
ar
X

iv
:2

50
6.

05
73

4v
1 

 [
cs

.C
R

] 
 6

 J
un

 2
02

5

There’s Waldo: PCB Tamper Forensic Analysis
using Explainable AI on Impedance Signatures

Maryam Saadat Safa*, Seyedmohammad Nouraniboosjin*, Fatemeh Ganji, and Shahin Tajik
Worcester Polytechnic Institute, Worcester, MA, USA
{msafa, snouraniboosjin, fganji, stajik}@wpi.edu

Abstract—The security of printed circuit boards (PCBs) has
become increasingly vital as supply chain vulnerabilities, including
tampering, present significant risks to electronic systems. While
detecting tampering on a PCB is the first step for verification,
forensics is also needed to identify the modified component.
One non-invasive and reliable PCB tamper detection technique
with global coverage is the impedance characterization of PCB’s
power delivery network (PDN). However, it is an open question
whether one can use the two-dimensional impedance signatures
for forensics purposes. In this work, we introduce a novel PCB
forensics approach, using explainable AI (XAI) on impedance
signatures. Through extensive experiments, we replicate various
PCB tamper events, generating a dataset used to develop an
XAI algorithm capable of not only detecting tampering but also
explaining why the algorithm makes a decision about whether a
tamper event has happened. At the core of our XAI algorithm is
a random forest classifier with an accuracy of 96.7%, sufficient
to explain the algorithm’s decisions. To understand the behavior
of the classifier In the decision-making process, we utilized the
SHAP values as an XAI tool to determine which frequency
component influences the classifier’s decision for a particular class
the most. This approach enhances detection capabilities as well as
advancing the verifier’s ability to reverse-engineer and analyze
two-dimensional impedance signatures for forensics.

Index Terms—Hardware Trojans, PCB, PDN, Scattering
Parameters, Deep learning, Explainable AI, Tamper Detection.

I. INTRODUCTION

Modern PCBs, designed with high-density interconnects,
tight component spacing, and multiple routing layers, are
increasingly in demand; however, the ability of manufacturers
to meet these requirements has diminished, leading to a reliance
on a globalized supply chain. This shift has led to an increased
reliance on potentially compromised third-party components,
contract manufacturers, and electronic design automation
(EDA) tools, raising concerns about the integrity and security of
the final products. This globalization intensifies the challenge of
maintaining security and integrity, as traditional detection and
protection mechanisms are bypassed, making PCBs susceptible
to tampering, hardware Trojans, and counterfeit components.

A reliable, cost-effective method for detecting such tampering
attacks is impedance characterization of the PCB’s power
delivery network [1]–[5]. Since any tampering with the PCB
or IC package results in changes to the equivalent impedance
of the power delivery network (PDN), characterizing it over a
range of frequency bands reveals if the physical integrity of the
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system has been violated. To characterize the PDN’s impedance
over frequency, S-(scattering) and Z-(Impedance) parameters
are deployed. While detecting tampering on a system is an
essential initial step in verification, it is equally important
to identify the modified component and its location within
the system. Currently, S-/Z-parameters are primarily used for
detection. However, to determine the root cause of deviations in
these parameters, additional inspection methods, such as visual
inspection, are necessary. These supplementary inspections
can be both costly and time-consuming. Hence, it would be
ideal if the verifier could reverse-engineer and disassemble
the two-dimensional S-/Z-parameters for forensic purposes.
However, modern multi-layered PCBs present significant
challenges due to the complex electromagnetic interactions
among components (e.g., traces, vias, and planes), leading to
coupled equations that are difficult to resolve manually. Hence,
we ask the following research question: To what degree is it
possible to reverse engineer the S-/Z-parameter signatures to
determine the root cause and location of tamper events?
Our Contribution: The paper aims to take a step towards
enabling the verifier to reverse-engineer and disassemble the
two-dimensional (amplitude and frequency) S-/Z-parameters for
forensic analysis and enabling a more profound understanding
of the impact of tampering. Hence, we present a novel
approach for PCB forensics by applying explainable AI (XAI)
to impedance signatures. Through extensive experiments, we
simulate various PCB tamper events, creating a dataset to
develop an XAI algorithm that not only detects tampering but
also explains the reasoning behind its decisions. The core of our
XAI algorithm is a random forest classifier, achieving 96.7%
accuracy, sufficient for providing explainability. To understand
the classifier’s decision-making process, we used SHAP values,
enabling us to identify which frequency components have the
most influence on the classifier’s decisions for specific classes.
This method improves tamper detection while enhancing
the ability to reverse-engineer and analyze two-dimensional
impedance signatures for forensic applications.

