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Abstract

Foundation models represent the most prominent and recent
paradigm shift in artificial intelligence. Foundation models
are large models, trained on broad data that deliver high
accuracy in many downstream tasks, often without fine-
tuning. For this reason, models such as CLIP [36], DINO
[35] or Vision Transfomers (ViT) [10], are becoming the
bedrock of many industrial AI-powered applications. How-
ever, the reliance on pre-trained foundation models also in-
troduces significant security concerns, as these models are
vulnerable to adversarial attacks. Such attacks involve de-
liberately crafted inputs designed to deceive AI systems,
jeopardizing their reliability. This paper studies the vulner-
abilities of vision foundation models, focusing specifically
on CLIP and ViTs, and explores the transferability of adver-
sarial attacks to downstream tasks. We introduce a novel at-
tack, targeting the structure of transformer-based architec-
tures in a task-agnostic fashion. We demonstrate the effec-
tiveness of our attack on several downstream tasks: classi-
fication, captioning, image/text retrieval, segmentation and
depth estimation.

1. Introduction
Foundation models are nowadays powering the vast major-
ity of AI-based algorithms and technologies. Foundation
models are large models that are trained on broad data and
are easily fine-tuned to downstream tasks. A trend started
with the first “off-the-shelves” image recognition models
pre-trained on Imagenet [39], is now brought forward by
remarkable advancements by large language models [4, 8],
vision backbones [35] and multimodal models [36].

Among the foundation models, CLIP [36] can be re-
garded as one of the most prominent players in all modern
computer vision applications. It relies on contrastive learn-
ing to learn an optimal alignment between textual and visual
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Figure 1. Our method generates adversarial noise z∗ by attacking
attention and embeddings in visual backbones of foundation mod-
els, without any knowledge of downstream tasks. Unlike other
attacks, access to other modalities (e.g., text) is not required.

embeddings, and it is widely used in downstream tasks in-
cluding classification, retrieval and captioning [25]. Like
most foundation models, CLIP relies on attention, which
weighs different parts of the input and also plays a role in
spatial information handling. Similarly, pretrained DINO
models [35] are widely used as feature extractors, especially
for fine-grained tasks such as segmentation or depth estima-
tion. However, foundational models, like all deep learning
models, are vulnerable to adversarial attacks. In fact, the
widespread application of single models throughout an ar-
ray of different tasks makes attacks potentially more dan-
gerous, as a single attack could affect multiple applications.
Nonetheless, attacks on foundation models are currently
successfully performed by exploiting knowledge about in-
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dividual downstream tasks [29]. When the foundational
model is multimodal, e.g. image and text, joint attacks on
both modalities can also be conducted [43] to improve their
effectiveness. However, this requires access to both modal-
ities, making the attacks not always feasible in practice.

In this work, we propose an attack for foundation mod-
els, specifically focusing on CLIP and Vision Transformer
backbones, by taking a different angle on the problem. Un-
like existing methodologies, which are often multimodal
and task-specific, we design our attack to target only the
visual domain and to be agnostic to the downstream task.
In fact, we believe that to make the attack more disruptive,
foundational models should be attacked independently from
the downstream tasks. Our method, by jointly damaging at-
tention and the final model embeddings, can attack with the
same perturbation all downstream applications, as shown in
Fig. 1. We show that tasks like zero-shot classification, re-
trieval, captioning, segmentation and depth estimation are
all affected by our simple attack. These results highlight
the potential fragility of foundation models. Moreover, at-
tacks in the image domain are harder to spot especially
when conducted with low budgets, compared to attacks that
perturb both images and text. Interestingly, attacks tar-
geting specific parts of attention layers have different im-
pacts, depending on the nature of the downstream task:
fine-grained tasks, as captioning or segmentation/depth es-
timation, are better addressed by disrupting visual attention,
whereas more semantic tasks, as classification and retrieval,
are better targeted by attacks on embeddings. In summary,
our main contributions are the following:
• We propose an effective adversarial perturbation algo-

rithm targeting attention of vision backbones in founda-
tional models.

• Our method is task agnostic, i.e. can attack samples with-
out their label or textual description.

• Extensive experimentation shows that our method can af-
fect downstream tasks such as captioning, classification,
retrieval, segmentation and depth estimation, reporting
state-of-the-art results in terms of attack success rate.

