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Abstract
With the rapid advancement of deep learning technology, pre-
trained encoder models have demonstrated exceptional feature
extraction capabilities, playing a pivotal role in the research and ap-
plication of deep learning. However, their widespread use has raised
significant concerns about the risk of training data privacy leakage.
This paper systematically investigates the privacy threats posed by
membership inference attacks (MIAs) targeting encoder models, fo-
cusing on contrastive learning frameworks. Through experimental
analysis, we reveal the significant impact of model architecture com-
plexity on membership privacy leakage: As more advanced encoder
frameworks improve feature-extraction performance, they simulta-
neously exacerbate privacy-leakage risks. Furthermore, this paper
proposes a novel membership inference attack method based on the
𝑝-norm of feature vectors, termed the Embedding Lp-Norm Like-
lihood Attack (LpLA). This method infers membership status, by
leveraging the statistical distribution characteristics of the 𝑝-norm
of feature vectors. Experimental results across multiple datasets
and model architectures demonstrate that LpLA outperforms ex-
isting methods in attack performance and robustness, particularly
under limited attack knowledge and query volumes. This study not
only uncovers the potential risks of privacy leakage in contrastive
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learning frameworks, but also provides a practical basis for privacy
protection research in encoder models. We hope that this work will
draw greater attention to the privacy risks associated with self-
supervised learning models and shed light on the importance of a
balance between model utility and training data privacy. Our code
is publicly available at: https://github.com/SeroneySun/LpLA_code.
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1 Introduction
In recent years, self-supervised learning (SSL) [15, 44] has become a
powerful model pretraining method, gaining widespread attention
due to its efficient training paradigm and transferability. SSL lever-
ages pretext tasks such as context-based [12, 13, 25, 35], masking-
based [1, 19, 46, 50], and contrast-based [5, 14, 20, 45] approaches
to enable models to train on large-scale unlabeled data and develop
powerful encoder mapping inputs to a representation space. This
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technology not only addresses the challenges of limited and expen-
sive labeled data but also provides a highly transferable pre-trained
encoder, facilitating better performance in downstream tasks such
as image classification and object detection.

Among these, contrastive learning has gained prominence due
to its stronger transferability and stable, fast convergence during
the training process. However, these models may inadvertently
expose private information contained within training data, such
as gradient inversion [52], inference attack [4, 33, 39], adversarial
example [47, 49], and data poisoning [43]. They expose vulnerabili-
ties in model training and deployment, raising widespread societal
concerns and prompting extensive policy discussions. For exam-
ple, legal frameworks like the General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act (CCPA) impose
stringent requirements to protect the collection and usage of user
data. Therefore, a critical challenge in machine learning research is
how to effectively protect data privacy while maintaining model
performance.

Among various privacy risks studies [9], membership inference
attack (MIA) [22, 39], as one of the most prevalent privacy attacks,
aims to determine whether a given target sample was part of the
training dataset based on model’s output (or other information).
The emergence of MIA highlights the vulnerability of data privacy
protection in machine learning models, especially when the model
is overfitting, as it may leak more crucial information about the
training dataset, posing a threat to user’s privacy. This concern is
especially pronounced in applications involving sensitive personal
information, such as healthcare, finance, or social media. In these
domains, unauthorized usage of user data for commercial profit
or malicious exploitation purposes can result in severe harm and
losses.

Beyond its role as a privacy attack, MIA has increasingly been
adopted as a compliance auditing tool under regulations. This dual
role—as both a privacy threat and a regulatory metric—underscores
the critical importance of understanding and mitigating MIA risks,
particularly in self-supervised learning (SSL) frameworks where
traditional defenses may fall short. Most existing MIA studies focus
on enhancing the efficiency of membership inference in classifica-
tion tasks [2, 29, 41] or other specific tasks [16, 18, 40], whereas how
to balance model performance and privacy protection is currently
lacking [31, 48]. This gap is particularly evident in self-supervised
learning models, where traditional MIA strategies are often inef-
fective due to the models’ unsupervised training objectives and
frameworks. These characteristics make understanding the privacy
risks in SSL challenging, let alone developing effective mitigation
strategies.
Our work: We take a step further in addressing the above chal-
lenges by focusing on the performance-privacy trade-off in con-
trastive learning. By constructing an assessment framework for
evaluating the utility and privacy of encoders, we analyze the mech-
anisms of privacy leakage in contrastive learning models and their
behavior under membership inference attacks. Additionally, based
on the insights gained from this assessment, we propose a novel
attack method that leverages the distribution of feature vectors’ 𝑝-
norm, referred to as Embedding Lp-Norm Likelihood Attack (LpLA).
Contributions: The main contributions are summarized as follows:

• A systematic assessment of the performance-privacy trade-
off in contrastive learning. This study reveals, for the first
time, that both the different contrastive learning frameworks
and the backbone architectures significantly influence the
performance and membership privacy leakage of SSL pre-
trained encoders. Furthermore, we summarize how different
attacks leverage different types of information to perform
membership inference attacks.
• Proposal of a membership inference attack method based on
𝑝-norm of feature vectors (LpLA). Unlike existing methods
that rely on model confidence, loss values, or similarity cal-
culations, LpLA uses the 𝑝-norm of feature vectors as the
attack signal for membership inference. Experiments show
that LpLA performs comparably to, or even outperforms,
existing attacks across a variety of scenarios, while requir-
ing fewer attack knowledge and query volumes, providing a
novel perspective for privacy analysis.
• Comprehensive experiments for evaluating performance-
privacy trade-off and LpLA performance in contrastive learn-
ing. Through comparative analysis of multiple attack meth-
ods and experimental validation, we offer a comprehensive
assessment of the performance-privacy trade-off and LpLA’s
effectiveness. These findings serve as valuable references
for future research on the privacy of contrastive learning
models.

2 Preliminaries and Related Work
2.1 Visual Self-Supervised Representation

Learning
Self-supervised representation learning aims to automatically learn
effective and robust feature representations from unlabeled data,
providing a solid technical foundation for various downstream
tasks in the field of computer vision, such as image classification,
object detection, and image segmentation. To achieve this goal,
researchers have proposed a variety of approaches. In the domain
of computer vision, these approaches can generally be categorized
into three main types. Context-based methods [12, 13, 25, 35] lever-
age the inherent contextual relationships between data instances
(e.g., spatial structures, local-to-global consistency) to construct
learning objectives that help models capture more representative
features. Masking-based methods [1, 19, 46, 50] typically consist
of an encoder-decoder architecture. The encoder maps partially
masked inputs into a low-dimensional feature space to extract criti-
cal features, while the decoder attempts to reconstruct the original
input based on these features.
Contrastive-based methods. Compared with the previous two
categories, contrastive learning has gained popularity due to its
stronger transferability and stable, fast convergence during the
training process. Unlike context-based and masking-based meth-
ods, which train encoders indirectly through complex pretext tasks,
contrastive-based self-supervised representation learning directly
relies on a simple discrimination task to train the encoder. Since
its introduction in [45], instance discrimination-based contrastive
learning methods have quickly become the mainstream approach
in this field. The core mechanism involves generating sample pairs
through data augmentation, where each sample is paired with both
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positive and negative examples. The model then optimizes a con-
trastive loss function to bring the feature vectors of positive pairs
closer together while pushing apart the feature vectors of nega-
tive pairs. This allows the encoder to learn feature representations
capable of distinguishing between similar and dissimilar inputs.
However, early contrastive learning methods were constrained by
the simplified design of their training frameworks and the limita-
tions of their data augmentation strategies, which prevented them
from fully boosting their efficient feature extraction capabilities.

