
SoK: Are Watermarks in LLMs Ready for Deployment?

Kieu Dang1, Phung Lai1, NhatHai Phan2, Yelong Shen3, Ruoming Jin4, Abdallah Khreishah2, My Thai5

Abstract—The deployment of a proprietary LLM raises signifi-
cant intellectual property (IP) violation risks. An adversary can
replicate an LLM by using input prompt-the LLM’s output
pairs to train a surrogate model. It leads to financial setbacks for
the LLM’s service provider. A practical solution for this problem
is LLM watermarking, in which the service provider implants
an imperceptible pattern (watermark) into the LLM’s outputs
such that it can detect the watermark from the adversary’s
generated text without affecting the LLM’s utility. While various
watermarking techniques have emerged to mitigate these risks,
it remains unclear how far the community and industry have
progressed in developing and deploying watermarks in LLMs.

To bridge this gap, we aim to develop a comprehensive
systematization for WMs in LLMs by 1) presenting a detailed
taxonomy for WMs in LLMs, 2) proposing a novel IP classifier
to explore the effectiveness and impacts of WMs on LLMs
under both attack and attack-free environments, 3) analyzing
the limitations of existing WMs in LLMs, and 4) discussing
practical challenges and potential future directions for WMs in
LLMs. Through extensive experiments, we show that despite
promising research outcomes and significant attention from
leading companies and community to deploy WMs, these
techniques have yet to reach their full potential in real-world
applications due to their unfavorable impacts on model utility of
LLMs and downstream tasks. Our findings provide an insightful
understanding of WMs in LLMs, highlighting the need for
practical WM solutions tailored to LLM deployment.

1. Introduction

Large language models (LLMs), such as ChatGPT,
Gemini, Claude, and Cohere [1]–[4], have demonstrated
remarkable capabilities in text generation, machine trans-
lation, and knowledge understanding tasks [5]–[9]. They
effectively mimic human writing behaviors and generate
complex and coherent outputs from the input text, making
it challenging to determine whether a text is authored by
humans or generated by LLMs. Due to the high demands
of computational resources and human efforts required for
training LLMs [10], [11], these models are commonly offered
as a service through application programming interfaces
(APIs), typically requiring users to pay or subscribe [12],
[13]. Although users cannot access to the model weights or
architectures of these commercial LLMs, this restriction does
not ensure the safety of these models. Malicious actors can
intentionally mimic cloud-hosted LLM behaviors to offer
1SUNY-Albany, 2New Jersey Institute of Technology, 3Microsoft, 4Kent State University,
5University of Florida. Contact: vdang@albany.edu

cheaper services [14], [15]. To conduct this service stealing,
an adversary can query a set of inputs through an LLM’s API
to retrieve the corresponding outputs. Then, the adversary
uses these input-output data to effectively fine-tune their local
model. When the number of queries is sufficient to gather
enough input-output data within a particular domain, the
adversary can steal the cloud-hosted LLM behaviors in that
domain [16]–[18]. Consequently, these concerns underscore
significant risks regarding the intellectual property (IP) rights
of the cloud-hosted proprietary LLMs [19].

To address such risks, service providers, i.e., the cloud,
have employed many strategies including watermarks, en-
cryption, limited model exposure via APIs, and differential
privacy [9], [20], [21]. Among them, watermarks (WMs)
[9], [22]–[25] have emerged as a practical tool for LLMs
due to its ability to ensure traceability, protect IP, and detect
misuse. Typically, WMs embed imperceptible patterns into
the LLM outputs directly. These patterns can be used to
trace the original text or determine whether the generated
text from an LLM is watermarked, facilitating the detection
of unauthorized use. To watermark outputs, the cloud can
introduce bias into logits of token generations to favor a
set of specific tokens or alter the token sampling process of
LLMs. Once an WM is applied, the cloud can use IP checkers
to determine if a set of outputs from a suspicious model is
watermarked. This allows the cloud to assess whether the
suspicious model has been trained or fine-tuned using the
cloud’s watermarked outputs. Typically, IP checkers analyze
the tokens and perform statistical tests to check if the values
exceed certain thresholds, indicating that the cloud-hosted
LLM has been imitated.

WMs are effective in detecting IP violations. However,
WMs can be susceptible to WM removal attacks [26], [27] or
spoofing attacks [27]. These attacks either require significant
computational resources for additional training to paraphrase
the generated text of cloud-hosted LLMs or demand numer-
ous queries to learn the distribution of WMs. While several
studies have surveyed WMs on LLMs [28]–[30], no research
has systematically and extensively explored the effectiveness
of WMs on LLMs, particularly regarding the impact of WMs
on LLM utility and IP checkers, under both attack and attack-
free environments. In addition, the practicality of WMs has
not been rigorously assessed. Therefore, in this work, we
aim to develop a comprehensive systematization of WMs in
LLMs, with the following contributions:

• We present a taxonomy for WMs that effectively miti-
gate model stealing attacks.

• We propose a novel cross-model IP classifier to explore
the effectiveness and impacts of WMs on LLMs, given

ar
X

iv
:2

50
6.

05
59

4v
1 

 [
cs

.C
R

] 
 5

 J
un

 2
02

5



both attack and attack-free environments.
• We suggest well-suited applications and limitations of

different WMs in LLMs.
• We conduct extensive experiments to demonstrate the

effectiveness and practicability of WMs in LLMs.
• We discuss limitations, challenges, barriers, and future

directions for WMs in LLMs.
Our study provides key insights into using WMs for protect-
ing LLMs, addressing concerns related to their deployment
and IP protection. Through extensive experiments across
different WMs, LLMs, and IP checkers, our highlighted find-
ings are: (1) WMs significantly enhance the uniqueness and
distinctiveness of LLM outputs, showing their effectiveness
in strengthening IP protection and reducing unauthorized
usage; (2) The impact of WMs on model utility can be
moderate to significant, varying based on WM types and
LLM architectures, potentially influencing their suitability
for real-world applications; and (3) Attacks targeting WMs
impose a notable cost on model utility. In conclusion, due to
their unfavorable impacts on model utility, WMs in LLMs
are not ready for real-world deployments, highlighting the
urgent need to improve WM resilience while maintaining
model utility.

2. Large Language Models and Risks

2.1. Large Language Models

Large language models (LLMs) [2], [31]–[33] are ad-
vanced deep learning models, pre-trained on vast datasets
with a large number of parameters, enabling them to perform
a wide range of natural language processing (NLP) tasks,
such as text classification, text and code generation, and
question answering.

Given a vocabulary V consisting of words or word frag-
ments, referred to as tokens, a sequence x = {x(i)}Ti=1 ∈ VT

represents a prompt of T tokens, and y = {y(i)}Ki=T+1
denotes the tokens generated by an LLM in response to the
prompt x (T and K are natural numbers). An LLM model θ
is trained to maximize the probability of the token sequence
y, conditioned on the prompt x, as follows:

P (y|x) = ΠT
i=1P (y(i)|x(1), x(2), · · · , x(i−1)) (1)

In generation tasks, the model predicts each token in an
autoregressive manner [31], similar to Eq. 1, to generate a
complete text sequence.

The most widely used LLM architectures are based on
transformers [34] and incorporate a self-attention mechanism.
This mechanism includes a stack of multi-head attention
and feed-forward layers. Positional encoding with distinct
matrices for different positions ensures the model retains
sequence information without relying on recurrent networks.
Based on transformer architectures, existing LLMs can be
divided into three main categories (Fig. 1), as follows. (1)
Encoder-only models, such as BERT [35], RoBERTa [36],
XLNet [37], or XLM [38], capture word context and are
well-suited for tasks that require a deep understanding of

Figure 1: Categories of Large Language Models.

input data, such as sentence classification, sentiment analysis,
and information extraction. These models are trained bidirec-
tionally, predicting masked words using both preceding and
following words. (2) Decoder-only models, such as GPT and
its family [39], operate unidirectionally, predicting the next
token based on context in an auto-regressive manner. They
are designed for text generation tasks without a separate
encoding phase. Lastly, (3) Encoder-decoder models such as
T5 [40], BART [41] or MASS [42] combine both encoder and
decoder components for tasks that involve understanding and
generating data, such as text summarization and translation.
2.2. Risks in LLMs

Due to the high demands of computational resources
and human efforts required for training LLMs [10], [11],
LLMs are commonly offered as a service through APIs,
typically requiring users to pay or subscribe [12], [13]. Table
6 (Appendix) presents a comprehensive overview of popular
LLM APIs, highlighting their features, advantages, and con-
straints. According to the Artificial Analysis leaderboard [43],
OpenAI and Microsoft are currently the leading providers
in the LLM API market.

Although users may not have access to the model weights
or architectures via APIs, this restriction does not guarantee
the model’s safety. In addition, as LLMs become more
widespread, the risk of their misuse for malicious purposes
is increasing. Potential misuses of LLMs include several
significant threats, as follows. First, LLMs can be exploited
to generate false information or carry out harmful actions,
such as crafting phishing emails, hate speech, or biased
content to manipulate public opinion or amplify harmful
narratives [44]. Second, LLMs can generate deepfake data,
making manipulated media more convincing and enabling
sophisticated scams or damage to reputation [45]. Third,
adversaries can use LLMs to mimic individuals or organiza-
tions in text-based communications, facilitating theft, fraud,
or financial crimes [46]. Fourth, LLMs can assist in writing
malicious code or crafting evasion techniques to bypass
detection systems, posing a significant cybersecurity threat
[47]. More importantly, malicious actors may intentionally
exploit LLM behaviors by imitating cloud-hosted models to
offer cheaper services or engage in model-stealing attacks,
further amplifying the aforementioned risks. Such attacks
not only threaten the security of proprietary models but also
expose users to fraudulent or unethical services [14], [15].



Figure 2: Model Stealing Attacks [48].

2.3. Model Stealing Attacks

In model stealing attacks, adversaries aim to imitate the
behavior of a cloud-hosted model denoted as θ, by construct-
ing their local model θadv through fine-tuning on input-output
pairs obtained by querying the cloud-hosted model [49]. The
goal is to bypass IP checkers while maintaining the adversary
model’s utility, which is comparable to that of the original
model. To launch the attacks (Fig. 2), adversaries start with
a set of N task-specific prompts {xi}Ni=1, sending them to
the cloud to obtain outputs {yi}Ni=1. These pairs are used to
fine-tune θadv to mimic the behaviors of θ.