2. Related works
Vision Foundation Models Vision Foundation Models,
have become pivotal in advancing multimodal AI by effec-
tively addressing downstream tasks across various domains.
These models, trained on large-scale image-text datasets,
learn representations that can be fine-tuned for specific
tasks, significantly improving performance. Whereas there
are examples of purely visual foundation models [10, 21,
35], most of these models are multi-modal, exploiting a
Vision-Language Pre-training (VLP) that jointly learns to
process images and text. CLIP [36] is a landmark model in
this field, enabling zero-shot open-vocabulary image classi-
fication by aligning images with textual descriptions. This

model set a new benchmark for generalization in vision-
language tasks. Following CLIP, ALIGN [18] scaled this
approach, improving the performance on tasks like image
retrieval and cross-modal retrieval by leveraging billions of
image-text pairs. Florence [47] exemplifies the application
of VLPs in multi-task learning. Trained on a vast dataset, it
excels in object detection, semantic segmentation, and im-
age captioning, demonstrating the benefits of joint vision-
language optimization. Regarding purely visual backbones,
DINO [7] and its improved version DINOv2 [35], intro-
duced a self-supervised approach to train Vision Transform-
ers, yielding extremely versatile backbones that can be used
across tasks even without fine-tuning. In this work, we fo-
cus on attacking CLIP and Vision Transformer backbones
as they are largely employed as core building blocks of a
plethora of downstream applications.

Adversarial Attacks on ViT With the extensive use of
Vision Transformers (ViTs) [10] as the core of various vi-
sion foundation models [21, 36], there is a growing inter-
est in evaluating their robustness to pinpoint their weak-
nesses. The Pay No Attention (PNA) [44] method adapts
the Skip Gradient Method (SGM) for ViTs, specifically
omitting the gradient of the attention block during back-
propagation to enhance the transferability of adversarial ex-
amples through gradient regularization. The attack also
introduces the PatchOut strategy, which randomly selects
a subset of patches to compute the gradient in each at-
tack iteration, serving as an image transformation tech-
nique for transferable adversarial attacks on ViTs. An-
other notable method is the Token Gradient Regulariza-
tion (TGR) [49]: leveraging the structural characteristics of
ViTs, TGR reduces the variance of back-propagated gradi-
ents on a token-wise basis and utilizes the regularized gradi-
ent to generate adversarial samples. Contrasting with these
strategies, Naseer et al. [33] introduced the Self-Ensemble
(SE) method and the Token Refinement (TR) module to
boost the transferability of adversarial examples generated
by ViTs. SE leverages the classification token at each ViT
layer with a shared classification head for feature-level at-
tacks. Building on SE, TR further refines the classification
token through fine-tuning to improve attack performance.

In general, the literature presents conflicting conclu-
sions regarding the adversarial robustness of transformers,
compared to the one of Convolutional Neural Networks
(CNNs). One school of thought posits that transformers
demonstrate superior robustness compared to CNNs. Re-
cent studies [1, 19, 38] attribute this robustness to the dif-
fering reliance on input features. Specifically, CNNs de-
pend heavily on high-frequency information, whereas trans-
formers do not. Consequently, transformers are believed to
be more resilient to gradient-based attacks like Fast Gra-
dient Sign Method (FGSM) [14], Projected Gradient De-



scent (PGD) [30], and Carlini & Wagner (C&W) [5] at-
tacks. Furthermore, the severe nonlinearity inherent in the
input-output relationships of transformers may contribute to
their enhanced robustness [20]. In scenarios involving ad-
versarial training, Vision Transformers (ViTs) exhibit supe-
rior generalization and robustness compared to CNNs, as
highlighted by Liu et al. [27].

Contrarily, another body of research contends that trans-
formers are just as susceptible to adversarial attacks as
CNNs. The findings of Mahmood et al. [31] indicate
that ViTs do not outperform ResNet architectures in terms
of robustness against various attack methods including
FGSM [14], PGD [30], and C&W [5]. Similarly, there
is evidence that both CNNs and transformers exhibit com-
parable vulnerabilities to natural and adversarial perturba-
tions [3], and a direct comparison under a unified training
setup revealed that both architectures possess similar levels
of adversarial robustness [2]. Additional vulnerabilities of
Vision Transformers are exposed through targeted patch at-
tacks [13, 15]. Recently, EmbedAttack [22] was proposed
as the first task agnostic attack on ViT backbones, by sim-
ply applying PGD on the embeddings rather than on the tar-
gets. In this work, differently from EmbedAttack, we tar-
get ViT backbones of foundation models by attacking its
core component: attention. Our attack crafts adversarial
noise to make the model focus on irrelevant parts of the im-
age, yielding performance drops across several downstream
tasks, without knowing a-priori which task the backbone
could be used for. In addition, we also show that attack-
ing different parts of the attention layer (e.g., the attention
matrix of the final embedding), yields different degrees of
efficacy depending on the nature of the downstream task.

