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Abstract

Watermarking becomes one of the pivotal solutions to trace and verify the origin
of synthetic images generated by artificial intelligence models, but it is not free
of risks. Recent studies demonstrate the capability to forge watermarks from a
target image onto cover images via adversarial optimization without knowledge of
the target generative model and watermark schemes. In this paper, we uncover a
greater risk of an optimization-free and universal watermark forgery that harnesses
existing regenerative diffusion models. Our proposed forgery attack, PnP (Plug-
and-Plant), seamlessly extracts and integrates the target watermark via regenerating
the image, without needing any additional optimization routine. It allows for
universal watermark forgery that works independently of the target image’s origin
or the watermarking model used. We explore the watermarked latent extracted
from the target image and visual-textual context of cover images as prior to guide
sampling of the regenerative process. Extensive evaluation on 24 scenarios of
model-data-watermark combinations demonstrates that PnP can successfully forge
the watermark (up to 100% detectability and user attribution), and maintain the
best visual perception. By bypassing model retraining and enabling adaptability
to any image, our approach significantly broadens the scope of forgery attacks,
presenting a greater challenge to the security of current watermarking techniques
for diffusion models and the authority of watermarking schemes in synthetic
data generation and governance. Our code is available at the repository: https:
//github.com/chaoyitud/PnP-Watermark-Forgery.

1 Introduction

The rapid advancement of generative models [1] has led to a significant increase in the creation of
high-quality images. As synthetic images proliferate, tracking their provenance [2, 3] is becoming
ever crucial. Tracing their usages and verifying their origins are key steps, especially in case of misuse
or misconduct. As a result, the demand for effective watermarking techniques to protect intellectual
property and ensure the authenticity of generated content has become increasingly important.

Watermarks are a promising solution for embedding information into images, enabling the identifica-
tion of the creator or source of the content. Post-processing watermarks [4, 5] studied for decades
add a covert marker into images as noise on the pixels, but impact visual quality and have low
resilience to post-editing attacks. Semantic watermarking [6] overcomes such limits by adding the
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Figure 1: Comparison of different Watermark forgery methods for diffusion models (DM): (a)
Reprompt forges the watermarks on text-to-image diffusion models; (b) Imprint forges watermarks on
cover images using adversarial optimization on the proxy DM; and (c) PnP, our proposed optimization-
free forgery uses controllable regenerative DM.

watermark at the latent space of synthetic data, often during the sampling/generation process. For
instance, TreeRing [7] and Gaussian Shading [8] are watermarks for images which are embedded at
the initial noise of the diffusion process. This allows the watermark to maintain minimum impact to
the image quality, while remaining detectable under various post-editing attacks, e.g., paraphrasing
and translation attacks. Furthermore, semantic watermarks can be straightforwardly integrated into
existing diffusion models.

Forgery is one of the long standing challenges for data governance, where adversaries can falsify the
data without legit authorization. Recent studies [9] demonstrate that the aforementioned semantic
watermark for synthetic images can be extracted and forged onto different images by using proxy
diffusion models. Reprompt [9], see Fig. 1(a), leverages a proxy diffusion model, specifically text-to-
image, and uses different prompts and the extracted “implicit” watermark to generate new images.
Imprint [9], see Fig. 1(b), demonstrates a stronger forgery attack on general diffusion models by
explicitly embedding the watermark through adversarial optimization. However, reprompting fails to
forge watermarks across any images, while imprinting produces watermarked outputs with notable
quality degradation and incurs long optimization time, rendering it impractical for large-scale use.

In this work, we unveil Plug-and-Plant (PnP), a watermark forgery attack for images that are generated
by diffusion models with either semantic watermarks. Our key proposition is to leverage existing
regenerative diffusion models, such as super-resolution [10, 11], face restoration [12], or watermark
removal [13], as a backbone for the forgery, without needing any additional finetuning, see Fig. 1(c).
PnP allows for universal watermark forgery that works independently of the source image’s origin
or the watermarking model used. PnP is a light-weight forgery method that uses a controllable
regenerative diffusion model to forge the watermark onto either synthetic or real-world images.
Specifically, we first extract the watermarked latent from the target image and then explore such
latent as prior to regenerate the cover image under its visual-textual guidance as constraints. The
forged watermark and key characteristics of cover images are preserved in the generated images.
Thus, PnP has two-fold advantages. First, as we are an optimization-free solution, the forged images
can be generated up to 50 times faster than existing methods. Secondly, the regenerative diffusion
model allows for improved image resolution and quality, overcoming the quality degradation typically
associated with adversarial optimization-based methods.

Our findings underline the ease in forging watermarks with off-the-shelf generative models. This
allows even users with no forgery expertise to launch such attacks. Hence, model owners cannot
reliably depend on current watermarking approaches for data governance, suggesting demands on
more advanced and forgery-proof watermarking methods. Our specific technical contributions are:

• We propose, PnP, a plug-and-play universal watermark forgery attack that forges the water-
mark of a target image onto any arbitrary cover image, by harnessing regenerative diffusion
models.
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• PnP extracts the forged watermark latents and exploits both the forged latents and visual-
textual contexts to condition the regeneration of cover images with the forged watermarks.

• Extensive experimental validation, across multiple state-of-the-art watermarking techniques
and regenerative diffusion models, demonstrates that, PnP not only forges watermarks
successfully but also improves the overall image perceptuality.

2 Background and Related Studies

2.1 Image Watermarking Methods

Image watermarking methods can be broadly classified into two categories: post-processing and in-
processing methods. Post-processing watermarks modify the final output, embedding the watermark
in the image content [4, 5]. In-processing watermarks, on the contrary, are applied during image
generation and embed the watermark in the model’s internal representation. A unique subcategory
of in-processing methods is semantic watermarking. In this approach, the watermark is embedded
directly into the initial latent space of the image. This latent representation carries the watermark
through the image generation process, ensuring its persistence. Moreover, the watermark can be
recovered from the generated image using a diffusion inversion process. We focus on two popular
semantic watermarks: Tree-Ring [7] and Gaussian Shading [8].

Tree-Ring watermarking is a pioneering semantic watermarking method that embeds a unique pattern
into the Fourier domain of the initial latent space. This pattern consists of concentric rings arranged
in a tree-like structure. Watermark detection involves the diffusion inversion process, followed by
evaluating the distance between the recovered initial latent space and the predefined tree-ring structure
in the Fourier domain. An image is watermarked if the distance falls below a model-specific threshold
Gaussian Shading watermarking embeds a secret code by manipulating the quadrants of the initial
latents within the Gaussian distribution. During detection, the watermark is recovered by inverting the
diffusion process and checking whether the given value lies within the designated quadrant. Since the
watermarked latent follows a Gaussian distribution, the watermarking method achieves near-lossless
image quality for a single image. Our forgery attack is effective against both methods.