The capabilities of contrastive learning were fully realized with
the introduction of SimCLR and MoCo in [5, 20]. In [5], positive
and negative sample pairs are generated through richer data aug-
mentation, and feature vectors are produced using an encoder and
a multi-layer perceptron (MLP) structure. By treating other samples
within the same batch as negatives to compute the contrastive loss,
this approach significantly improves the quality of learned represen-
tations. In contrast, [20] introduced MoCo for the first time, which
proposes a momentum update strategy to maintain a sufficiently
large momentum dictionary, ensuring consistency in dictionary
representations while constructing sample pairs. This method not
only significantly reduces the computational overhead during train-
ing but also further optimizes the effectiveness of feature extraction
capabilities.

Subsequently, more sophisticated contrastive learning methods
have been proposed. For instance, SwAV [3] introduces the con-
cept of clustering to replace simple pairwise comparisons, while
BYOL [14] and SimSiam [7] adopt a self-distillation framework to
discard negative examples and rely solely on positive examples for
optimization. These innovative approaches have inspired many new
research directions in the field of self-supervised representation
learning.

2.2 Membership Inference Attack
The privacy issues of deep learning models have garnered wide-
spread attention in recent years. Among privacy risks studies [9],
membership inference attack (MIA) [22], a widely used privacy
attack, aims to infer whether a specific data sample was part of a
model’s training dataset by observing the model’s output behavior
on the specific sample. MIA, first introduced by Shokri et al. [39],
exploits the outputs of machine learning models to infer mem-
bership status, raising significant privacy concerns in real-world
applications. Since then, MIA research has rapidly expanded to
cover various types of victim models, including regression mod-
els [16], classification models [39], generative models [18], and
encoder models [40]. At the same time, a range of defense meth-
ods has been proposed to effectively mitigate MIA attacks while
maintaining the utility of the model [9, 23, 32]. Now, it’s not only a
privacy attack on deep learning models but also serves as an audit
metric for evaluating the privacy risk of models or algorithms.
Classic MIAs. Existing works of MIA mainly focus on classifica-
tion models, where an adversary leverages various information
unintentionally leaked under different settings to perform infer-
ence. Most of these methods follow Shokri using the model’s output,
which is the most straightforward information, as an attack signal.
Specifically, in a black-box setting [2, 29, 36, 41], the adversary
often uses the confidence score from a classification model to train

a binary classifier. In contrast, in a white-box setting [34, 36, 37],
the adversary can exploit richer information about the target model
(such as gradient information from intermediate layers), combining
them into higher-dimensional features, which are then used as an
attack signal to infer membership status.

In addition, other types of attack signals have also been explored
in previous research for MIA. For example, [27] demonstrated that
by calculating entropy or logits from the confidence score, the adver-
sary can use this data as an attack signal and determine a threshold
to infer membership status. In strictly black-box scenarios [29],
the adversary can also construct an attack signal using only the
label information output by the classification model to complete
the inference. Furthermore, LiRA [2] stands out for introducing a
likelihood ratio statistic as the attack signal, which, in combination
with the model’s loss distribution on samples, achieves highly ac-
curate membership inference. LiRA provides a novel perspective
for optimizing attacks by focusing on the distribution of statistical
metrics. Beyond classification models, there are also studies on
non-classic attack signals in encoder models. For example, [40]
used the similarity between word vectors as an attack signal in text
encoders, implementing a highly representative attack method.
MIA against encoder models. In the field of membership in-
ference attacks targeting visual self-supervised learning, [30] is
the first (and, at the time of writing, the only) study to propose a
membership inference attack targeting contrastive learning mod-
els. The method, EncoderMI, leverages the differences in cosine
similarity between augmented samples’ embedding of member and
non-member data to train a binary classifier for distinguishingmem-
bership status. EncoderMI has laid the foundation for subsequent
research on membership inference attacks against visual repre-
sentation learning models. For example, [11] proposed a strategy
to construct attack features based on similarity for the person re-
identification task, successfully compromising the privacy of person
re-identification encoders under black-box scenarios. Furthermore,
significant progress has beenmade in membership inference attacks
targeting masked pretraining encoders. For instance, [51] extended
the EncoderMImethod by computing the similarity between feature
vectors of different parts of the same image, achieving more general
attack performance. Similarly, [28] combined the shadow model
technique, leveraging a locally trained shadow decoder to mimic
the behavior of the target model and construct a pseudo-loss func-
tion, where lower pseudo-loss corresponds to higher membership
confidence.

Overall, utilizing the similarity-based attack signal plays an in-
dispensable role in membership inference attacks targeting encoder
models. This is largely due to the common understanding in exist-
ing research that, compared to the outputs of classification models,
the feature vectors output by encoders often lack explicit and direct
semantic information [11, 30]. As a result, straightforward strate-
gies that directly use model outputs as attack signal [22, 38] tend
to perform sub-optimally on encoder models. However, through a
series of experiments, we find that under some contrastive learning
frameworks, directly using the feature vectors output by encoders
can also achieve effective membership inference attacks. Further-
more, we propose a likelihood estimation attack method based on
𝑝-norm of feature vectors. This method demonstrates significant
and robust attack performance against encoder models, providing
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a novel perspective for membership privacy research in encoder
models.

3 Systematically Evaluating Privacy Risks of
Encoders

In this section, we first introduce the framework for evaluating the
utility and privacy of encoders. Next, we specifically introduce sev-
eral contrastive learning models and existing membership inference
attacks, which are used as target encoders and privacy metrics to
understand the trade-offs between model utility and privacy risks.
Last, we introduce the experimental settings and summarize the
findings from the experimental results.

The systematic evaluation of the privacy risks of encoders aims
to answer the two research questions (RQs) as follows:
• RQ1: Do encoders trade off the utility of the model with
privacy risks? Put differently, does a higher utility model
suffer more from privacy leakage?
• RQ2: How do attackers leverage the information produced
by the target model to performmembership inference attacks
on the target sample?

Answering RQ1 and RQ2 is crucial to understanding the fun-
damental attack mechanism of membership inference on encoder
models. To answer RQ1, we propose our evaluation mechanism,
which consists of twomain parts: The first part measures the feature
extraction capability of the encoder model by examining the perfor-
mance on downstream tasks, which serves as the utility indicator
of the encoder; The second part uses membership inference attack,
a widely used privacy attack as the privacy metric, to measure the
privacy risks of the encoder. To answer RQ2, we evaluate bench-
marks of membership inference attacks on a series of encoders to
obtain the attack performance on them, and we summarize how
different attacks leverage different information to perform attacks.

3.1 Overview of the Evaluation Mechanism
We present the evaluation mechanism in Figure 1. Specifically, it
consists of two parts: the utility measurement part and the privacy
measurement part. Before we detail the two parts, we introduce
the threat model in this paper.
Threat model. We consider that there is a victim who owns a
self-supervised learning model, which is referred to target model.
There is also an adversary who has only black-box access to the
target model. That is, the adversary can send query data examples
to the target model and receive model outputs. The adversary’s
goal is to infer the private information about the training dataset of
the target model. For membership inference attacks in this paper,
the attacker is to predict whether a given data sample was in the
training dataset or not.