Attacks on Multimodal Foundation Models Unlike
standard attacks, which typically target the task by exploit-
ing the relationship between a single instance and its la-
bel, attacks on vision-language models must account for
multi-modal data relationships. Fort [11] demonstrated that
“standard” adversarial attacks are effective on CLIP models
when customized for a particular downstream task. Other
studies [12, 34] examined attacks on multi-modal CLIP
neurons by placing text stickers on images, prompting the
CLIP model to “read” the text and ignore the rest of the im-
age. These attacks adhere to a different threat model com-
pared to traditional budget-based attacks, as the adversar-
ial manipulations are quite evident. Notably, [6] recently
revealed that poisoning attacks on web-scale datasets are
feasible and can significantly affect the training process
of foundational models like CLIP. Zhang et al. [48] in-
troduced the Collaborative Multimodal Adversarial Attack
(Co-Attack) to target various pre-trained models, such as
CLIP, ALBEF [24], and TCL [45]. Co-Attack generates
multi-modal adversarial perturbations by increasing the em-
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Figure 2. Our attack disrupts both the attention mechanism and
image embedding in attention-based models.

bedding distance between adversarial examples and their
original data pairs. The Set-level Guidance Attack (SGA)
[29] uses data augmentation to boost data diversity, thereby
creating multi-modal adversarial perturbations by minimiz-
ing the similarity between them and their matched data
from another modality. Additionally, the Self-augment-
based Transfer Attack (SA-Attack) [16] applies further data
augmentations to both the original data and the adversarial
examples to improve attack transferability across models.
While Co-Attack, SGA, and SA-Attack typically generate
adversarial perturbations sequentially, first for one modality
and then for another, methods for learning multi-modal ad-
versarial perturbations simultaneously also exist [43]. All
aforementioned attacks depend on task-specific character-
istics, hindering their broader applicability. In contrast,
our proposed method makes a significant advancement by
adopting a task-agnostic approach. It simultaneously dis-
rupts both the attention mechanism and the image embed-
ding within attention-based models, without relying on spe-
cific task labels or characteristics. This dual disruption ef-
fectively shifts the embedding away from its correct repre-
sentation and manipulates the attention distribution across
the input, making it applicable to a wide range of down-
stream tasks. By targeting the foundational backbone rather
than the task-specific components, our method provides a
more robust, scalable, and universally applicable adver-
sarial strategy. It also simplifies the attack pipeline on
multimodal models, by solely attacking the vision branch.
Whereas leveraging a joint attack could yield more effective
disruptions, not accessing other modalities greatly improves
the attack applicability, as no additional information on the
data other than the image is required.

3. Attacking Foundation Models

We introduce a novel adversarial attack that simultaneously
targets the attention mechanism and image embedding in
attention-based models, as shown in Fig. 2. The core objec-
tive of our approach is to disrupt the input’s representation
by shifting it away from its original embedding and altering



Figure 3. Attention on clean (left) and perturbed (right) image.

how the model distributes attention across different parts of
the input. Although simple, what makes our attack strategy
appealing is that it is completely agnostic to ground truth
labels and, since it is tailored to attack foundational back-
bones, it is also agnostic to the nature of any downstream
task. Our proposed attack is versatile and can be applied
to any vision transformer or attention-based model. How-
ever, motivated by its agnostic nature, we focus on foun-
dational models, which are frequently leveraged either by
tuning only task-specific heads or in zero- or few-shot set-
tings. The main idea of our method is an attack that can
target said backbones, and by damaging the original model,
also disrupts the performance of any downstream task that
builds upon its learned representations.

