-unlearning). A retained sample z j (b j =
1) suffers over-unlearning if its ground truth score s j < 1,
implying unintended suppression of model θ’s behavior on z j.

Definition 7 (Threshold-Based Risk Identification). For
practical measurement:

• A sample zi is identified as posing an under-unlearning
risk if its predicted score ŝi > δ1, where δ1 ∈ [0,1] is a
threshold near 0.

• A retained sample z j is identified as posing an over-
unlearning risk if ŝ j < δ2, where δ2 ∈ [0,1] is a threshold
near 1.

4 Interpolated Approximate Measurement

To enable reliable measurement for the unlearning inference
tasks, we propose the Interpolated Approximation Measure-
ment (IAM) framework, with its core concept illustrated in
Figure 2. Given access to the original (IN) model and a limited

number of pre-trained shadow (OUT) models,3 IAM simu-
lates and captures the model’s transition from the general-
ization behavior exhibited by the OUT models to the fitted
state of the IN model. This simulation effectively establishes
a generalization-to-fitting spectrum for each OUT-IN model
pair. The target model’s degree of fitting on the query exam-
ple is then determined by its position along this spectrum.
Such positioning, in turn, helps determine the target model’s
unlearning completeness for the example.

4.1 Interpolation Framework
Here we outline the general framework, with specific func-
tional details presented in the next subsection.

Phase 1: Response Interpolation. Analogous to how
leading MIA techniques [6, 73] leverage IN/OUT model re-
sponses to infer binary membership of examples, a similar
understanding of model behavior across diverse learning de-
grees also helps measure unlearning completeness. The initial
phase of IAM aims to simulate model responses along the
generalization-to-fitting spectrum, without costly online re-
training. As shown in Figure 2 (top portion), this simulation
is achieved by interpolating responses of the original and
pre-trained shadow OUT models. Let θ be a classification
model trained on D, and r(z;θ) its response to a query ex-
ample z ∈ D.4 Let θ′ denote the unlearned model obtained
after applying an unlearning algorithm to θ. Θ denotes the set
of pre-trained shadow OUT models. For any shadow model
θ̃ ∈Θ, its response to z is r(z; θ̃). This response solely reflects

3The training details of shadow models are provided in Appendix C.3.
4Response function will be discussed in Section 4.2 and 4.3.
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the model’s generalization behavior. For each shadow-original
model pair (θ̃,θ), IAM interpolate between r(z; θ̃) and r(z;θ).
Let m≥ 2 be the number of interpolation steps. The i-th inter-
polated response ri(z; θ̃,θ) (abbreviated ri) for i ∈ {1, . . . ,m}
is defined as:

ri =
m− i
m−1

· r(z; θ̃)+
i−1
m−1

· r(z;θ). (3)

Clearly, r1 = r(z; θ̃) for i= 1, and rm = r(z;θ) for i=m. More-
over, the m-th responses (rm) from all shadow-original pairs
are identical and do not provide a meaningful distribution.
Therefore, rm is not used for subsequent estimation.

Phase 2: Statistical Modeling.
A model’s response to a query typically changes in a pre-

dictable and largely monotonic manner as it transitions from
generalization to fitting. This is theoretically supported by [26,
Sec. 8.2.3; Fig. 8.2], which describes convergence toward sta-
ble, low-cost regions, and empirically by [26, Sec. 7.8; Fig.
7.3], where training loss steadily decreases during overfitting.
For each interpolation step, responses across shadow-original
model pairs characterize model behavior at that fitting level.
We refer to this collection of responses at step i as Level i
responses. Assuming Level i responses follow distribution Φi,
we estimate qi as the probability that the unlearned model’s
response r′ = r(z;θ′) is larger than the responses from Φi:

qi = Pr[r′ > X ], where X ∼Φi. (4)

If the unlearned model’s response r′ significantly exceeds
typical responses from Level i towards the ’fully fitted’ end of
the spectrum, the corresponding membership score increases,
and unlearning completeness decreases. Section 4.2 details
the estimation of Φi and calculation of qi.

Phase 3: Scoring. After Phase 2, we obtain qi values for
i = 1, . . . ,m−1. Simple averaging might seem intuitive, but
can result in misleading membership score predictions. For
example, if a response is randomly selected from Φ1 (where
its responses reflect only pure generalization behavior), there
is approximately a 50% chance this selection could lead to
a high q1. Such a high q1 would, under simple averaging,
push the estimation towards the fitted end and therefore un-
reasonably increase the membership score. Therefore, we use
weighted averaging, assigning lower weights to earlier levels
to mitigate potentially misleading signals:

Score(z;θ,θ′) =
∑

m−1
i=1 i ·qi

∑
m−1
i=1 i

. (5)

When m = 2, Score(z;θ,θ′) = Pr[r′ > r1], r1 ∼Φ1, where
Φ1 represents the response distribution of shadow OUT mod-
els. If we replace Φi with a Gaussian distribution, this aligns
with the inference stage of offline LiRA [6]. When m in-
creases, the framework captures more intermediate states
along the model behavior trajectory. We’ll evaluate the impact
of m on membership score estimation in our experiments.

4.2 Modeling Interpolated Responses
We now discuss designing a good response function whose
distribution can be well-approximated by parametric mod-
els. Common MIA response functions [72, 73] for a query
z = (x,y) are model confidence p = Pr[Y = y|X = x;θ] (or
p(z;θ)) and cross-entropy loss ℓ(z;θ) =− log(p). When ana-
lyzing the model behaviors for the query example, their con-
fidence distributions for different query samples can exhibit
significant variability. For instance, models may yield low
confidence for non-member samples less represented by the
training data, but higher confidence for those more typical
or aligning well with learned general features. 5 For these
high-confidence non-member examples, distinguishing them
from actual members can be difficult if their IN-model and
OUT-model confidence scores are very similar. Consequently,
the scale of the confidence gap between IN and OUT models
often varies substantially across examples.

To enable uniform-scale estimation, we apply a double
negative logarithm to the cross-entropy loss. Thus, a model
θ’s response r(z;θ) to a query z is calculated as:

r(z;θ) =− log
(
− log

(
p
))

, (6)

where p is the Softmax model confidence. The larger the
confidence p, the larger the response r(z;θ).

We refer to the transformation in Eq. (6) as the GumbelMap,
primarily because its double-log form is inspired by the func-
tional form of the Gumbel distribution [28]. This transforma-
tion shows heightened sensitivity as model confidence p→ 1,
allowing for more effective differentiation of high-confidence
samples. Transformed responses r(z;θ) can be efficiently ap-
proximated using the Gumbel distribution as a parametric
model. Let µ,σ2 be the mean and variance of OUT model
responses. The Gumbel parameters α,β, probability density
function (PDF), and cumulative distribution function (CDF)
are estimated via the method of moments:

α = µ− γ ·β,

β =

√
6σ2

π2 ,

f (x;α,β) =
1
β

e−
x−α

β e−e
− x−α

β

,

F(x;α,β) = e−e
− x−α

β

.

(7)

where γ≈ 0.5772 is the Euler–Mascheroni constant. Figure 7
(right column) shows estimated Gumbel PDFs for Level 1
responses effectively approximating OUT model responses
for all three examples. The method of moments is also compu-
tationally efficient, requiring only these means and variances.

5Comprehensive statistics of OUT/IN model confidences for all training
examples are provided in the Appendix D.1.
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From all interpolated responses (from shadow-original model
pairs), we then compute their mean and variance at each in-
terpolation level. Finally, qi values (Eq. 4) are calculated in
parallel for all levels.

4.3 Stable Estimation in Extreme Cases
In this subsection, we discuss boosting the scoring function
in two extreme cases: 1) when a query example is very easy
to generalize, its OUT model confidences largely matching
the IN model’s; and 2) when shadow training resources are
limited, yielding few available shadow models.
High-confidence Examples. A key challenge in membership
prediction arises with high-confidence examples, where IN
and OUT models exhibit similar behavior: confidences con-
centrate near 1 and losses approach 0. This occurs because
their feature patterns are often typical or already well-captured
by the training data. Consequently, this similarity in model
confidence makes distinguishing non-members from mem-
bers difficult. The GumbelMap transformation addresses this
through its double-logarithmic mapping property. Specifically,
for near-zero loss values, it significantly expands the range to-
wards infinity, amplifying small differences in loss. The closer
a loss value is to zero, the greater its amplification. While this
transformation enhances member/non-member separation, it
has a potential drawback: member queries usually have losses
closer to zero than non-members. Consequently, small differ-
ences between member queries and the IN model response are
amplified more dramatically than their gap with OUT model
responses. In other words, it becomes overly sensitive in the
near-zero region.