Model stealing attacks have various malicious and uneth-
ical uses, especially in LLMs. Common usages include 1)
imitating proprietary models to resell or compete with the
original cloud, undercutting legitimate providers and offering
cheaper but unlicensed services, 2) bypassing service fees, 3)
reversing engineering and exploiting vulnerability, as stolen
models can be analyzed to identify weaknesses and potential
vulnerabilities, and then exploit them, 4) violating privacy by
inferring if sensitive data was used in training, 5) enabling
malicious behaviors, such as spreading disinformation, biased
content, harmful outputs, and 6) compromising IP checkers
by copying the IP embedded in the model’s architecture,
training data, and fine-tuning processes. These attacks pose
a significant threat to the security, revenue, and ethical
deployment of LLMs, underscoring the need for developers
to implement robust defenses mitigating these risks.

3. Taxonomy of WMs and IP Checkers

To defend against model stealing attacks, recent works
have highlighted the effectiveness and feasibility using WMs
[9], [25], [50]. WMs embed a unique and detectable pattern
into LLM outputs to trace and identify the origin of the text. A
WM can be represented as a triple (G,W,D), where G is the
WM generator, which takes a prompt x and a WM function
W to produce a watermarked output ywm = G(x,W), and
D is a WM detection function, also known as an IP checker,
to determine whether a given text is watermarked or not.

3.1. WM Generators

WM generators typically introduce perturbations to the
probability distribution of LLMs during output generation.
Depending on W and types of perturbations, WMs can
be classified into several research directions, as shown
in Fig. 3. First, WM during logits generation approaches
partition tokens into green and red lists and add bias into
logits to favor tokens from the green list. The tokens
in the watermarked output are thus sampled with higher
probability from the green list, which is determined by
a pseudo-random generator seeded by the input prompt
[9]. These methods are flexible and effective for tracking
watermarked outputs but may impact the semantic meaning
of the output and are vulnerable to removal attacks [26].
Second, WM during sampling process methods alter LLM
text generation’s sampling process of next tokens or whole
sentences without altering the underlying distribution of
output. [25], [77]. While they are easy to integrate and
allow for simple detection, they can be susceptible to
attacks such as text modifications, randomness, and sentence
reordering, especially in token-based methods. Third, WM
during LLM training methods embed WMs by training LLMs
with specific triggers, knowledge distillation, reinforcement
learning, or by modifying the LLM architecture [79], [80],
[84], [85], [87]. These methods offer inherent robustness
but are often associated with implementation complexity
and increased computational overheads. In addition, several
miscellaneous WM approaches, such as mixed methods,
multiple-output generation with selection, or prompt-based
techniques, offer enhanced robustness and adaptability [88]–
[91]. However, these methods come with trade-offs, including
higher computational costs and potential vulnerabilities to
watermark removal attacks.

3.2. WM IP Checkers

After watermarking the LLM outputs, the clouds can use
IP checkers to determine whether an adversary model has
utilized watermarked outputs to replicate the behavior of
the cloud-hosted model. This is typically done by checking
whether the generated text from the model is watermarked.
IP checkers are generally divided into two main approaches.
First, some IP checkers categorize each token as green or red
and then apply statistical tests, such as z-scores, p-values, or
Jensen-Shannon divergence, to assess whether the proportion
of green tokens exceeds a specified threshold. If this threshold
is met, the text is flagged as watermarked [9], [50], [59].
Second, other IP checkers assess the alignment between
generated tokens and pseudo-random sequence, checking
whether each token matches the corresponding value in the
sequence. Depending on a WM technique, the cloud will
apply its specific detection function to assess the output. If the
statistical tests or alignment scores exceed certain thresholds,
the output is considered watermarked. If the proportion of
detected watermarks is sufficiently high, the model may be
flagged as potentially stolen.



Watermarking
for LLMs

WM During
Logits Generation

Mechanism: KGW [9], SIR [50], DiPmark [51], SemaMark [52], Adaptive WM [53],
Unbiased WM [54], TSW [55], WatME [56], GumbelSoft [57], MPAC [58], UPV [23], Unigram [59],
Topic-based WM [60], REMARK LLM [61], SWEET [62], CTWL [63], EWD [64], X-SIR [65],
SW [66], CodeIp [67], OW [68], Stylometric WM [69], NS-WM [70].
Strengths: Flexibility and non-intrusive WM, Effectively track watermarked text.
Weaknesses: Possible impact on semantic meaning, Vulnerable to removal attacks.

WM During
Sampling Process

Token-based
Sampling

Mechanism: Undetectable WM [24], EXP [25], EDRW [71],
EXPGumbel [72], PDW [73], Bileve [74], STA-1 [75], SynthID [76].
Strengths: Can be incorporated easily and less noticeably, Simple
detection, checking the alignment between tokens and the sampling pattern.
Weaknesses: Can be vulnerable to simple text modifications,
Negative impact of randomness to generated output.

Sentence-based
Sampling

Mechanism: SemStamp [77], k-SemStamp [78].
Strengths: More resilient to small edits.
Weaknesses: Require more phases, resources and complex algorithms to
train; Limited scope: Works only when appropriately trained;
Susceptible to sentence-reordering attacks.

WM During
LLM Training

Trigger-based
Watermarking

Mechanism: CodeMark [79], CoProtector [80], Hufu [81], WLM [82],
PLMmark [83].
Strengths: Controlled via trigger, Custom response.
Weaknesses: Ineffective without trigger, Potential misuse if discovered.

Global
Watermarking

Mechanism: Distillation WM [84], RLWM [85], EmMark [86].
Strengths: Universal and integrated protection.
Weaknesses: Complicated to train, May affect model utility.

LLM Architecture
Watermarking

Mechanism: Cross-Attention WM [87].
Strengths: Robust to synonym substitution and paraphrasing.
Weaknesses: Challenge in balancing WM robustness with the
quality of the generated text, Require fine-tuning, adding complexity to
the model’s deployment.

Miscellaneous

Mixed Method
Watermarking

Mechanism: Duwak [88], Waterpool [89].
Strengths: Higher robustness, Improved detection.
Weaknesses: Increased computational overheads, Potential
interference between methods.

Multiple-Output
Watermarking

Mechanism: WaterMax [90].
Strengths: Low quality impact.
Weaknesses: Slower generation, More compute.

Prompt-Based
Watermarking

Mechanism: ModelShield [91].
Strengths: Adaptive, High text fidelity.
Weaknesses: Increased computational overheads, Vulnerable to
WM removal attack.

Figure 3: Taxonomy of Watermarking Mechanisms for LLMs.

3.3. Characteristics of an Effective WM

A variety of WMs in LLMs have been introduced, while
effective WMs in LLMs share key characteristics: First, WMs
should minimally impact text quality, ensuring they are not
noticeable to users. Quality can be assessed using metrics like
perplexity, BLEU score, or accuracy on tasks like MMLU or
sentiment classification [92]. Second, WMs must be easily
detectable by IP checkers, enabling reliable origin tracing
with high detection rates. Third, WMs should be robust to
WM removal attacks that attempt to remove watermarked
patterns to bypass detection. By satisfying these characteris-
tics, WMs in LLMs can effectively balance security, model

utility, and usability in real-world deployments.

3.4. Attacks against WMs

WM Removal Attacks [26], [27], [93], [94]. The
attacker’s goal is to remove embedded signatures and patterns
from a watermarked text using paraphrasing techniques such
as synonym replacement, sentence reordering, or sentence
matching to minimize detectable traces of the WM. These
attacks aim to generate semantically equivalent but syntacti-
cally modified text to evade WM detection mechanisms. In
addition, some attacks [26] propose leveraging a high-quality
oracle model to preserve output quality while removing the



Figure 4: US LLM Market Trend from 2020 to 2030 [97].

WM, making detection even more challenging. However,
these approaches often require additional training to effec-
tively rephrase sentences or entire paragraphs, which can
introduce subtle shifts in semantic meaning, degrade text
quality, and significantly increase computational complexity.

Spoofing Attacks [27], [48], [84], [95], [96]. The
attacker aims to produce text that is falsely detected as
watermarked, thereby nullifying the value of WMs [27].
These attacks undermine the integrity of the WM by making
it difficult to distinguish between legitimate watermarked
content and counterfeited outputs. These approaches may
harm the reputation of model providers, for example, if
inappropriate or harmful text contents are falsely attributed
to them. However, these attacks work only with certain types
of WMs, and to be successful, they typically require a large
number of queries to collect sufficient watermarked text for
estimating the WM’s distribution and reconstructing the WM
rules, associating with computational overheads.

4. Exploring Effectiveness of WMs in LLMs

In this section, we focus on addressing the key question
of this study: Are WMs in LLMs Ready for Deployment?
To provide a comprehensive answer, we first investigate
the integration of WMs in LLM productions and discuss
the existing and potential challenges of adapting them for
practical use. In addition, we conduct an in-depth evaluation
of the effectiveness of WMs across different LLMs by
introducing a novel cross-model IP classifier and assessing
how WMs impact the model utility of LLMs and their
downstream tasks. By analyzing these aspects, we seek
to determine whether WMs can be implemented without
noticeably compromising the model utility of LLMs, which
is a critical consideration in determining whether WMs are
genuinely ready for widespread deployment.

4.1. WMs in LLM Productions and Challenges

LLMs have gained significant attention recently, with
leading companies developing and deploying them in their
products and services. Table 1 illustrates real-world appli-
cations of various LLMs across industries. It highlights

how these companies have integrated AI technologies like
OpenAI’s GPT, Microsoft’s Azure, Meta’s LLaMA, Google
Cloud AI, Amazon Comprehend, and Anthropic’s Claude
to enhance their services. These examples demonstrate the
broad impact of LLMs in areas such as customer service,
content optimization, document processing, and software
development, driving innovation and efficiency across sectors.
In addition, as shown in Fig. 4, the market for LLM
production grew from 2020 to 2022, reaching 781.1 million,
with substantial growth expected by 2030, highlighting the
increasing importance of LLMs across various industries.

Given the increasing trend in the LLM market, along with
potential risks associated with their deployment in real-world
scenarios, as discussed in Section 2, it is essential to utilize
WMs to protect IP of LLM outputs. However, the adoption
of WMs in LLM productions remains limited. For instance,
OpenAI has developed a WM system for ChatGPT but has
opted not to implement it due to concerns over ambiguous
potential penalties for users and feedback suggesting that
service usage might decline if WMs were applied [116].
The uncertainty from providers and users around adopting
WMs in LLMs stems from a lack of understanding of
WM effectiveness and how different LLMs interact with
IP checkers for a given WM.

