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C2BNVAE: Dual-Conditional Deep Generation of Network Traffic Data for
Network Intrusion Detection System Balancing

Yifan Zeng 1

Abstract
Network Intrusion Detection Systems (NIDS)
face challenges due to class imbalance, affecting
their ability to detect novel and rare attacks. This
paper proposes a Dual-Conditional Batch Nor-
malization Variational Autoencoder (C2BNVAE)
for generating balanced and labeled network traf-
fic data. C2BNVAE improves the model’s adapt-
ability to different data categories and generates
realistic category-specific data by incorporating
Conditional Batch Normalization (CBN) into the
Conditional Variational Autoencoder (CVAE). Ex-
periments on the NSL-KDD dataset show the po-
tential of C2BNVAE in addressing imbalance and
improving NIDS performance with lower compu-
tational overhead compared to some baselines.

1. Introduction
Network intrusions are growing exponentially, diversify-
ing, and becoming more severe. They threaten personal
privacy, data security, and can lead to significant economic
and social impacts. Deep Learning-based Network Intru-
sion Detection Systems (DLNIDS) have shown powerful
intrusion detection capabilities. However, DLNIDS face
a notable challenge in practical applications: the severe
class imbalance in network traffic data. In real-world net-
work environments, normal traffic typically constitutes the
vast majority, while various types of attack traffic are rela-
tively rare. This imbalance makes it difficult for DLNIDS
to effectively learn the features of minority classes, thereby
reducing the system’s ability to detect novel and rare attacks.

To address data imbalance, researchers have proposed
various methods, including resampling techniques (e.g.,
SMOTE (Chawla et al., 2002)) and generative approaches
(Liu et al., 2022; Zeng, 2025). Among generative meth-
ods, Variational Autoencoders (VAEs) (Kingma et al., 2013)
have shown the ability to learn the latent distribution of data
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and generate new, synthetic samples. Conditional Varia-
tional Autoencoders (CVAEs) (Sohn et al., 2015) further
enhance this capability by allowing the generation of data
for specific categories using conditional information.

In this paper, we propose C2BNVAE (Dual-Conditional
Batch Normalization Variational Autoencoder), a generative
model designed to effectively produce balanced and labeled
network traffic data for DLNIDS. Our primary contribution
is the integration of Conditional Batch Normalization (CBN)
(Yin et al., 2019) into the CVAE architecture for network
traffic data generation. CBN, by learning separate affine
transformation parameters (γ, β) for each data category, al-
lows the model to better adapt its normalization process to
the specific characteristics of different traffic classes. This
”dual-conditional” approach (conditioning in CVAE and
conditioning in CBN) aims to enhance the model’s adapt-
ability and the realism of generated category-specific data.
Through experiments on the NSL-KDD dataset, we vali-
date the potential of C2BNVAE in generating minority class
samples and subsequently improving NIDS detection per-
formance when using a Decision Tree classifier.

2. Proposed Method: C2BNVAE
The C2BNVAE model builds upon the Conditional Varia-
tional Autoencoder (CVAE) by incorporating Conditional
Batch Normalization (CBN) to enhance category-specific
data generation.

2.1. Conditional Variational Autoencoder (CVAE)
Backbone

A standard VAE learns a probabilistic mapping from the
input data x to a latent space z and back. It is trained by
maximizing an evidence lower bound (ELBO), which typi-
cally consists of a reconstruction term and a regularization
term (KL divergence between the learned latent distribution
and a prior, usually a standard normal distribution). How-
ever, a VAE cannot generate data for specific categories by
default.

CVAE extends VAE by conditioning the generation process
on additional information, typically class labels y. In our
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Figure 1. (a) The overall structure of C2BNVAE. Real data is input, and generated data is output. Traffic labels are integrated into the
Encoder, Decoder, and CBN layers. (b) The structure of CBN. The class label selects the learned scaling factors γi and βi for normalizing
data belonging to that specific class.