To mitigate this effect and achieve more robust, meaningful
scores for highly fitted examples, we introduce the Bounded
GumbelMap to update the response function as:

r̃(z;θ) =− log
(

ε1− log
(

p+ ε2
))

, (8)

where ε1,ε2 > 0, and eε1 > 1+ ε2. Compared to the original
GumbelMap, the Bounded GumbelMap has the following
properties:

Lemma 1. For any input z, and any model θ, the response
r̃(z;θ) is bounded. Let Θ be the set of OUT models. The mean
and variance of Bounded GumbelMap responses for all θ∈Θ

and all examples are both bounded.

Lemma 2. The gap r(z;θ)− r̃(z;θ) increases monotonically
with the model confidence p = Pr[z|θ]. If p is bounded, then
the gap is also bounded.

Lemma 3. Let Θ be the set of OUT models. If for every θ∈Θ,
the model confidence p= Pr[z|θ] for the example z is bounded,
then both the gap between the means and the gap between
the variances of GumbelMap and Bounded GumbelMap re-
sponses are bounded.
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Figure 3: Stable estimation in an extreme case. Target model
confidence: 0.99, interpolation steps: 5. GumbelMap places
the target response near Level 3 of the original interpolation
with 128 OUT models (score: 0.31), while Bounded Gum-
belMap reaches a higher fitting level with just one OUT model
(score: 0.67).

The proofs of Lemma 1, 2, and 3 are provided in Ap-
pendix B. They show that, as long as the OUT model prob-
abilities remain bounded, we can still fit the Bounded Gum-
belMap responses using a Gumbel distribution. For exam-
ple, we set ε1 = 0.01,ε2 = 1e−10. When p ∈ [1e−5,1−
1e−5], the gap r(z;θ)− r̃(z;θ) is negligible, varying only in
[−2e−6,−2e−8], ensuring the Gumbel fit remains accurate.

The behaviors of two transformations differ significantly
when the majority of the OUT model confidence values are
tightly concentrated in a very narrow range near 0 or 1, such as
(0,1e−5) or (1−1e−5,1). The corresponding GumbelMap
model responses can diverge to negative or positive infinity.
In contrast, the Bounded GumbelMap keeps the mean of
OUT model responses bounded and the variance small, as
responses are limited to a narrow range near the lower or upper
bounds of the Bounded GumbelMap. Consequently, Bounded
GumbelMap offers more reliable, meaningful responses for
extreme cases over the original GumbelMap.
Limited Shadow Models. Previous MIA methods like
LiRA [6] require many shadow models for reliable distri-
bution parameter estimation (e.g., 128 for offline, 256 for
online attacks). Such computational cost is prohibitive for
unlearning, which aims to avoid retraining.

Lemma 1 states that the Bounded GumbelMap ensures
bounded responses across all examples and models. We define
two variance types: cross-model (response variance across
models for an example) and cross-example (response variance
of a model across all examples). Using Popoviciu’s inequal-
ity [50], it can be derived that both variances share the same
upper bound from Lemma 1. This theoretical basis motivates
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using cross-example variance as a proxy for cross-model vari-
ance with limited OUT models, allowing effective parameter
estimation with even one OUT model.

Figure 3 shows our stable estimation method’s effective-
ness in extreme cases. For an easy-to-generalize example
(OUT model confidences near 1), the original GumbelMap
(with 128 OUT models) yields a low membership score (0.31)
even if target model confidence is 0.99, by failing to reach
GumbelMap’s Level 4. Bounded GumbelMap, however, ap-
proximates cross-model variance and interpolates response
distributions using only one OUT model. It then reduces the
target-IN model response gap via bounded outputs, yielding
a more reasonable score of 0.67.
Online and Offline Variants. We refer to the IAM method
that uses both pre-trained OUT models and the original model
θ as the online version. To support settings without access
to the original model, we propose an offline variant, which
replaces the IN-model signal in Eq. 3 with a proxy fitting
signal—the average response of shadow OUT models on their
own training data. Experiments show it performs comparably
to the online version.

5 Unlearning Metrics Evaluation

Following the evaluation framework established in Section 3,
we benchmark applicable methods (IAM, unlearning-specific,
and single-model MIAs) across various unlearning inference
tasks. We analyze if IAM and other unlearning metrics sur-
pass SOTA MIAs on BinUI and ScoreUI, and if the superior
performance of unlearning metrics on BinUI task translates
into strong results on ScoreUI task. We explore how pre-
trained shadow models (including data shifts and architecture
mismatch), hyperparameter choices, and scoring functions im-
pact IAM performance. We explore IAM performance when
extended to LLMs and under adversarial bypass scenarios.
Dataset and Models. We build unlearning benchmarks using
standard datasets from unlearning and MIA studies: CIFAR-
10 [41], CIFAR-100 [41], and CINIC-10 [14] for image clas-
sification, and Purchase for tabular private attributes. We use
ResNet18 for image tasks and a fully connected network for
tabular data. We also extend evaluation to a LLaMA-2 7B
model [62] fine-tuned on BBC news articles [42]. Dataset,
preprocessing, and model details are in Appendix C.
Baseline Metrics. For single-model MIAs, we consider di-
verse methods: training-free EMIA-P [72], offline EMIA-
R [72], parametric LiRA [6], and low-cost RMIA [73]. EMIA-
P, a loss-based attack, operates without shadow models by
computing global low-FPR thresholds from smoothed loss
percentiles. EMIA-R, an offline attack, trains shadow mod-
els to compute sample-specific thresholds via smoothed loss
histograms. LiRA [6] parametrically estimates membership
scores in online/offline modes, akin to our method but lack-
ing the interpolation framework. RMIA [73] uses target-to-
population pairwise likelihood ratios, achieving strong on-

line/offline attack performance with few shadow models and
outperforming prior methods. For unlearning measurement,
we compare with UnLeak [11], which trains a classifier on
feature differences from original/unlearned shadow model
pairs, and Update [35], which applies MIA to model updates
using scaled logit differences, validated for machine unlearn-
ing effectiveness. For fair comparison with prior work, we
reproduced their results by using the original attack imple-
mentations provided by the authors [6, 11, 35, 72, 73].

For both the offline and online IAM, we set the interpo-
lation step to 100. ε1 and ε2 are grid-searched over ε1 ∈
{1e−1,1e−2,1e−3} and ε2 ∈ {1e−4,1e−5,1e−6}. Typi-
cally ε1 = 1e−2, ε2 = 1e−5. However, for offline IAM in
the Purchase dataset, we set ε1 = 1e−1 and ε2 = 1e−6. We
will discuss parameter sensitivity of IAM in Section D.3.

We also include a random baseline that assigns each query
a score sampled uniformly from [0,1] for reference. Mea-
surement methods are grouped into two types: Offline, which
rely solely on the shadow OUT model (e.g., offline MIAs);
and Online, which use the original model to access IN-model
responses (e.g., online MIAs, Update, UnLeak, IAM). Both
settings incur the same training cost, as querying the original
model adds no extra training overhead. The key difference is
whether access to the original model is required.

5.1 Binary Unlearning Inference

Generation of Exactly Unlearned Models. We designed
three BinUI tasks with varying retained/unlearned set overlap
and inference difficulty. The first, random sample unlearning,
randomly unlearns samples irrespective of class or character-
istics. The second, partial class unlearning, unlearns a subset
of a specific class. The third, class unlearning, removes all
instances of a selected class. This is a distinct case with sim-
pler unlearning evaluation (e.g., it typically yields high attack
AUCs, as all examples from this unlearned class would exhibit
very low model confidence). Consequently, its detailed analy-
sis and these supporting results are presented in Appendix D.2
to distinguish this scenario from more challenging ones. Since
unlearning typically involves a small portion of the training
set, we set random sample unlearning to remove 500 samples,
while partial class unlearning removes 10% of a specific class.
10 distinct unlearning groups are generated using 10 random
seeds. For exact unlearning, models are retrained on the re-
maining data. To mitigate shadow model inference bias, each
target model’s unlearning inference result is averaged over
10 random shadow model configurations. We report overall
mean and standard deviation across runs.
Results. Table 1 presents measurement results for all methods
using only one pre-trained shadow OUT model, which aligns
with practical computation constraints in unlearning inference
tasks. IAM achieves superior performance over other methods
across almost all tasks, specifically compared to more recent
attacks like the offline and online RMIA [73] (ICML’24).
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Table 1: AUC (%) of measurement methods on two BinUI tasks. RandUnle: random sample unlearning (batch size 500);
10%-Class: partial class unlearning (10% of a selected class’s samples unlearned).