However, uncovering the true effectiveness of WMs in
LLMs and such interactions presents several challenges.
First, while LLMs and WMs are widely used, the impact of
WMs on output quality and IP protection remains unclear,
particularly regarding how WMs affect model utility and
detection by IP checkers. Second, when a cloud service
receives outputs from different LLMs, both with and without
WMs, how the cloud classifies which model generated the
output and how WMs support this classification. Third, it is
unclear which WM should be applied to a given LLM and
why. Companies need clear and evidence-based guidelines
for selecting the most effective WM strategies to ensure
optimal performance and user experience. Fourth, there is a
lack of standardized metrics to evaluate how WMs impact
LLM utility, making it difficult to assess their effectiveness
across different LLMs and tasks. Finally, it is essential to
assess model utility and the quality of LLM outputs on
downstream tasks after watermarking to ensure that WMs
do not degrade performance. Addressing these challenges
is vital for successfully deploying WMs in real-world LLM
applications, ensuring a balance between IP protection and
model utility.

4.2. Native IP Classifier

To understand the effectiveness of WMs on LLMs
in terms of model utility and IP checker performance, a
straightforward approach is to apply the specific IP checker
tailored to the WM on the LLM and compare the utility
and quality of the text before and after being watermarked.
The key idea behind the IP checker is to evaluate the
statistical differences between original and watermarked
outputs, flagging the output as watermarked if the differences



TABLE 1: Real-world Services and Applications of LLMs.

API Name Provider Real-world Services and Applications
ChatGPT
and GPT
family [2]

OpenAI Salesforce integrated its AI with OpenAI for CRM tools [98].
Duolingo introduced Duolingo Max powered by GPT-4 for better learning experience [99].
Instacart added ChatGPT to its Ask Instacart chatbot for better customer interaction [100].
Expedia powered its chatbots by ChatGPT for comprehensive services [101].
Morgan Stanley introduced AskResearchGPT for staff support [102].
Stripe uses GPT-4 to improve user experience and fight fraud [103].

Microsoft
Azure
Language
[32]

Microsoft
Azure

AT&T leveraged Azure OpenAI to automate processes and improve customer experiences [32].
Vodafone improved services with TOBi AI for personalized, multi-channel support [104].
Volvo Group used AI for document translation to streamline invoice & claims processing [104].
TotalEnergies launched Microsoft Copilot for an AI chat solution using internal data [105].
Providence created ProvARIA based on Azure OpenAI to direct patient care messages [105].
Grupo Bimbo developed a copilot for employee queries on policies and risk management [105].

LLaMA
family [33]

Meta Zoom utilized LLaMA-2 to create its AI Companion for meeting summaries, next-step highlights,
and presentation tips [106].
Mathpresso built MathGPT with LLaMA for personalized math learning [106].
Goldman Sachs used LLaMA to improve service, document review, code generation [106].
Nomura Holdings used LLaMA to enhance customer service and document analysis [106].
EPFL developed Meditron with LLaMA-2 to aid clinical decision-making and diagnosis [106].

Google
Cloud AI-
Language
(Gemini,
Bard, PaLM,
etc.) [107]

Google Lilt integrated Google Translate into its platform for advanced translation capabilities [108].
Wipro with Google Cloud created the Gemini Experience Zone for AI experimentation [109].
General Motors deployed a virtual assistant using Google Cloud’s conversational AI for better
intent recognition [110].
Gojek launched ”Dira by GoTo AI”, an voice assistant for GoPay service [110].
GroupBy built a Search and Discovery Platform using Vertex AI to boost retail sales [110].
Motorola AI leveraged Gemini for conversation summaries and search [110].

Amazon
Compre-
hend [111]

Amazon
AWS

Vibes used the platform for phrase extraction, sentiment analysis, and topic modeling [112].
Gallup applied Targeted Sentiment to improve survey response reporting [112].
Zillow built speech analytics to enhance customer and service support [112].
Siemens leveraged AWS LLMs to automate its surveying program [112].

IBM Watson
NLU [113]

IBM
Watson

SherloQ used IBM Watson NLU to analyze search behavior and optimize ads [114].
University of Auckland deployed IBM Watson Assistant based on a conversational AI solution
for handling repetitive questions [114].
Mushi Lab created Clearscope to optimize content with insights & recommendations [114].
Global-Regulation built a global law search engine for easier legal information access [114].

Claude [3] Anthropic Notion integrated Claude for content generation, summarization, and workflow automation [115].
Decagon utilized Claude for personalized, 24/7 customer service [115].
GitLab employed Claude to enhance coding assistance & software development [115].
Headstart leveraged Claude to accelerate their software development process [115].

surpass a set threshold. In other words, the IP checker acts
as a classifier to distinguish between the two outputs.

Despite its high performance, applying a native IP
checker independently to each WM and LLM may be
insufficient as it may not effectively capture the true impact
and effectiveness of the WM. In practice, a cloud provider
may not know the exact source of the output, as multiple
LLMs could be involved. Watermarked outputs from one
LLM may closely resemble the original outputs from another,
due to distribution shifts caused by the WM (Fig. 5).
Therefore, applying the IP checker in isolation to each LLM
may yield misleading results. To more accurately assess
WM effectiveness, it is complemented to adopt a broader
approach that evaluates the WM across multiple LLMs. By
introducing a cross-model IP classifier, we can more reliably

differentiate between the original and watermarked texts
across different LLMs. This approach ensures a cross-model
IP classifier should be used. This approach ensures reliable
differentiation between original and watermarked texts across
multiple LLMs, better reflecting real-world conditions.

4.3. Proposed Cross-Model IP Classifier

In this section, we present the following components: 1) a
novel cross-model IP classifier to systematically discover the
interplay between WMs and different LLMs, 2) a selection
of evaluation metrics for IP assessment, 3) the impact of
WMs on LLMs’ utility, and 4) based on comprehensive
experiments, we provide an insightful understanding of
advantages and constraints of different WMs in LLMs.



Figure 5: Native IP checker works well in simple scenarios
(left), but struggles to differentiate between outputs from
multiple LLMs (center), highlighting the need for a cross-
model IP checker (right).

The key concept behind our cross-model IP classifier is
to distinguish between the output distributions of different
LLMs, both with and without WMs, reducing ambiguity
in the IP classifier’s decision boundary. This classifier
systematically connect WMs and different LLMs through a
multi-class model functioning as an IP checker.

Given a set of N LLM models
{LLM1, LLM2, · · · , LLMN} and an input text x ∈ D, we
generate two sets of outputs, including outputs y without
WMs and outputs ywm using WMs. The IP classifier is
designed to assess whether x belongs to which LLM. In our
cross-model classifier, we consider three scenarios. First,
we use the outputs yi from all the LLMi (i ∈ [1, N ]) as
inputs for the classifier f (Fig. 6a). This setting discloses
how different LLMs distinguish their outputs compared
with others, highlighting the uniqueness of each LLM
system. Second, we apply WMs into one LLM at a time to
thoroughly investigate the relationship between each LLM
and WM without being affected by the results of other
LLMs (Fig. 6b). Third, we unify the evaluations to uncover
the overall correlation among WMs and LLMs by applying
each WM to all LLMs (Fig. 6c).

Next, we will conduct experiments to evaluate our
proposed method in assessing the effectiveness of WMs
on LLMs, analyze the results, and discuss the limitations of
existing approaches, along with potential solutions.

4.4. Experiment Settings

4.4.1. Baselines
We carry out the validation on a wide range of WMs,

LLMs, and IP classifiers. For LLMs, we use four state-of-
the-art (SOTA) pre-trained LLMs, including LLaMA-2 with
7B parameters [117], Mistral with 7B parameters [118], OPT
with 6.7B parameters [119] and Falcon with 7B parameters
[120]. For WMs, we use seven SOTA WM schemes, including
1) KGW [9], 2) EXP [25], 3) SIR [50], 4) SemStamp [77],
5) Unigram [59], 6) Adaptive [53], and 7) UPV [23]. These
WMs are representative WM schemes outlined in Section 3,
with further details provided in Table 7 (Appendix).

For IP classifiers, we explore a range of options, in-
cluding 1) a non-transformer LSTM model [121]; 2) an
encoder-based transformer model ALBERT [122], with 11.8M
parameters; 3) another larger encoder-based transformer

(a) No WM across LLMs

(b) A WM for only one LLM at a time

(c) A WM for all LLMs

Figure 6: Our Proposed Cross-model IP Classifier.

DeBERTa [123] with 86M parameters; 4) a decoder-based
transformer GPT-2 [31] with 125M parameters; 5) a decoder-
only model Galactica [124] with 125M parameters; 6) a small
version of OPT [119] with 125M parameters; 7) the recently
developed SmolLM [125] with 135M parameters; and 8)
an encoder-decoder model T5 [40], with 60.5M parameters.
These models were selected based on the following criteria:
1) inclusion of non-transformer and transformer-based archi-
tectures, 2) within transformer-based models, coverage of all
major categories outlined in Section 2, and 3) consideration
of model complexity as determined by parameter size.

To further assess the effectiveness of WMs, we test them
against SOTA attacks, including 1) a WM removal attack [26],
referred to as WMremoval, which removes WMs by perturb-
ing quality-preserving WM outputs to produce high-quality
non-WMed outputs; 2) Dipper [93], which paraphrases
paragraphs through content reordering and lexical changes
without appreciably modifying the text semantics, and 3)
Substitution attack [94], which randomly substitutes target
words with their synonyms, considering the surrounding
context and using WordNet [126]. We adopt the default
settings reported in these papers.

4.4.2. Datasets and Evaluation Tasks
We randomly select 10, 000 training samples and 2, 000

test samples from the benchmark C4 dataset [127]. Each
sample, a news-like string, is truncated to 200 tokens as
a prompt, with the next 200 tokens used as the “baseline”
completion. Tasks include text generation as the primary task
and massive multi-task language understanding (MMLU)
[92] as a downstream task, assessing the impact of WMs on
LLM utility. MMLU has 57 subjects in STEM, humanities,



(a) KGW (b) EXP

(c) SIR (d) SemStamp

Figure 7: F1 scores as a function of different IP classifiers for different WMs, compared with No WM settings.

and social sciences, covering various difficulty levels to
evaluate world knowledge and problem-solving skills.

4.4.3. Evaluation Metrics

We treat the IP evaluation across different LLMs as a
multi-class classification problem, using the F1 score for IP
classifiers. To measure the impacts of WMs, we calculate
the change in F1 score, denoted as F1change, by computing
a relative change in F1 between scenarios with and without
WMs. The metrics are calculated as follow:

F1 = 2× precision× recall

precision+ recall
(2)

F1change =
F1WM − F1NW

F1NW
(3)

where precision is defined as the number of true positive
results divided by the total number of all samples predicted
by the model, including incorrect predictions, and recall
is the number of true positive results divided by the total
number of all actual instances. WM and NW indicates the
score from WM and no WM settings, respectively.