C2BNVAE, the one-hot encoded class label y of the traf-
fic data is concatenated with the input x for the encoder
and with the latent variable z for the decoder. This allows
the model to learn class-specific latent representations and
generate samples belonging to a target minority class by
providing its label y. The loss function for C2BNVAE:

Ltotal = Lrecon + Lregu (1)

where Lrecon is the reconstruction loss and Lregu is the regu-
larization loss. Let N be the number of training samples, xi

be the i-th training sample, and x̂i be the i-th sample gener-
ated by the model conditioned on yi. Lrecon is measured by
the mean squared error:

Lrecon =
1

N

N∑
i=1

(xi − x̂i)
2 (2)

Lregu is the KL divergence between the learned posterior
distribution of latent variables q(z|x, y) (approximated by
N(µ(x, y), σ2(x, y))) and the prior p(z|y) (often simplified
to N(0, I)):

Lregu = DKL(q(z|x, y) || p(z|y)) (3)

2.2. Conditional Batch Normalization (CBN)

In standard CVAEs, Batch Normalization (BN) (Bjorck
et al., 2018) is often used to stabilize training and improve
generalization. However, BN applies a single set of learned
affine parameters (γ, β) across all samples in a batch, regard-
less of their class. This can be suboptimal when generating
data for diverse categories, potentially leading to more uni-
form or less distinct category-specific features.

CBN addresses this by making the affine transformation
parameters conditional on the class label y. For each class
i, CBN learns separate scaling (γi) and shifting (βi) param-
eters. Given a mini-batch input x, its sample mean µ̂ and

standard deviation σ̂, the CBN transformation for samples
belonging to class i is:

x = CBN(x|y = i) = γi
x− µ̂√
σ̂2 + ϵ

+ βi (4)

where ϵ is a small constant for numerical stability. By in-
corporating CBN into the decoder (and potentially encoder)
layers of the CVAE, C2BNVAE aims to provide greater flex-
ibility in modeling the distinct statistical properties of each
traffic category. This ”dual conditioning” – first through the
CVAE structure and second through CBN – is hypothesized
to improve the model’s adaptability and the diversity and au-
thenticity of the generated samples, especially for minority
classes.

The overall structure of C2BNVAE is depicted in Figure 1.

C2BNVAE aims to:

• Generate high-quality, realistic traffic data for specific
(minority) categories.

• Balance imbalanced datasets by synthesizing minority
class samples, thereby enhancing the detection perfor-
mance of downstream NIDS classifiers.

• Create more diverse and authentic synthetic data that
accurately reflects the features and categorical distinc-
tions within network traffic.

3. Experimental Setup
3.1. Dataset

We conducted experiments on the widely used NIDS bench-
mark dataset, NSL-KDD (Ravipati & Abualkibash, 2019).
NSL-KDD is an improved version of the KDD Cup ’99
dataset and is frequently used for evaluating intrusion detec-
tion systems. It contains various types of attacks and normal
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traffic records, characterized by 41 features. A key character-
istic of NSL-KDD is its significant class imbalance, making
it a suitable benchmark for assessing algorithms designed
to handle imbalanced data. For our experiments, we used
the KDDTrain+ dataset for training the generative models
and the KDDTest+ for evaluating the NIDS classifier. To
balance the dataset for training the classifier, with the Nor-
mal class in KDDTrain+ having the most samples (67343),
we generated a matching number of samples for each minor-
ity attack category using the respective data augmentation
algorithms.

3.2. Evaluation Metrics

To evaluate the performance of the NIDS classifier trained
on data augmented by different methods, we employed com-
prehensive metrics suitable for imbalanced datasets:

• Accuracy (Acc): The proportion of correctly classified
instances among the total instances:

Acc =
TP + TN

TP + TN + FP + FN
(5)

• Weighted Precision (Prew): The weighted average of
precision for each class, where Pre is TP / (TP + FP):

Prew =

C∑
c=1

(
Nc

Ntotal
· TPc

TPc + FPc

)
(6)

• Weighted Recall (Recallw): The weighted average of
recall for each class, where Recall is TP / (TP + FN):

Recallw =

C∑
c=1

(
Nc

Ntotal
· TPc

TPc + FNc

)
(7)

• Weighted F1-Score (F1w): The weighted average
of the F1-score for each class. The F1-score is the
harmonic mean of precision and recall (2 × (Pre ×
Recall)/(Pre+Recall)). The weighted F1-score is
calculated as:

F1w =

C∑
c=1

(
Nc

Ntotal
· 2 · Prec · Recallc

Prec + Recallc

)
(8)

where C is the number of classes, Nc is the number of
instances in class c, and Ntotal is the total number of
instances.