Given the defined threat model, we now detail the utility mea-
surement and privacy measurement in the evaluation mechanism.
Utility measurement: To measure the utility of encoder mod-
els, we consider that the victim holds an unlabeled private dataset
T𝑝 and uses a specific contrastive learning frameworkM for self-
supervised training. After the training process, a pre-trained en-
coder model E is obtained, which can be used for transfer learning
in downstream tasks. The encoder E(·) takes as input an image
sample 𝑥 and outputs its high-dimensional feature vector 𝑣 in the

Figure 1: An illustration of the evaluation framework. The
framework consists of two parts: a utility measurement part
for evaluating the model performance and a privacy mea-
surement for evaluating the model’s privacy risks.

representation space. This helps improve the performance of down-
stream tasks during transfer learning. We use the performance of E
on downstream tasks as a measure of the encoder model’s feature
extraction capability.
Privacymeasurement: Following [31, 38, 51], we consider that the
adversary can access a partial training dataset T𝑎 ⊂ T𝑝 . Formally,
the adversary’s goal is to determine whether a target sample 𝑥 was
used to train the encoder model E or not, i.e., whether 𝑥target ∈ T𝑝
or not. In this paper, we consider the standard membership in-
ference game where we pick the target sample from the training
dataset with 50% probability. To comprehensively measure the pri-
vacy risks of the target encoder, the adversary leverages a series of
membership inference methods A that use different attack signals
or features to construct the attack model. We use the performance
of the attack model on the target encoder E as its privacy risk met-
ric. Intuitively, a better membership inference attack performance
means the encoder is less private.

3.2 Target Contrastive Learning Models
In this paper, we concentrate on the contrastive learning models
of the MoCo series, including the MoCo-v1 [20], MoCo-v2 [6], and
MoCo-v3 [8]. The MoCo series progressively refined its framework
to enhance the feature extraction capabilities and demonstrate out-
standing performance across multiple visual tasks. These models
have been successfully applied to various encoder architectures,
including Convolutional Neural Networks (CNNs) [21] and Vision
Transformers (ViTs) [10]. The core idea of MoCo is to pull together
different augmented views of the same image (positive samples)
while pushing apart the features of different images stored in themo-
mentum dictionary (negative samples). We note that there are other
contrastive learning models such as SimCLR [5] and BYOL [14] etc.
In this paper, we do not select them because MoCo’s progressive
refinement facilitates our organized and systematic evaluation of
the influence between model complexity and privacy leakage to
answer RQ1. Below, we summarize the major improvements in
architectural design, loss optimization objectives, and dictionary
maintenance strategies across the different versions of MoCo.
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MoCo-v1 is the foundational framework of the MoCo series, which
consists of three core components: An image encoder (𝑓 ), a momen-
tum encoder (𝑓𝑚), and a dynamic dictionary (Γ). The image encoder
𝑓 is responsible for generating feature vectors for an augmented
input, while the momentum encoder 𝑓𝑚 , updating at a slower rate
using a momentum update strategy, is responsible for generating
key vectors for another augmented input. The dynamic dictionary Γ
maintains a queue to store key vectors produced by the momentum
encoder for inputs from previous mini-batches.

Specifically, given a mini-batch of 𝑁 inputs, MoCo-v1 generates
two augmented versions, 𝑥q and 𝑥k, for each input 𝑥 . These aug-
mented inputs are processed by 𝑓 and 𝑓𝑚 , to produce a query vector
𝑞𝑥 and key vector 𝑘𝑥 respectively:

𝑓 (𝑥) = Pred.(E(𝑥)),
𝑞𝑥 = 𝑓 (𝑥q),
𝑘𝑥 = 𝑓𝑚 (𝑥k),

(1)

where Pred.(·) is a linear layer that goes end to end with E(·)
(i.e., serves as the pretext task in Figure 1). The parameters of
image encoder 𝑓 are optimized using a contrastive loss function
(InfoNCE loss [17]), while the parameters of momentum encoder
𝑓𝑚 are updated using a momentum-based update rule as follows:

ℓ (𝑥) = − log exp(sim(𝑞𝑥 , 𝑘𝑥 )/𝜏)
exp(sim(𝑞𝑥 , 𝑘𝑥 )/𝜏) +

∑
𝑧∈Γ exp(sim(𝑞𝑥 , 𝑧)/𝜏)

, (2)

𝜃k ←𝑚𝜃k + (1 −𝑚)𝜃q, (3)

where sim(·, ·) denotes the cosine similarity function, 𝜏 is the tem-
perature parameter, and𝑚 controls the update speed of the momen-
tum encoder, which is typically set to 0.999. MoCo-v1 dynamically
updates the dictionary by removing the oldest batch of key vec-
tors and adding newly generated ones after each mini-batch train-
ing iteration. This mechanism ensures continuous optimization by
maintaining a diverse and up-to-date set of negative samples in the
dictionary.
MoCo-v2 is the second framework of theMoCo series refined based
on Moco-v1. Firstly, it adopted stronger data augmentation strate-
gies, such as multi-scale cropping and color jittering. Secondly, it
replaces the single fully connected layer in Pred. with a two-layer
multilayer perceptron (MLP). Experimental results demonstrated
that this modification produces representations better suited for
more transfer learning tasks, enabled MoCo-v2 to achieve per-
formance on multiple unsupervised learning benchmarks closely
approached of supervised methods.
MoCo-v3 is the SOTA framework of the MoCo series, which is
further refined by introducing significant adjustments in the model
framework, loss function, and dictionary maintenance. Firstly, in
terms of the model framework, which is the primary focus of RQ1,
the image encoder 𝑓 now consists of three components: the back-
bone network E, a projection head Proj., and a prediction head
Pred.. In contrast, the momentum encoder 𝑓𝑚 is composed of only a
backbone network E and a projection head Pred., where Pred. and
Proj. are all constructed using fully connected layers, normalization
layers, and stacked ReLU activation functions,{

𝑓 (𝑥) = Proj.(Pred.(E(𝑥))),
𝑓𝑚 (𝑥) = Pred.(E(𝑥)) . (4)

Additionally, there are also changes in the loss function and
dictionary maintenance strategy. Instead of maintaining a large dic-
tionary Γ, MoCo-v3 uses all non-self samples within the mini-batch
as negative samples for loss computing. Under this configuration,
given two augmented versions 𝑥1 and 𝑥2 of each input 𝑥 , there
would be two pairs of output from 𝑓 and 𝑓𝑚 respectively, denoted
by query vectors 𝑞1, 𝑞2 and key vectors 𝑘1, 𝑘2 respectively:

𝑞𝑖 = 𝑓 (𝑥𝑖 ), 𝑘𝑖 = 𝑓𝑚 (𝑥𝑖 ), 𝑖 = 1, 2. (5)

In the framework of MoCo-v3, the contrastive loss is then com-
puted as follows:

ℓ (𝑥1) = − log
exp(sim(𝑞1, 𝑘+2 )/𝜏)

exp(sim(𝑞1, 𝑘+2 ))/𝜏) +
∑
𝑧∈𝑥−2 exp(sim(𝑞1, 𝑧)/𝜏)