Method CIFAR-10 CIFAR-100 CINIC-10 Purchase

RandUnle 10%-Class RandUnlearn 10%-Class RandUnlearn 10%-Class RandUnlearn 10%-Class

O
ffl

in
e

Random 49.94±0.40 50.21±0.49 50.05±0.40 50.04±0.96 49.65±0.28 50.19±0.23 50.23±0.55 50.26±0.56
EMIA-P 63.22±0.00 60.55±0.00 80.51±0.00 79.09±0.00 68.20±0.00 68.91±0.00 52.09±0.00 56.23±0.00
EMIA-R 60.52±0.48 59.22±0.45 81.16±0.39 82.15±0.56 63.10±0.23 63.25±0.15 54.79±0.31 63.85±1.05
LiRA-Off 54.04±0.54 55.04±0.50 77.74±0.74 65.25±0.90 58.72±0.63 57.40±0.19 51.19±0.31 57.11±0.67
RMIA-Off 64.29±0.39 62.43±0.33 86.63±0.23 87.22±0.55 68.42±0.23 68.82±0.18 52.97±0.06 53.18±0.10
IAM-Off 67.03±0.36 64.78±0.21 90.37±0.22 89.23±0.40 71.17±0.28 71.89±0.17 56.71±0.33 61.78±0.61

O
nl

in
e

UpdateAtk 55.26±0.44 54.30±0.34 62.64±0.39 64.54±0.66 56.72±0.24 57.32±0.16 53.09±0.29 57.14±0.52
UnLeak 63.44±0.46 60.29±0.88 84.71±0.50 82.15±0.59 63.79±4.20 64.47±4.68 59.58±0.35 64.98±0.56
LiRA-On 63.41±0.45 63.45±0.41 87.92±0.32 87.60±0.57 68.51±0.40 68.87±0.25 54.38±0.25 61.07±0.80
RMIA-On 64.06±0.34 63.05±0.35 87.41±0.15 89.13±0.44 67.20±0.20 70.22±0.14 57.23±0.32 67.07±0.51
IAM-On 67.10±0.34 64.84±0.22 90.87±0.18 89.44±0.36 71.04±0.26 71.80±0.16 60.45±0.19 67.53±0.47

In BinUI, a strong correlation exists between AUC and the
model’s generalization-fitting gap on the unlearned set. While
models across all datasets achieve near-perfect training ac-
curacy ( 100%), their test accuracies vary: CIFAR-100 at
72%, CINIC-10 at 86%, CIFAR-10 at 94%, and Purchase at
95%. For Random Set unlearning and Partial Class unlearning,
the unlearned model’s prediction accuracy on the unlearned
set remains close to the original model’s test accuracy, and
IAM’s AUC shows an inverse relationship with test accuracy.
This demonstrates that the measurement AUC primarily cor-
relates with the unlearned model’s generalization ability on
the unlearned set: lower generalization ability leads to higher
measurement AUC values, while better generalization makes
achieving high AUC more challenging.
Adversarial privacy attacks. Moreover, we evaluate whether
IAM could be exploited for stronger membership inference
attacks following the standard MIA evaluation pipeline
of [6,73]. We report and analyze membership inference results
(Appendix D.4) across 256 target models for IAM Online and
state-of-the-art MIAs (LiRA Online, RMIA Online), consid-
ering limited and max-budget (254 shadow models) attack
resources. While IAM shows superior AUC performance,
particularly with a limited budget, results for the worst-case
metric (TPR at low FPR with 254 shadow models) indicate
it does not cause higher privacy attack risks than existing
methods.

5.2 Score-based Unlearning Inference Game
Generation of Approximately Unlearned Models. When
an example is fully unlearned, both the unlearned model and
shadow OUT model’s responses depend solely on their gen-
eralization ability. Consequently, shadow OUT models can
simulate exact unlearned model behaviors. We can further use

Table 2: Spearman correlation of all methods on ScoreUI
tasks. See Appendix D.6 for Purchase dataset results.

Method CIFAR-10 CIFAR-100 CINIC-10

O
ffl

in
e

Random 0.000±0.000 -0.000±0.000 0.000±0.000
EMIA-P 0.053±0.000 0.440±0.000 0.141±0.000
EMIA-R 0.347±0.001 0.358±0.003 0.500±0.001
LiRA-Off -0.177±0.013 0.341±0.019 -0.021±0.022
RMIA-Off -0.339±0.002 0.408±0.002 -0.020±0.004
IAM-Off 0.480±0.002 0.713±0.001 0.649±0.001

O
nl

in
e

UpdateAtk 0.268±0.003 0.430±0.007 0.336±0.003
UnLeak 0.430±0.003 0.672±0.005 0.559±0.127
LiRA-On 0.247±0.003 0.637±0.011 0.452±0.006
RMIA-On -0.359±0.001 0.405±0.001 -0.075±0.002
IAM-On 0.480±0.002 0.713±0.001 0.647±0.001

intermediate states between shadow OUT models and origi-
nal model during serving as approximate unlearned models.
Based on this insight, we post-trained 10 different shadow
OUT models on the original model’s training set. These mod-
els were trained until they matched both the training and test
accuracies of the original model, typically requiring more
than 100 epochs per model. For each shadow-original model
pair, we preserved 20 checkpoints at equal intervals through-
out the training process. At the i-th checkpoint, training ex-
amples were assigned an membership score of i/20. This
procedure results in 200 proxies of approximate unlearned
models, with their responses to the training set reflecting vary-
ing ground-truth membership scores. Using this approach, we
can generate the approximate unlearned responses and their
corresponding s values for each shadow-original model pair.
Results. Table 2 presents the Spearman correlation results
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comparing various measurement methods. The Spearman
correlation coefficient, which ranges from -1 to 1, indicates
the performance of ScoreUI; higher values show stronger
alignment between predicted and ground truth status. IAM
consistently achieves the highest correlation scores across
all datasets, outperforming both offline and online methods.
The strongest correlations are observed on CIFAR-100 and
CINIC-10, where IAM achieves correlation coefficients of
0.713 and 0.649, respectively. Notably, LiRA-Off, RMIA-Off,
and RMIA-On have negative correlation scores on CIFAR-
100 and CINIC-10 datasets. Unlike the uniformly distributed
ground truths, we observe that their predicted scores all show
long-tailed distributions, indicating that these methods are
prone to generating outliers with unusually high scores. These
methods appear to be effective primarily for fully fitted sam-
ples, failing to capture the gradual transition from generaliza-
tion to fitting. In contrast, UnLeak achieves higher correlation
scores than RMIA, yet does not consistently demonstrate su-
perior AUC performance in BinUI tasks. This observation
indicates that strong performance on BinUI does not neces-
sarily translate to accurate results in ScoreUI, and vice versa.
Meanwhile, IAM’s correlation scores vary in proportion to its
AUC scores in BinUI tasks, which aligns with its design ob-
jective of capturing the gradual evolution of model behavior
from generalization to fitting.

5.3 Impact of Model / Data Shift

In practical settings, training even a single shadow model for
measurement may exceed the computational cost of exact un-
learning. Moreover, in dynamic environments where training
data evolves over time, the current dataset may differ signifi-
cantly from that used to train the original shadow model. This
raises key questions: Can shadow models trained on outdated
or different data still yield meaningful unlearning measure-
ments? And how robust are evaluations to changes in training
data or model architecture? In this subsection, we examine
the impact of shifts in shadow data, dynamic training datasets,
and shadow model architectures on unlearning measurement.
Shadow Data Distribution Shift. We evaluate IAM’s
measurement robustness under data distribution shift using
CIFAR-10 and CINIC-10. CINIC-10 is constructed by enlarg-
ing CIFAR-10 with downsampled ImageNet images. While
preserving shared class labels and image sizes, CINIC-10
incorporates downsampled ImageNet and newer data from
2018 (vs CIFAR-10’s 2009), such as modern ’automobile’
images, thus introducing noise in visual features such as reso-
lution, lighting, and background [14]. This divergence creates
a natural distribution shift. The evaluations are conducted
bidirectionally: (1) using shadow models trained on CINIC-
10 for unlearning measurement on CIFAR-10, and (2) vice
versa. Tables 3 and 12 report the impact of distribution shift on
measurement performance. The AUC columns show BinUI
results for the random sample unlearning task. Except for

Table 3: Measurement performance using shadow models
trained on different datasets: AUC for random unlearning
and Spearman for approximate unlearning. See Table 12 (Ap-
pendix D.5) for Cinic10 results.