II. BACKGROUND

A. Power Delivery Network

The Power Delivery Network (PDN) plays a critical role
in providing a stable supply voltage to various modules on a
PCB. The PDN consists of various electronic components and
interconnects, including voltage regulator modules, decoupling
capacitors, and power rails on the chip. While at lower
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Fig. 1: Hardware signature extraction using S-parameters.

frequencies, the PDN impedance is dominated by the
voltage regulator, at higher frequencies, the off-chip/on-chip
components contribute most to it. The low impedance of the
PDN makes it highly sensitive to even minor modifications [3].

B. Scattering Parameter

Scattering (S-) parameters characterize linear electrical
networks when subjected to radio frequency signals. These
parameters are expressed as transmission and reflection
coefficients, representing the ratios of transmitted and reflected
power to the input power across various frequencies. PCB’s
PDN can be modeled as a single-port network. S-parameters
can be obtained through simulations or measured directly in
experimental setups using a Vector Network Analyzer (VNA),
which accurately determines the network’s response over a
range of frequencies. The VNA injects sine waves into the PCB
at each frequency sample, capturing the reflective response from
the PDN, see Fig. 1. The relationship between the impedance
of the device under test (DUT), ZDUT , and the reflection
coefficient, S11, is expressed by ZDUT = Z0(1 + S11)/(1 −
S11), where Z0 represents the characteristic impedance of the
cables connecting to the VNA.

III. TAMPER DETECTION

A. Threat Model

Attacker: In our tampering threat model, we assume that
attackers can physically tamper with the PCB at any stage of
its life cycle, including fabrication, integration, distribution, and
repair. The adversary has the capability to modify the PCB by
adding, removing, replacing, or altering passive components1.
Such tampering may lead to counterfeits, clones, malicious
functions, or embedded backdoors. Tamper detection using this
method should ideally be conducted before deployment in the
field. However, it is also feasible to detect tampering during the
PCB’s lifecycle, particularly after distribution. To achieve this,
the PCB must be disconnected from the system to measure its
|S11| signature and verify whether it still matches the genuine
signature. Nevertheless, aging effects can cause gradual changes
in the signature over time, making it necessary to study and
simulate aging to continuously update the genuine dataset.
verifier: Tamper detection is performed by the verifier in two
distinct phases: the training phase and the testing phase. In the
training phase, it is assumed that the verifier has full access to

1Tampering with active components is beyond the scope of this work.

the trusted PCB’s design files, including the netlist, layout, and
bill of materials (BOM). These files are utilized by the verifier to
construct a detailed model of the PCB. This model is designed
to account for potential tampering scenarios by simulating the
PCB’s behavior under various modifications. The simulation
process can be automated to generate different tampering
scenarios and extract the corresponding signatures efficiently.
This simulated data is then used to train a machine learning
model, e.g., an RF classifier, which learns to differentiate
between the signatures of genuine and tampered PCBs.

In the testing phase, the verifier conducts the verification
process on the suspicious PCB. The verifier has the PCB under
test and has access to a VNA to measure the |S11| parameter.
In this treat model, the verifier can use simulated signatures for
training. To implement this, the pattern of a measured golden
signature should be compared with a simulated one using
similarity metrics, e.g., Dynamic Time Warping (DTW) [6].
Afterward, the obtained metric should be used to align all
simulated signatures accordingly, ensuring consistency with the
measured data before they are fed into the training model.

B. Tamper Detection and Explanation

Our methodology focuses on leveraging |S11| signatures,
which provide detailed insights into the electrical behavior of
PCBs, including impedance, signal reflections, and potential
defects. This information is crucial for understanding the
circuit layout and identifying anomalies that may indicate
tampering. While simple circuits can be assessed with analytical
equations, the complex electromagnetic interactions within
modern multi-layered PCBs necessitate the use of more
advanced analysis techniques.

The dataset containing the |S11| signatures is a complex
multivariate time series dataset. This is due to the fact that the
impedance, and consequently, |S11| parameter, are spread over
consecutive frequency samples; hence, the sample points in each
signature are not independent of one another. Statistical methods
often rely on assumptions of linearity and independence and are,
thus, not suitable [7]. Each signature exhibits multi-dimensional
interactions across data points collected one after another with
a given frequency step, which can reflect the characteristics
of a multivariate time series. Moreover, with high-dimensional
time series data, traditional statistical approaches may fail to
effectively capture the underlying patterns, resulting in weak
predictive performance [8].