2.2 Watermark Forgery Attacks

While several related works address watermark forgery attacks, most focus on Tree Ring and do not
extend to Gaussian Shading. Currently, only [9] can successfully forge Gaussian Shading watermarks
via two novel attacks: Reprompt and Imprint. Both attacks use DDIM inversion via a proxy diffusion
model to obtain the initial latent representation (see Fig. 1). In Reprompt, a new image is generated by
the diffusion model using the recovered initial latent and a different prompt. This attack is limited to
forging watermarks on synthetic images generated by the diffusion model. In Imprint, the adversary
uses the target image as cover and introduces adversarial noise, which is then optimized through
the diffusion process to recover a latent representation similar to that of the watermarked image.
Due to the multiple diffusion steps, this optimization process is both computationally intensive and
time-consuming. Additionally, the adversarial noise can degrade the quality of the cover image.

Different from previous attacks, we leverage a regenerative diffusion model to embed the watermark
into the target cover at low computational cost and superior perceived quality. Moreover, as a side
benefit, our method can remove post-processing watermarks from original images before forging the
target semantic watermark.

2.3 Regenerative Diffusion Models

Regenerative diffusion models have emerged as a transformative approach for enhancing visual
content, with significant advancements in image super resolution and restoration. [11] presents
a framework to exploit the diffusion prior for real world image super resolution. It employs a
time-aware encoder and feature warping to balance fidelity and perceptual quality by aligning the
restoration process with the generative distribution of pre-trained models. [12] introduces DiffBIR, a
general restoration pipeline for blind image restoration. By decoupling the process into degradation
removal and information regeneration, it enables robust recovery of fine-grained details in degraded
images.
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Figure 2: Overview of our watermark forgery approach: PnP. The process consists of two main
stages: 1⃝ Watermark Latent Estimation and 2⃝ Regeneration with Regenerative diffusion models.
In the first stage, we estimate the latent representation of the target watermark using a black-box
approach based on a publicly available proxy diffusion model. In the second stage, we leverage
regenerative diffusion models to manipulate the watermark in a target image without access to the
original model parameters.

Semantic-aware super resolution refers to the task of enhancing low-resolution images while integrat-
ing high-level semantic information to guide the reconstruction process, ensuring that the upscaled
outputs maintain semantic consistency and structural plausibility. For this task, [14] proposes SEESR,
which trains a degradation-aware prompt extractor to generate soft and hard semantic prompts; by
integrating low-resolution (LR) images into the initial sampling noise, it mitigates the diffusion
model’s tendency to generate excessive random details, preserving semantic fidelity. [15] focuses
on improving the stability of diffusion models for content-consistent super resolution, achieving
consistent content across scales through refined latent space manipulation. HoliSDiP [16] advances
this field by combining holistic semantics and diffusion prior, using semantic labels as text prompts
and segmentation masks for dense guidance to enhance image quality in real world scenarios. These
works collectively highlight the versatility of regenerative diffusion models, while also paving the
way for addressing remaining challenges in balancing controllability and generative fidelity for more
complex real-world applications.

While existing approaches predominantly concentrate on restoration and semantic guidance, Super-
Mark [17] demonstrates the application of regenerative diffusion models to watermarking tasks. We
extend the utility of regenerative diffusion models to watermark forgery, exploiting their inherent
latent space manipulation capabilities to achieve seamless embedding of target watermarks into
arbitrary images through optimization-free methods.

3 Method - PnP Forgery Attack

In this section, we present PnP, our novel approach for watermark forgery, which leverages regener-
ative diffusion models to manipulate semantic watermarks without access to the original diffusion
model parameters. Our approach, illustrated in Fig. 2, consists of two key stages: 1⃝ watermark
latent estimation highlighted via the red box; and 2⃝ regeneration with regenerative diffusion models
enclosed in the orange box. Notice that Stage 1⃝ extracts the key characteristics of the watermark
ensuring that it is embedded in any image outputted by Stage 2⃝. This stage is only needed once for
each watermark to be forged. Once extracted, different cover images provide different new semantic
features for the images to be generated by the regenerative diffusion model in Stage 2⃝. In our
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example, the cat image contains the watermark of Alice, which we want to embed into the cover
profile picture. After regeneration, watermark detection attributes both images to Alice.

Adversarial assumptions. Here, we assume adversaries are curious and have no knowledge about
the target model, except being a diffusion model, nor the watermarking method. Adversaries have
access to proxy diffusion models and computation capacity to perform inference on the proxy and
regeneration diffusion models. No adversarial-optimization or finetuning is required.

3.1 Watermark Latent Estimation

Our approach begins in Stage 1⃝ by estimating the latent representation of the target watermark using
a black-box approach based on the idea from [9]. Semantic watermarking systems assume security
through the secrecy of the diffusion models. However, existing work has shown that watermarking
models can be attacked in a black-box setting, where the attacker does not have access to the model
parameters or training data.

Denote the target diffusion model as Θ = (E ,U ,D), where E is the encoder, U is the noise predictor,
and D is the decoder. The semantic watermark is typically embedded in the latent noise z

(w)
T at the

initial time step T , which is then denoised and decoded to produce the final watermarked image x(w).

Take a publicly available diffusion model as the proxy model ΘP = (EP ,UP ,DP ). It can be used
to forge watermarks without access to Θ. Our approach exploits the shared latent space structure
between diffusion models to estimate the watermark’s latent representation. Given a watermarked
target image x(w) generated by the target model Θ, our goal is to estimate the latent noise ẑ

(w)
T

embedded with the watermark. The procedure is as follows:

1. Latent Encoding: The attacker uses the proxy encoder EP to map the watermarked image
x(w) to the proxy model’s latent space:

ẑ
(w)
0 = EP (x(w)). (1)

Given a watermarked target image x(w) generated by the target model Θ, our goal is to
estimate the latent noise ẑ

(w)
T that encodes the watermark.

2. Noise Estimation: The inverse DDIM sampler I0→T of the proxy model is applied to
estimate the latent noise ẑ

(w)
T from ẑ

(w)
0 :

ẑ
(w)
T = I0→T (ẑ

(w)
0 ;UP ). (2)

This estimated noise ẑ
(w)
T captures the semantic information embedded in the watermark, which we

leverage in the subsequent stage to forge watermarks.

3.2 Regeneration with Regenerative Diffusion Models

In Stage 2⃝ of our watermark forgery approach, as illustrated in Fig. 2, we leverage regenerative
diffusion models to manipulate the watermark in a target image without access to the original model
parameters. This stage is a crucial part of our framework, consisting of several key components and
processes that work together to achieve watermark forgery.

3.2.1 Watermark Latent Estimation Utilization

In the first stage of watermark latent estimation, we utilize this latent representation in the regenerative
process. As shown in the figure, the attacker first uses the inverse DDIM sampler of the proxy diffusion
model (ΘP ) to estimate the latent noise. This ẑ(w)

T captures the semantic information embedded in
the watermark, serving as input latents for the regenerative diffusion model.

3.2.2 Regenerative Diffusion Model Architecture and Process

The regenerative diffusion model at this stage integrates a pretrained, publicly available text-to-image
(T2I) diffusion model prior UR, with its parameters kept fixed. To enable watermark regeneration, a
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set of lightweight, trainable components FR is introduced. The cover image xc is first processed by
an image encoder ER to extract visual embeddings ER(xc), which are then passed to the trainable
modules. In some variants, large language models (LLMs) or captioning models TR are employed
to extract textual information TR(xc), providing prompt-based textual guidance to condition the
diffusion prior.