3.1. Optimizing the Perturbation
Given a model f(x) with input x, our objective is to gen-
erate a perturbation z such that the adversarial example
x′ = x + z causes the model output to diverge from its
intended outcome. To achieve this, we optimize the pertur-
bation z by considering the gradients of both the attention
mechanism and the embedding space with respect to the in-
put. The optimization problem can be formally defined as

z∗ = argmin
z
Lcomb(f(x+ z)) (1)

where Lcomb is a combined loss that integrates both at-
tention and embedding losses, as described further. The per-
turbation is iteratively updated using gradient descent:

z ← clipϵ

(
z − η

∂Lcomb

∂z

)
(2)

where η is the learning rate, computed using Weighted
Adam [28] and ϵ is the perturbation budget. The function
clipϵ(·) is the clipping function that ensures that adversarial
noise does not exceed the budget at every iteration, that is,
∥z∥∞ < ϵ. The optimization alters the embedding of the
perturbed input while simultaneously altering the attention
distribution.

3.2. Attention Manipulation
Our approach manipulates the attention matrix in trans-
formers to redirect the model’s focus from significant to-
kens to less relevant ones, thereby impairing its perfor-
mance, as shown in Fig. 3. The attention mechanism in

transformers projects the input into three embedding vec-
tors in Rdk , the query Q, the key K and the value V, and
computes an attention matrix A as:

A = softmax
(
QK⊤
√
dk

)
(3)

which is then multiplied by V to compute the output values.
To disrupt the attention of the model, we define a loss

Latn that minimizes the alignment between the clean atten-
tion matrix Agt and the adversarial attention matrix Aadv

for a given layer l. This loss is formulated as:

Latn =

Nh∑
h=1

1

(Nt − 1)2

Nt∑
r=2

Nt∑
c=2

Agt
h,r,c ·A

adv
h,r,c (4)

where Nh is the number of attention heads, and Nt is
the number of tokens. The terms Agt

h,r,c and Aadv
h,r,c repre-

sent the attention values at head h, row r, and column c
for the ground truth and adversarial attention matrices, re-
spectively. The indices r, c ≥ 2 indicate rows and columns
of each attention map of shape Nt × Nt, where Nt corre-
sponds to the number of visual tokens in each row/column,
excluding the CLS token. In our experiments, we attack the
attention map from the last layer. In a set of preliminary ex-
periments, we found that this strategy performs best, with
earlier layers yielding slightly worse results.

By minimizing the dot product between the clean atten-
tion Agt and the adversarial attention Aadv , our loss func-
tion effectively alters adversarial attention making it orthog-
onal to clean attention. The main idea is that the original
attention patterns are to be pushed away from the directions
of high importance identified by the model.

This effect is applied to each token in the attention ma-
trix. Specifically, for each token t, minimizing the dot prod-
uct between the attention row corresponding to t in Agt and
Aadv forces the adversarial perturbation to produce an or-
thogonal vector. As a consequence, where the clean atten-
tion would have a high value for a particular token, the ad-
versarial perturbation induces a low value, thereby dimin-
ishing the attention on that token. Due to the nature of the
softmax operation applied after the multiplication of query
(Q) and key (K), this reduction in attention causes a redis-
tribution of the attention scores across other tokens.

This mechanism is particularly effective because it not
only changes the distribution of attention allocation but also
directly impacts the magnitude of attention weights. By al-
tering both aspects, the attack ensures that the attention is
redistributed from the originally highly attended tokens to
those that were previously less significant. This redistri-
bution impairs the model ability to focus on relevant parts
of the input, thereby degrading its overall performance and
making the attack more powerful.



3.3. Embedding Space Disruption
To enhance the effectiveness of our adversarial attack, we
not only manipulate the attention mechanism but also in-
troduce a disruption in the embedding space. This ap-
proach allows us to directly alter the learned representa-
tions that are crucial for the model’s performance across
various tasks. By targeting the embedding space, we af-
fect the foundational representation that informs subsequent
decision-making layers.