In addition, to evaluate the model utility comprehensively,
we consider 1) Perplexity for the text generation task,
measuring how well a model predicts next tokens [128] and 2)
Average accuracy across topics for the MMLU downstream
task. To further assess text quality, we provide qualitative
examples comparing a prompt, the original output without
WMs, and corresponding outputs with different WMs to
offer insights into WM effectiveness.

4.5. Experimental Results

Under our IP classifier, an LLM is considered effective
if it achieves a high F1 score (derived from settings a and c
in Fig. 6, where all LLMs are under the same condition of
either with or without watermark), indicating the uniqueness
of the LLM’s outputs and enabling easy differentiation from
other LLMs. This capability also allows cloud providers to
determine whether an output stems from their model, thereby
effectively protecting their IP. Meanwhile, a WM scheme
is deemed effective if (1) F1change, derived from setting b
in Fig. 6, is significantly high, facilitating better detection
compared to a scenario where no WM is applied, and (2) it
has minimal impact on the model’s utility of the main task
(i.e., maintaining low perplexity in text generation) and of
downstream tasks (i.e., high average accuracy of MMLU).
This ensures that WMs enhance the uniqueness of the LLM’s
outputs without adversely affecting the model’s overall utility.

4.5.1. Uniqueness of LLM Outputs
Figs. 7 and 12 (Appendix) illustrate F1 scores of dif-

ferent IP classifiers in distinguishing outputs from different
LLMs. Without WMs, these IP classifiers achieve impressive
F1 scores of over 70% across various types. The LSTM
outperforms others, achieving an F1 score of 86%. These
results underscore the uniqueness of LLM outputs, allowing
for reliable identification of the originating LLM based on
the observed outputs. Notably, the T5 IP classifier performs
poorly without watermarks, achieving only 47%. Indeed,
T5 is an encoder-decoder model that is more suitable for
tasks such as translation and completion. In Fig. 8, the
poor results stem from insufficient training data. With



(a) T5 (b) DeBERTa

Figure 8: F1 score as a function of number of training data
applied on KGW and LLaMA-2.

increased numbers of training samples, the classifier’s F1
score improves, reaching 64% with 100, 000 training samples.
Similar improvements are observed in other models like
DeBERTa, with an 8% increase as training samples grow.

4.5.2. Effectiveness of WMs on LLMs
Impacts of WMs on Classifying LLM Outputs. As shown
in Figs. 7 and 8, WMs can significantly boost the performance
of LLM output classification. We observe this phenomenon
across WMs, LLMs, and IP classifiers. There is a significant
improvement of 2%− 31%, compared with the performance
without WMs. In particular, ALBERT, T5, Galactica, and
SmolLM classifiers demonstrate substantial improvements
when WMs are applied, with an increase of 19%− 31% in
F1 scores. It is worth noting that all the classifiers achieve
over 90% F1 score with WMs. Notably, WM with EXP or
Semstamp allows the OPT classifiers to reach an impressive
98% F1 score. The enhanced performance in distinguishing
LLM outputs is due to the unique patterns or identifiers
created by WMs, which increase the distinctiveness of each
model’s output, making it easier to identify the source LLM.
Even with the T5 classifier, which performs poorly on non-
watermarked text, shows significant improvement with WMs,
increasing from 49% to 78%.

The remarkable improvements in IP classifier perfor-
mance highlight the effectiveness of WMs in differentiating
outputs from various LLMs. This crucial correlation between
LLMs and WMs allows clouds to identify their outputs
accurately, ensuring that proprietary content is protected.
By leveraging WMs, clouds can enhance IP protection for
their models and reduce unauthorized use. This capability is
essential in competitive environments such as industry, where
protecting unique outputs is critical for business success.
Impacts of LLMs on IP Classifiers. Fig. 9 demonstrates the
impact of different LLMs on IP classifiers. These results are
obtained by applying WMs to one LLM at a time, with the
relative change F1change indicating the impacts. When WMs
are applied, all LLMs show positive values of F1change,
signifying an increase in their F1 scores. In this analysis,
we present representative trends observed in the ALBERT
and DeBERTa classifiers. Both classifiers demonstrate a
consistent pattern, showing more significant changes for
the OPT and Falcon models, compared with the LLaMA-2
and Mistral. This variation is attributed to LLaMA-2 and

(a) ALBERT

(b) DeBERTa

Figure 9: F1change across WMs, LLMs, and IP classifiers.

Mistral’s adaptability and robustness, which make them more
resistant to the effects of WMs. In contrast, OPT and Falcon
are specifically designed for efficiency and scalability.
Impacts of WMs on Model Utility of Text Generation
Tasks. In addition to improving IP classifiers’ ability to
distinguish LLM outputs, it is crucial to assess how different
WMs impact model utility, as this is a key characteristic
of effective WMs. As shown in Table 2, WMs lead to
a noticeable increase in the perplexity of the generated
text, indicating a negative effect on the model’s utility in
text generation. KGW has the lowest impact on perplexity
values across all LLMs, while SemStamp exhibits substantial
changes in perplexity. For instance, with the OPT model,
KGW slightly changes perplexity from 3.55 to 3.87. In
contrast, SemStamp significantly increases perplexity to
76.91 in this setting. The key reason for this difference
lies in how each WM operates. To elaborate, KGW applies
the WM during the logits generation process, modifying
the text without significantly altering the model, which
minimizes its impact on the LLMs. Meanwhile, SemStamp
influences the sampling process by generating new sentences
from a partitioned valid semantic space, resulting in a more
noticeable effect on the generation process, compared with
other baselines. It is worth noting that all types of WMs
produce considerable impact on this text quality, urging for
further investigation.
Impacts of WMs on Model Utility of Downstream Tasks.

We further conduct an in-depth analysis in the MMLU
question-answering task (Table 3). Our observations reveal
that majority of WMs have subtle impact on the average
accuracy of MMLU. For instance, there are up to 2.3%
decreases in the accuracy across LLMs and WMs such as
KGW, EXP, Unigram, and UPV compared with the outputs
without WMs, indicating that watermarked LLM outputs
still retain usefulness for classification tasks. However, WMs



Figure 10: F1 scores as a function of different IP classifiers
for KGW WMs, compared with No WM and after WM
Removal Attack of Dipper.

like SIR and Adaptive show more significant accuracy drops
across all four LLMs. The primary reason for these poor
results lies in our reliance on their publicly available pre-
trained models (such as the semantic mapping model for
Adaptive and the watermarked model for SIR) without
fine-tuning them for our specific tasks. Limited time and
computational resources prevented us from aligning these
models with our experimental settings, which likely affected
their performance. Additionally, SemStamp, which involves
sentence-level sampling, is not ideal for MMLU tasks, where
token-level generation is preferred.
WMs against Attacks. We further examine how WMs resist
against different attacks, indicating the effectiveness and
resilience of WMs on LLMs. We consider WM removal
attack, Dipper, and substitution attacks. Fig. 11 shows
that these attacks achieve high attack success rates, which
indicates a low detection rate of the WM’s detection function.
However, it comes with the cost of a significant impact
on model utility, as evidenced by a substantial increase in
perplexity. For instance, WM removal attacks can raise the
perplexity of a non-watermark baseline by 2 to 6 times. In
the case of the Mistral model with Semstamp, perplexity
increases dramatically from 39.31 up to 241. In addition,
Fig. 10 demonstrates the impact of the Dipper attack on WM
effectiveness in classifying LLM outputs. The results show
a significant performance drop, highlighting the detrimental
effects of the attack on both the effectiveness of WMs and
the quality of LLM outputs.

4.5.3. Semantic Preservation of Watermarked Outputs
Furthermore, to qualitatively assess the quality of gen-

erated text under different WMs, we illustrate side-by-side
examples of real prompts, original outputs from an LLaMA-2
model without WMs and with different WMs.

In Table 4, we observe that watermarked text preserves
the semantic meaning compared with the original outputs
without WMs. Notably, KGW maintains high semantic
similarities, as the green-highlighted phrases show. For in-
stance, key phrases such as “are suing the college,” “medical
laboratory technician program,” and “filed a class-action
lawsuit” are preserved almost identically in both the KGW
output and the original, demonstrating KGW’s ability to
maintain the integrity of the original semantic content. This

TABLE 2: Perplexity values of different WMs across LLMs.

Setting LLaMA-2 Mistral OPT Falcon Average
NW 3.61 3.54 3.55 2.68 3.35
KGW 4.46

(24%)
4.43
(25.1%)

3.87
(9.0%)

3.37
(25.7%)

4.03
(20.6%)

EXP 7.06
(96%)

33.61
(849.4%)

21.10
(494.4%)

18.72
(598.5%)

20.12
(501.6%)

SIR 7.05
(95%)

11.00
(210.7%)

19.72
(455.5%)

13.89
(418.3%)

12.92
(286.1%)

SemStamp 24.06
(566%)

38.89
(998.6%)

76.91
(2066.5%)

7.52
(180.6%)

36.85
(1001.5%)

Unigram 5.50
(52%)

8.68
(145.2%)

13.71
(286.1%)

10.71
(299.7%)

9.65
(188.4%)

Adaptive 15.77
(337%)

12.97
(266.4%)

11.24
(216.5%)

5.47
(104.0%)

11.36
(239.6%)

UPV 5.81
(61%)

4.39
(24.1%)

4.69
(32.2%)

3.45
(28.9%)

4.59
(37.1%)

TABLE 3: MMLU Accuracy (%) of different LLMs with
and without WMs.

Settings LLaMA-2 Mistral OPT Falcon
No WM 46.7 58.9 24.8 27.2
KGW 44.5 58.6 24.5 25.3
EXP 45.9 58.7 24.8 24.9
SIR 27.9 20.9 18.3 19.8
Unigram 46.6 58.1 23.8 25.3
Adaptive 31.4 37.9 24.7 26.1
UPV 46.7 57.9 24.7 25.6

is further supported by the low perplexity of 2.75, close to the
non-WM perplexity of 2.32, indicating minimal degradation.
Meanwhile, SemStamp and Adatpive changes sentences more
remarkably, resulting in a significant deviation from the
original output. For instance, in Semstamp, the phrase “are
suing the college” is entirely replaced by “alleging they were
misled about their ability to become certified”, modifying
the sentence’s meaning. While Adatpive introduced a new
phrase of “have filed a suit claiming that Newbridege made
“materially incorrect” claims”, causing the output to deviate
from the original text. In addition, we observe a tiny portion
of green highlights in these two WMs, indicating substantial
dissimilarities in the outputs. Also, the perplexity of the
SemStamp and Adaptive WM are considerably higher at
10.61 and 17.62 respectively, reflecting the degradation in
model utility and semantic consistency.