,

ℓ (𝑥2) = − log
exp(sim(𝑞2, 𝑘+1 )/𝜏)

exp(sim(𝑞2, 𝑘+1 ))/𝜏) +
∑
𝑧∈𝑥−1 exp(sim(𝑞2, 𝑧)/𝜏)

,

L(𝑥) = ℓ (𝑥1) + ℓ (𝑥2),
(6)

where 𝑥− denotes non-self samples within the same mini-batch,
and L(𝑥) represents the final optimization objective used to update
𝑓 . The momentum encoder 𝑓𝑚 is still updated in the same manner
using equation (3) (obviously, updating E and Pred. only). Through
these adjustments, MoCo-v3 achieves much better performance
on many downstream tasks and is more suitable for the ViT type
backbones.
Why MoCo series are selected. The MoCo series have progres-
sively evolved fromMoCo-v1 to v3. Innovations such as momentum
updates, dynamic dictionaries, the upgrade of prediction head mod-
ules, and the introduction of projection head modules have not only
significantly improved the performance of pre-trained encoders
but also expanded their applicability to more types of backbone.

Meanwhile, they facilitate our organized and systematic evalua-
tion of the influence between model complexity (contrastive learn-
ing framework and backbone architecture) and privacy leakage in
encoder models, helping us answer RQ1.

3.3 Benchmarks of Membership Inference
Attacks

In this section, we present an overview of a suite of membership
inference attacks proposed in prior studies [11, 30, 31], including
EncoderMI [30], SD-MI [11], and Feature-based MI [31]. These
attacks serve as the privacy risk evaluation foundation for assessing
the target models’ privacy leakage.
Feature-based MI. In existing works of membership inference
attacks on contrastive learning models, one of the most common
attack methods is feature-based MI (referred to as Fe-MI). When
targeting classification models, attackers can use the confidence
scores or class labels directly as the attack signal for membership in-
ference [39], and there are numerous studies [31, 38] having widely
demonstrated its effectiveness against classification models. How-
ever, previous research [11, 30] suggests that the feature vectors
output by encoder models primarily serve as representations and
lack specific semantic information. Consequently, directly using
these feature vectors for binary classifier training could not achieve
effective attack performance as in classification models.
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To comprehensively explore the potential membership infer-
ence attack signal and privacy risks faced by encoder models, we
consider Fe-MI as a baseline in the evaluation experiments. Counter-
intuitively, as we will show in Section 3.5, our experimental results
demonstrate that this method can also achieve successful inference
attacks against encoder models in some attack scenarios.

The adversary directly collects the feature vectors 𝑣 through the
target encoder’s API to form an attack dataset, and uses a simple
neural network as the attack model (denoted by 𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 ), which
is detailed as follows:

I(𝑥) = Attacker(𝑣𝑥 ). (7)

Similarity-based MI. In addition to feature-based MI, there are
some MI attack methods specifically designed for encoder mod-
els, which typically rely on similarity between feature vectors to
construct the attack model. In this paper, we use two representa-
tive attack methods as baselines for evaluation: EncoderMI [30]
and SD-MI [11]. We will refer to them as similarity-based MI for
simplification.
EncoderMI is the first membership inference attack method de-
signed for contrastive learning pre-trained encoders. It leverages
the inherent characteristics of contrastive learning optimization
objectives, wherein contrastive learning tends to generate similar
feature vectors for different augmented views of one input.

To perform membership inference, EncoderMI first generates 𝑛
augmented views of a given image 𝑥 using the same data augmen-
tation strategies as the target encoder’s training. These augmented
views are denoted as {𝑥1, 𝑥2, . . . , 𝑥n}. Subsequently, these views are
used to query the model API and produce the corresponding fea-
ture vectors 𝑉𝑥 = {𝑣1𝑥 , 𝑣2𝑥 , . . . , 𝑣n𝑥 }. As for a specific target sample
𝑥 , EncoderMI computes an attack feature based on the pairwise
similarities of the vectors in 𝑉𝑥 as follows:

𝑆𝑖𝑔(𝑥) = {sim(𝑣𝑖𝑥 , 𝑣
𝑗
𝑥 ) | 𝑖, 𝑗 = 1, 2, . . . , n, 𝑗 > 𝑖}, (8)

where sim(·, ·) represents the cosine similarity. EncoderMI then
sorts the resulting n · (n − 1)/2 similarity scores, and uses these
sorted 𝑆𝑖𝑔(𝑥) as the attack signal to train an inference model, which
is usually a simple binary classifier as follows:

I(𝑥) = Attacker(𝑆𝑖𝑔(𝑥)) . (9)

SD-MI is another similarity distribution-based membership infer-
ence attack against Re-ID models (Person Re-Identification), which
is a type of representation learning, whose training objective is
similar to contrastive learning. Re-ID targets optimizing an encoder
to map the features of paired (or grouped) image samples as closely
as possible while ensuring that the feature mappings of unpaired
(or different groups of) image samples remain distinct.

Specifically, SD-MI first randomly selects anchor images𝑋anchors
to construct a reference dataset, and query E(·) with anchors to cre-
ate an ordered set of feature vectors𝑉anchor = {𝑣1anc, 𝑣2anc, . . . , 𝑣𝑛anc}.
Subsequently, the similarity between target image features 𝑣𝑥 and
these ordered anchor features 𝑉anchor is calculated as a similarity
distribution of the target image, which serves as the attack signal
of SD-MI. The formulation is as follows:

𝑆𝑖𝑔(𝑥) = [dist(𝑣𝑥 , 𝑣1anc), dist(𝑣𝑥 , 𝑣2anc), . . . , dist(𝑣𝑥 , 𝑣𝑛anc)], (10)

where dist(·, ·) represents the Euclidean distance between two fea-
ture vectors. SD-MI then feeds this similarity distribution 𝑆𝑖𝑔(𝑥)
into a binary attack classifier for membership inference.

To further enhance the attack performance, SD-MI introduces a
mechanism named Anchor Selector, which assigns weights to the
similarity distribution 𝑆𝑖𝑔(𝑥) based on the target sample’s feature
vector 𝑣𝑥 . By assigning different weights, it enhances the privacy
leakage caused by 𝑆𝑖𝑔(𝑥) and enables a significant attack improve-
ment compared to the EncoderMI. The complete SD-MI consists of
two modules as follows:

I(𝑥) = Attacker(𝑆𝑖𝑔(𝑥) ⊙ Selector(𝑣𝑥 )), (11)

where ⊙ denotes the Hadamard product.
Summary of baseline attacks. The three baseline attack methods
are selected for a comprehensive and rigorous evaluation of the
privacy risks of encoder models. They respectively represent three
different attack mechanisms where each of them considers a differ-
ent type of attack signal for leaking the information of the training
data: (1) the encoder model’s output vector 𝑣 itself; (2) the similarity
between outputs of the same sample; (3) the similarity of the tar-
get sample with auxiliary datasets. Using such baseline attacks for
evaluation helps us to answer RQ2: they enable a comprehensive
analysis and comparison of the performance across different attack
signals for membership inference against encoder models.