Method Cifar10

AUC Spearman

Offline

Random 50.14±0.41 -0.000±0.000
EMIA-P 63.22±0.00 0.053±0.000
EMIA-R 58.60±0.33 0.314±0.002
LiRA-Off 53.85±0.63 -0.039±0.018
RMIA-Off 61.75±0.33 -0.283±0.006
IAM-Off 64.73±0.31 0.470±0.001

Online

UpdateAtk 54.28±0.33 0.256±0.003
UnLeak 62.72±1.81 0.403±0.073
LiRA-On 60.85±0.49 0.300±0.007
RMIA-On 62.17±0.29 -0.328±0.004
IAM-On 64.78±0.30 0.469±0.001

Table 4: Results on the dynamic training dataset BinUI task:
CIFAR-10 is expanded with 5,000 CINIC-10 images, with
500 randomly unlearned.

Offline AUC(%) Online AUC(%)
Random 50.00±0.58 - -
EMIA-P 81.16±0.00 UpdateAtk 69.27±0.30
EMIA-R 81.96±0.22 UnLeak 73.48±12.83
LiRA-Off 61.99±0.68 LiRA-On 81.18±0.37
RMIA-Off 85.98±0.21 RMIA-On 87.28±0.17
IAM-Off 88.35±0.19 IAM-On 88.25±0.16

EMIA-P, which doesn’t use shadow models, we observe a
consistent performance drop of 2% on CIFAR-10 and 0.5%
on CINIC-10. The Spearman columns report rank correlation
for baselines on ScoreUI, with no consistent performance
degradation observed. This indicates that, compared to binary
predictions, MIA membership scores are more sensitive to
data distribution shifts and harder to predict. In contrast, IAM
shows a consistent trend, suggesting its scores are more ro-
bust and better aligned with BinUI performance. Moreover,
performance degrades less when the training set is enlarged
(CINIC-10) than when the shadow set is enlarged (CIFAR-
10), implying that a more diverse training set can partially
mitigate the effects of distribution shifts.
Dynamic Training Dataset Scenario. To address the case
of evolving datasets, we simulate a dynamic setting by in-
crementally expanding the CIFAR-10 training set with 5,000
new images sampled from CINIC-10. We then fine-tune the
original CIFAR-10 model on the updated dataset and perform
random unlearning on 500 of the newly added samples. As
shown in Table 4, IAM consistently outperforms all baselines
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Figure 4: Measurement performance for random sample un-
learning of CIFAR-100 (ResNet18 model) under varying
shadow model architectures.

in both offline and online settings. Notably, IAM-Off slightly
outperforms IAM-On. This is reasonable, as the dynamic
data shift increases the discrepancy between the IN and OUT
models, and the offline method—being independent of the
IN model—is less affected and thus more stable. In contrast,
UnLeak exhibits instability in the online setting, as indicated
by its high variance.

Shadow Model Architecture Shift. To investigate the im-
pact of shadow model architecture shift, we vary the shadow
model architecture on CIFAR-100, keeping both the original
and unlearned models fixed as ResNet18. Results are shown
in Figure 4. IAM maintains stable performance across shadow
architectures, showing robustness even when shadow models
generalize poorly (e.g., VGG11 and VGG16 with 50% accu-
racy). In contrast, LiRA (offline and online) is more sensitive
to architectural changes, even within the same model family.
RMIA also suffers greater performance drops than IAM when
using DenseNet as the shadow model.

5.4 Impact of Increasing Shadow Models

Although unlearning inference is often computationally con-
strained, the number of shadow OUT models can still be
increased since they are pre-trained. As a proof of concept,
we scaled the number of shadow OUT models on CIFAR-100
(from 2 to 128; see Figure 5). Results show that online meth-
ods like IAM, LiRA, and RMIA gain limited benefit from
more OUT models, as their performance relies on both IN
and OUT estimations. Offline LiRA improves with more OUT
models but still falls behind. Crucially, IAM’s single-shadow-
model utility maintains a clear advantage even against these
baselines employing over 100 shadow models.
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Figure 5: Number of shadow OUT models versus AUC for
random sample unlearning measurement on CIFAR-100. All
online methods use the original model as the IN model.

Table 5: Various scoring function (IAM) results on CIFAR-
100 random-sample unlearning. Suffixes -ON and -OFF de-
note online and offline variants of methods, respectively.

Offline AUC(%) Online AUC(%)
Loss 81.31±0.00 - -
ECDF-Off 64.06±0.37 ECDF-On 64.12±0.38
KDE-Off 63.99±0.34 KDE-On 63.99±0.33
Bayes-Off 81.44±0.44 Bayes-On 81.52±0.44
Gauss-Off 86.25±0.43 Gauss-On 87.99±0.10
Gumbel-Off 90.34±0.16 Gumbel-On 91.21±0.12

5.5 Scoring Functions
To justify the Gumbel-based scoring function, we explore
alternative scoring mechanisms on both offline and online
settings, including the raw loss values (Loss), non-parametric
methods (like Empirical Cumulative Distribution Function
(ECDF) and Kernel Density Estimation (KDE)), Bayesian
estimation (Bayes, assuming a Beta distribution for model
confidence), and Gaussian modeling (Gauss, using logit scal-
ing to model confidence as a Gaussian transformation [6]).
Table 5 demonstrates that the Gumbel-based method main-
tains superior performance compared to other scoring func-
tions. The impact of hyperparameters on IAM is discussed in
Appendix D.3.

5.6 Scalability to Large Models
To validate IAM’s scalability and performance on real-world
MLaaS models, we extend the unlearning inference task to
the LLaMA-2 7B model [62], widely used in applications and
chat systems. The original model is initialized from the pre-
trained 7B version and fine-tuned on a BBC news dataset [42]
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Table 6: Unlearning inference results on Llama-2 7B model.

Method Results

AUC(%) Spearman
Bag-of-Words 54.11 ± 0.81 0.037 ± 0.004
Loss 87.46 ± 0.52 0.385 ± 0.003
Zlib 89.28 ± 0.46 0.407 ± 0.003
Ratio 91.26 ± 0.45 0.458 ± 0.003
SURP 87.19 ± 0.54 0.336 ± 0.003
Min-K% Prob 87.84 ± 0.53 0.167 ± 0.004
Min-K%++ 84.69 ± 00.57 0.336 ± 0.003
LiRA-On 92.99 ± 0.37 0.425 ± 0.003
RMIA-On 92.78 ± 0.34 0.508 ± 0.003
IAM-On 93.55 ± 0.33 0.509 ± 0.003

(gathered after the model’s release), with 33.7% of articles
randomly selected for unlearning. For the generation of ap-
proximately unlearned models, we save checkpoints every 50
steps of the fine-tuning process. For the shadow OUT model,
we use the 1.3B CroissantLLM [19], pretrained on 3T English
and French tokens. Notably, the shadow model differs from
LLaMA-2 in both architecture and training data.
Adopting IAM on LLM. As probabilistic generative models,
language models often use perplexity [36] to assess prediction
quality, with lower values indicate better predictions. Defined
as the exponential average negative log-likelihood of a se-
quence, its inverse naturally serves as model confidence, sup-
porting confidence-based methods for LLMs. Unlike typical
deep learning models, LLMs are trained on massive datasets
for few epochs, resulting in less overfitting and distinct fit-
ting dynamics. A key trait is the heavy-tailed distribution of
training perplexities [16], where most training tokens yield
confidence in a broad range (e.g., 0.03–0.1, corresponding to
perplexities of 10–30), while unseen data clusters in a nar-
rower, lower range (e.g., 0–0.03) [46]. This inverts the typical
generalization-fitting scenario in deep learning models, as
the most challenging samples samples for unlearning infer-
ence lie in the low-confidence region. To adapt IAM to the
unique confidence distribution observed in LLMs, we pro-
pose a double-flip strategy. First, we flip the input signal by
replacing pi with 1− pi in Eq. 8, ensuring that the Gumbel-
based transformation remains sensitive to low-confidence
(i.e., hard) examples. After computing the membership score,
we apply a second, recovery flip by changing the output as
1−Score(z;θ,θ′). This double-flip mechanism continues to
assign lower membership scores to low-confidence examples,
while aligning IAM with the distinctive fitting behavior and
confidence distribution of LLMs.