(a) LLaMA-2 + KGW (b) Mistral + EXP (c) LLaMA-2 + SIR (d) LLaMA-2 + SEM

(e) Mistral + KGW (f) LLaMA-2 + EXP (g) Mistral + SIR (h) Mistral + SEM

Figure 11: Attack success rate and Perplexity across different attacks and WMs with LLaMA-2 and Mistral models.

4.6. Remarks

Through extensive experiments, we observe several key
insights as follows.

• WMs significantly enhance the classification of LLM
outputs, supporting the generation of unique and differ-
entiated outputs. This enables clouds to identify their
outputs and protect proprietary content accurately. By
using WMs, clouds can strengthen IP protection and
reduce unauthorized use, which is vital in competitive
industries.

• WMs typically have a moderate impact on model utility,
subtly increasing perplexity in text generation tasks
while reducing accuracy in MMLU downstream tasks.
The semantic meaning of outputs is mostly preserved
after WM, with significant changes occurring mostly in
SemStamp and Adaptive. However, it is worth noting
that LLM outputs remain beneficial even after being
watermarked.

• Attacks adversely affect WMs by degrading the WMs’
detection function, compromising WMs’ effectiveness.
However, it comes with a considerable cost to model
utility. Further investigation is necessary to understand
the trade-offs involved and to develop strategies that
enhance WM resilience while maintaining model utility.

5. Challenges and Future Directions

While WMs demonstrate promising effectiveness across
various LLMs, several challenges and barriers remain, neces-
sitating further investigation before deploying them in the
real-world applications.

5.1. Different Sensitivities among Output Tokens

Our experiments reveal that tokens exhibit varying levels
of sensitivity, especially after being watermarked. As shown
in Table 5, numerical tokens are changed significantly
compared with other tokens. For instance, the phrase “Nasdaq
dropped 0.7 percent” in the original output is altered to
“Nasdaq lost 0.6 percent” in the EXP, SIR and Adaptive, to
“Nasdaq lost 1.2 percent” in Unigram, and to “Nasdaq lost 1.4
percent” in UPV. Similarly, the original output states that the
U.S. economy grew at a “2.5 percent annual rate in the second
quarter”, which is shifted to “1 percent” or “3.5 percent” with
WMs. These unintended modifications to numerical tokens
result in changing the semantic meaning of the output. This
change poses significant risks in domains where precise
values are important, including financial reporting, scientific
data analysis, weather forecasting, and legal documentation.
As a result, there is a pressing need to address these
challenges to ensure that WMs do not compromise the
integrity of essential information.

5.2. Robustness to Removal Attacks

WMs, regardless of their category, generally face chal-
lenges related to robustness. Given the complex manipulation
behaviors of users and adversaries in the real-world, it is
difficult to create a WM that can resist to modifications
such as paraphrasing, lexical changes, or reordering. As also
claimed in [26], current strong WMs fail to offer the desired
level of security, especially against sophisticated attacks.

5.3. Text Quality and Semantic Drift

Embedding WMs in LLMs, whether by modifying logits,
sampling process, or updating model weights, disrupts the



TABLE 4: Selected prompt and outputs from the LLaMA-2 model without and with WMs. Green text indicates semantic
similarities of WM text and the original output without WMs.

Output text PPL
Prompt ...medical laboratory technician associate program. FILING SUIT: Attorney Scott Schutzman

discusses a class-action lawsuit against Newbridge College with two of his clients. A group of
students...

No
WM

are suing the college, claiming its medical laboratory technician program is not accredited and
does not qualify them to work in the field. SANTA ANA – A group of students have filed a
class-action lawsuit against Newbridge College, claiming the college’s medical laboratory
technician program is [...continues]

2.32

KGW

are suing the college for allegedly misrepresenting the quality of its medical laboratory
technician program. Newbridge College faces lawsuit over alleged false advertising of medical
lab technician program SANTA ANA – A group of students have filed a class-action lawsuit
against Newbridge College, alleging the college misrepresented [...continues]

2.75

EXP
sued the college claims the school’s program does not qualify them to be medical lab
technicians. STUDENTS: ATTORNEY SCOTT SCHUTZMAN: Two of the Newbridge College
students who filed a class-action lawsuit against the school are pictured with their attorney,
Scott Schutzman. [...continues]

4.43

SIR

sued the college for false advertising after they say the college’s medical laboratory technologist
program does not prepare them for the job market. CENTER: Newbridge College’s Santa Ana
campus is located at 2840 East 17Th Street. Students who attended the college have filed a
class- action lawsuit against the college alleging false advertising.SANTA ANA - Students who
enrolled in Newbridge College [...continues]

5.11

SemStamp

alleging they were misled about their ability to become certified as medial labs techs through
the school’s programs and have filed suit for damages. (File Photo) Newport Beach lawyer files
complaint on behalf of former NBCC student who claims she was defrauded out of thousands
of dollars due to false promises made by institution regarding job placement rate [...continues]

10.61

Unigram

sued the college for allegedly making false claims about its medical lab technician program.
STUDENTS: Attorney Scott Schutzman represents two students, Alexis Mesa and John Doe,
who sued Newbridge College for allegedly making false claims about its medical lab technician
program. [...continues]

4.11

Adaptive

have filed a suit claiming that Newbridege made “materially incorrect” claims about it
programs, such as saying it offered a medical lab technician program that qualified them to be
medical lab techs. Atty: New Bridge falsely advertised program. By Joel Kimber — Orange
County Register. A Newport Beach lawyer has filed a proposed class-action lawsuit on behalf
of students who say they were duped by Newbridge College [...continues]

17.62

UPV

have sued the college for fraud and false advertising, claiming the college’s medical laboratory
technology program does not prepare them for jobs in the field. SCHUTZMAN: Attorney Scott
Schutzman represents the students who have sued Newbridge College, accusing the college of
fraud and false advertising. [...continues]

4.27

natural flow of text generation. In Table 2, even KGW, which
has the smallest impact on model utility, still alters the
original perplexity by 9 − 25%. This disruption adversely
affects the naturalness and fluency of the watermarked output,
leading to a overall reduction in model utility and text quality,
compared with those of original outputs. In sensitive contexts,
semantic drift can further compromise the credibility and
usefulness of LLM outputs. Given the inevitability of the
issue, it is essential to develop methods for quantifying the
impact and managing it in acceptable thresholds.

5.4. Scalability and Practicality

The scalability and practicality of WMs for LLMs pose
another significant challenge. WMs often require modifica-

tions to the model’s generation process, which might cause
higher processing time and resource consumption. In addition,
some WMs require additional training to function properly.
As LLMs are used on a broad scale, particularly in real-
time applications such as chatbots or content generating
systems, the increased computational overhead may become
prohibitive. In addition, ensuring that WMs are robust across
various domains, tasks, and languages complicates their
practical deployment. Scaling these methods to handle large
volumes of generated text while maintaining text quality and
performance remains an open challenge, especially given
the numerous use cases of LLMs across platforms. Future
advancements should address these difficulties to make WMs
more realistic.



TABLE 5: This example demonstrates the sensitivity of numerical tokens in LLaMA-2 outputs without and with different
types of WMs. Yellow highlights represent key numerical information in the output without WMs, while green highlights
indicate similarities, and red ones are for differences compared to no WM setting.

Content
Prompt ...For the week, the Dow fell 0.8 percent, the S&P 500 slipped 0.9 percent and the ...

No
WM

Nasdaq dropped 0.7 percent. The report from the Commerce Department showed that the U.S. economy
grew at a slower-than-expected 2.5 percent annual rate in the second quarter, down from a 3.4 percent
pace in the first quarter. [...continues]

KGW

Nasdaq lost 0.7 percent. The economic report from the Commerce Department showed that the U.S.
economy grew at a slower-than-expected 3.5 percent annual rate in the first quarter, down from a
previously estimated 4.4 percent pace. [...continues]

EXP
Nasdaq lost 0.6 percent. The U.S. economy grew at a slower-than-expected 1.9 percent annual rate in the
first quarter, the Commerce Department reported. Economists had been expecting a rate of 2.2 percent.
[...continues]

SIR
Nasdaq lost 0.6 percent. The Commerce Department said Friday that the U.S economy grew at a 2.5
percent annual rate in the first quarter, slower than the 4.4 percent rate in the previous quarter
[...continues]

SemStamp
DAQ declined by less than half that amount as investors grew cautious amid signs global demand is
weakening despite low interest rates worldwide. [...continues]

Unigram

Nasdaq dropped 1.2 percent. The disappointing economic data came from the Commerce Department
(search), which said gross domestic product (GDP) grew at a seasonally adjusted annual rate of 3.3
percent in the first quarter, slower than the 4.8 percent pace in the previous quarter. [...continues]

Adaptive

NasdaQ dropped 0.6 percent. The U.S economy expanded at a 1 percent pace in the first quarter,
according to a revised estimate from the government, which is below expectations of 2 percent to 2.5
percent. It also reflected a downward revision to growth in the previous quarter.[...continues]

UPV

Nasdaq dropped 1.4 percent. The report on U.S. gross domestic product (GDP) released by the
Commerce Department showed the economy grew at an annual rate of 2.5 percent in the second quarter,
below the 3.5 percent pace of the first quarter [...continues]

5.5. WMs with Certified Robustness

There has been no systematic work that formally guar-
antees the effectiveness of WMs for LLMs. Therefore, it is
essential to develop WMs with certified robustness, where
the magnitude of the WMs is explicitly measured in relation
to the accuracy of generated outputs in both generation
tasks and downstream tasks. This approach would ensure
that WMs remain identifiable even in adversarial settings,
while maintaining a defined threshold for output quality.
By quantifying this relationship, we can create a system
that balances robustness and model utility, offering a more
reliable and scalable method for watermarking LLMs.

5.6. Explore WMs and Alignment in LLMs

Alignment refers to ensuring that LLMs generate outputs
consistent with standard ethical and operational guidelines
[129]. However, WMs can interfere with this alignment by
altering the generation or model training process, potentially
reducing the model’s adherence to its pre-trained alignment.
This issue becomes particularly critical in sensitive domains
where the model’s behaviors must align with strict safety
or ethical standards. The impact of WMs on LLM align-
ment demands careful investigation, as disruptions in logits,
sampling, or model weights could cause semantic drift or
unintended biases in LLM outputs.

6. Conclusion

We presented an SoK for WMs in LLMs, with a particular
focus on their potential for real-world deployment through a
comprehensive evaluation. Our work encompasses a broader
spectrum, including assessments of model utility in text
generation and downstream tasks, semantic preservation of
output under perplexity observation and qualitative assess-
ment, robustness under various attack types, and watermark
sensitivity across LLMs, and consider other practical aspects.