3.4 Experimental Setting
Datasets. We select three commonly used datasets in membership
inference attack research for experimental evaluation: CIFAR-10,
CIFAR-100, and Tiny-ImageNet. These datasets encompass different
categories and complexities, effectively satisfying the requirements
of our experimental evaluation. As Table 1 shows, we assume the
target model is pre-trained with a privacy dataset (20k samples),
and tested with a test dataset (10k samples). On the other hand, an
adversary uses an attack dataset composed of 2k samples from the
privacy dataset and 2k from the test dataset separately. And there
is another inference test dataset that is used to evaluate the attack
performance, composed of 8k samples from the privacy dataset and
8k from the test dataset disjointed with the attack dataset.
• CIFAR [24]: The CIFAR-10 dataset contains 60,000 color im-
ages divided into 10 categories, with each image having a
resolution of 32×32×3. Similarly, the CIFAR-100 dataset con-
tains 60,000 color images but with an extended 100 categories,
and the images maintain the same resolution of 32×32×3.
• Tiny-Imagenet [26]: This dataset consists of 200 categories,
with a total of 100,000 training images and 10,000 test images.
Each image has a resolution of 64×64×3.

Targetmodels.Concretely, we consider four widely used backbone
networks as the feature extractors, i.e., ResNet-18, ResNet-50 [21],
ViT-Small, and ViT-Base [10] in three versions of the MoCo model.
Following the setting in [42], we set the size of the momentum dic-
tionary to 16,384 in MoCo-v1 and MoCO-v2, which differs from the
official setting of 65,536. This choice is made because a dictionary
size that is as large as possible while still smaller than the total
training sample size is more conducive to achieving better training
performance. Furthermore, following similar settings in [30, 51],
all target models were trained for 2,000 epochs.
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Table 1: Default implementation details in the experiments.

Model Train-Set Test-Set Batch-Size Epoch Other

MoCo-v1&2 T𝑝 (20k samples) (None) 256 2k 16,384 for Γ
MoCo-v3 T𝑝 (20k samples) (None) 512 2k (None)

𝐾-NN test T𝑝 (20k samples) T𝑡𝑒𝑠𝑡 (10k samples) (None) (None) 𝑘=20

EncoderMI (2𝑘 ∈ T𝑝 ) ∪ (2𝑘 ∈ T𝑡𝑒𝑠𝑡 ) (8𝑘 ∈ T𝑝 ) ∪ (8𝑘 ∈ T𝑡𝑒𝑠𝑡 ) 128 200 10 augmentation
SD-MI (2𝑘 ∈ T𝑝 ) ∪ (2𝑘 ∈ T𝑡𝑒𝑠𝑡 ) (8𝑘 ∈ T𝑝 ) ∪ (8𝑘 ∈ T𝑡𝑒𝑠𝑡 ) 128 200 2k anchors
Fe-MI (2𝑘 ∈ T𝑝 ) ∪ (2𝑘 ∈ T𝑡𝑒𝑠𝑡 ) (8𝑘 ∈ T𝑝 ) ∪ (8𝑘 ∈ T𝑡𝑒𝑠𝑡 ) 128 500 (None)

Attackmodel.We follow the existing works of EncoderMI [30] and
Fe-MI to use a simple three-layer multilayer perceptron structure
with ReLU activation functions as the attack model, training with
200 epochs. For SD-MI [11], we adopt the official model design and
attack settings, which include an Anchor Selector composed of two
linear layers with ReLU activation functions, and an attack model
consisting of five linear layers with Tanh activation functions.
Metrics. To measure the utility of the target model, we follow
the contrastive learning works and use the 𝐾-NN clustering algo-
rithm [45] to classify the testing samples based on their representa-
tive vectors. A higher accuracy of the 𝐾-NN clustering algorithm
means a better feature extraction capability of the encoder. To mea-
sure the privacy risks of the encoder model, we use the attack
performance of the membership inference attack as a metric. To
quantify the attack performance, we use four widely used metrics of
accuracy, precision, recall, and TPR@0.1%FPR, as the membership
inference attack task is essentially a binary classification problem.
Encoder training. We use the official public code for training
MoCo-v1, MoCo-v21, and MoCo-v32, 𝐾-NN clustering3, and mem-
bership inference attack4. Additional training configurations are
presented in Table 1.

3.5 Experiment Results
We first address the RQ1: “Do encoders trade off the utility of
the model with privacy risks? Put differently, does a higher utility
model suffer more from privacy leakage?” To answer this question,
we present the 𝐾-NN classification performance (i.e., encoder’s util-
ity) and membership inference attack performance (i.e., encoder’s
privacy) against the encoders trained on CIFAR-100 in Table 2.

Table 2 indicates that as the encoder model becomes progres-
sively more sophisticated, the classification accuracy of the 𝐾-NN
algorithm on the representative vectors of the testing samples im-
proves correspondingly. This reflects an enhancement in the feature
extraction capability of the encoders, i.e., the encoder’s utility is
better from MoCo-v1 to MoCo-v3. However, alongside the increase
in model utility, a notable rise in membership inference accuracy,
precision, recall and TPR@0.1%FPR can also be observed. For exam-
ple, when the target encoder is trained using the simplest MoCo-v1
framework, the accuracy of all attack methods is close to 50% (i.e.,
random guess), indicating that the adversary cannot infer the mem-
bership information. As the MoCo framework is progressively up-
graded, the accuracy of all membership inference methods increases
against target models trained with MoCo-v2 and MoCo-v3. This
reveals that while more complex contrastive learning frameworks

1MoCo-v1&v2: https://github.com/facebookresearch/moco
2MoCo-v3: https://github.com/facebookresearch/moco-v3
3InstDisc: https://github.com/zhirongw/lemniscate.pytorch
4SD-MI: https://github.com/Vill-Lab/2023-AAAI-SDMIA
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Figure 2: An illustration of the performance-privacy trade-off
when the encoder model becomes progressively more sophis-
ticated. Not only a complex contrastive learning framework,
but an advanced backbone leads a higher utility and privacy
risks.

enhance feature extraction capabilities, they also lead to higher
risks of privacy leakage.

To further support the finding that the encodermodels trade their
utility for privacy risks, we conduct the experiments on a series of
backbone feature extractors, i.e., the ResNet family of ResNet18 and
ResNet50 and ViT family of ViT-Small and ViT-Base, across MoCo-
v1, MoCo-v2, and MoCo-v3. The experimental results are provided
in Figure 2. In each plot in Figure 2, the x-axis represents the model
utility and the y-axis represents the model’s privacy risks. A data
point closer to the bottom right indicates a model with both high
utility and privacy preservation. As we can see, the more advanced
contrastive learning framework can indeed improve the feature
extraction capabilities of the encoders, while the risk of privacy
leakage of the model is also increased. In addition, an interesting
finding is that as the complexity of backbone architecture increases
(e.g., replacing ResNet18 to ResNet50, or replacing ViT-Small to
ViT-Base), the 𝐾-NN classification accuracy improves, while the
membership inference accuracy exhibits a simultaneous increase.
This further suggests that the encoder model inherently trades
utility for heightened privacy risks.

Takeaway 1: In contrastive learning, encoder models trade off
the utility with privacy risks. An encoder model having a higher
utility usually leads to higher privacy leakage risks.