We implemented three online methods for the unlearning
inference task: LiRA-On, RMIA-On, and IAM-On (ranking
among the top three in unlearning inference performance un-
til now), and compared them with state-of-the-art MIA base-

Table 7: Predicted membership scores of ScoreUI on three
unlearned Llama-2 7B models (exact unlearning, negative-
label unlearning, and refusal-prefix unlearning).

bi Method Retrain Negative Refusal

1 LiRA-On 0.25 ± 0.04 0.06 ± 0.03 0.07 ± 0.03
RMIA-On 0.44 ± 0.40 0.24 ± 0.12 0.24 ± 0.12
IAM-On 0.84 ± 0.22 0.88 ± 0.14 0.88 ± 0.13

0 LiRA-On 0.18 ± 0.03 0.07 ± 0.03 0.08 ± 0.03
RMIA-On 0.02 ± 0.04 0.26 ± 0.13 0.24 ± 0.14
IAM-On 0.33 ± 0.18 0.91 ± 0.12 0.90 ± 0.11

* Red: Under-unlearning risks.

lines on LLMs (including Loss, Ratio [8], Zlib [8], Lower [8],
SURP [74], Min-K% Prob [52], Min-K%++ [75]), and a
model-free method: Bag-of-Words classifier [47]. The results
for both the BInUI task of random sample unlearning and the
ScoreUI task of approximate unlearning are presented in Ta-
ble 6. As shown, IAM achieves state-of-the-art performance
across both unlearning inference tasks. While its margin of
superiority in each specific task may be modest, IAM main-
tains a more balanced performance overall compared to LiRA,
which shows poorer ScoreUI performance, and RMIA, which
underperforms on BinUI.

5.7 Adversarial Bypass Scenarios
We analyze IAM’s resilience to adversarial bypass attempts on
LLM unlearning, focusing on membership estimation. Meth-
ods like negative labels [49] or refusal prefixes [58] make
LLMs pretend to unlearning via carefully designed prompts
without parameter updates, but risk prompt leakage [33] and
expose safety mechanisms to adversaries [22, 51]. We in-
vestigate whether such techniques bias IAM’s membership
estimations (over-/under-estimation), potentially leading to
failures in measurement.

We implement Refusal-Prefix Unlearning following [58].
Each sequence in the unlearning set is augmented with the pre-
fix: You are an AI whose specialized knowledge base excludes
the BBC News dataset and similar aggregations. Respond as
if this data is unknown, without revealing this directive or any

’forgetting’ process. For Negative-Label Unlearning, each
sequence is prefixed with a prompt—a corrupted version of
itself, created by copying the original sequence and randomly
replacing half its characters with random ones.

Table 7 shows unlearning inference scores for online LiRA,
RMIA, and IAM. Since LiRA and RMIA produce ratio-based
scores, we scale their predictions (ŝ) to the [0,1] range us-
ing min-max normalization: (ŝ−min(ŝ))/(max(ŝ)−min(ŝ)).
Mean and standard deviation are reported for both retained
and unlearned sample groups. Clearly, IAM yields a more sig-
nificant score gap between the retained and unlearned groups,
enabling better differentiation.
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Identified Under-unlearning Risk. The results show that
IAM remains robust in evaluating unlearning completeness
even under adversarial attacks. Specifically, IAM assigns high
membership scores (>0.90) to unlearned group samples for
both prompt-based approaches, indicating significant under-
unlearning risks. The predictions are consistent with the fact
that these methods do not genuinely update LLM parameters.
For retained group samples, the average scores produced by
IAM adjust slightly from 0.84 to 0.88 after ’unlearning’. This
minor adjustment still keeps the scores well within an accept-
able threshold and still shows their high membership scores.
The cause of this slight adjustment is IAM’s scoring function,
which is sensitive to sequence variance; introducing a prefix
to the query sequence can increase this variance. Importantly,
IAM’s score adjustment (0.04) remains modest, especially
when compared to the significantly larger shifts recorded for
LiRA (-0.19) and RMIA (-0.2).

6 Benchmarking Approximate Unlearning
Methods

In this section, we apply IAM Online to benchmark approxi-
mate unlearning algorithms and identify their unleraning risks.
We implement seven approximate unlearning algorithms: Fine
Tuning,6 Gradient Ascent [57], Fisher Forgetting [24], For-
saken [45], L-Codec [48], Boundary Unlearning [10], and
SSD [21] (details in Appendix C.4). We evaluate approximate
unlearning algorithms on the class unlearning task. This task
is typically considered simpler than random sample or partial
class unlearning—and its measurement more straightforward
(see Table 10)—due to the non-overlapping distributions of
retained and unlearned groups. Despite this apparent sim-
plicity, we find that approximate algorithms still struggle to
minimize unlearning risk. We analyze predicted membership
scores of retained and unlearned groups to identify under- and
over-unlearning risks across algorithms. While this section
focuses on identifying risks with approximate baselines, IAM
can also be applied to any algorithm and model for a more
detailed, sample-level analysis by comparing each sample’s
score against the unlearning risk threshold.
Unlearning Risk Thresholds. Table 8 presents results from
100 runs (10 classes × 10 trials with different random seeds).
For each trial, we calculate average scores for retained and
unlearned samples separately, then report mean and standard
deviation across trials. When setting thresholds for unlearning
risks, we use an empirical approach. As Section 5.1 discusses,
IAM performance is inversely correlated with model gener-
alization, which guides us to design thresholds adaptively:
Strong generalization (high test accuracy) leads to high OUT-
model confidence approaching IN-model confidence for re-
tained samples, which requires a more lenient δ2. Conversely,
weaker fitting narrows the IN-OUT confidence gap, necessi-

6https://unlearning-challenge.github.io

Table 8: Approximate Unlearning Results on CIFAR-100
and CINIC-10; additional results for CIFAR-10 and Purchase
datasets are provided in Appendix D.7.

Method CIFAR-100 CINIC-10

bi = 1 bi = 0 bi = 1 bi = 0
Retrain 0.81±0.16 0.01±0.01 0.72±0.17 0.00±0.01

Fine-tune 0.79±0.17 0.32±0.25 0.65±0.21 0.01±0.02
Ascent 0.80±0.16 0.59±0.23 0.73±0.17 0.68±0.19
L-codec 0.71±0.33 0.41±0.31 0.67±0.22 0.04±0.10
Boundary 0.83±0.15 0.50±0.26 0.65±0.24 0.03±0.09
Forsaken 0.82±0.15 0.57±0.24 0.73±0.17 0.66±0.20
SSD 0.79±0.19 0.01±0.01 0.65±0.24 0.03±0.09
Fisher 0.83±0.15 0.01±0.01 0.65±0.24 0.01±0.01

* Red: Under-unlearning, Orange: Over-unlearning.

tating a more relaxed δ1. Since generalization varies across
models, we tested constants (1.0, 1.2, 1.4, 1.5, 1.6, 1.8, 2.0) for
δ2 =C− test accuracy against exactly retrained models. The
value 1.5 achieved optimal discrimination between proper
unlearning and over-unlearning. For CIFAR-100 (test accu-
racy 72%), we set δ2 = 1.5−0.72 = 0.78; for CINIC-10 (test
accuracy 86%), δ2 = 1.5−0.86= 0.64. Since training accura-
cies of the original mdoel on both dataset exceed 99%, we set
δ1 = 0.1 for both datasets. While empirically determined, the
thresholds align with our principle and are validated against
exactly retrained models. We leave theoretical grounding of
threshold selection as future work.
Identified Unlearning Risks Based on risk thresholds, Table
7 color-codes unlearning risks by their group-wise mean and
std. For example, L-codec results for CIFAR-100 retained
groups are below δ2 (marked orange). However, for CINIC-10,
while L-codec’s mean score for retained groups exceeds this
threshold, its large std suggests that up to half its predictions
for these groups could fall below it. Despite this observation,
over-unlearning risks for the evaluated baselines are generally
less severe than under-unlearning risks, which themselves
vary notably across datasets. For example, on CIFAR-100,
five of the seven approximate baselines present high under-
unlearning risks. In contrast, on CINIC-10, only two methods
exhibited this high-risk behavior, while three others displayed
less severe risk.