To capture the intricate relationships among WMs, LLMs,
and model utility, we introduced a novel cross-model IP
classifier and examone the impacts of WMs on LLM output
quality. Our experiments demonstrate that WMs significantly
enhance the identification of LLM outputs, strengthening IP
protection and reducing unauthorized use. However, while
WMs are promising for practical applications, challenges
remain due to potential impacts on model utility, text
quality, and vulnerabilities to WM removal attacks. Our
discussion highlights the current state of research, identifies
key limitations, and outlines future directions to improve
the robustness, scalability, and practicality of WMs. We
emphasize the need for further investigation to address these
challenges and make watermarking techniques more viable
for deployment across a range of LLM applications.



References

[1] Google, “Google gemini,” https://bard.google.com/chat/, 2024.

[2] OpenAI, “Openai api,” 2024, https://openai.com/index/openai-api/ [Accessed:
2024-09-20].

[3] Anthropic, “Claude,” 2024, https://www.anthropic.com/claude [Accessed: 2024-
09-20].

[4] Cohere, “Cohere,” 2024, https://cohere.com/ [Accessed: 2024-09-20].

[5] B. Zhang, B. Haddow, and A. Birch, “Prompting large language model for
machine translation: A case study,” in International Conference on Machine
Learning, 2023, pp. 41 092–41 110.

[6] X. Zhang, N. Rajabi, K. Duh, and P. Koehn, “Machine translation with large
language models: Prompting, few-shot learning, and fine-tuning with qlora,”
in Proceedings of the Eighth Conference on Machine Translation, 2023, pp.
468–481.

[7] H. Xu, Y. J. Kim, A. Sharaf, and H. H. Awadalla, “A paradigm shift in machine
translation: Boosting translation performance of large language models,” ICLR,
2024.

[8] Z. Hu, L. Chen, X. Wu, Y. Wu, H. Zhang, and H. Huang, “Unbiased watermark
for large language models,” arXiv preprint arXiv:2310.10669, 2023.

[9] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein, “A
watermark for large language models,” in International Conference on Machine
Learning. PMLR, 2023, pp. 17 061–17 084.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[11] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374, 2021.

[12] Azure, “Model interpretability (preview) - azure machine learning,” Available
at https://aka.ms/AzureMLModelInterpretability, 2021.

[13] Bluemix, “Ai explainability 360,” Available at https://aix360.mybluemix.net/ ,
2021. [Online]. Available: http://aix360.mybluemix.net/

[14] E. Wallace, M. Stern, and D. Song, “Imitation attacks and defenses for black-box
machine translation systems,” EMNLP, 2020.

[15] Q. Xu, X. He, L. Lyu, L. Qu, and G. Haffari, “Student surpasses teacher:
Imitation attack for black-box nlp apis,” COLING, 2022.

[16] J. Victor and A. Efrati, “Alphabets google and deepmind pause grudges,
join forces to chase openai,” https://www.theinformation.com/articles/alphabets-
google-and-deepmind-pause-grudges-join-forces-to-chase-openai, 2023.

[17] N. Carlini, D. Paleka, K. D. Dvijotham, T. Steinke, J. Hayase, A. F. Cooper,
K. Lee, M. Jagielski, M. Nasr, A. Conmy et al., “Stealing part of a production
language model,” arXiv preprint arXiv:2403.06634, 2024.

[18] C. Conikee, “An ai attack that even sherlock holmes would be impressed by...”
https://qwiet.ai/an-ai-attack-that-would-impress-even-sherlock-holmes/, 2024.

[19] Z. Li, C. Wang, S. Wang, and C. Gao, “Protecting intellectual property of large
language model-based code generation apis via watermarks,” in Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023, pp. 2336–2350.

[20] M. Xue, Z. Wu, Y. Zhang, J. Wang, and W. Liu, “Advparams: An active dnn
intellectual property protection technique via adversarial perturbation based
parameter encryption,” IEEE Transactions on Emerging Topics in Computing,
vol. 11, no. 3, pp. 664–678, 2022.

[21] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni,
Y. T. Lee, A. Manoel, L. Wutschitz et al., “Differentially private fine-tuning of
language models,” arXiv preprint arXiv:2110.06500, 2021.

[22] K. Yoo, W. Ahn, and N. Kwak, “Advancing beyond identification: Multi-bit
watermark for language models,” NAACL, 2024.

[23] A. Liu, L. Pan, X. Hu, S. Li, L. Wen, I. King, and S. Y. Philip, “An unforgeable
publicly verifiable watermark for large language models,” in The Twelfth
International Conference on Learning Representations, 2023.

[24] M. Christ, S. Gunn, and O. Zamir, “Undetectable watermarks for language
models,” in The Thirty Seventh Annual Conference on Learning Theory.
PMLR, 2024, pp. 1125–1139.

[25] R. Kuditipudi, J. Thickstun, T. Hashimoto, and P. Liang, “Robust distortion-free
watermarks for language models,” TMLR, 2023.

[26] H. Zhang, B. L. Edelman, D. Francati, D. Venturi, G. Ateniese, and B. Barak,
“Watermarks in the sand: Impossibility of strong watermarking for generative
models,” ICML, 2024.

[27] Q. Pang, S. Hu, W. Zheng, and V. Smith, “Attacking llm watermarks by
exploiting their strengths,” arXiv preprint arXiv:2402.16187, 2024.

[28] A. Liu, L. Pan, Y. Lu, J. Li, X. Hu, X. Zhang, L. Wen, I. King, H. Xiong, and
P. Yu, “A survey of text watermarking in the era of large language models,”
ACM Computing Surveys, 2024.

[29] Y. Liang, J. Xiao, W. Gan, and P. S. Yu, “Watermarking techniques for large
language models: A survey,” arXiv preprint arXiv:2409.00089, 2024.

[30] H. N. Lalai, A. A. Ramakrishnan, R. S. Shah, and D. Lee, “From intentions to
techniques: A comprehensive taxonomy and challenges in text watermarking
for large language models,” arXiv preprint arXiv:2406.11106, 2024.

[31] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” 2019.

[32] M. Azure, “Ai language,” 2024, https://azure.microsoft.com/en-us/products/
ai-services/ai-language [Accessed: 2024-09-20].

[33] H. Face, “Meta llama,” 2024, https://huggingface.co/meta-llama [Accessed:
2024-09-20].

[34] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in North American
Chapter of the Association for Computational Linguistics, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:52967399

[36] Y. Liu, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, vol. 364, 2019.

[37] Z. Yang, “Xlnet: Generalized autoregressive pretraining for language under-
standing,” arXiv preprint arXiv:1906.08237, 2019.

[38] A. Conneau and G. Lample, “Cross-lingual language model pretraining,”
Advances in neural information processing systems, vol. 32, 2019.

[39] A. Radford and K. Narasimhan, “Improving language understanding by
generative pre-training,” 2018. [Online]. Available: https://api.semanticscholar.
org/CorpusID:49313245

[40] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified
text-to-text transformer,” Journal of machine learning research, vol. 21, no. 140,
pp. 1–67, 2020.

[41] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension,” CoRR,
vol. abs/1910.13461, 2019. [Online]. Available: http://arxiv.org/abs/1910.13461

[42] K. Song, “Mass: Masked sequence to sequence pre-training for language
generation,” arXiv preprint arXiv:1905.02450, 2019.

[43] Springs, “Large language model (llm) api: Full guide 2024,” https://shorturl.at/
yI7T8, 2024.

[44] C. Chen and K. Shu, “Can llm-generated misinformation be detected?” arXiv
preprint arXiv:2309.13788, 2023.

[45] A. Mitra, S. P. Mohanty, and E. Kougianos, “The world of generative ai:
Deepfakes and large language models,” arXiv preprint arXiv:2402.04373, 2024.

[46] C. Chen and K. Shu, “Combating misinformation in the age of llms: Opportu-
nities and challenges,” AI Magazine, 2023.

[47] F. N. Motlagh, M. Hajizadeh, M. Majd, P. Najafi, F. Cheng, and C. Meinel,
“Large language models in cybersecurity: State-of-the-art,” arXiv preprint
arXiv:2402.00891, 2024.

[48] N. Jovanović, R. Staab, and M. Vechev, “Watermark stealing in large language
models,” arXiv preprint arXiv:2402.19361, 2024.

[49] J. Zhang, S. Peng, Y. Gao, Z. Zhang, and Q. Hong, “Apmsa: Adversarial
perturbation against model stealing attacks,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 1667–1679, 2023.

[50] A. Liu, L. Pan, X. Hu, S. Meng, and L. Wen, “A semantic invariant robust
watermark for large language models,” ICLR, 2024.

[51] Y. Wu, Z. Hu, H. Zhang, and H. Huang, “Dipmark: A stealthy, efficient and
resilient watermark for large language models,” 2024. [Online]. Available:
https://openreview.net/forum?id=FhZi7r4nzA

[52] J. Ren, H. Xu, Y. Liu, Y. Cui, S. Wang, D. Yin, and J. Tang, “A robust
semantics-based watermark for large language model against paraphrasing,”
in Findings of the Association for Computational Linguistics: NAACL 2024,
K. Duh, H. Gomez, and S. Bethard, Eds. Mexico City, Mexico: Association
for Computational Linguistics, Jun. 2024, pp. 613–625. [Online]. Available:
https://aclanthology.org/2024.findings-naacl.40

https://openai.com/index/openai-api/
https://www.anthropic.com/claude
https://cohere.com/
https://aka.ms/AzureMLModelInterpretability
https://aix360.mybluemix.net/
http://aix360.mybluemix.net/
https://azure.microsoft.com/en-us/products/ai-services/ai-language
https://azure.microsoft.com/en-us/products/ai-services/ai-language
https://huggingface.co/meta-llama
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://arxiv.org/abs/1910.13461
https://shorturl.at/yI7T8
https://shorturl.at/yI7T8
https://openreview.net/forum?id=FhZi7r4nzA
https://aclanthology.org/2024.findings-naacl.40


[53] Y. Liu and Y. Bu, “Adaptive text watermark for large language models,” arXiv
preprint arXiv:2401.13927, 2024.

[54] Z. Hu, L. Chen, X. Wu, Y. Wu, H. Zhang, and H. Huang, “Unbiased
watermark for large language models,” in The Twelfth International
Conference on Learning Representations, 2024. [Online]. Available: https:
//openreview.net/forum?id=uWVC5FVidc

[55] M. Huo, S. A. Somayajula, Y. Liang, R. Zhang, F. Koushanfar, and P. Xie,
“Token-specific watermarking with enhanced detectability and semantic coher-
ence for large language models,” arXiv preprint arXiv:2402.18059, 2024.