Machine Learning (ML) algorithms, on the other hand, are
well-suited for handling complex datasets with large numbers
of data points and multiple interdependent variables [9]. For
instance, models like RFs or Support Vector Machines (SVM)
are specifically designed to uncover non-linear relationships
and complex interactions without requiring strict parametric
assumptions [10]. For our multi-class classification problem,
we chose to train an RF model. While Neural Networks
and other ensemble methods can perform well, especially in
more complex scenarios, RF provides some distinct advantages,
making it particularly well-suited for multi-class classification:
(1) its ability to handle high-dimensional data and large
feature spaces without the risk of overfitting; (2) unlike other



models that may require extensive feature engineering or
dimensionality reduction techniques, RF inherently manages
feature interactions and importance through its ensemble
structure [10]; (3) while CNNs can also capture feature
interactions, especially in data with two-dimensional spatial
relationships like images, they are less suited for datasets
without such structure; (4) its non-parametric nature makes it
resilient to outliers and noisy data, which are often present in
real-world datasets [11]. Moreover, compared to algorithms like
SVM [12] or Neural Networks, RF demands much less effort for
hyperparameter tuning and, thus, less computational power [13].

More importantly, RFs provide interpretability, which is
critical for applications where model transparency is essential.
The model offers straightforward methods to be included in
XAI, making it easier to understand which features most
influence the predictions [14]. This contrasts with models like
deep neural networks, where interpretability is often a challenge
due to the black-box nature of their architecture. The ability to
gain insights into feature contributions helps us to elaborate
more on the primary purpose of this research [10].

C. Explainable AI

SHAP (SHapley Additive exPlanations) is a cooperative
game theoretic approach that explains the output of ML
models [15]. SHAP provides a consistent and interpretable
approach to understanding the contribution of individual
features in ML models. While traditional XAI methods, such
as LIME [16] or feature importance scores, often neglect the
interactions between features, SHAP accounts for all feature
combinations, providing a more comprehensive explanation
[15], [17]. SHAP fairly attributes the contribution of each
feature so that if a feature contributes more to a prediction,
it will always receive a higher importance value compared to
features contributing less [17]. The method’s foundation lies in
the additive feature attribution model, where the prediction is
represented as a sum of contributions from each feature. The
SHAP value ϕi for feature i is defined as:

ϕi =
∑

S⊆N\{i}

|S|! · (|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] ,

where S represents a subset of features, N is the set of all
features, and f is the prediction function. The equation ensures
that each feature’s contribution is fairly distributed based on its
marginal contribution across all possible subsets [17].

IV. DATASET GENERATION

A. Simulation Setup

We used an in-house designed PCB which features three
separate and isolated PDNs labeled 1V8, 3V3, and 5V, along
with six substrate layers. The PCB, constructed from an
FR4 epoxy substrate, comprises 242 components, including
capacitors, resistors, ICs, LEDs, SMA ports, headers, traces,
and vias. This study focuses on the 1V8 PDN, with the J5 port
providing direct access to the PDN under test, see Fig. 2.

We used Ansys SIwave 2023 R2, a 2.5D electromagnetic
(EM) simulation tool that combines the finite element method

Port J5-1V8 PDN

(a) (b)

Fig. 2: (a) Simulated design file of the PCB under test in
ANSYS SIwave depicting the circuitry and port J5 of the PDN
under test (1V8). (b) stacked-up layers.

(FEM) and the method of moments (MOM) [18]. This tool
employs a hybrid solver with a 2D triangular mesh, effectively
managing intricate PCB layouts. To achieve accurate results,
we dynamically link ANSYS SIwave with HFSS.