• FLOPs: Floating-point operations, measuring com-
putational complexity during inference. Lower values
indicate higher efficiency.

• Params: Number of trainable parameters, reflecting
model size and memory requirements.

Table 1. Model Hyperparameters of C2BNVAE

Hyperparameters Encoder Decoder

Layers [128,60×4,32] [37,60×4,123]
Activation LeakyReLU LeakyReLU
Initialization He He
Batch size 128 128
Learning rate 1e-4 1e-4
Epoch 120 120
Optimizer Adam Adam
Loss function MSELoss MSELoss

These weighted metrics give more importance to classes
with more samples but still provide a holistic view of per-
formance across all classes.

3.3. Baselines and Classifier

We compared C2BNVAE with several baseline data bal-
ancing techniques: Original imbalanced data (No balanc-
ing), Random Oversampling, SMOTE (Synthetic Minority
Over-sampling Technique) (Chawla et al., 2002), Borderline
SMOTE (Dey & Pratap, 2023), KMeans SMOTE (Maulana
et al., 2024), SVM SMOTE (Wang et al., 2017), Standard
CVAE (without CBN) (Sohn et al., 2015).

The downstream NIDS classifier employed in all experi-
ments is a Decision Tree (DT). We chose DT for its simplic-
ity, interpretability, and common use as a baseline classifier.
The performance of the DT classifier trained on data gener-
ated/balanced by these algorithms serves as a proxy for the
quality and utility of the augmented data.

3.4. Implementation Details

The experiments were conducted on a computing envi-
ronment with an Intel (R) Xeon (R) Gold 6240 CPU @
2.60GHz and a Tesla V100S-PCIE-32GB GPU. The oper-
ating system was Ubuntu 18.04.3 LTS. All code was im-
plemented in Python 3.7.6 using PyTorch 1.13.1+cu117.
Specific model hyperparameters for C2BNVAE are detailed
in Table 1.

4. Results and Discussion
4.1. Computational Overhead

C2BNVAE has a total of 43,627 parameters and incurs
43,200 FLOPs per sample. The encoder component con-
tributes 22,744 parameters and 22,560 FLOPs, while the
decoder has 20,883 parameters and 20,640 FLOPs. For
comparison, a Conditional Generative Adversarial Network
(CGAN) baseline (Mirza & Osindero, 2014; Zeng, 2025),
implemented with a generator having layers [128, 100×5,
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Table 2. Intrusion detection performance experimental results (%)
on KDDTest+ using a Decision Tree classifier trained on aug-
mented KDDTrain+ data.

Algorithms Acc Prew Recallw F1w
Original imbalanced Data 75.88 79.32 75.88 72.74
Random oversampling 77.02 79.14 77.02 73.84
SMOTE 76.11 78.04 76.11 73.33
Borderline SMOTE 75.89 78.73 75.89 73.59
KMeans SMOTE 76.13 79.03 76.13 72.81
SVM SMOTE 78.11 79.09 78.11 76.02
CVAE 78.45 79.10 78.45 77.18
C2BNVAE 79.40 80.69 79.40 78.19

123] and a discriminator with layers [128, 100, 50, 50, 1],
has significantly more parameters (87,820) and higher com-
putational cost (109,892 FLOPs). This comparison high-
lights the relatively lower computational overhead of the
proposed C2BNVAE model, making it potentially more
efficient for deployment in resource-constrained NIDS envi-
ronments.