Existing attacks in the embedding domain have access
not just to the image but also to the text. Moreover, attacks
are often carried out jointly on the two modalities, alter-
ing image and text [16, 29, 48]. CO-Attack [48] crafts a
multimodal embedding combining the two modalities and
relies on the KL-Divergence to distance adversarial embed-
dings from unattacked image embeddings. SGA [29] max-
imizes the misalignment, in terms of cosine distance, be-
tween text and image embedding. Finally, SA-Attack [16]
extends SGA through augmentation, thus leveraging input
diversity to disrupt the alignment. In contrast, we attack
a single modality, minimizing the dot product between ad-
versarial embeddings and clean embeddings. Even without
accessing or modifying the text embeddings, lowering the
alignment of clean image embeddings and adversarial em-
beddings implicitly affects the alignment with textual em-
bedding which are aligned by construction in models like
CLIP [36]. We define the embedding loss, Lemb, as the L2

norm between the clean and adversarial embeddings:

Lemb =
∥∥Egt − Eadv

∥∥
2

(5)

To calculate the adversarial embedding Eadv , we first create
an adversarial example by adding a perturbation z∗ to the
input:

Xadv = X + z∗ (6)

Then, we pass Xadv through the model to obtain Eadv:

Eadv = fl(X
adv) = fl(X + z∗) (7)

This gives us the adversarial embedding Eadv from the
transformer layer l inside the vision encoder.

3.4. Combined Loss Function
To generate a robust adversarial perturbation, we combine
the attention and embedding losses into a single objective:

Lcomb = αLatn + βLemb (8)

where α and β are hyperparameters that balance the con-
tributions of each loss. By optimizing this combined loss,
our approach effectively perturbs both the attention mech-
anism and embedding space, resulting in a powerful adver-
sarial attack that compromises the integrity of foundational

models and their downstream applications. The method op-
timizes the adversarial attack using Weighted Adam with
an initial learning rate of 0.01 for 250 iterations. The losses
Lemb and Latn were balanced at every iteration by setting
α = 1;β = α| Latn

Lemb
|.

Attacks ViT-B/16 ViT-B/32 ViT-L/14 Label

FGSM [14] 99.90 % 100% 99.70% ✓
PGD [30] 99.90% 100% 99.80% ✓
Ours (Lemb) 97.90% 96.50% 98.10% -
Ours (Latn) 86.40% 85.50% 83.50% -
Ours (Lcomb) 98.40% 97.40% 98.30% -

Table 1. Attack success rate for classification on ImagenetV2 test
set. ϵ = 2/255

4. Experiments
We evaluate our approach by covering a wide range of
downstream tasks, assessing the impact of our attack. We
analyze the effects on classification, retrieval, captioning,
zero-shot classification, depth estimation and semantic seg-
mentation. Note that, when different experiments share the
same backbone (e.g., ViT-B/16), a single attack suffices to
affect all of the described downstream tasks.

Classification We evaluate our attack on image classi-
fication using Vision Transformers (ViTs) with different
architectures. Specifically, we focus on ViT-B/16, ViT-
B/32, and ViT-L/14 [10], comparing the attack against two
widely used targeted adversarial techniques: Fast Gradient
Sign Method (FGSM) [14] and Projected Gradient Descent
(PGD) [30]. Tab. 1 shows that our attack yields slightly
lower success rates. Nonetheless, differently from FGSM
and PGD, our method does not require label information,
highlighting its effectiveness and broader applicability.

Image/Text Retrieval In Tab. 2, we present a comparison
of our method with state-of-the-art approaches on the im-
age/text retrieval tasks using the COCO [26] and Flickr30K
[46] datasets by attacking CLIP (ViT-B/16). As evalua-
tion metric, we use attack success rate at R@1, R@5, and
R@10. The term TR-R@K refers to the percentage of ad-
versarial images for which the correct caption (among the
ground truth captions) is not retrieved in the top-K by the
VLP model. Similarly, IR-R@K indicates the percentage
of texts for which the correct image is not found in the top-K
results when the attack is performed. To enable this attack
with our architecture, we attack all images in the gallery,
leaving the input text unaltered. Columns labeled “T”, “I”
and “J” indicate whether the attack targets text (T), image
(I), or both jointly (J). For both the SGA attack [29] and Co-
Attack [48] baselines, results are provided for two distinct