B. Data Collection

The first step aimed to detect whether a PCB is genuine
or tampered with is to generate datasets for both categories.
One challenge in distinguishing tampered samples from genuine
ones is the impact of manufacturing process variations. These
variations, which refer to deviations in the fabrication process
of semiconductor devices, can lead to differences in the
physical and electrical properties of the components [19].
These variations can be modeled as changes in parasitic
impedance in PCB components, as variations in the dimensions,
materials, and placements of metal traces affect the parasitic
capacitance, inductance, and resistance. Note that real-world
PCB components contain parasitics, causing them to behave
differently compared to their ideal models. For instance, in
addition to exhibiting capacitive behavior, capacitors also
manifest resistive and inductive characteristics, commonly
referred to as Equivalent Series Resistance (ESR) and
Equivalent Series Inductance (ESL), respectively. Resistors,
in addition to their resistive behavior, also exhibit inductive
and capacitive characteristics, known as ESL and Parasitic
Capacitance (CP), respectively. The PDN under test consists
of 36 components, including four different types of capacitors
with part numbers C0603-CAP-ASM, C0402-CAP-ASM-1,
C0805-CAP-ASM, and C0402-CAP-ASM-2, and one resistor
with part number 0402-RES-ASM. For the genuine dataset, we
vary the parasitic values by 10% around their actual values and
10% of the component values to model manufacturing process
variations. The |S11| signature from each simulation is exported
to a CSV file, resulting in a genuine dataset containing 7500
rows of data across 5000 frequency points from 1 MHz to 1
GHz. This dataset is labeled with a class ID of 0.

To create the tampered dataset, we altered the values of
the capacitors and resistors to 10, 100, and 1000 times their
original values. Additionally, we simultaneously varied the
parasitic impedances by 20% around their actual values. This
process resulted in a CSV file containing 7500 |S11| traces
corresponding to tampered PCB samples labeled with a class



TABLE I: Dataset Classes for Multi-Class Tampering
Classification Tasks (G: Genuine, T: Tampered)

Class ID Class Name Value # Traces Description
0 C0603-CAP-ASM-G 10 uF 1500 ±10% C, ±10% ESL and ESR
0 C0402-CAP-ASM-1-G 0.1 uF 1500 ±10% C, ±10% ESL and ESR
0 C0805-CAP-ASM-G 10 uF 1500 ±10% C, ±10% ESL and ESR
0 C0402-CAP-ASM-2-G 2.2 uF 1500 ±10% C, ±10% ESL and ESR
0 0402-RES-ASM-G 470 Ohm 1500 ±10% C, ±10% ESL and CP
1 C0402-CAP-ASM-1-T-ESL 0.1 uF 750 [10,100,1000]*C, ±20% ESL
2 C0402-CAP-ASM-1-T-ESR 0.1 uF 750 [10,100,1000]*C, ±20% ESR
3 C0402-CAP-ASM-2-T-ESL 2.2 uF 750 [10,100,1000]*C, ±20% ESL
4 C0402-CAP-ASM-2-T-ESR 2.2 uF 750 [10,100,1000]*C, ±20% ESR
5 C0603-CAP-ASM-T-ESL 10 uF 750 [10,100,1000]*C, ±20% ESL
6 C0603-CAP-ASM-T-ESR 10 uF 750 [10,100,1000]*C, ±20% ESR
7 C0805-CAP-ASM-T-ESL 10 uF 750 [10,100,1000]*C,±20% ESL
8 C0805-CAP-ASM-T-ESR 10 uF 750 [10,100,1000]*C, ±20% ESR
9 0402-RES-ASM-T-CP 470 Ohm 750 [10,100,1000]*R, ±20% CP
10 0402-RES-ASM-T-ESL 470 Ohm 750 [10,100,1000]*R, ±20% ESL

ID of 1. In multi-class tampering classification, each tampering
attack corresponding to a deviation in the parasitic impedances
of each component part number is labeled with a class ID
ranging from 1 to 10, as illustrated in Table I. In this
classification scheme, class ID 0, along with all the tampered
classes, are included in the dataset. By detecting each class,
we can determine what has occurred on the PCB and identify
which component has been compromised.

C. Effect of PDN Components

During the board simulation and extraction of the |S11|
parameter, it was found that the fundamental resonance
frequency, identified by the lowest magnitude, occurs at 470
MHz and is affected by changes in all circuit components.
According to the literature, the PCB impedance exhibits the
most significant variation at the resonance frequency because
the impedance of the PCB is substantially higher at this
frequency [20]. The impact of each component class on the
dataset depends on the component’s value, quantity in the PDN,
and physical dimensions. These factors determine the extent
of the impact and its location within the frequency domain of
the |S11| signature. Varying the capacitance and ESL values of
the capacitors shifts both the fundamental and local resonance
frequencies. In contrast, altering the resistors value and ESR
primarily affects the amplitude of the |S11| signature, reflecting
its resistive nature. Notably, during feature extraction, the most
significant features or frequency points align closely with those
predicted by the physical analysis of each component class.