We now address the RQ2: “How do attackers leverage the in-
formation produced by the target model to perform membership
inference attacks on the target sample?” To answer this question,
we compare the performance of different attacks, where each uses
different information as the membership signal. We present the
experimental results of the three attacks on different feature extrac-
tors trained with MoCo-v1, MoCo-v2, and MoCo-v3 in Figure 3.

From Figure 3, we find that Fe-MI not only achieves highly com-
petitive attack performance under several target training settings
but even performs on par with (and in some cases exceeded) the
other two similarity-based methods under the MoCo-v3 framework.
Note that Fe-MI directly leverages the feature vector of the target
sample for membership inference, while EncoderMI and SD-MI
convert the feature vector into the similarity information for the
attack. The experimental results suggest that the feature vector of

https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco-v3
https://github.com/zhirongw/lemniscate.pytorch
https://github.com/Vill-Lab/2023-AAAI-SDMIA
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Table 2: The 𝐾-NN classification accuracy and membership inference attack performance against different encoder models
using a different feature extractor.

Backbone Model 𝐾-NN Accuracy
Encoder-MI SD-MI Fe-MI

Accuracy Precision Recall TPR@0.1%FPR Accuracy Precision Recall TPR@0.1%FPR Accuracy Precision Recall TPR@0.1%FPR

ResNet-18
MoCo-v1 0.427 0.500 0.500 0.522 0.100 0.510 0.513 0.407 0.105 0.505 0.506 0.373 0.103
MoCo-v2 0.523 0.592 0.595 0.576 0.147 0.674 0.685 0.644 0.217 0.618 0.608 0.660 0.155
MoCo-v3 0.521 0.747 0.744 0.755 0.291 0.716 0.755 0.640 0.309 0.755 0.770 0.728 0.336

ViT-Small
MoCo-v1 0.416 0.518 0.520 0.453 0.109 0.494 0.494 0.510 0.098 0.508 0.508 0.810 0.104
MoCo-v2 0.509 0.515 0.517 0.432 0.107 0.514 0.513 0.551 0.105 0.509 0.509 0.503 0.104
MoCo-v3 0.562 0.622 0.606 0.699 0.154 0.658 0.616 0.841 0.161 0.788 0.792 0.782 0.382
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Figure 3: An illustration of the three attacks on different
feature extractors trained with MoCo frameworks. Fe-MI
achieves a notable performance, indicating that the feature
vector as the membership signal itself can be leveraged for
MIA directly.

the target sample in the representative space contains abundant in-
formation for facilitating the membership inference attacks. Unlike
similarity-based membership signals using the feature vector as
the “side” information, the feature vector as the membership signal
itself can directly be leveraged by neural networks for conducting
the attack.

However, the Fe-MI method still requires training a deep neural
network as the binary attack classifier, which can be computa-
tionally expensive. This limitation motivates us to design a new
membership inference attack directly using the feature vector while
outperforming the Fe-MI method.

Takeaway 2: The feature vector of the target sample and sim-
ilarity scores based on the feature vector can be leveraged by
the adversary for a successful membership inference. Compared
to similarity scores-based membership inference, directly using
the feature vector as the membership inference signal shows a
consistent competent attack performance in various settings.
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Figure 4: An illustration of the mean L2-norm value of the
feature vectors in members and non-members in ResNet-
50 trained by MoCo-v2. An obvious distinction of L2-norm
values between the two classes of samples can be observed
in the training process.

4 Our Attack
In this section, we introduce a new membership inference attack,
which directly leverages the feature vector of a target sample to
inferring its membership status. Before we go to the details of our
proposed attack, we ask the following research questions (RQs):
• RQ3: How to design a membership inference attack that can
directly use the feature vector of the sample as the member-
ship signal but without training a binary attack classifier?
• RQ4: What are the advantages of the proposed attack com-
pared to existing methods?

Answering these two questions is crucial for understanding our
attack mechanism and can shed light on how easily encoder models
may leak their private information about their training data.

4.1 Motivation of the Attack
We first address RQ3: “How to design a membership inference
attack that can directly use the feature vector of the sample as the
membership signal but without training a binary attack classifier?”
To answer this question, we first introduce the intuition of the
attack and then present the design details of the attack method.

As we observed in RQ2, the feature vector of the target sample
contains abundant information formembership inference.We take a
further look at this vector by examining its magnitude. Specifically,
we calculate the L2-norm value of the vectors of members and
non-members throughout the training epochs using the ResNet50
feature extractor in the MoCo-v2 framework. As shown in Figure 4,
we notice a notable difference in the mean L2-norms of feature
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Figure 5: An illustration of the 𝑝-norm of feature vectors produced by official pre-trained ResNet-50 with MoCo-v2 framework.
There is a significant difference in the feature vector magnitude distributions between the two classes, wherein the behavior
aligns closely with the observation highlighted in Figure 4.

vectors between member and non-member samples. As the training
progressed, the L2-norm of feature vectors of non-member samples
consistently surpassed those of members.

To further support this observation, we conduct experiments on
the official pre-trained ResNet-50 encoder model released by MoCo
team5. The publicly available pre-trained ResNet-50 encoder was
trained using the ImageNet dataset under the MoCo-v2 framework.
Thus, we collect 10k random training samples from ImageNet and
10k samples from CIFAR-100 (serving as the non-member samples
of the model). We query the pre-trained ResNet-50 encoder and
thus can obtain their feature vectors. Subsequently, we calculated
four different 𝑝-norms of the features. As shown in Figure 5, we
observe that there is a significant difference in the feature vector
magnitude distributions between the member and non-member
samples. In addition, the 𝑝-norms value distributions of member
and non-member samples can be approximated as two indepen-
dent Gaussian distributions. This behavior aligns closely with the
differences highlighted in Figure 4.

These observations in Figure 4 and Figure 5 motivate us to con-
struct a simple but effective membership inference attack method,
named Embedding Lp-Norm Likelihood Attack (LpLA).

4.2 Design of the Attack
In this section, we consider an adversarywho holds a partial ground-
truth member dataset T𝑎 ⊂ T𝑝 and can only obtain the output 𝑣 of
target encoder E through black-box API. In default, we set 𝑝 = 2 by
default, while showing the effectiveness of the attack using other
norms in Section 4.5.
Feature extraction (Stage 1). Firstly, for each sample (partial
ground-truth member) held by the adversary 𝑥 ∈ T𝑎 , the corre-
sponding output feature vectors can be collected through black-box
queries to the target encoder. These feature vectors will be used
in Stage 2 to estimate a 𝑝-norm distribution for the member class.
On the other hand, to construct a non-member dataset T𝑎𝑛 , the
adversary can simply use random generation techniques to create
samples matching the input format of the target model, such as gen-
erating random pixel images. These samples are likewise queried
through E in a black-box manner and subsequently collected for
estimating a distribution of the non-member class.