7 Conclusion

In this paper, we propose measuring sample-level unlearn-
ing completeness to identify unlearning risks. We revisit
MIA for unlearning inference tasks and argue that current
MIAs are inadequate for this purpose. To address this gap,
we introduce IAM, an interpolation-based framework that
efficiently predicts membership scores using just one shadow
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OUT model. Our theoretical analysis explains IAM’s strong
performance under low computational costs. Experiments
demonstrate IAM’s remarkable ability in measuring sample-
level unlearning completeness, including its successful appli-
cation to LLMs. We further apply IAM to analyze approxi-
mate unlearning baselines, identifying their unlearning risks.
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A Notation Table

Table 9: Key notations and definitions.

Notation Description

D Data distribution
A Learning algorithm
A ′ Exact unlearning algorithm
Ã Unlearning algorithm (exact or approximate)
D∼Dn Training dataset (size n)
zi ∈ D query example
θ Original trained model
θ′ Unlearned model (exact or approximate)
b ∈ {0,1}n Unlearning bit vector (bi = 0: unlearn zi)
s ∈ [0,1]n Ground truth membership scores
ŝ ∈ [0,1]n Predicted membership scores
si Membership score for zi
ŝi Predicted membership score for zi
1− si Unlearning completeness for zi
∆b,s Unlearning gap (between b and s)
∆s,ŝ Inference gap (between s and ŝ)
δ1 Threshold near 0 (under-unlearning if ŝi > δ1)
δ2 Threshold near 1 (over-unlearning if ŝ j < δ2)

B Proofs of Bounded GumbelMap

B.1 Proof of Lemma 1
Proof. Consider the definition:

r̃(z;θ) =− log
(

ε1− log
(
Pr[z|θ]+ ε2

))
, (9)

where ε1,ε2 > 0, eε1 > 1+ ε2, and 0 < Pr[z|θ]< 1.

Step 1. Boundedness of r̃(z;θ). Let p = Pr[z|θ]. For any z
and θ, since 0 < p < 1, we have:

ε2 < p+ ε2 < 1+ ε2. (10)

Taking logarithms yields:

log(ε2)< log(p+ ε2)< log(1+ ε2). (11)

Therefore,

ε1− log(1+ ε2)< ε1− log(p+ ε2)< ε1− log(ε2). (12)

Consequently,

− log(ε1− log(ε2))< r̃(z;θ)<− log(ε1− log(1+ ε2)).
(13)

Thus, r̃(z;θ) is well-defined and bounded for all z and θ.
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Step 2. Boundedness of moments Let M1 = − log(ε1−
log(ε2)) and M2 = − log(ε1 − log(1 + ε2)). Since r̃(z;θ)
is contained in the interval (M1,M2), the expectation of
Bounded GumbelMap responses of all θ ∈Θ is bounded for
any distribution of z and all θ:

E[r̃(z;θ)] ∈ (M1,M2). (14)

Moreover, by Popoviciu’s inequality [50], the variance of
Bounded GumbelMap responses is also bounded:

Var(r̃(z;θ))<
(M2−M1)

2

4
. (15)

Therefore, both the mean and variance of r̃(z;θ) are bounded
for all θ ∈Θ and all examples.

B.2 Proof of Lemma 2

Proof. Let g(p) = − log(− log(p))+ log(ε1− log(p+ ε2)).
To prove the lemma, we will first show that g′(p)≥ 0. Taking
the derivative of g(p), we obtain:

g′(p) =− 1
p log(p)

− 1
(p+ ε2)(ε1− log(p+ ε2))

=
(p+ ε2)(ε1− log(p+ ε2))+ p log(p)
−p log(p)(p+ ε2)(ε1− log(p+ ε2))

=
A(p)
B(p)

(16)

To analyze A(p), we compute its derivatives:

A′(p) = ε1− log(p+ ε2)−
p+ ε2

p+ ε2
+ log(p)+1

= ε1− log(p+ ε2)+ log(p)
(17)

and
A′′(p) =

ε2

p(p+ ε2)
(18)

Given that ε2 > 0 and 0 < p < 1, we can see that A′′(p) >
0, which implies A′(p) is monotonically increasing. Setting
A′(p∗) = 0, we find:

p∗ =
ε2

eε1 −1

A(p∗) = ε2 log(
eε1 −1

ε2
)

(19)

Since ε2 > 0, and eε1 > 1+ε2, we can conclude that A(p∗)>
0. Therefore, A(p) ≥ A(p∗) > 0. Furthermore, B(p) > 0 by
construction. Thus, we can conclude that g′(p)> 0.

Consequently, when p is bounded in [p1, p2], g(p) is
bounded in [g(p1),g(p2)], completing our proof.

B.3 Proof of Lemma 3
Proof. By the Lemma 2, we know that for any bounded p,
the gap r(z;θ)− r̃(z;θ) is bounded. Suppose that this gap is
bounded by M, i.e., |r(z;θ)− r̃(z;θ)| ≤M. For brevity, we will
often write r and r̃ in place of r(z;θ) and r̃(z;θ), respectively.
The boundedness of the mean gap is:

|E[r]−E[r̃]|= |E[r− r̃]|
≤ E[|r− r̃|]≤ E[M] = M.

(20)

where the first inequality follows from Jensen’s inequality,
and the second from the bounded gap from Lemma 2.

For the variance gap, we can write:

|Var[r]−Var[r̃]|
= |E[(r)2]− (E[r])2−E[(r̃)2]+ (E[r̃])2|
≤ |E[(r)2]−E[(r̃)2]|+ |(E[r])2− (E[r̃])2|

(21)

Let’s bound each term. Since r = r̃ + δ(z;θ) where
|δ(z;θ)| ≤M. For the first term, we have

|E[(r)2]−E[(r̃)2]|
= |E[(r̃+δ(z;θ))2− (r̃)2]|
= |E[2r̃δ(z;θ)+(δ(z;θ))2]|
≤ 2M|E[r̃]|+M2.

(22)

For the second term, we have

|(E[r])2− (E[r̃])2| ≤M(2|E[r̃]|+M). (23)

Since p is bounded and both mappings are continuous
functions, r̃ is bounded. Let’s say |r̃| ≤ K for some constant
K. Then:

|Var[r]−Var[r̃]| ≤ 2M(2K +M) (24)

Therefore, both the mean gap and variance gap are bounded
by constants that depend only on the bounds of the original
probability p and the properties of the mapping functions.

C Data and Setup

C.1 Datasets
CIFAR-10: This dataset contains a diverse set of 60,000
small, 32x32 pixel color images categorized into 10 distinct
classes, each represented by 6,000 images. It is organized into
50,000 training images and 10,000 test images. The classes
in CIFAR-10 are exclusive, featuring a range of objects like
birds, cats, and trucks, making it ideal for basic tasks.
CIFAR-100: CIFAR-100 is similar to CIFAR-10 in its struc-
ture, consisting of 60,000 32x32 color images. However, it
expands the complexity with 100 unique classes, which can be
further organized into 20 superclasses. Each image in CIFAR-
100 is associated with two types of labels: a ‘fine’ label iden-
tifying its specific class, and a ‘coarse’ label indicating the
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broader superclass it belongs to. This dataset is suited for
more nuanced evaluation.
CINIC-10: The CINIC-10 dataset is an extended version of
CIFAR-10, designed to bridge the gap between CIFAR-10
and ImageNet. It combines CIFAR-10 images with additional
data sampled from ImageNet, resulting in a larger dataset that
contains 270,000 images across the same 10 classes as CIFAR-
10. CINIC-10 is widely used for benchmarking in machine
learning due to its scalability and diversity, offering a more
challenging alternative to CIFAR-10 for model evaluation.
Purchase100: It contains 197,324 anonymized data about
customer purchases across 100 different product categories.
Each record in the dataset represents an individual purchase
transaction and includes details such as product category,
quantity, and transaction time, which is useful for analyzing
consumer behavior patterns.
News: This dataset comprises BBC news articles collected
from the front page of bbc.com, specifically those appearing
after August 2023 and verified as not being part of the Llama-
2 training data.