The majority of components under test in the PDN are
C0402-CAP-ASM-1 capacitors, each with a capacitance value
of 0.1 uF. Although these are the smallest components, their
large number makes their effects noticeable across the entire
frequency spectrum especially at lower frequencies. In the
PDN under test, a single C0402-CAP-ASM-2 capacitor with
a capacitance of 2.2 uF results in only a minor shift in the
fundamental resonance frequency. Despite this subtle shift, our
model demonstrates a high level of accuracy in detecting these
changes (see Section V).

An interesting observation is that the C0805-CAP-ASM
capacitors, which are the largest physically, primarily influence
local resonance frequencies below the fundamental resonance
frequency when their values and ESL are changed. Specifically,
this effect is observed around 395 MHz, which aligns with
the most important features reported by the feature extraction

(a)                                                                          (b)

Fig. 3: (a) S-parameter traces corresponding to
C0603-CAP-ASM-T-ESL class. (b) S-parameter traces
corresponding to C0805-CAP-ASM-T-ESL class.

process. In contrast, the C0603-CAP-ASM, despite having the
same capacitance values, influences frequencies higher than the
fundamental resonance frequency, due to its smaller physical
dimensions compared to the C0805-CAP-ASM capacitors as
shown in Fig. 3. In this scenario, the local resonance frequencies
that are shifted are approximately 662 MHz and 712 MHz.
The most significant feature numbers for this component
class correspond closely with the affected local resonance
frequencies. This difference arises because smaller capacitors
significantly impact impedance at higher frequencies due to
their smaller physical dimensions, causing resonance at those
higher frequencies [5]. The effects of classes 9 and 10
have been observed across all resonance frequencies, as the
parasitic capacitance and parasitic inductance added to the
circuit both cause shifts in resonances. It is observed that
in some classes, multiple features corresponding to very low
frequencies are particularly important. This can be attributed
to the fact that, in scattering parameter analysis, the effect
of resistance is most pronounced at lower frequencies, which
aligns with changes in the parasitic resistance within these
classes. At lower frequencies, resistive elements dominate the
impedance characteristics, directly affecting the S-parameters.
As the frequency increases, reactive components like inductors
and capacitors begin to have a greater influence, diminishing
the impact of resistance. Therefore, variations in scattering
parameters at lower frequencies are primarily driven by resistive
elements, making these frequencies crucial for understanding
changes in parasitic resistance.

V. RESULTS

A. Experimental Setup

The experiments were conducted on a high-performance
computing system running Ubuntu 22.04.3 LTS with a
6.5.0-44-generic Linux kernel. The system was equipped with
dual Intel(R) Xeon(R) Silver 4216 CPUs, each with 16 cores
and 32 threads, providing a total of 64 logical processors.
The system had 256 GB of RAM. For GPU-accelerated
computations, an NVIDIA RTX A4000 GPU with 16 GB of
dedicated memory was utilized. Our dataset of |S11| signatures
is characterized by 5,000 samples per trace collected over a
frequency range as explained in Section IV-B.



TABLE II: Accuracy of each fold involved in k = 5-fold
cross-validation and the characteristics of the RF trained on
that fold.

Fold Accuracy Minimum depth Maximum depth
1 96.33% 33 49
2 96.83% 34 54
3 96.53% 34 54
4 96.70% 34 50
5 96.70% 35 53

B. Feature Engineering

As described in Section III-B, our multi-class classification
problem is tackled by training an RF model at the core
of XAI. Before training the model, it is tempting to apply
pre-processing techniques to reduce the number of features
needed to enhance training. It might be thought that the
commonly-applied Principal Component Analysis (PCA) would
be beneficial. PCA effectively captured the variance in the
data with a reduced number of components while maintaining
good predictive performance. However, despite these benefits,
using PCA completely confused SHAP. This limitation arises
because each PCA component is a linear combination of
multiple original features, making it impossible to isolate and
interpret the contribution of individual features. Consequently,
this limited our ability to provide clear explanations of feature
importance, essential for understanding the underlying factors
driving model predictions. Another orthogonal idea is to
standardize the features to center the data around the mean and
scale it to unit variance to reduce the impact of the extreme
values. This ensures that the transformed data is less sensitive
to outliers, thereby enhancing the robustness of our ML model.
We applied this transformation before training the model.