[56] C. Liang, Y. Bian, Y. Deng, D. Cai, S. Li, P. Zhao, and K.-F. Wong, “Watme:
Towards lossless watermarking through lexical redundancy,” in ICLR 2024
Workshop on Secure and Trustworthy Large Language Models, 2024.

[57] J. Fu, X. Zhao, R. Yang, Y. Zhang, J. Chen, and Y. Xiao, “Gumbelsoft:
Diversified language model watermarking via the gumbelmax-trick,” arXiv
preprint arXiv:2402.12948, 2024.

[58] K. Yoo, W. Ahn, and N. Kwak, “Advancing beyond identification:
Multi-bit watermark for large language models,” 2024. [Online]. Available:
https://openreview.net/forum?id=KOTsHW6mBI

[59] X. Zhao, P. V. Ananth, L. Li, and Y.-X. Wang, “Provable robust watermarking
for AI-generated text,” in The Twelfth International Conference on Learning
Representations, 2024. [Online]. Available: https://openreview.net/forum?id=
SsmT8aO45L

[60] A. Nemecek, Y. Jiang, and E. Ayday, “Topic-based watermarks for llm-generated
text,” arXiv preprint arXiv:2404.02138, 2024.

[61] R. Zhang, S. S. Hussain, P. Neekhara, and F. Koushanfar, “{REMARK-LLM}:
A robust and efficient watermarking framework for generative large language
models,” in 33rd USENIX Security Symposium (USENIX Security 24), 2024,
pp. 1813–1830.

[62] T. Lee, S. Hong, J. Ahn, I. Hong, H. Lee, S. Yun, J. Shin, and G. Kim,
“Who wrote this code? watermarking for code generation,” arXiv preprint
arXiv:2305.15060, 2023.

[63] L. Wang, W. Yang, D. Chen, H. Zhou, Y. Lin, F. Meng, J. Zhou, and X. Sun,
“Towards codable watermarking for injecting multi-bits information to llms,” in
The Twelfth International Conference on Learning Representations, 2024.

[64] Y. Lu, A. Liu, D. Yu, J. Li, and I. King, “An entropy-based text watermarking
detection method,” arXiv preprint arXiv:2403.13485, 2024.

[65] Z. He, B. Zhou, H. Hao, A. Liu, X. Wang, Z. Tu, Z. Zhang, and R. Wang,
“Can watermarks survive translation? on the cross-lingual consistency of text
watermark for large language models,” arXiv preprint arXiv:2402.14007, 2024.

[66] Y. Fu, D. Xiong, and Y. Dong, “Watermarking conditional text generation for
ai detection: Unveiling challenges and a semantic-aware watermark remedy,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 16,
2024, pp. 18 003–18 011.

[67] B. Guan, Y. Wan, Z. Bi, Z. Wang, H. Zhang, Y. Sui, P. Zhou, and L. Sun,
“Codeip: A grammar-guided multi-bit watermark for large language models of
code,” arXiv preprint arXiv:2404.15639, 2024.

[68] B. Wouters, “Optimizing watermarks for large language models,” arXiv preprint
arXiv:2312.17295, 2023.

[69] G. Niess and R. Kern, “Stylometric watermarks for large language models,”
arXiv preprint arXiv:2405.08400, 2024.

[70] Y. Takezawa, R. Sato, H. Bao, K. Niwa, and M. Yamada, “Necessary and
sufficient watermark for large language models,” arXiv preprint, 2023.

[71] N. Golowich and A. Moitra, “Edit distance robust watermarks for language
models,” arXiv preprint arXiv:2406.02633, 2024.

[72] S. Aaronson and H. Kirchner, “Watermarking gpt outputs,” https://www.
scottaaronson.com/talks/watermark.ppt, 2022.

[73] J. Fairoze, S. Garg, S. Jha, S. Mahloujifar, M. Mahmoody, and M. Wang,
“Publicly detectable watermarking for language models,” arXiv preprint, 2023.

[74] T. Zhou, X. Zhao, X. Xu, and S. Ren, “Bileve: Securing text provenance in
large language models against spoofing with bi-level signature,” arXiv, 2024.

[75] M. Mao, D. Wei, Z. Chen, X. Fang, and M. Chau, “A watermark for low-entropy
and unbiased generation in large language models,” arXiv, 2024.

[76] S. Dathathri, A. See, S. Ghaisas, P.-S. Huang, R. McAdam, J. Welbl, V. Bachani,
A. Kaskasoli, R. Stanforth, T. Matejovicova et al., “Scalable watermarking
for identifying large language model outputs,” Nature, vol. 634, no. 8035, pp.
818–823, 2024.

[77] A. B. Hou, J. Zhang, T. He, Y. Wang, Y.-S. Chuang, H. Wang, L. Shen,
B. Van Durme, D. Khashabi, and Y. Tsvetkov, “Semstamp: A semantic
watermark with paraphrastic robustness for text generation,” NAACL, 2024.

[78] A. B. Hou, J. Zhang, Y. Wang, D. Khashabi, and T. He, “k-semstamp: A
clustering-based semantic watermark for detection of machine-generated text,”
arXiv preprint arXiv:2402.11399, 2024.

[79] Z. Sun, X. Du, F. Song, and L. Li, “Codemark: Imperceptible watermarking for
code datasets against neural code completion models,” in Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1561–1572.

[80] Z. Sun, X. Du, F. Song, M. Ni, and L. Li, “Coprotector: Protect open-source
code against unauthorized training usage with data poisoning,” in Proceedings
of the ACM Web Conference 2022, 2022, pp. 652–660.

[81] H. Xu, L. Xiang, X. Ma, B. Yang, and B. Li, “Hufu: A modality-agnositc
watermarking system for pre-trained transformers via permutation equivariance,”
arXiv preprint arXiv:2403.05842, 2024.

[82] C. Gu, C. Huang, X. Zheng, K.-W. Chang, and C.-J. Hsieh, “Watermarking
pre-trained language models with backdooring.” arxiv (2022).”

[83] P. Li, P. Cheng, F. Li, W. Du, H. Zhao, and G. Liu, “Plmmark: a secure and
robust black-box watermarking framework for pre-trained language models,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 12,
2023, pp. 14 991–14 999.

[84] C. Gu, X. L. Li, P. Liang, and T. Hashimoto, “On the learnability of watermarks
for language models,” arXiv preprint arXiv:2312.04469, 2023.

[85] X. Xu, Y. Yao, and Y. Liu, “Learning to watermark llm-generated text via
reinforcement learning,” arXiv preprint arXiv:2403.10553, 2024.

[86] R. Zhang and F. Koushanfar, “Emmark: Robust watermarks for ip protection
of embedded quantized large language models,” arXiv, 2024.

[87] F. B. Baldassini, H. H. Nguyen, C.-C. Chang, and I. Echizen, “Cross-
attention watermarking of large language models,” in ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2024, pp. 4625–4629.

[88] C. Zhu, J. Galjaard, P.-Y. Chen, and L. Y. Chen, “Duwak: Dual watermarks in
large language models,” arXiv preprint arXiv:2403.13000, 2024.

[89] B. Huang and X. Wan, “Waterpool: A watermark mitigating trade-offs among
imperceptibility, efficacy and robustness,” arXiv preprint, 2024.

[90] E. Giboulot and F. Teddy, “Watermax: breaking the llm watermark detectability-
robustness-quality trade-off,” arXiv preprint arXiv:2403.04808, 2024.

[91] K. Pang, T. Qi, C. Wu, and M. Bai, “Adaptive and robust watermark against
model extraction attack,” arXiv preprint arXiv:2405.02365, 2024.

[92] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, “Measuring massive multitask language understanding,” 2021.
[Online]. Available: https://arxiv.org/abs/2009.03300

[93] K. Krishna, Y. Song, M. Karpinska, J. Wieting, and M. Iyyer, “Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[94] L. Pan, A. Liu, Z. He, Z. Gao, X. Zhao, Y. Lu, B. Zhou, S. Liu, X. Hu, L. Wen
et al., “Markllm: An open-source toolkit for llm watermarking,” arXiv, 2024.

[95] Z. Zhang, X. Zhang, Y. Zhang, L. Y. Zhang, C. Chen, S. Hu, A. Gill, and S. Pan,
“Large language model watermark stealing with mixed integer programming,”
arXiv preprint arXiv:2405.19677, 2024.

[96] V. S. Sadasivan, A. Kumar, S. Balasubramanian, W. Wang, and S. Feizi, “Can
ai-generated text be reliably detected?” arXiv preprint arXiv:2303.11156, 2023.

[97] “Industry analysis,” https://www.grandviewresearch.com/industry-analysis/
large-language-model-llm-market-report.

[98] Salesforce, “Salesforce announces einstein gpt, the world’s first generative
ai for crm,” 2023, accessed: 2024-11-14. [Online]. Available: https:
//tinyurl.com/mr39zsrp

[99] Duolingo, “Introducing duolingo max, a learning experience powered by gpt-4,”
2024, accessed: 2024-11-14. [Online]. Available: https://blog.duolingo.com/
duolingo-max/

[100] The Wall Street Journal, “Instacart joins chatgpt frenzy, adding chatbot to
grocery shopping app,” 2023, accessed: 2024-11-14. [Online]. Available:
https://shorturl.at/OVHhb

[101] Expedia Group, “Chatgpt wrote this press release — no, it didn’t, but it
can now assist with travel planning in the expedia app,” 2023, accessed:
2024-11-14. [Online]. Available: https://shorturl.at/kKX3A

[102] Morgan Stanley Wealth Management, “Morgan stanley wealth management
announces key milestone in innovation journey with openai,” 2023, accessed:
2024-11-14. [Online]. Available: https://shorturl.at/0GbsD

[103] Stripe, “Stripe and openai collaborate to monetize openai’s flagship products
and enhance stripe with gpt-4,” 2023, accessed: 2024-11-14. [Online].
Available: https://shorturl.at/C1hHZ

https://openreview.net/forum?id=uWVC5FVidc
https://openreview.net/forum?id=uWVC5FVidc
https://openreview.net/forum?id=KOTsHW6mBI
https://openreview.net/forum?id=SsmT8aO45L
https://openreview.net/forum?id=SsmT8aO45L
https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://arxiv.org/abs/2009.03300
https://www.grandviewresearch.com/industry-analysis/large-language-model-llm-market-report
https://www.grandviewresearch.com/industry-analysis/large-language-model-llm-market-report
https://tinyurl.com/mr39zsrp
https://tinyurl.com/mr39zsrp
https://blog.duolingo.com/duolingo-max/
https://blog.duolingo.com/duolingo-max/
https://shorturl.at/OVHhb
https://shorturl.at/kKX3A
https://shorturl.at/0GbsD
https://shorturl.at/C1hHZ


[104] Andy Beatman, “Ai-powered dialogues: Global telecommunications with
azure openai service,” 2024, accessed: 2024-11-14. [Online]. Available:
https://shorturl.at/ybhZo

[105] Microsoft, “From vision to value realization: A closer look at how customers
are embracing ai transformation to unlock innovation and deliver business
outcomes,” 2024, accessed: 2024-11-14.