During training, the regenerative model aims to reconstruct the cover image at the same or higher
resolution by conditioning the generative process on both the visual and textual signals extracted
from xc. The learned modules bridge these signals and guide the generation process, ensuring the
preservation of the original image content in a visually consistent manner.

Specifically, the DDIM sampler G operates over T
∆ steps, where T denotes the number of sampling

steps of the target diffusion model, and ∆ is the step length used in the regenerative model. It trans-
forms the estimated watermark latent ẑ(w)

T into a regenerated latent representation ẑ
′(w)
0 , conditioned

on both visual and textual features:

ẑ
′(w)
0 = GT→0

(
ẑ
(w)
T

∣∣∣ER(xc), TR(xc); UR,FR

)
, (3)

where E(xc) and L(xc) provide the visual and textual conditions, respectively. The decoder DR then
maps the refined latent back to the image space to generate the forged image:

x(w)
c = DR

(
ẑ
′(w)
0

)
. (4)

3.2.3 Transferability and Forgery Realization

The design of the regenerative diffusion model ensures transferability to the target model. By
exploiting the shared latent-space structure and diffusion priors across different diffusion models, the
regenerative process can effectively manipulate the watermark.

During inference, the combination of visual and textual guidance, along with trainable parameters,
steers the denoising trajectory. This adaptation allows the model to regenerate the cover image in a
consistent manner, while the preserved diffusion prior and similar denoising process help retain the
semantic information of the target watermark.

Specifically, by injecting the estimated watermark latent ẑ(w)
T into the regenerative diffusion model

and using the associated control mechanisms, such as visual and textual guidance, we can synthesize
the appearance of a watermark from the original target model Θ into an arbitrary cover image. This
approach operates in a black-box setting, requiring no access to the target model’s parameters, and
leverages the shared architectural and latent space properties of diffusion models. Our method can
be seamlessly integrated into most regenerative diffusion models without retraining or optimization,
offering an efficient and generalizable solution for semantic watermark forgery.

4 Evaluation

In this section, we evaluate the watermark forgery risk for synthetic images with watermark signals.
We explicitly ask if adversaries can forge the watermark on a target image and replicate to a set of
cover images. The criteria for successful forgeries are threefold: (i) detectability of forged watermark
and ownership of cover images, (ii) the visual perception of cover images after forgery, and (iii) the
overhead of creating forged watermark on the cover images.

4.1 Setup

Datasets To evaluate the performance of our watermark forgery method on various image types,
we utilize three datasets: RealSR [18], DRealSR [19], and CelebA [20]. The RealSR and DRealSR
datasets consist of real-world photographs, while the CelebA dataset focuses on human face images.
All three datasets contain low-quality (LQ) and high-quality (HQ) image pairs, with resolutions of
128× 128 and 512× 512, respectively.
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Table 1: Detectability results of our proposed PnP and baseline on various datasets and target
models, evaluated against Gaussian Shading using SD 2.1 as the proxy model. The best results
are highlighted in bold, and the second-best results are underlined. The watermarking methods are
assessed using three metrics: Bit Accuracy (Bit Acc.), Watermark Detection Success Rate (Dec.),
and User Attribution Success Rate (Attr.).

Target Method Backbone RealSR DRealSR CelebA
Bit Acc. ↑ Dec. ↑ Attr. ↑ Bit Acc. ↑ Dec. ↑ Attr. ↑ Bit Acc. ↑ Dec. ↑ Attr. ↑

SDXL

Imprint − 0.93 1.00 1.00 0.94 1.00 1.00 0.92 1.00 1.00

Ours

CtrlRegen 0.92 1.00 1.00 0.93 1.00 1.00 0.94 1.00 1.00
StableSR 0.85 1.00 1.00 0.88 1.00 1.00 0.90 1.00 1.00

DiffBIR(SR) 0.84 1.00 1.00 0.86 1.00 1.00 0.90 1.00 1.00
DiffBIR(Face) − − − − − − 0.87 1.00 1.00

SeeSR 0.83 1.00 1.00 0.86 1.00 1.00 0.90 1.00 1.00
CCSR 0.83 1.00 1.00 0.84 1.00 1.00 0.88 1.00 1.00

HoliSDiP 0.79 1.00 0.99 0.81 0.99 0.99 0.88 1.00 1.00

PixArt-Σ

Imprint − 0.77 1.00 0.97 0.78 1.00 0.98 0.77 1.00 0.97

Ours

CtrlRegen 0.74 0.98 0.88 0.75 0.99 0.88 0.74 1.00 0.91
StableSR 0.65 0.74 0.50 0.69 0.89 0.58 0.69 0.94 0.68

DiffBIR(SR) 0.67 0.85 0.62 0.68 0.91 0.57 0.71 0.95 0.83
DiffBIR(Face) − − − − − − 0.68 0.89 0.64

SeeSR 0.68 0.83 0.60 0.71 0.90 0.73 0.71 0.98 0.79
CCSR 0.66 0.80 0.53 0.67 0.81 0.56 0.70 0.97 0.78

HoliSDiP 0.61 0.61 0.24 0.64 0.72 0.39 0.69 0.87 0.62

FLUX.1

Imprint − 0.76 1.00 0.99 0.77 1.00 0.97 0.75 1.00 0.94

Ours

CtrlRegen 0.76 1.00 0.95 0.76 0.99 0.97 0.79 1.00 0.98
StableSR 0.66 0.86 0.62 0.69 0.94 0.77 0.71 0.96 0.89

DiffBIR(SR) 0.66 0.88 0.59 0.69 0.96 0.75 0.73 0.99 0.96
DiffBIR(Face) − − − − − − 0.70 0.98 0.81

SeeSR 0.68 0.98 0.62 0.70 0.96 0.80 0.74 0.98 0.93
CCSR 0.65 0.81 0.47 0.66 0.81 0.54 0.70 0.97 0.78

HoliSDiP 0.62 0.69 0.31 0.64 0.72 0.47 0.70 0.92 0.81

Animagine XL

Imprint − 0.90 1.00 1.00 0.92 1.00 1.00 0.90 1.00 1.00

Ours

CtrlRegen 0.90 1.00 1.00 0.91 1.00 1.00 0.91 1.00 1.00
StableSR 0.83 1.00 1.00 0.85 1.00 1.00 0.87 1.00 1.00

DiffBIR(SR) 0.82 1.00 0.99 0.84 1.00 0.99 0.86 1.00 1.00
DiffBIR(Face) − − − − − − 0.83 1.00 1.00

SeeSR 0.80 1.00 1.00 0.82 1.00 1.00 0.85 1.00 1.00
CCSR 0.80 1.00 1.00 0.82 1.00 1.00 0.85 1.00 1.00

HoliSDiP 0.75 1.00 1.00 0.79 1.00 1.00 0.85 1.00 1.00

Target and Proxy Models Target models are diffusion models that embed watermarks. We utilize
four state of the art diffusion models: Stable Diffusion XL (SDXL) [21], PixArt-Σ [10], FLUX.1 [22],
and Animagine XL [23] to generate watermarked images. As our goal is to forge the watermark of
the target model on any given image, we employ Stable Diffusion 2.1 [24] as a proxy model to extract
the initial latent (ẑ(w)

T ) from watermarked images.