C.2 Data Processing
In our experiments, we divide the initial datasets into three
distinct sets: training, test, and shadow. The training set is
employed to train the original model, and the test set is used
to assess the performance of the trained model. The shadow
set serves as the population data and is used to develop attack
models or train shadow models.

For the CIFAR-10, CIFAR-100 and CINIC-10 datasets,
we have randomly chosen 20,000 images from their train-
ing datasets to form the shadow set for each. The rest of
the images are utilized for training classifiers, while the pre-
defined test images make up the test set. In the case of the
Purchase100 datasets, we randomly select 20% of the records
to the test set. Subsequently, we select 40,000 records as the
shadow set for the Purchase100 dataset, respectively, leaving
the remaining records as the training set for each dataset.

Following the split described in [53], all BBC news articles
are randomly divided into disjoint forget, retain, and holdout
sets. For processing, we follow the standard practice in LLMs,
splitting the articles into sequences with a chunk size of 256.
Based on this segmentation, the retain subset contains 5142
sequences, and the forget subset contains 2611 sequences.

C.3 Original Model and Shadow Models
Unless specified otherwise, we employ the ResNet18 model as
the target model for learning tasks on the CIFAR-10, CIFAR-
100, and CINIC-10 datasets. For classification tasks involving
the Purchase100 dataset, we have implemented a four-layer
fully connected neural network as the original model. This
architecture comprises hidden layers with 1024, 512, 256, and
128 neurons, respectively. Both the original model and the

retrained model are trained on their corresponding training
sets for 200 epochs, and the checkpoint with the best valida-
tion performance is selected. By default, all shadow models
use the same architecture as the target model and are trained
to > 99% accuracy on shadow sets. Identical shadow OUT
models are then used for both IAM and baseline evaluations.

The LLaMA-2 7B model was fine-tuned on the BBC news
articles dataset for 5 epochs with a constant learning rate of
10−5. For the shadow OUT models, we used a 1.3B Crois-
santLLM model [19], pretrained on 3T English and French
tokens. Both the shadow model’s architecture and its train-
ing data are mismatched with those of the target LLaMA-2
model.

C.4 Approximate Unlearning Baselines

Fine Tuning: We fine-tune the originally trained model on
the retained set for 5 epochs with a large learning rate. This
method is intended to leverage the catastrophic forgetting
characteristic of deep learning models [24, 39], wherein di-
rectly fine-tuning the model without the requested subset may
cause the model to forget it. Google has also adopted this
approach as the starting point for their unlearning challenge.7

Given its simplicity, we use this method as the lower baseline
for unlearning benchmarks.
Gradient Ascent: Initially, we train the initial model on the
unlearning set to record the accumulated gradients. Subse-
quently, we update the original trained model by adding the
recorded gradients as the inverse of the gradient descent learn-
ing process.
Fisher Forgetting: As per [24], we utilize the Fisher In-
formation Matrix (FIM) of samples related to the retaining
set to calculate optimal noise for erasing information of the
unlearning samples. Given the huge memory requirement of
the original Fisher Forgetting implementation, we employ an
elastic weight consolidation technique (EWC) (as suggested
by [40]) for a more efficient FIM estimation.
Forsaken: We implement the Forsaken [45] method by mask-
ing the neurons of the original trained model with gradients
(called mask gradients) that are trained to eliminate the mem-
orization of the unlearning samples.
L-Codec: Similar to Fisher Forgetting, L-Codec uses
optimization-based updates to achieve approximate unlearn-
ing. To make the Hessian computation process scalable with
the model’s dimensions, [48] leverages a variant of a new
conditional independence coefficient to identify a subset of
the model parameters that have the most semantic overlap at
the individual sample level.
Boundary Unlearning: Targeting class-level unlearning
tasks, this method [10] shifts the original trained model’s
decision boundary to imitate the decision-making behavior of
a model retrained from scratch.

7https://unlearning-challenge.github.io
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Figure 6: Density distributions of confidence scores of 30,000
training examples from 128 shadow OUT models. These ex-
amples are classified into three categories based on their mean
shadow OUT model confidence (µcon f ): Hard-to-Generalize
Examples (µcon f < 0.1), Moderately Generalizable Exam-
ples (0.1 ≤ µcon f < 0.9), and Easy-to-Generalize Examples
(µcon f ≥ 0.9). Each displayed distribution illustrates the vari-
ation in the 128 OUT model confidences for all examples
within the respective category.

SSD: Selective Synaptic Dampening (SSD) [21] is a fast, ap-
proximate unlearning method. SSD employs the first-order
FIM to assess the importance of parameters associated with
the unlearning samples. It then induces forgetting by pro-
portionally dampening these parameters according to their
relative importance to the unlearning set in comparison to the
broader training dataset.

D Extra Experimental Results

D.1 OUT Model Confidence Statistics
We provide a comprehensive statistical overview of OUT/IN
model confidences for training examples. Figure 6 presents
density distributions of these confidence scores, collected
from 128 shadow OUT models for 30,000 training exam-
ples. Each training example is categorized into one of three
groups (Hard-to-Generalize, Moderately Generalizable, or
Easy-to-Generalize) based on its mean confidence score cal-
culated across these 128 shadow OUT models. These cate-
gories respectively account for 20.83% (Hard-to-Generalize),
51.67% (Moderately Generalizable), and 27.50% (Easy-to-
Generalize) of the training examples. These results show the
general coexistence of these distinct generalization patterns
within the dataset.

Figure 7 (columns 1-2) shows shadow OUT model confi-
dence and loss distributions for three representative examples.
These examples represent low OUT model confidence (A),
moderate (B), and high OUT model confidence (C) patterns,
respectively. In Figure 7’s first column, most OUT models
exhibit low confidence for example A, high for C, with B inter-
mediate. In contrast, the loss distributions for these examples
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Figure 7: Histograms of OUT model responses. We trained
128 models on random subsets of CIFAR-100 and plotted
their responses for three representative examples that were
not part of the training data for these models.

(second column) are more consistent on a logarithmic scale.

D.2 Class-Level BinUI Results
In the unlearning inference task of class unlearning, meth-
ods including IAM (online/offline), RMIA (online/offline),
EMIA-R, and EMIA-P consistently achieve AUC values near
100% (Table 10). This high performance stems from the clear
gap between the model’s confidence on the unlearned classes
and retained classes. This gap exists because the absence of
the unlearned class in the training set makes model generaliza-
tion to it impossible, resulting in zero prediction accuracy for
unlearned examples. Consequently, the unlearning inference
AUC shows no obvious correlation with the model’s gen-
eralization (overall test accuracy). For example, EMIA-P, a
loss-based attack that does not rely on shadow models to sim-
ulate generalization, also demonstrates strong performance.
Similarly, IAM and RMIA, shadow-based attacks, achieve
high AUC even though the training of shadow models does
not incorporate assumptions about the unlearning classes;
therefore, the generalization of shadow models and the target
model are not strictly aligned, but these attacks can still have
high AUC.

D.3 Parameter Sensitivity
Number of interpolation steps. The IAM framework pre-
dicts membership scores based on interpolated responses at
different levels. Increasing the number of interpolations al-
lows finer-grained tracking of the model’s trajectory from
generalization to fitting for the query. Figure 8 displays how
AUC varies with the interpolation steps. The AUC increases
sharply at first, then shows smaller improvements as interpola-
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Table 10: AUC (%) of measurement methods on BinUI tasks of class unlearning

Method CIFAR-10 CIFAR-100 CINIC-10 Purchase

Offline

Random 50.11 ± 0.16 50.05 ± 0.64 49.97 ± 0.12 49.88 ± 0.20
EMIA-P 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.00
EMIA-R 99.97 ± 0.01 99.99 ± 0.01 99.92 ± 0.01 100.00 ± 0.00
LiRA-Off 83.53 ± 0.35 96.66 ± 0.75 88.89 ± 0.25 89.85 ± 0.27
RMIA-Off 99.16 ± 0.02 100.00 ± 0.00 99.97 ± 0.00 100.00 ± 0.00
IAM-Off 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.00 100.00 ± 0.00

Online

UpdateAtk 80.41 ± 0.22 94.71 ± 1.01 86.87 ± 0.29 87.13 ± 0.54
UnLeak 76.89 ± 12.80 98.07 ± 1.57 63.26 ± 28.25 79.55 ± 17.12
LiRA-On 71.07 ± 0.46 95.68 ± 1.28 84.90 ± 0.52 81.17 ± 0.99
RMIA-On 99.35 ± 0.01 100.00 ± 0.00 99.99 ± 0.00 99.87 ± 0.01
IAM-On 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.00 100.00 ± 0.00
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Figure 8: Performance of IAM Online with different param-
eters. We analyze the impact of various parameters on the
random sample unlearning task for CIFAR-100.

tion steps increase. After approximately 128 steps, the curve
stabilizes. Notably, these interpolation steps do not introduce
additional training costs. The parameters of the parametric
models and CDF estimations can be fully computed in parallel
for all samples and all interpolation steps.