4.2. Intrusion Detection Performance

The primary evaluation of C2BNVAE lies in its ability to
generate synthetic minority class data that, when used to
balance the training set, improves the performance of a
downstream NIDS classifier. Table 2 presents the intrusion
detection performance of the Decision Tree classifier on
the KDDTest+ dataset when trained on data augmented by
various methods.

As shown in Table 2, training the Decision Tree classifier
on data augmented by C2BNVAE yielded the best perfor-
mance across all evaluated metrics: Accuracy (79.40%),
Weighted Precision (80.69%), Weighted Recall (79.40%),
and Weighted F1-Score (78.19%). This represents a notable
improvement over training on the original imbalanced data
(F1-Score: 72.74%) and also surpasses other common over-
sampling techniques like Random Oversampling (F1-Score:
73.84%) and various SMOTE variants (F1-Scores ranging
from 72.81% to 76.02%).

Importantly, C2BNVAE also outperforms the standard
CVAE (F1-Score: 77.18%). This suggests that the introduc-
tion of Conditional Batch Normalization (CBN) provides a
tangible benefit in generating more effective synthetic sam-
ples for balancing the dataset. The CBN allows the model
to learn class-specific normalization parameters, potentially
leading to the generation of minority class samples that are
more distinct and better capture the unique characteristics
of each attack type. This, in turn, helps the downstream clas-
sifier to learn more robust decision boundaries, particularly
for underrepresented attack classes.
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Figure 2. Bar chart of Decision Tree detection performance when
trained on balanced data processed by different algorithms. Higher
bars indicate better performance.

The bar chart in Figure 2 further visualizes these perfor-
mance differences, clearly positioning C2BNVAE as the
top-performing data augmentation method in this experi-
mental setup.

4.3. Discussion

The superior performance of C2BNVAE can be attributed
to its dual-conditional mechanism. The CVAE component
ensures that generated samples belong to the specified tar-
get class, while the CBN component fine-tunes the feature
generation process by applying class-specific normalization.
This likely results in synthetic data that not only increases
the representation of minority classes but also maintains
or even enhances the separability between different classes.
Traditional BN, used in standard CVAE, might inadvertently
smooth out some class-specific features by applying uniform
normalization parameters. CBN mitigates this by allowing
the normalization to adapt to each class’s statistical profile,
leading to more realistic and useful synthetic samples.

The lower computational overhead of C2BNVAE compared
to GAN (Goodfellow et al., 2020) or CGAN is also a prac-
tical advantage, particularly for NIDS applications where
frequent retraining or deployment on edge devices might be
necessary.

While these results are promising, it is important to acknowl-
edge that they are based on the NSL-KDD dataset and a
Decision Tree classifier. The effectiveness of C2BNVAE
might vary with other datasets possessing different charac-
teristics or when paired with more complex deep learning
classifiers for NIDS. Future work should explore its gener-
alizability across a wider range of network environments,
attack types, and NIDS architectures. Additionally, qualita-
tive analysis of the generated samples (e.g., using t-SNE or
UMAP for visualization) could provide further insights into
how well C2BNVAE captures the underlying data distribu-
tions compared to other methods.
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5. Conclusion
In this paper, we proposed C2BNVAE, a dual-conditional
generative model for addressing class imbalance in network
traffic data for NIDS. By integrating CBN into a CVAE,
C2BNVAE enhances the model’s adaptability to different
data categories and its ability to generate realistic, category-
specific synthetic samples. Our experimental results on
the NSL-KDD dataset demonstrate that C2BNVAE outper-
forms several baseline oversampling techniques and stan-
dard CVAE in improving the detection performance of a
Decision Tree based NIDS, while also exhibiting lower
computational overhead compared to a CGAN baseline.
This study highlights the potential of incorporating class-
conditional normalization techniques like CBN into gen-
erative models for effectively tackling data imbalance in
security applications. While further research is needed to
assess its generalizability, C2BNVAE offers a promising
and computationally efficient approach for enhancing the ro-
bustness of NIDS against novel and rare attacks by creating
more balanced and representative training datasets.
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