Watermark Schemes We consider two representative semantic watermarking techniques: Tree
Ring [7] and Gaussian Shading [8] on the target models.

Regenerative Diffusion Models We consider the following six regenerative models: CtrlRegen [13],
StableSR [11], DiffBIR [12], SeeSR [14], CCSR [25], and HoliSDiP [16]. CtrlRegen is a watermark
removal method through regenerating images, whereas the other models are designed to increase
the image resolution. For the CelebA dataset, we additionally employ the face restoration variant of
DiffBIR, fine-tuned on facial datasets and referred to as DiffBIR (Face).

Metrics We consider two types of metrics related to the detectability of forged watermark and the
perceptual quality of forged watermark. We define three metrics for detectability: bit accuracy, the
detection success rate, and the user attribution success rate for both watermark schemes. Gaussian
Shading’s bit accuracy is the ratio of correctly detected bits to total bits in the watermark. For
TreeRing, the p-value reflects the distance between initial noise and the Tree Ring pattern. The
Detection Success Rate (Dec.) is the true positive rate at a given false positive rate: 1e-3 for Gaussian
Shading and 1e-2 for TreeRing. For Gaussian Shading , the User Attribution Success Rate (Attr.) is
the percentage of the watermark correctly attributed to the user, considering 1000 users.

We utilize a diverse set of image quality metrics to compare between the original image and the
image with watermark forgery. PSNR and SSIM [26] are employed as full-reference fidelity mea-
sures, assessing pixel-level and structural similarity, respectively. For perceptual quality, we use
reference-based metrics LPIPS [27] and DISTS [28]. No-reference metrics CLIPIQA [29], NIQE [30],
MUSIQ [31], and MANIQA [32] are adopted to provide a holistic assessment of visual fidelity.
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Ours

Figure 3: Example images with forged watermark using the Imprint baseline and our proposed
method. The target model is SDXL with Gaussian Shading, and the proxy model used is SD 2.1.

4.2 Detecting Forged Watermarks

The success of watermark forgery for Gaussian Shading can be evaluated from three perspectives:
the bit accuracy of the forged watermark, its detectability, and the correctness of user attribution.
Table 1 summarizes the results against Gaussian Shading across four target models and three datasets.
Our proposed attack seamlessly integrates with regenerative methods, and we evaluate it across
seven such methods. Overall, the optimization-based Imprint baseline and our PnP with CtrlRegen
consistently achieve the best or second-best performance across all three metrics. This can be
attributed to the fact that both methods preserve the forged latent watermark without significant
alteration. In contrast, the other six regenerative methods impose additional semantic constraints
during generation, prioritizing cover image quality. We further analyze the impact of different target
models. The proposed PnP performs better on SDXL and Animagine XL than on PixArt-Σ and
FLUX.1. This performance gap can be explained by architectural differences: PixArt-Σ and FLUX.1
adopt DiT-based designs, whereas our proxy model, SD2.1, is UNet-based. Furthermore, FLUX.1
introduces a distinct autoencoder architecture, making watermark forgery more challenging. The
detectability results for forgery attacks against Tree-Ring can be found in our appendix.
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Figure 4: Quality of forged watermarks generated by PnP and the Imprint baseline. Metrics are
averaged across different target models and watermarks. Scores like LPIPS and NIQE (where
lower scores indicate better image quality) are inverted and normalized for consistency.

4.3 Quality of Forged Images

One of the primary shortcomings of state-of-the-art forgery attacks is the degradation of image quality
when embedding forged watermarks. In Fig. 3, we visualize cover images with forged watermarks
using Imprint and PnP, leveraging different regenerative methods. While Imprint and CtrlRegen
demonstrate the best detectability, they suffer from noticeable quality degradation, in contrast to other
regenerative models designed to enhance image quality. We hypothesize that the low quality of cover
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images with forged watermarks may fail visual inspection or bypass forgery defenses that are yet to
be developed.

We summarize eight quantitative metrics for comparing the quality of cover images in Fig. 4. A
larger area covered by a forgery attack indicates better image quality and visual perception. For all
three datasets, Imprint and CtrlRegen exhibit the smallest covered areas, suggesting poorer quality
compared to other super-resolution-based regenerative methods. This aligns with our visual inspection
results. Notably, Imprint and CtrlRegen perform worse in non-reference metrics such as CLIPIQA,
MUSIQ, NIQE, and MANIQA, further confirming their inferior overall image fidelity. We argue that
achieving better performance in non-reference metrics is crucial, as reference cover images may not
always be available in practical scenarios.

By integrating the proposed PnP with super-resolution regenerative models, we effectively preserve
the semantics of the watermarked latent, along with textual and visual guidance from the cover
images. This results in a trade-off, where the detectability of the forged watermark is reduced for
improved human imperceptibility, a critical factor for defending against forgery.

4.4 Discussion on Forgery Feasibility
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Here, we discuss the feasibility of forgery attacks by measuring the
average time required to embed a forged watermark into a single cover
image, as illustrated in Fig. 5. Specifically, we evaluate images from
the RealSR dataset with SDXL as the target model. Since Imprint relies
on adversarial optimization to embed the extracted watermark into each
cover image, the average generation time per image on our testbed3 is
approximately 1188.7 seconds. In contrast, the regenerative models used
in PnP require only 3.68 to 29.3 seconds per image. This significant
discrepancy highlights the prohibitive computational cost of Imprint and
questions its practical applicability. Conversely, the low overhead of
PnP underscores its effectiveness and practicality as a forgery attack,
particularly given that the regenerative models employed are publicly
available.

Our proposed watermark forgery method is both optimization-free and
universal, leveraging regenerative diffusion models to perform efficient
forgery. The effectiveness of the attack—measured in terms of watermark
detectability, visual fidelity, and computational cost—depends heavily
on the choice of the underlying generative model. For instance, while
StableSR and SeeSR incur higher overhead, methods like DiffBIR, CCSR,
and HoliSDiP complete the forgery in roughly 5 seconds. Notably, StableSR, DiffBIR, and SeeSR
exhibit superior performance in preserving the forged watermark on the regenerated cover images
(see Table 1). In terms of image quality, visual performance varies across datasets, as shown in Fig. 4.
Therefore, the optimal regenerative model choice is both data- and model-dependent. The low cost of
executing watermark forgeries via PnP further emphasizes the urgency of developing watermarking
techniques resilient to such attacks.

5 Conclusion

While watermarks offer an effective mean to manage the governance of synthetic data from generative
models, recent studies show that they unfortunately fall prey to forgery attacks under certain restricted
circumstances. In this paper, we unveil a stronger watermark forgery attack that leverages off-the-shelf
regenerative diffusion models. Our proposed PnP forgery is universally applicable to diffusion models
and any type of image. We extract the watermarked latent from the target data and explore both the
semantic latent as a prior and textual-visual guidance from cover images to regenerate the cover data.
We extensively evaluate the proposed PnP on six regenerative models and 24 combinations of target
models, watermarking methods and data sets, against the prior optimization-based Imprint forgery
attack. Our results demonstrate that the state-of-the-art watermarks can be successfully forged from a
target image to any cover image, which shows a remarkably high detection of forged watermarks

3Hardware specifications are provided in Appendix B
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and an improved image quality provided by the regenerative models. Our findings raise alarming
concerns about the dependability of applying watermarks for data governance and suggest the need
for designing more advanced forgery-proof watermarking methods.