C. Model Training

After pre-processing, we trained our RF model by using
5-fold cross-validation. The number of folds (k = 5) is selected
by conducting the commonly applied sensitivity analysis for
2 ≤ k ≤ 10, where the mean accuracy obtained for k is
compared to mean classification accuracy from leave-one-out
cross-validation (LOOCV) on the same dataset. Based on this,
we observed that for k ≥ 5, the sensitivity converges to its
minimum; hence, we chose k = 5. The accuracy for each of
the 5 folds and the characteristics of the RF trained on each fold
are listed in Table II. It can be seen that the variation in accuracy
and characteristics of the RF models is statistically insignificant,
i.e., the trained model is robust. In addition to accuracy, we also
checked the confusion matrices and observed that classes are
being predicted equally well and no classes are neglected by the
model. Note that unknown modifications that were not labeled
during training can be detected as non-genuine; however, the
model cannot determine the exact nature of the changes.

D. Results for XAI through SHAP

To show the contribution of each feature in the classification
task, we calculated the SHAP values of 50 randomly chosen
test samples, i.e., the default value for TreeSHAP implemented
in the SHAP Python package [21]. We also increased the

TABLE III: SHAP values of the most important features

Class ID Most important feature Mean Variance
0 1 MHz -8.18e-5 7.87e-7
1 1MHz 1.04e-5 2.91e-7
2 1MHz 6.29e-6 1.81e-7
3 1MHz 9.89e-6 2.16e-7
4 1MHz 1.01e-5 1.58e-7
5 1.00MHz -8.27e-7 1.14e-7
6 661.87MHz 4.75e-6 1.12e-7
7 661.87MHz 1.59e-5 1.24e-7
8 473.62MHz 1.59e-6 7.54e-8
9 842.93MHz 9.63e-6 1.42e-7

10 845.52MHz 1.4e-5 3.02e-7

number of samples per class to 100 and 200; however, the
results have been the same. Hence to accelerate the analysis,
50 samples per class are employed. This hyperparameter
may affect the output of the explainer, although in our
case, we did not observe any significant change when tuning
that. In figure 4, we present the SHAP values of the four
classes as an example (see the summary of results for all
classes in Table III). This figure illustrates the contribution
of the different features to the prediction of the classes. The
distribution reveals that certain frequencies, such as 1.00 MHz
and 1.2 MHz for the class “Genuine”, have more impacts
on the model’s decision. Clusters of SHAP values show
regions where feature contributions push predictions towards
or away from the “Genuine” outcome. In the “Genuine” class,
the 1.00 MHz, 1.2 MHz, and 2.40 MHz frequencies show
more contributions, with values widely dispersed from zero,
indicating both positive and negative impacts on the prediction.
Similarly, for the C0603-CAP-ASM-T-ESL class, features such
as 705.44 MHz, 847.12 MHz, and 846.92 MHz have significant
spreads, suggesting their strong roles in affecting the model’s
output. The lower plots for C0805-CAP-ASM-T-ESL and
C0402-RES-ASM-T-CP highlight different sets of frequency
features, such as 388.49 MHz and 842.93 MHz, which also
vary in their importance based on their position relative to the
zero impact line. Notably, some frequencies show consistent
impacts across classes, while others affect only some classes.

VI. CONCLUSION

We proposed a novel XAI framework to enable tamper
forensic analysis of PCBs. We formulated tamper detection
as a supervised ML task. To enhance the robustness of our
approach, we simulate various tampering scenarios to generate
two-dimensional impedance signatures, which are then used
to train an RF model. This enables accurate classification
of different tamper types and precise localization of tamper
events. While we validated our claims by considering replacing
counterfeit components, the method is applicable to component
insertion or removal as well. Our method not only offers highly
accurate detection but also explains which characteristics of the
signatures contribute to classifying the tamper types, and thus,
it reduces the need for time-consuming manual inspections.
Future Work. Applying explainability to chip-level tamper
detection is an interesting future research direction. While it
has been shown that chip-level tamper detection using PDN
impedance analysis is feasible [22], further investigation is still



Fig. 4: SHAP values: Each dot represents a sample, with its position on the x-axis indicating the impact of a particular signature
feature collected at a frequency (e.g., 4.20 MHz, 2.40 MHz) on the prediction. The sign of the values on the x-axis indicates
whether a sample influences the prediction positively or negatively. The color gradient from blue to red shows the feature value,
where blue is for lower values and red for higher values.

required to explore whether the proposed scheme in this work
is extendable to chip-level tamper events. Finally, using the
on-chip VNAs, [5] to perform explainable tamper detection is
another major future research direction, as it removes the need
for an external VNA and human intervention.
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