5moco-v2-800ep-pretrain.pth.tar: https://dl.fbaipublicfiles.com/moco/moco_
checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar

Likelihood estimation (Stage 2). Based on the previous findings,
we assume that the 𝑝-norms of the feature vectors for all member
and non-member samples follow two independent Gaussian distri-
butions. To perform a membership inference attack on the victim
sample under this assumption, the adversary needs to estimate
these two normal distributions using a sufficient number of random
samples collected like Stage1:

𝐿(𝑥) = ∥vx∥𝑝 =
𝑝

√︃
𝑣
𝑝

1 + 𝑣
𝑝

2 + · · · + 𝑣
𝑝
𝑛 ,

𝐿m ∼ N
(
𝜇member, 𝜎

2
member

)
,

𝐿nm ∼ N
(
𝜇non-member, 𝜎

2
non-member

)
,

(12)

where vx denotes a 𝑛 dimension feature vector output from the
encoder with input 𝑥 . And 𝜇member, 𝜎member represent the mean
and standard deviation of the 𝑝-norm values of member samples,
respectively, 𝜇non-member and 𝜎non-member are the corresponding
parameters for non-member samples (To simplify notation, we
adjusted some subscripts in this section: 𝜇m represents 𝜇member,
and 𝜇nm represents 𝜇non-member etc.).

Then, The adversary can estimate these parameters of two dis-
tributions based on the available 𝑝-norm values of member and
non-member samples:

𝜇m =
1
𝑘

𝑘∑︁
𝑖=1

𝐿(𝑥𝑖 ), �̂�2m =
1

𝑘 − 1

𝑘∑︁
𝑖=1
(𝐿(𝑥𝑖 ) − 𝜇m)2 ,

𝜇nm =
1
𝑞

𝑞∑︁
𝑗=1

𝐿(𝑥 𝑗 ), �̂�2nm =
1

𝑞 − 1

𝑞∑︁
𝑗=1

(
𝐿(𝑥 𝑗 ) − 𝜇nm

)2
,

𝑥𝑖 ∈ T𝑎, 𝑥 𝑗 ∈ T𝑎𝑛 .

(13)

Inferring membership (Stage 3). Finally, for a given victim sam-
ple 𝑥 with 𝑝-norm value 𝐿(𝑥), the adversary can calculate a poste-
rior probability of membership using Bayes’ theorem:

Lm (𝑥) =
1√︃

2𝜋𝜎2m
exp

(
− (𝐿(𝑥) − 𝜇m )

2

2𝜎2m

)
,

Lnm (𝑥) =
1√︃

2𝜋𝜎2nm
exp

(
− (𝐿(𝑥) − 𝜇nm )

2

2𝜎2nm

)
,

𝑃 (m | 𝑥) = Lm (𝑥)𝑃 (m)
Lm (𝑥)𝑃 (m) + Lnm (𝑥)𝑃 (nm)

.

(14)

https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
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Table 3: Attack accuracy (TPR@0.1%FPR) against encoders.

Dataset Model Encoder-MI SD-MI Fe-MI LpLA(ours)

CIFAR-10
MoCo-v1 0.494(0.098) 0.501(0.101) 0.497(0.099) 0.496(0.099)
MoCo-v2 0.607(0.146) 0.718(0.253) 0.692(0.201) 0.723(0.259)
MoCo-v3 0.960(3.181) 0.914(1.045) 0.910(1.075) 0.907(0.790)

CIFAR-100
MoCo-v1 0.512(0.104) 0.507(0.105) 0.506(0.102) 0.496(0.098)
MoCo-v2 0.627(0.173) 0.783(0.326) 0.750(0.318) 0.765(0.415)
MoCo-v3 0.946(0.919) 0.915(2.377) 0.953(2.216) 0.968(1.795)

Tiny-Imagenet
MoCo-v1 0.507(0.103) 0.496(0.099) 0.498(0.099) 0.501(0.103)
MoCo-v2 0.583(0.142) 0.777(0.384) 0.754(0.347) 0.769(0.436)
MoCo-v3 0.965(3.368) 0.979(5.858) 0.976(4.285) 0.982(3.279)

Assuming there are equal prior probabilities 𝑃 (m) = 𝑃 (nm) = 0.5,
the decision criterion simplifies to:

𝑃 (m | 𝑥) > 0.5 ⇐⇒ Lm (𝑥) > Lnm (𝑥) . (15)

Takeaway 3: Themagnitude of the feature vector frommembers
and non-members in encoders can be significantly different,
which can be leveraged for membership inference.

4.3 Experiment Results of the Proposed Attack
We now address RQ4: “What are the advantages of the proposed
attack compared to existing methods?” To answer this question,
we first compare the effectiveness of our proposed attack against
the baseline attacks of Encoder-MI, SD-MI, and Fe-MI to show the
effectiveness of our attack while with the lightweight advantage.
Then, we compare our attack with baseline attacks under the prac-
tical setting where the adversary has a partial training dataset and
only black-box API query access to the target encoder model. This
aims to show the applicability advantage of our attack over the
baseline attacks.
Attack effectiveness.We first show the MI attack performance
against encoders in Table 3, which is conducted on the ResNet-50
backbone across three different datasets and MoCo frameworks.
As we can see, LpLA demonstrates sufficiently competitive attack
performance across various dataset experiments. Unfortunately,
LpLA, like existing methods, is unable to effectively infer member-
ship status in the MoCo-v1 stage. However, under the MoCo-v2
framework, LpLA starts to show attack performance on par with
classic feature-based and similarity-based methods. As the con-
trastive learning framework is further updated, we can observe that
LpLA achieves the best attack performance on both CIFAR-100 and
Tiny-Imagenet.

Additionally, an interesting phenomenon is observed that in
several attack scenarios where LpLA does not achieve the best per-
formance, SD-MI shows higher accuracy than other attack methods
under the MoCo-v2 framework, and it’s later surpassed by LpLA
when the framework is updated to MoCo-v3. During the update,
there is indeed a certain characteristic of the output features that
was more straightforwardly captured by LpLA, thus bridging the
gap between LpLA and similarity-based attacks.

We also implement our LpLA against the official pre-trained
encoder for validation. Due to different training settings, we did not
compare the experimental results with those based on our locally

Table 4: LpLA against official pre-trained ResNet-50.

Model Epochs p=0 p=1 p=2 p=3

MoCo-v2(official) 800 0.732 0.779 0.688 0.681
MoCo-v3(official) 300 0.535 0.539 0.609 0.674

trained target models. Table 4 shows that LpLA also achieves strong
attack performance against the official pre-trained encoder.
Attack applicability. Compared to existing attack approaches,
LpLA does not require training neural networks as the binary at-
tack classifier. Consequently, LpLA demands far fewer samples for
constructing an attack model compared to neural network-based
methods (e.g., EncoderMI, SD-MI, and Fe-MI). This is because LpLA
directly estimates the likelihood of 𝑝-norm of feature vectors, lever-
aging statistical methods to infer differences in data distributions.
Moreover, LpLA is computationally efficient. Traditional neural
network-based attacks often involve higher resource demands for
optimization, sometimes requiring additional queries and similar-
ity calculations, resulting in significant computational costs. In
contrast, LpLA only involves 𝑝-norm computation and distribution
estimation after queries, making it lightweight and computationally
efficient. The fewer attack requirements make LpLA more applica-
ble in different attack scenarios than the existing baseline attacks.