Limitations. While PnP can be seamlessly integrated into various regenerative diffusion models,
it currently requires modifying the initial latent representation to the estimated watermarked latent,
and switching the sampling method to DDIM to improve forgery success rates. These adjustments,
however, can degrade the overall performance of the regenerative diffusion models. Moreover,
achieving different trade-offs between watermark detectability and image quality cannot be easily
controlled by simply tuning the hyperparameters of a single regenerative diffusion model.
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A Implementation Details

In this section, we provide implementation details for our target semantic watermarks, target diffusion
models, baseline forgery method, regenerative diffusion models, and dataset specifications. Further
details can be found in our source code.

A.1 Watermark

For Tree Ring [7], we use a ring pattern with a radius of 10 and apply zero-bit watermarking. For
the models used in existing work [9] (SDXL, PixArt-Σ, FLUX.1), we adopt the same detection
thresholds established in that study, which were derived from statistics on 5,000 watermarked images
and 5,000 clean images to achieve the desired false positive rate. For Animagine XL, we follow the
same procedure to compute the detection threshold by ourselves.

For Gaussian Shading [8], we follow the settings from [9]. We use an encoding window of l = 1,
with a unique random key and message generated for each image. The message length k is 256,
resulting in 1024 bits. The repetition factor ρ is set to 64 for SD 2.1 and PixArt-Σ. For FLUX.1, the
repetition factor is set to 256, since this model uses 16-channel latents, whereas the previous two
models use 4-channel latents. For threshold selection to compute the true positive rate, we target a
false positive rate of 10−3. In the Detection Success Rate evaluation (zero-bit scenario), we use a
bit accuracy threshold of 0.5976525. For the User Attribution Success Rate evaluation (with 1, 000
users), the bit accuracy threshold is set to 0.6484375.

A.2 Diffusion Pipeline

All models (both Target and Proxy) are configured with a DDIM scheduler using 50 inference steps
and a guidance scale of 7.5. For the watermark forgery experiments, we use the target models
(excluding Animagine XL) to generate 100 watermarked images based on the first 100 prompts from
the Stable Diffusion Prompts test set4. For Animagine XL, since it performs better with structured
prompts, we generated the prompts manually. The detailed prompts are available in our repository.

Table 2: Settings of diffusion pipelines used in our experiments.
Model Name Huggingface ID Sampler Steps Guidance Scale
SD 2.1 [24] stabilityai/stable-diffusion-2-1-base DDIM 50 7.5
SDXL [21] stabilityai/stable-diffusion-xl-base-1.0 DDIM 50 7.5
PixArt-Σ [10] PixArt-alpha/PixArt-Sigma-XL-2-512-MS DDIM 50 7.5
FLUX.1 [22] black-forest-labs/FLUX.1-dev DDIM 50 7.5
Animagine XL [23] cagliostrolab/animagine-xl-3.0 DDIM 50 7.5

A.3 Baseline

We compare our method against Imprint [9]. We follow the official implementation and apply 50
steps of adversary adjustment. Parameters of the diffusion pipeline and the watermark setup are kept
identical across both methods.

A.4 Regenerative Diffusion Models

We evaluate six regeneration models: CtrlRegen [13], StableSR [11], DiffBIR [12], SeeSR [14],
CCSR [25], and HoliSDiP [16]. For each model, we replace the default sampler with DDIM and
set the number of sampling steps to 50. All other hyperparameters follow the default configurations
provided in their respective official repositories.

A.5 Datasets

We use three datasets as cover images for watermark embedding.

4https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
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Table 3: Settings of regenerative models used in our experiments.
Model Name Official Repository Sampler Steps
CtrlRegen [13] https://github.com/yepengliu/CtrlRegen DDIM 50
StableSR [11] https://github.com/IceClear/StableSR DDIM 50
DiffBIR [12] https://github.com/XPixelGroup/DiffBIR DDIM 50
SeeSR [14] https://github.com/cswry/SeeSR DDIM 50
CCSR [25] https://github.com/csslc/CCSR DDIM 50
HoliSDiP [16] https://github.com/liyuantsao/HoliSDiP DDIM 50

The RealSR [18] test set consists of high-resolution (HR) and low-resolution (LR) image pairs
captured by two full-frame DSLR cameras (Canon 5D3 and Nikon D810). It includes 15 pairs for
each camera across three scale settings, totaling 90 pairs.

The DRealSR [19] test set comprises 93 image pairs, randomly selected at a scale of 4x from five
different DSLR cameras.

The CelebA [20] test set contains 3,000 CelebA-HQ images from the testing partition. The low-
quality (LQ) images are generated by a degradation model using the high-quality images as input.
For testing, we randomly select 100 images from this set.

B Hardware Details

All experiments were conducted on a remote server equipped with 8 NVIDIA A800-SXM4-80GB
GPUs, 2 Intel Xeon Gold 6326 CPUs (64 cores total), and 128GB of RAM. The system runs
Ubuntu 22.04 with Linux kernel 6.2 and uses CUDA 12.2 and driver version 535.86.10. Experiments
described in Section 4.4 are run on a single A800 GPU. All methods were evaluated within the same
batch under identical system conditions.

C Additional Experimental Results

In this section, we present additional results for detectability against the Tree Ring watermark and
detailed quality results for all watermarks and target models.

C.1 Quantitative Results on Detectability Against Tree Ring

Table 4 shows the detectability results for Tree Ring watermarks. It presents the watermark detection
success rates for both our method and the baseline across various datasets and target models, evaluated
against Tree Ring using SD 2.1 as the proxy model. The Watermark Detection Success Rate is defined
as the true positive rate under a 1% false positive rate. From the results, we observe that, for SDXL and
Animagine XL, the forged watermark demonstrates better detectability. However, for PixArt-Σ and
FLUX.1, the watermarks are almost undetectable. The reason for this is that SDXL and Animagine
XL show higher similarity with our target model, SD 2.1. Additionally, the lower robustness of the
Tree Ring watermark also contributes to the reduced Watermark Detection Success Rate.

C.2 Quantitative Results on Image Quality after Watermark Forgery

This subsection presents quantitative results for each target model (SDXL, PixArt-Σ, FLUX.1, and
Animagine XL), complementing the analysis in Fig. 4. The results are organized by the watermarking
method (Tree Ring and Gaussian Shading) and the dataset (realSR, DRealSR, and CelebA), as shown
in tables 5 to 10 . We evaluate image quality after watermark forgery using a comprehensive set of
metrics. The best results are highlighted in bold, and the second-best results are underlined.
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Table 4: Detectability results of our method and baseline on various datasets and target models,
evaluated against Tree Ring using SD 2.1 as the proxy model. The best results are highlighted in
bold, and the second-best results are underlined. The watermarking methods are assessed using two
metrics: average p-value (p-value), Watermark Detection Success Rate (Dec.).