Attacks COCO (Text Retrieval) Flickr30K (Text Retrieval) COCO (Image Retrieval) Flickr30K (Image Retrieval) T I J
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Sep Attack [48] 69.10% 52.20% 43.64% 49.57% 23.99% 15.65% 78.64% 66.89% 60.66% 66.98% 51.83% 45.31% ✓ ✓ -
SGA Attack [29] 99.85% 99.42% 98.89% 99.14% 97.40% 95.73% 99.85% 99.37% 98.88% 99.10% 97.64% 96.16% ✓ ✓ ✓
SA Attack [16] 99.58% 98.74% 98.01% 98.65% 96.26% 93.09% 99.62% 99.06% 98.35% 99.00% 96.87% 94.88% ✓ ✓ ✓
Co-Attack [48] 97.98% 94.94% 93.00% 93.25% 84.88% 78.96% 98.80% 96.83% 95.33% 95.86% 90.83% 87.36% ✓ ✓ ✓
UniA* [50] 95.50% 91.42% 88.82% 91.90% 82.87% 78.66% 94.24% 90.11% 87.65% 91.14% 81.65% 79.96% - ✓ -
MulA* [50] 95.50% 91.60% 88.87% 92.02% 82.04% 78.66% 96.13% 93.50% 91.76% 94.85% 90.42% 86.22% ✓ ✓ -
ETU* [50] 93.55% 89.01% 85.88% 88.47% 78.61% 73.07% 94.25% 91.30% 89.31% 92.69% 87.50% 84.89% ✓ ✓ -
SGA Attack [29] 97.30% 94.02% 91.17% 94.11% 88.89% 83.64% 97.72% 94.65% 91.86% 95.91% 90.10% 85.98% - ✓ -
Co-Attack [48] 94.93% 90.19% 86.52% 87.73% 78.09% 72.05% 95.88% 91.58% 88.55% 91.72% 83.32% 78.67% - ✓ -
Ours (Lemb) 99.81% 99.50% 99.29% 99.26% 98.03% 97.36% 99.42% 98.72% 98.21% 98.61% 97.01% 95.81% - ✓ -
Ours (Latn) 97.10% 93.54% 91.33% 89.82% 80.48% 74.80% 95.36% 90.63% 87.26% 89.79% 78.37% 72.20% - ✓ -
Ours (Lcomb) 99.81% 99.53% 99.29% 99.14% 98.55% 97.66% 99.43% 98.61% 98.11% 98.87% 97.41% 96.16% - ✓ -

Table 2. Attacks to CLIP on retrieval on COCO and Flickr30K. Universal perturbation attack with a 12/255 budget are marked with*.
Remaining methods use ϵ = 2/255. Best results not using joint information are in bold. Best results using joint information are underlined.

settings: the image-only attack and the joint image-and-text
attack. The image-only setting applies perturbations solely
to the image (I), while the joint setting perturbs both the
image and text modalities (I, T).

In the text retrieval task, our proposed method achieves a
high attack success rate, surpassing joint modality methods
such as SGA Attack [29], SA Attack [16], and Co-Attack
[48]. Furthermore, when SGA and Co-Attack operate in the
image-only setting, their performance drops significantly.
Our method consistently outperforms them, with the only
exception being that SGA achieves a slightly higher attack
success rate at R@1 on COCO. Similarly, for image re-
trieval, our method performs on par with the joint modality
competitors, achieving high attack success rates, with R@1
values of 99.43% on the COCO dataset and 98.87% on the
Flickr30K dataset. Again, in the image-only setting, our
method outperforms both SGA and Co-Attack.

Image Captioning Table 3 presents the impact of ad-
versarial attacks on image captioning for the BLIP-2
model1 [25], evaluated on COCO and Flickr30k. Perfor-
mance is measured using BLEU (1–4), METEOR, ROUGE,
CIDEr, and SPICE, which collectively measure the quality
and accuracy of the generated captions compared to ref-
erence captions. Our attack causes a severe performance
drop across all metrics. On COCO, BLEU-2 falls from
0.6212 to 0.2004, signaling a collapse in bigram precision,
while CIDEr, which quantifies similarity to human cap-
tions, drops from 1.2912 to 0.0716. The degradation ex-
tends to Flickr30k, further demonstrating the vulnerability
of captioning models, especially those relying on founda-
tion models like CLIP, under adversarial attacks. A key
distinction between our method and existing adversarial ap-
proaches lies in what is being attacked. Even though state-
of-art methods, such as SGA [29] and Co-Attack [48], opti-
mize adversarial perturbations by jointly targeting both the

1We used the “BLIP-2-t5/pretrain-flant5xl-vitL” variant.