[106] Meta, “How companies are using meta llama,” 2024, ac-
cessed: 2024-11-14. [Online]. Available: https://about.fb.com/news/2024/
05/how-companies-are-using-meta-llama/

[107] G. Cloud, “Cloud natural language,” 2024, https://cloud.google.com/
natural-language [Accessed: 2024-09-20].

[108] Lilt, “Lilt x google translate,” 2024, accessed: 2024-11-14. [Online]. Available:
https://support.lilt.com/kb/lilt-x-google-translate

[109] Business Wire, “Wipro launches ‘google gemini experience zone’ to accelerate
ai-driven innovation for enterprises,” 2024, accessed: 2024-11-14. [Online].
Available: https://www.businesswire.com/news/home/20241106392250/en/

[110] Google Cloud, “185 real-world generative ai use cases from industry leaders,”
2024, accessed: 2024-11-14.

[111] G. Satyanarayana, J. Bhuvana, and M. Balamurugan, “Sentimental analysis on
voice using aws comprehend,” in 2020 International Conference on Computer
Communication and Informatics (ICCCI), 2020, pp. 1–4.

[112] Amazon Web Services (AWS), “Amazon comprehend customers and partners,”
2024, accessed: 2024-11-14. [Online]. Available: https://aws.amazon.com/
comprehend/customers/

[113] IBM, “Ibm watson natural language understanding,” 2024, https://www.ibm.
com/products/natural-language-understanding [Accessed: 2024-09-20].

[114] IBM, “Client and partner stories,” 2024, accessed: 2024-11-14. [Online].
Available: https://www.ibm.com/case-studies/search

[115] Anthropic, “Build with claude,” 2024, accessed: 2024-11-14. [Online].
Available: https://www.anthropic.com/customers

[116] OpenAI, “Openai won’t watermark chatgpt text because its users could
get caught,” https://www.theverge.com/2024/8/4/24213268/openai-chatgpt-text-
watermark-cheat-detection-tool, 2024.

[117] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bash-
lykov, S. Batra, P. Bhargava et al., “Llama 2: Open foundation and fine-tuned
chat models,” 2023.

[118] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las
Casas, F. Bressand, G. Lengyel et al., “Mistral 7b,” 2023.

[119] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer language
models,” arXiv preprint arXiv:2205.01068, 2022.

[120] E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Debbah,
É. Goffinet, D. Hesslow, J. Launay, Q. Malartic et al., “The falcon series of
open language models,” arXiv preprint arXiv:2311.16867, 2023.

[121] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[122] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT:
A lite BERT for self-supervised learning of language representations,” CoRR,
vol. abs/1909.11942, 2019. [Online]. Available: http://arxiv.org/abs/1909.11942

[123] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert with
disentangled attention,” in ICLR, 2021.

[124] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia,
A. Poulton, V. Kerkez, and R. Stojnic, “Galactica: A large language model for
science,” arXiv preprint arXiv:2211.09085, 2022.

[125] L. Ben Allal, A. Lozhkov, and E. Bakouch, “Smollm - blazingly fast and
remarkably powerful,” Hugging Face Blog, July 2024, accessed: 2024-09-20.

[126] G. A. Miller, “Wordnet: a lexical database for english,” Communications of
the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[127] J. Dodge, M. Sap, A. Marasović, W. Agnew, G. Ilharco, D. Groeneveld,
M. Mitchell, and M. Gardner, “Documenting large webtext corpora: A case
study on the colossal clean crawled corpus,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.08758

[128] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Černockỳ, “Empirical
evaluation and combination of advanced language modeling techniques,” in
ISCA, 2011.

[129] T. Shen, R. Jin, Y. Huang, C. Liu, W. Dong, Z. Guo, X. Wu, Y. Liu, and
D. Xiong, “Large language model alignment: A survey,” arXiv preprint, 2023.

[130] H. Face, “Transformers documentation,” 2024, https://huggingface.co/docs/
transformers/index [Accessed: 2024-09-20].

(a) Unigram

(b) Adaptive

(c) UPV

Figure 12: F1 scores as a function of different IP classifiers
for different WMs, compared with No WM settings (Addi-
tional to results in Figure 7).

Appendix

Impacts of other WMs on IP Classifiers. As we applied
multiple WMs to reassure our assessment, the cross-model
IP classifier results of Unigram, Adaptive and UPV WMs
are shown in Fig. 12. Similar insights could be drawn from
the figure, reaffirming our observation of the study.
APIs for Deployment of Major LLM Providers. To
provide context on the current deployment status of LLMs,
we present Table 6, which compares various real-world
APIs, outlining their applications, advantages, and limitations.
Leading providers like OpenAI, Microsoft, Meta, Hugging
Face, Google, and Amazon offer a range of LLM capabilities,
including NLP, sentiment analysis, code generation, and
model fine-tuning. While each API offers strengths such as
scalability, integration, and community support, they also
come with challenges like high resource demands, usage-
based pricing, and limited customization options.

https://shorturl.at/ybhZo
https://about.fb.com/news/2024/05/how-companies-are-using-meta-llama/
https://about.fb.com/news/2024/05/how-companies-are-using-meta-llama/
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
https://support.lilt.com/kb/lilt-x-google-translate
https://www.businesswire.com/news/home/20241106392250/en/
https://aws.amazon.com/comprehend/customers/
https://aws.amazon.com/comprehend/customers/
https://www.ibm.com/products/natural-language-understanding
https://www.ibm.com/products/natural-language-understanding
https://www.ibm.com/case-studies/search
https://www.anthropic.com/customers
http://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2104.08758
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index


TABLE 6: LLM Real-world APIs.

API Name Provider Access
Type

Applications Advantages Constraints

ChatGPT and
GPT family
[2]

OpenAI API NLP, text generation,
questions and answers,
chatbots

State-of-the-art LLMs, ver-
satility, efficiency, person-
alization, cost-effective

Lack of real-Time knowl-
edge, cost for high usage

Microsoft
Azure
Language
[32]

Microsoft
Azure

API Sentiment analysis, en-
tity recognition, lan-
guage understanding

Comprehensive APIs, scal-
ability, integration with
Azure ecosystem

Pricing based on usage,
limited offline capabili-
ties

LLaMA fam-
ily [33]

Meta Open
source

Text/code generation,
text summarization,
translation, recommen-
dations, chatbots

High model utility, ver-
satility, efficiency, fine-
tuning support

Resource intensive, over-
fitting, high maintenance
and updates

Hugging Face
transformers
[130]

Hugging
Face

Open
source

NLP, model fine-tuning,
text generation, research
and development

large model repository, ex-
tensive community sup-
port, interoperability, ver-
satility

No official support, re-
source intensive

Google Cloud
AI-Language
(Gemini, Bard,
PaLM, etc.)
[107]

Google API Sentiment analysis,
entity recognition,
translation, dialogue,
text/code/image genera-
tion, comprehension

Google’s robust and sub-
stantial infrastructure, easy
integration with Google
services, proficiency

Pricing based on us-
age, quality of generated
content, inconsistent re-
sponses

Amazon Com-
prehend [111]

Amazon
AWS

API Entity recognition, sen-
timent analysis, classifi-
cation, topic modeling

Integration with other
AWS services, scalability,
reliability

Pricing based on usage,
limited customization

IBM Watson
NLU [113]

IBM Wat-
son

API Sentiment and emotion
analysis, keyword ex-
traction

Comprehensive text anal-
ysis, customization, scala-
bility, rich documentation
and support, Integration
with other IBM services

Cost for high usage, over-
head for simple tasks

Fairseq [111] Meta Open
source

Translation, research
and development,
language modeling

Versatility, research-
friendly, integration with
PyTorch

Limited user community,
less user-friendly for be-
ginners, maintenance

Claude [3] Anthropic API Summarization, search,
collaborative writing,
coding comprehension

Safety and alignment fo-
cus, human-like interac-
tion, multi-modality

Costly, limited
customization

Cohere [4] Cohere
Inc.

API Chatbots, knowledge as-
sistants, scalability

User-friendly, seamless
customization, focus on
enterprise needs, privacy

Costly, small community



TABLE 7: Details on WM Schemes used in Experiments.

WM Details Mechanism Visualization

KGW [9]

Divides the vocabulary into green and red tokens, then
modifies logits by adding a fixed WM to green
tokens’ logits to favor the generation of green tokens.

SIR [50]
Determines WM logits by converting semantics
of all preceding tokens using an auxiliary embedding
model, then combines them with the original logits.

EXP [25]
Intervenes the sampling process of each token by
mapping it with a pseudo-random number sequence, in
which every generated token corresponds with a key.

SemStamp
[77]

Generates new sentences by mapping candidates into
embeddings, partitions semantic space into valid &
blocked regions, and chooses sentences in valid regions.

Unigram
[59]

Modifies the logits to embed the WM by using
a fixed grouping strategy, same green and red lists
applied consistently for entire vocabulary.

Adaptive
[53]

Adaptively scales up logits of high-entropy tokens
based on preceding tokens’ semantics embedding.

UPV [23]
Employs two networks for WM generation (modifying
logits) and detection (evaluating entire text without
a generation key).


	Introduction
	Large Language Models and Risks
	Large Language Models
	Risks in LLMs
	Model Stealing Attacks 

	Taxonomy of WMs and IP Checkers
	WM Generators
	WM IP Checkers
	Characteristics of an Effective WM
	Attacks against WMs 

	Exploring Effectiveness of WMs in LLMs
	WMs in LLM Productions and Challenges
	Native IP Classifier
	Proposed Cross-Model IP Classifier
	Experiment Settings
	Baselines
	Datasets and Evaluation Tasks
	Evaluation Metrics

	Experimental Results
	Uniqueness of LLM Outputs
	Effectiveness of WMs on LLMs
	Semantic Preservation of Watermarked Outputs

	Remarks

	Challenges and Future Directions
	Different Sensitivities among Output Tokens
	Robustness to Removal Attacks
	Text Quality and Semantic Drift
	Scalability and Practicality
	WMs with Certified Robustness
	Explore WMs and Alignment in LLMs

	Conclusion
	References
	Appendix