Target Method Backbone RealSR DRealSR CelebA
p-value ↓ Dec. ↑ p-value ↓ Dec. ↑ p-value ↓ Dec. ↑

SDXL

Imprint − 0.01 0.97 0.01 0.91 0.03 0.76

Ours

CtrlRegen 0.00 0.98 0.00 1.00 0.00 1.00
StableSR 0.01 0.92 0.01 0.87 0.02 0.88

DiffBIR(SR) 0.05 0.73 0.03 0.80 0.04 0.70
DiffBIR(Face) − − − − 0.07 0.65

SeeSR 0.02 0.88 0.02 0.84 0.01 0.86
CCSR 0.02 0.81 0.01 0.84 0.01 0.90

HoliSDiP 0.04 0.69 0.02 0.83 0.01 0.94

PixArt-Σ

Imprint − 0.09 0.51 0.09 0.60 0.13 0.30

Ours

CtrlRegen 0.08 0.53 0.05 0.72 0.07 0.52
StableSR 0.21 0.26 0.16 0.37 0.18 0.21

DiffBIR(SR) 0.16 0.25 0.15 0.37 0.17 0.33
DiffBIR(Face) − − − − 0.21 0.20

SeeSR 0.16 0.37 0.12 0.47 0.11 0.48
CCSR 0.19 0.32 0.11 0.41 0.12 0.37

HoliSDiP 0.19 0.23 0.14 0.32 0.13 0.45

FLUX.1

Imprint − 0.20 0.17 0.18 0.12 0.25 0.07

Ours

CtrlRegen 0.21 0.13 0.21 0.09 0.22 0.06
StableSR 0.27 0.05 0.22 0.09 0.27 0.13

DiffBIR(SR) 0.29 0.04 0.27 0.06 0.31 0.02
DiffBIR(Face) − − − − 0.34 0.07

SeeSR 0.28 0.09 0.25 0.12 0.27 0.04
CCSR 0.34 0.05 0.35 0.03 0.29 0.04

HoliSDiP 0.28 0.06 0.28 0.08 0.19 0.12

Animagine XL

Imprint − 0.03 0.79 0.03 0.78 0.06 0.52

Ours

CtrlRegen 0.01 0.88 0.01 0.89 0.02 0.84
StableSR 0.04 0.71 0.03 0.76 0.05 0.59

DiffBIR(SR) 0.09 0.46 0.09 0.44 0.09 0.38
DiffBIR(Face) − − − − 0.11 0.30

SeeSR 0.06 0.64 0.05 0.62 0.05 0.66
CCSR 0.07 0.53 0.04 0.66 0.04 0.62

HoliSDiP 0.08 0.51 0.06 0.62 0.04 0.72

D Additional Examples

In this section, we present additional example images generated by our method. Figures 6 and 7 show
more images with forged watermarks using different methods, supplementing the examples in Fig. 3.
Additionally, Figures 8 and 9 display watermarked images generated from different target models
using Gaussian Shading and Tree Ring, respectively.
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Table 5: Image quality comparison of PnP and the Imprint baseline on RealSR images with forged
Gaussian Shading watermarks.

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑
Target Method

SDXL

Imprint 26.14 0.73 0.48 0.27 0.20 9.13 24.73 0.34
CtrlRegen 20.45 0.63 0.51 0.28 0.23 8.37 29.07 0.32
StableSR 22.62 0.64 0.39 0.26 0.67 5.29 68.99 0.64

DiffBIR(SR) 21.53 0.61 0.40 0.26 0.68 5.78 69.75 0.66
SeeSR 24.13 0.67 0.35 0.25 0.69 5.80 72.36 0.68
CCSR 22.99 0.59 0.41 0.27 0.70 6.27 73.00 0.72

HoliSDiP 23.62 0.64 0.42 0.28 0.69 6.73 71.25 0.62

PixArt-Σ

Imprint 26.16 0.73 0.48 0.27 0.20 9.09 24.68 0.33
CtrlRegen 20.68 0.63 0.52 0.30 0.24 8.62 27.57 0.30
StableSR 23.44 0.66 0.39 0.28 0.68 7.52 67.97 0.62

DiffBIR(SR) 22.16 0.60 0.42 0.27 0.67 7.26 68.20 0.64
SeeSR 24.34 0.67 0.37 0.26 0.71 6.43 71.85 0.68
CCSR 23.48 0.58 0.43 0.28 0.68 7.32 72.34 0.70

HoliSDiP 25.37 0.71 0.37 0.28 0.61 8.87 63.93 0.53

FLUX.1

Imprint 26.16 0.73 0.48 0.27 0.20 9.14 24.73 0.33
CtrlRegen 20.67 0.63 0.51 0.30 0.25 8.19 27.67 0.31
StableSR 23.00 0.64 0.41 0.28 0.69 7.19 68.61 0.64

DiffBIR(SR) 21.76 0.60 0.43 0.27 0.68 7.41 68.49 0.66
SeeSR 24.40 0.68 0.36 0.25 0.72 6.22 72.10 0.68
CCSR 23.58 0.60 0.41 0.27 0.70 7.10 72.91 0.72

HoliSDiP 23.56 0.59 0.47 0.30 0.66 8.45 69.33 0.58

Animagine XL

Imprint 26.14 0.73 0.48 0.27 0.20 9.16 24.72 0.34
CtrlRegen 20.36 0.62 0.51 0.28 0.23 8.34 28.85 0.32
StableSR 22.47 0.62 0.39 0.26 0.64 5.13 68.90 0.64

DiffBIR(SR) 21.49 0.61 0.39 0.25 0.68 5.48 70.05 0.66
SeeSR 24.12 0.67 0.35 0.25 0.70 5.35 72.12 0.68
CCSR 22.89 0.57 0.42 0.27 0.69 6.31 72.47 0.72

HoliSDiP 24.41 0.68 0.38 0.26 0.68 5.95 70.49 0.62

Table 6: Image quality comparison of PnP and the Imprint baseline on DRealSR images with forged
Gaussian Shading watermarks.

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑
Target Method

SDXL

Imprint 29.24 0.81 0.47 0.28 0.20 10.53 22.04 0.31
CtrlRegen 21.91 0.70 0.51 0.29 0.22 9.40 25.13 0.32
StableSR 25.28 0.68 0.44 0.28 0.68 6.00 65.80 0.61

DiffBIR(SR) 23.39 0.61 0.49 0.29 0.68 7.18 64.72 0.60
SeeSR 26.65 0.71 0.39 0.27 0.72 6.25 69.38 0.65
CCSR 25.10 0.58 0.51 0.30 0.71 6.90 70.14 0.68

HoliSDiP 25.71 0.65 0.49 0.32 0.67 7.49 67.74 0.59

PixArt-Σ

Imprint 29.28 0.82 0.47 0.28 0.20 10.50 22.23 0.30
CtrlRegen 22.34 0.71 0.53 0.33 0.24 9.74 23.91 0.30
StableSR 26.29 0.71 0.44 0.29 0.68 8.50 63.59 0.57

DiffBIR(SR) 24.36 0.60 0.51 0.31 0.65 9.31 60.94 0.56
SeeSR 26.74 0.70 0.41 0.29 0.70 7.78 68.09 0.63
CCSR 25.68 0.59 0.53 0.32 0.67 8.68 68.43 0.64