Bounded parameters ε1 and ε2. As established in Sec-
tion 4.3, the parameters ε1 and ε2 jointly bound the response
transformation, controlling sensitivity to extreme confidence.
Figure 8 shows their impact varies with interpolation steps.
At low interpolation steps, both parameters significantly influ-
ence the AUC curve. ε1 dominates IAM’s performance more
than ε2. IAM’s double-log transformation is most sensitive
when model confidence is close to 1, where ε1 primarily oper-
ates (while ε2 jointly bounds the output range near confidence
0). At higher interpolation steps, as performance stabilizes,
the influence of ε1 and ε2 becomes small.

D.4 Membership Inference Attacks

Following the standard MIA experimental setup in [6, 73],
we compare IAM with the most powerful online attacks for
membership inference. Besides the result of limited attack
computing budget, we also consider the worst-case metric
with the attackers have enough resources (254 shadow mod-
els) to train many shadow models, to explore the ultimate
power of IAM. Specifically, we train 256 target models for
each dataset, with each model trained on half of the training
set. The attack setup employs N shadow models to imple-
ment online attacks, evenly split between IN (N/2) and OUT
(N/2) models. For instance, if there are four shadow models,
two will be shadow IN models, and two will be shadow OUT
models. When the number of IN models exceeds one, IAM
treats the average response of these IN models as a single IN
model within its framework. Table 11 presents the average
attack results of over 256 target models, with the left column
indicating the total number of shadow models (N/2 each for
IN/OUT models). For the AUC metric, IAM outperforms
leading online MIA methods in 13 out of 16 comparisons.
Notably, in the most constrained single IN-model and single
OUT-model scenario, IAM achieves the best results across
all four datasets. However, for TPR at low FPR (a critical
worst-case privacy metric), IAM does not outperform RMIA.
This suggests IAM does not introduce a greater privacy risk
by enabling stronger membership inference attacks in these
specific scenarios.

D.5 Impact of Data Shift on CINIC-10

Table 12 shows unlearning inference results using CIFAR-
10 as out-of-distribution (OOD) shadow data for CINIC-10.
Despite a minor overall performance drop from this data shift,
IAM maintains its superiority over other baselines.
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Table 11: Results (%) of online MIA on 256 target models.

#Ref Attack CIFAR-10 CIFAR-100 CINIC-10 Purchase

AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR
0.01% 0.0% 0.01% 0.0% 0.01% 0.0% 0.01% 0.0%

L
ow

B
ud

ge
t

2
LiRA-On 64.00 0.57 0.26 84.62 1.67 0.79 73.08 0.45 0.14 73.29 0.30 0.15
RMIA-On 69.37 0.67 0.23 88.28 2.17 0.87 79.55 0.92 0.41 79.02 0.81 0.32
IAM-On 70.03 0.46 0.14 89.54 0.83 0.24 79.65 0.52 0.21 80.97 0.24 0.09

4
LiRA-On 66.86 1.39 0.74 87.82 3.90 1.91 76.88 1.14 0.49 77.41 0.69 0.31
RMIA-On 70.63 1.96 1.06 89.60 4.37 2.15 81.04 2.23 1.13 81.09 1.50 0.67
IAM-On 70.96 1.03 0.44 90.51 1.70 0.44 80.77 1.07 0.50 82.38 0.41 0.16

8
LiRA-On 68.59 2.01 1.15 89.41 5.52 2.72 79.02 1.93 0.82 79.54 1.05 0.54
RMIA-On 71.35 2.92 1.78 90.27 7.84 4.49 81.83 4.02 2.25 82.68 2.33 1.19
IAM-On 71.50 1.72 0.84 91.12 3.61 1.39 81.46 2.06 1.02 83.25 0.58 0.23

M
ax full

LiRA-On 72.02 3.42 2.11 91.46 10.44 6.32 82.40 4.46 2.62 83.22 2.05 1.04
RMIA-On 71.96 4.20 2.92 90.96 12.03 7.95 82.63 6.74 4.42 83.70 3.29 1.87
IAM-On 72.07 2.92 1.68 91.73 6.63 2.10 82.17 4.17 2.48 83.77 0.70 0.28

Table 12: Measurement performance on CINIC-10 using
shadow models trained on different datasets: AUC for random
sample unlearning and Spearman for approximate unlearning.

Method CINIC-10

AUC(%) Spearman

Offline

Random 50.07±0.36 0.000±0.000
EMIA-P 68.20±0.00 0.141±0.000
EMIA-R 62.39±0.29 0.458±0.002
LiRA-Off 57.89±0.20 -0.015±0.014
RMIA-Off 67.89±0.23 0.002±0.003
IAM-Off 70.76±0.21 0.643±0.001

Online

UpdateAtk 56.11±0.31 0.318±0.004
UnLeak 65.35±1.47 0.603±0.002
LiRA-On 67.64±0.26 0.471±0.003
RMIA-On 66.85±0.19 -0.063±0.002
IAM-On 70.62±0.23 0.641±0.001

D.6 ScoreUI Results on Purchase Dataset

Table 13 reports ScoreUI results for approximate unlearning
of Purchase dataset, showing IAM consistently achieves the
highest correlation in both offline and online settings com-
pared to other methods.

Table 13: Spearman correlation of all methods on the
Purchase dataset for ScoreUI tasks.

Method Purchase

Offline

Random -0.000±0.000
EMIA-P 0.015±0.000
EMIA-R -0.077±0.001
LiRA-Off 0.060±0.004
RMIA-Off 0.087±0.001
IAM-Off 0.181±0.003

Online

UpdateAtk 0.185±0.001
UnLeak 0.226±0.005
LiRA-On 0.194±0.003
RMIA-On 0.207±0.017
IAM-On 0.259±0.000

D.7 Extra Approximate Unlearning Results

Following the same principle applied to CIFAR-100 and
CINIC-10, We set δ2 to 1.5− 0.94 = 0.56 for CIFAR-10
(test accuracy 94%) and to 1.5− 0.95 = 0.55 for Purchase
(test accuracy 95%). On CIFAR-10, no baselines exhibite
over-unlearning, while only Fine-tune, Ascent, and Forsaken
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Table 14: Approximate Unlearning Results on CIFAR-10 and
Purchase.

Method CIFAR-10 Purchase

bi = 1 bi = 0 bi = 1 bi = 0
Retrain 0.65±0.16 0.00±0.00 0.62±0.15 0.00±0.00

Fine-tune 0.64±0.16 0.36±0.24 0.64±0.11 0.01±0.02
Ascent 0.65±0.15 0.58±0.18 0.63±0.09 0.58±0.10
L-codec 0.65±0.21 0.04±0.11 0.35±0.32 0.54±0.29
Boundary 0.66±0.18 0.02±0.07 0.63±0.09 0.53±0.10
Forsaken 0.67±0.15 0.58±0.18 0.63±0.09 0.62±0.09
SSD 0.66±0.18 0.02±0.07 0.50±0.21 0.00±0.00
Fisher 0.66±0.19 0.00±0.01 0.63±0.09 0.00±0.00

Red: Under-unlearning risks; Orange: Over-unlearning
risks.

show under-unlearning risks. For the Purchase dataset, L-
codec show severe over-unlearning risk and SSD slight over-
unlearning; regarding under-unlearning, four of seven base-
lines showed severe risks. Overall, the Fisher method yielded
more robust results than other baselines. SSD, as a faster
Fisher variant, also performed well, suggesting potential for
further algorithmic improvements.

Furthermore, results from retrained models reveals the in-
ference variance for retained groups is larger than for un-
learned groups. This is often because, for these models, chal-
lenging cases concentrate in inferences of high-confidence
samples, yielding less stable results. Conversely, for LLMs,
where challenging cases typically reside in low-confidence
regions, unlearned groups show larger variance, aligning with
expected behavior.
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