Metric BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDER SPICE

COCO Dataset
Clean 0.7595 0.6212 0.4877 0.3725 0.2819 0.5888 1.2912 0.2255
Co-Attack [48] 0.6654 0.5220 0.3925 0.2895 0.2380 0.5264 0.9810 0.1790
SGA [29] 0.6635 0.5012 0.3676 0.2653 0.2244 0.5071 0.8806 0.1644
Ours (Latn) 0.4022 0.2025 0.1005 0.0600 0.0938 0.3039 0.0788 0.0261
Ours (Lemb) 0.4815 0.2766 0.1571 0.0934 0.1272 0.3527 0.1936 0.0590
Ours (Lcomb) 0.4000 0.2004 0.0983 0.0558 0.0878 0.2949 0.0716 0.0252

FLICKR Dataset
Clean 0.6997 0.5392 0.3970 0.2874 0.2179 0.5058 0.6741 0.1567
Co-Attack [48] 0.6499 0.4693 0.3295 0.2287 0.1903 0.4563 0.5198 0.1330
SGA [29] 0.6169 0.4266 0.2900 0.1948 0.1723 0.4308 0.4180 0.1127
Ours (Latn) 0.3846 0.1770 0.0757 0.0388 0.0713 0.2632 0.0350 0.0197
Ours (Lemb) 0.4892 0.2889 0.1765 0.1135 0.1173 0.3385 0.1361 0.0583
Ours (Lcomb) 0.03598 0.1640 0.0705 0.0359 0.0662 0.2463 0.0332 0.0183

Table 3. Impact of adversarial attacks on image captioning metrics
for the BLIP-2 model2 with ϵ = 8/255. Evaluated on 1,000 ran-
dom images from COCO (val) and FLICKR datasets. Adversari-
ally perturbed images are generated using the CLIP-ViT-L model.

text and image modalities, their focus is exclusively on per-
turbing the embedding space. In contrast, we attack both
embeddings and the attention mechanism simultaneously.
This dual disruption results in a more severe degradation of
model performance. In Fig. 4, we show the effects of adver-
sarial perturbations for the captioning task using COCO and
the BLIP-2 model. The first row displays adversarial exam-
ples generated with a perturbation magnitude of ϵ = 8/255.
These adversarial examples are visually indistinguishable
from the original images but induce significant errors in
the model’s predictions. The second row shows the origi-
nal captions generated by BLIP-2 for clean images, where
the model accurately describes the content. In contrast, the
third row presents the adversarial captions generated after
applying the attention-based perturbations, which lead the
model to produce inaccurate and unrelated descriptions. We
also report captions generated using SGA Attack and CO-
Attack.

Zero-Shot classification In Tab. 4, we evaluate the per-
formance of different adversarial attack methods on zero-
shot classification tasks. Following prior work [42], we test

2https://huggingface.co/Salesforce/blip2-flan-t5-xl



Predicted caption
(unattacked)

A person on skis
standing on a snow

covered slope

two girls holding donuts
up to their eyes

A pizza with arugula
and prosciutto on top

A plate of chicken,
broccoli and rice

A tray of cinnamon rolls
in an oven

Ours (Latn)
a photograph of a glass
of ice with a red light in

it

A picture of a person in
a pool of water

A bunch of grapes in a
glass of water

A painting of a woman
with a flower in her hair

A black and white
image of a black and

white image of a black
and white image of a

SGA Attack [29]
A group of people on

skis on a snow covered
slope

A man and a woman
drinking a donut

A plate of food on a
wooden cutting board

A plate of food on a
table

A piece of bread in an
oven

Co-Attack [48] A person on skis on a
snowy slope

A girl wearing a pink
shirt A sandwich on a plate A plate of food on a

table

a black and white
picture of a tooth brush

in a dark room

Figure 4. Comparison of adversarial and original COCO images with predicted and adversarial captions from BLIP-2. Adversarial
examples were crafted with ϵ = 8/255. The first row shows the predicted captions, the remaining rows show captions generated by
attacking with: Our Method (second row), SGA (third row) and Co-attack (fourth row).