HoliSDiP 28.05 0.75 0.41 0.30 0.55 16.05 57.22 0.46

FLUX.1

Imprint 29.28 0.82 0.47 0.28 0.20 10.45 22.20 0.30
CtrlRegen 22.25 0.71 0.53 0.32 0.27 9.09 24.56 0.31
StableSR 26.00 0.69 0.44 0.29 0.69 7.75 64.81 0.59

DiffBIR(SR) 24.48 0.61 0.50 0.30 0.67 8.90 61.26 0.58
SeeSR 27.17 0.72 0.39 0.27 0.73 6.63 68.46 0.65
CCSR 25.79 0.60 0.52 0.30 0.70 7.69 69.73 0.66

HoliSDiP 25.66 0.59 0.54 0.33 0.64 9.83 64.83 0.55

Animagine XL

Imprint 29.26 0.81 0.47 0.28 0.20 10.47 22.17 0.31
CtrlRegen 21.96 0.70 0.51 0.29 0.22 9.28 25.09 0.32
StableSR 25.07 0.68 0.44 0.28 0.64 5.71 64.85 0.60

DiffBIR(SR) 23.11 0.61 0.48 0.29 0.69 6.68 65.74 0.61
SeeSR 26.63 0.70 0.39 0.28 0.70 5.80 68.95 0.65
CCSR 25.09 0.58 0.52 0.31 0.71 6.51 70.08 0.68

HoliSDiP 26.69 0.70 0.44 0.29 0.66 6.73 65.77 0.58
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Table 7: Image quality comparison of PnP and the Imprint baseline on CelebA images with forged
Gaussian Shading watermarks.

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑
Target Method

SDXL

Imprint 26.11 0.73 0.58 0.31 0.22 9.80 16.74 0.35
CtrlRegen 18.60 0.65 0.63 0.36 0.22 10.04 17.37 0.28
StableSR 23.86 0.63 0.33 0.19 0.80 4.80 76.47 0.69

DiffBIR(SR) 26.49 0.73 0.30 0.18 0.67 5.14 71.58 0.64
SeeSR 25.00 0.67 0.33 0.23 0.77 5.04 76.55 0.71
CCSR 23.63 0.58 0.40 0.24 0.81 5.60 77.59 0.74

HoliSDiP 23.37 0.57 0.44 0.30 0.77 5.95 76.73 0.68
DiffBIR(Face) 27.36 0.75 0.31 0.20 0.52 5.85 61.84 0.58

PixArt-Σ

Imprint 26.14 0.73 0.58 0.31 0.22 9.84 17.01 0.35
CtrlRegen 18.66 0.65 0.62 0.38 0.23 10.68 17.06 0.29
StableSR 24.50 0.66 0.32 0.22 0.82 7.19 76.29 0.69

DiffBIR(SR) 26.73 0.73 0.30 0.20 0.70 5.81 72.32 0.65
SeeSR 25.35 0.68 0.34 0.25 0.77 6.48 75.01 0.70
CCSR 24.03 0.59 0.42 0.27 0.78 7.20 76.02 0.73

HoliSDiP 26.12 0.68 0.38 0.29 0.69 9.39 64.69 0.56
DiffBIR(Face) 27.66 0.76 0.31 0.21 0.56 6.02 64.41 0.59

FLUX.1

Imprint 26.13 0.73 0.58 0.31 0.23 9.81 17.15 0.35
CtrlRegen 18.64 0.64 0.63 0.38 0.25 10.08 17.31 0.29
StableSR 24.21 0.65 0.33 0.22 0.82 6.76 75.64 0.69

DiffBIR(SR) 26.76 0.73 0.30 0.20 0.70 5.65 72.28 0.66
SeeSR 25.22 0.67 0.32 0.23 0.79 5.88 76.27 0.71
CCSR 24.03 0.59 0.41 0.26 0.80 6.83 77.03 0.75

HoliSDiP 23.16 0.52 0.51 0.33 0.74 7.51 72.13 0.65
DiffBIR(Face) 27.67 0.76 0.31 0.21 0.56 5.93 63.05 0.59

Animagine XL

Imprint 26.14 0.73 0.58 0.31 0.23 9.79 16.92 0.35
CtrlRegen 18.49 0.65 0.63 0.35 0.21 10.21 17.43 0.29
StableSR 23.53 0.63 0.33 0.19 0.78 4.42 76.52 0.68

DiffBIR(SR) 26.54 0.73 0.29 0.18 0.66 4.97 71.38 0.64
SeeSR 24.68 0.66 0.34 0.23 0.77 4.93 76.44 0.71
CCSR 23.63 0.58 0.39 0.24 0.82 5.23 77.97 0.75

HoliSDiP 24.38 0.63 0.39 0.26 0.78 5.40 75.65 0.67
DiffBIR(Face) 27.41 0.75 0.30 0.19 0.53 5.77 62.16 0.59

Table 8: Image quality comparison of PnP and the Imprint baseline on RealSR images with forged
Tree Ring watermarks.

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑
Target Method

SDXL

Imprint 26.14 0.73 0.48 0.27 0.20 9.15 24.52 0.34
CtrlRegen 20.57 0.63 0.50 0.28 0.23 8.24 28.69 0.31
StableSR 22.62 0.63 0.39 0.26 0.66 5.53 68.54 0.64

DiffBIR(SR) 21.43 0.60 0.41 0.26 0.68 5.85 69.59 0.66
SeeSR 24.01 0.66 0.36 0.25 0.71 5.48 72.03 0.69
CCSR 22.79 0.57 0.42 0.27 0.70 6.20 72.65 0.72

HoliSDiP 23.95 0.65 0.41 0.28 0.69 6.52 71.05 0.62

PixArt-Σ

Imprint 26.18 0.73 0.48 0.27 0.20 9.16 24.86 0.33
CtrlRegen 20.86 0.63 0.51 0.30 0.25 8.53 28.24 0.30
StableSR 23.47 0.65 0.40 0.27 0.70 7.55 68.19 0.62

DiffBIR(SR) 21.91 0.59 0.44 0.28 0.68 7.29 68.37 0.65
SeeSR 24.22 0.66 0.38 0.27 0.71 6.49 71.94 0.67
CCSR 23.50 0.58 0.43 0.28 0.68 7.50 71.99 0.70

HoliSDiP 25.44 0.71 0.36 0.27 0.61 8.50 63.20 0.53

FLUX.1

Imprint 26.15 0.73 0.48 0.27 0.20 9.11 24.76 0.33
CtrlRegen 20.75 0.64 0.50 0.28 0.26 8.90 28.20 0.30
StableSR 23.66 0.69 0.35 0.26 0.68 7.51 67.58 0.63

DiffBIR(SR) 21.93 0.64 0.38 0.26 0.70 6.49 70.30 0.66
SeeSR 24.74 0.70 0.33 0.24 0.70 6.01 71.58 0.67
CCSR 24.00 0.64 0.38 0.25 0.70 6.21 72.67 0.71

HoliSDiP 23.97 0.65 0.42 0.29 0.67 7.63 70.68 0.60

Animagine XL

Imprint 26.15 0.73 0.48 0.27 0.20 9.17 24.79 0.34
CtrlRegen 20.39 0.63 0.51 0.28 0.22 8.45 28.13 0.32
StableSR 22.50 0.63 0.38 0.25 0.62 5.48 67.34 0.63

DiffBIR(SR) 21.26 0.60 0.40 0.26 0.68 5.67 70.15 0.67
SeeSR 24.17 0.67 0.36 0.25 0.69 5.32 72.22 0.68
CCSR 23.01 0.58 0.40 0.27 0.69 6.23 72.43 0.72

HoliSDiP 24.46 0.69 0.37 0.26 0.68 5.86 69.78 0.62
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Table 9: Image quality comparison of PnP and the Imprint baseline on DRealSR images with forged
Tree Ring watermarks.