We qualitatively compare our attack with existing baseline at-
tacks in Table 5. As we can see, LpLA reduces both sample and
computational requirements, lowering the technical barrier for
the adversary while broadening the applicability of membership
inference attacks. We also quantitatively evaluate the attack perfor-
mance of the scenarios where the number of member samples and
model query access is limited, as follows.
•Attack with limited member samples. In real-world scenarios,
an adversary often faces various limitations due to insufficient
information about the target model, such as the inability to obtain
enough ground-truth member samples, which can significantly
weaken the attack’s effectiveness. Furthermore, in the context of
MIA against encoder models, because the size of unlabeled datasets
used for self-supervised training is often enormous, it’s difficult
to collect enough shadow datasets that are identically distributed
to the training set to train shadow models. Therefore, the number
of ground-truth member samples that an adversary can obtain
becomes a significant challenge.

Figure 6 shows the attack performance achieved by different
attacks with different numbers of ground-truth member samples.
The experimental results indicate that among all attack methods,
LpLA demonstrates sufficiently competitive MIA performance (in
most cases being the best attack method, and in a few cases being
the second-best method), showing the superiority of LpLA in attack
effectiveness. Additionally, the experimental results also show that
when the size of the ground-truth member set held by the adversary
decreases, the attack effectiveness also tends to decline. However,
among these four methods, LpLA exhibits the most robust attack
performance, as even when the data proportion is significantly
reduced, the degree of decline in LpLA’s attack effectiveness is still
the smallest.
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Table 5: Qualitatively comparison between our attack with existing baseline attacks.

Attacker Ground-truth samples Query volumes Computational requirement Other

Encoder-MI 2 ∗ 2𝑘 2 ∗ 10 ∗ 2𝑘 Similarity & MLP-training Data augmentation
SD-MI 2 ∗ 2𝑘 2 ∗ 2𝑘 + 2𝑘 (𝐴𝑛𝑐ℎ𝑜𝑟𝑠) Similarity & Two-MLP-training Auxiliary dataset
FE-MI 2 ∗ 2𝑘 2 ∗ 2𝑘 MLP-training (None)

LpLA(Ours) 2 ∗ 2𝑘 2 ∗ 2𝑘 L𝑝-norm & Likelihood-estimation (None)
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Figure 6: An illustration of the attack performance with lim-
ited attack dataset. There is a significant decreasing trend of
EncoderMI and Fe-MI when gradually reducing the scale of
the attack dataset, while SD-MI and LpLA perform relatively
more robustly.
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Figure 7: An illustration of the attack performance with lim-
ited API query volumes. There is only LpLA performs robust
and efficiently under gradually limited API query volumes,
while other attacks perform insufficiently.

• Attack with limited query volumes. Furthermore, we also
consider that in real-world scenarios, an adversary often has to
bear expensive query costs when accessing black-box models, or a
privacy-aware victim may limit the number of API queries. There-
fore, we further consider the attack performance that each method
can achieve under different query scale settings when the adversary
faces a limited number of queries to the target model.

Figure 7 shows the attack performance achieved when four dif-
ferent attack methods are used with a limited number of queries. It
can be observed that when the API query numbers are severely lim-
ited, existing methods exhibit a more severe decline trend compared
to the cases when the number of ground-truth member samples is
limited. It’s because when using multiple data augmentation sam-
ples or anchors to construct similarity-based attack features, more
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Figure 8: An illustration of the performance of LpLA against
ResNet-50 + MoCo-v2&3 with different 𝑝. There is an insuffi-
cient performancewhen 𝑝 = 0, and shows similarly satisfying
performance with other 𝑝.

API query costs need to be paid, leading existing methods to be
more easily affected by the constrained conditions in this scenario.

On the other hand, LpLA can still achieve effective attack per-
formance, under conditions where the adversary’s knowledge is
highly limited. This is because when LpLA conducts inference at-
tacks, it’s based on likelihood estimation, and mainly relies on the
differences in data statistical distribution. Thus, LpLA estimating
the distributions with likelihood does not require as many sam-
ples as training a neural network, which allows it to demonstrate
stronger adaptability in knowledge-limited scenarios.

Takeaway 4: Being lightweight, the proposed attack, LpLA, has
comparable attack performance against existing baseline attacks.
In scenarios where only a limited number of member samples
and query volumes are available, LpLA outperforms existing
baseline attacks on encoder models.

4.4 Ablation
We further conduct ablation study experiments to evaluate how
the choice of 𝑝-norm and distribution likelihood can affect the
effectiveness of the proposed attack.
𝑝-value selection. Figure 8 shows the results of LpLA on ResNet-
50 pre-trained in MoCo-v2 and MoCo-v3 frameworks with various
𝑝-values. By comparing the attack performance across norms from
p=0 to 5, we can see that using the L0-norm of feature vectors yields
highly suboptimal attack results. However, as the 𝑝-value increases,
the attack accuracy improves correspondingly. When the 𝑝-value
reaches 2, the attack accuracy saturates, showing no significant
improvement with further increases in 𝑝 .
Distribution likelihood estimation. Figure 9 shows the results
when simply use 𝑝-value as a threshold to perform MIA against
encoder pre-trained in MoCo-v2 and MoCo-v3 frameworks with
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Figure 9: An illustration of the comparison between using 𝑝-
norm for estimation and threshold-based MI against ResNet-
50 + MoCo-v2&3. LpLA shows a significant advantage over
threshold-based attack, because LpLA uses not only the in-
formation of 𝑝-norm’s mean, but uses estimated variance
which helps attack more accurately and robustly.

various 𝑝-values. We perform a simple threshold-based MI here,
where the mean 𝑝-value of member and non-member is calculated
like equation (13). Comparing LpLA and naive threshold-based
MI, it can be observed that likelihood estimation helps capture the
information of attack signals more accurately and robustly.

4.5 Limitations
Despite LpLA demonstrating superior attack performance and ro-
bustness across diverse datasets and model architectures, several
limitationswarrant consideration: (1) The resilience of LpLA against
existing defensemechanisms (e.g., differential privacy or adversarial
regularization) remains unexamined, leaving its robustness under
countermeasures uncertain; (2) Experiments are confined to image
datasets (e.g., CIFAR, Tiny-ImageNet), with no validation on text or
audio modalities, limiting insights into cross-domain applicability.
Future work will assess defenses’ impacts on SSL’s performance-
privacy trade-off and expand research to text/audio modalities to
ensure generalizable analysis.

5 Conclusion
We delved deeply into the issue of membership privacy in this
work, especially focusing on the issue of membership inference
attacks against encoder models within contrastive learning. It com-
prehensively reveals the impact of different model architectures on
the leakage of membership information through both theoretical
analysis and experimental validation. Based on this, we propose
a membership inference attack method named LpLA (Embedding
Lp-Norm Likelihood Attack), which is motivated by the different
distributions of member and non-member’s embedding 𝑝-norm
values. Experimental results indicate that more complex model ar-
chitectures, while enhancing the feature extraction capabilities of
encoder models, also exacerbate the risk of membership privacy
leakage. Furthermore, this research demonstrates the effectiveness
of using the 𝑝-norm of feature vectors in MI attacks. LpLA not only
matches or even surpasses existing methods in performance, but
most importantly, LpLA exhibits greater robustness, especially un-
der conditions where the adversary’s knowledge is severely limited.

This research not only broadens the scope of investigations into
membership privacy issues in contrastive learning but also lays
a solid foundation for future studies on privacy protection. It is
hoped that this work will inspire more attention to the privacy risks
associatedwith self-supervised learningmodels, such as performing
privacy attacks and implementing protections across a wider range
of deep learning models.
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