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑
Target Method

SDXL

Imprint 29.25 0.81 0.47 0.28 0.20 10.52 22.05 0.31
CtrlRegen 22.15 0.71 0.52 0.29 0.23 9.40 25.55 0.31
StableSR 25.38 0.67 0.44 0.28 0.66 5.93 65.69 0.61

DiffBIR(SR) 23.54 0.61 0.49 0.29 0.70 7.32 64.66 0.60
SeeSR 26.51 0.70 0.40 0.28 0.71 5.82 68.76 0.65
CCSR 24.99 0.57 0.53 0.31 0.71 6.93 70.42 0.68

HoliSDiP 25.96 0.66 0.48 0.31 0.66 7.32 67.22 0.59

PixArt-Σ

Imprint 29.33 0.82 0.47 0.28 0.19 10.54 22.09 0.30
CtrlRegen 22.40 0.71 0.54 0.33 0.24 9.64 24.14 0.31
StableSR 26.26 0.70 0.43 0.29 0.68 8.64 63.89 0.57

DiffBIR(SR) 24.32 0.59 0.52 0.32 0.65 9.63 60.38 0.57
SeeSR 26.94 0.71 0.41 0.29 0.72 7.44 68.56 0.64
CCSR 25.65 0.60 0.52 0.32 0.67 9.00 69.14 0.64

HoliSDiP 28.19 0.75 0.41 0.30 0.56 10.98 56.84 0.46

FLUX.1

Imprint 29.29 0.81 0.46 0.28 0.20 10.47 22.11 0.31
CtrlRegen 22.43 0.71 0.51 0.30 0.27 9.81 24.72 0.31
StableSR 27.27 0.76 0.37 0.27 0.68 8.22 61.25 0.57

DiffBIR(SR) 24.18 0.65 0.45 0.29 0.71 7.77 65.45 0.60
SeeSR 27.56 0.75 0.36 0.26 0.71 6.64 67.76 0.64
CCSR 26.26 0.64 0.47 0.29 0.71 6.93 69.85 0.67

HoliSDiP 26.34 0.67 0.48 0.32 0.67 8.10 66.68 0.57

Animagine XL

Imprint 29.28 0.81 0.47 0.28 0.20 10.46 22.07 0.31
CtrlRegen 22.04 0.70 0.52 0.29 0.22 9.33 25.43 0.32
StableSR 25.14 0.67 0.43 0.27 0.62 5.76 63.53 0.60

DiffBIR(SR) 23.20 0.59 0.49 0.29 0.68 6.97 64.57 0.60
SeeSR 26.25 0.70 0.39 0.27 0.70 6.08 68.77 0.65
CCSR 25.08 0.57 0.52 0.31 0.70 6.60 69.76 0.68

HoliSDiP 26.82 0.71 0.43 0.29 0.67 6.37 65.99 0.58

Table 10: Image quality comparison of PnP and the Imprint baseline on CelebA images with forged
Tree Ring watermarks.

PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ CLIPIQA ↑ NIQE ↓ MUSIQ ↑ MANIQA ↑
Target Method

SDXL

Imprint 26.11 0.73 0.58 0.31 0.23 9.78 16.74 0.35
CtrlRegen 18.67 0.65 0.63 0.36 0.22 9.87 16.87 0.28
StableSR 23.71 0.63 0.33 0.19 0.80 4.78 76.63 0.68

DiffBIR(SR) 26.46 0.73 0.29 0.18 0.67 4.97 71.51 0.64
SeeSR 24.65 0.66 0.34 0.23 0.78 5.01 76.78 0.72
CCSR 23.52 0.58 0.41 0.24 0.82 5.64 77.67 0.75

HoliSDiP 23.40 0.58 0.44 0.30 0.77 5.85 75.88 0.67
DiffBIR(Face) 27.30 0.75 0.31 0.19 0.53 5.80 61.68 0.58

PixArt-Σ

Imprint 26.16 0.73 0.58 0.31 0.23 9.80 17.11 0.35
CtrlRegen 18.70 0.64 0.62 0.38 0.24 10.50 16.95 0.28
StableSR 24.48 0.66 0.32 0.22 0.83 7.13 76.10 0.69

DiffBIR(SR) 26.79 0.73 0.30 0.20 0.70 5.68 72.32 0.65
SeeSR 25.19 0.67 0.34 0.25 0.79 6.72 75.41 0.71
CCSR 24.01 0.59 0.43 0.27 0.79 7.24 76.24 0.74

HoliSDiP 26.26 0.69 0.36 0.28 0.71 9.10 65.45 0.56
DiffBIR(Face) 27.66 0.76 0.31 0.20 0.57 5.91 64.33 0.59

FLUX.1

Imprint 26.14 0.73 0.58 0.31 0.23 9.78 16.89 0.35
CtrlRegen 18.82 0.65 0.61 0.36 0.26 10.68 17.96 0.28
StableSR 25.25 0.69 0.29 0.20 0.80 6.82 74.58 0.68

DiffBIR(SR) 26.84 0.74 0.30 0.19 0.65 5.73 70.04 0.64
SeeSR 25.49 0.70 0.32 0.22 0.75 5.46 75.21 0.71
CCSR 24.56 0.62 0.37 0.23 0.80 6.16 77.40 0.75

HoliSDiP 22.95 0.52 0.48 0.32 0.76 6.81 75.41 0.70
DiffBIR(Face) 27.65 0.76 0.31 0.20 0.52 6.05 60.65 0.58

Animagine XL

Imprint 26.13 0.72 0.58 0.31 0.22 9.83 16.91 0.35
CtrlRegen 18.36 0.64 0.63 0.35 0.22 10.21 17.33 0.29
StableSR 23.23 0.63 0.32 0.19 0.79 4.33 76.28 0.68

DiffBIR(SR) 26.49 0.73 0.29 0.18 0.66 4.98 71.39 0.64
SeeSR 24.34 0.65 0.35 0.23 0.77 4.87 76.74 0.71
CCSR 23.56 0.58 0.39 0.23 0.82 5.11 77.96 0.75

HoliSDiP 24.60 0.64 0.38 0.26 0.77 5.15 75.65 0.67
DiffBIR(Face) 27.37 0.75 0.30 0.19 0.52 5.88 60.84 0.58
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Figure 6: Additional example images with forged watermark using the Imprint baseline and our
proposed method.
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Figure 7: Additional example images with forged watermark using the Imprint baseline and our
proposed method.
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SDXL PixArt- FLUX.1 Animagine XL

Figure 8: Images generated with the Gaussian Shading watermark using target models.
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SDXL PixArt- FLUX.1 Animagine XL

Figure 9: Images generated with the Tree Ring watermark using target models.
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