Attacks ViT-B/16 ViT-B/32 T I
NES* [17] 42.80% 41.00% - ✓
SPSA* [41] 43.50% 40.50% - ✓
FGSM [14] 6.70% 10.20% ✓ ✓
DeepFool [32] 0% 0% ✓ ✓
BIM [23] 0% 0% ✓ ✓
MIM [9] 0% 0% ✓ ✓
Ours (Latn) 1.00% 1.20% - ✓
Ours (Lemb) 0.10% 0.10% - ✓
Ours (Lcomb) 0% 0% - ✓

Table 4. Zero shot accuracy on ImageNet using ϵ = 8/255. Black
box attacks denoted with ∗.

the zero-shot capability of CLIP with different visual back-
bones, namely ViT-B/16 and ViT-B/32. In the tables, we
report the classification accuracy after the attack. The eval-
uations are performed on 1,000 random images from the
ImageNet 2012 [37] dataset, with an adversarial perturba-
tion budget of ϵ = 8/255. Notably, our proposed approach
effectively attacks all images, yielding a 0% classification
accuracy, as well as DeepFool, BIM and MIM. The only
white-box attack that is not able to achieve a perfect mis-
classification is FGSM (6.7% and 10.2% on ViT-B/16 and
ViT-B/32). Black-box attacks instead are less effective as
they do not manage to lower the accuracy below 40%. It
has to be noted that all white-box competitors have access
to both images and text during the attack, contrary to our
method that only attacks images, without any knowledge
about text. We specify whether a model has access to text
(T) and/or images (I) in Tab. 4.

Depth Estimation For depth estimation, we investigate
the impact of the proposed attack on models3 that use DI-
NOv2. In Tab. 5, we present the results on the NYU-Depth

3ViT-S/14 and ViT-B/14 (1 layer)

Attacks ViT-S/14 ViT-B/14 Task-agnostic

No attack 0.49 0.46 -
DepthPGD [22] 2.60 2.74 -
Ours (Latn) 1.50 1.35 ✓
Ours

(
Lemb

)
1.44 1.07 ✓

Ours
(
Lcomb

)
1.46 1.34 ✓

Table 5. RMSE for depth estimation for different attacks on the
NYU-Depth v2 dataset. Attack budget ϵ = 8/255.

v2 dataset [40] for our method compared to the task-specific
attack DepthPGD [22], which attacks the model’s head
pixel-wise. We report the post-attack Root Mean Squared
Error (RMSE), which significantly increases compared to
the one of the unattacked models. Although our approach
does not outperform DepthPGD, it is agnostic to the model
architecture and, as shown in Fig. 5, it introduces signifi-
cant distortions. It is interesting to notice that our attention-
based attack obtains the best results compared to our other
proposed variations. In fact, the attack that targets only
the embedding does not prove to be as effective, even in
combination with the attention loss. We impute this to the
fact that depth estimation is a very fine-grained task, where
rather than compressing information into a latent vector (as
in, say, classification), the purpose is to capture spatial re-
lations among pixels. Attacking attention hinders the capa-
bilities of the model to perform such reasoning.

Semantic Segmentation Similarly to depth estimation,
for semantic segmentation, we use ViT models4 that uti-
lize DINOv2. In Tab.6, we compare our method against
SegPGD [22], a task-specific attack designed to disrupt seg-
mentation performance by directly targeting the model’s
output. We evaluate on the ADE20K dataset [51], measur-

4ViT-S/14 and ViT-B/14 (linear)



Figure 5. Estimated depths with unattacked (second row) and at-
tacked (third row) images using DinoV2 ViT-S/14 model.

Attacks ViT-S/14 ViT-B/14 Task-agnostic

No attack 0.420 0.450 -
SegPGD [22] 0.010 0.010 -
Ours (Latn) 0.008 0.010 ✓
Ours

(
Lemb

)
0.026 0.044 ✓

Ours
(
Lcomb

)
0.008 0.009 ✓

Table 6. mIoU for semantic segmentation for different attacks on
ADE20K. Attack budget ϵ = 8/255.

Figure 6. Semantic segmentations with unattacked (second row)
and attacked (third row) images with the DinoV2 ViT-S/14 model.

ing performance in terms of mean Intersection over Union
(mIoU). Although SegPGD achieves near-complete degra-
dation, reducing mIoU to 0.01, our approach is able to
slightly improve, lowering it to 0.008. Again, attention-
based attacks prove to be more effective than embedding-
based ones, confirming the trend of Tab. 5. In Fig. 6, we
show qualitative results of semantic segmentation by the Di-
noV2 model for clean and attacked images.

Attacking Attention vs. Attacking Embeddings From
the experiments, it emerges that different downstream tasks
are affected in different ways depending on which parts of
the attention layers we target. It is interesting to notice that
”semantic” tasks, such as classification (Tab. 1) and cross-
modal retrieval (Tab. 2) are more easily disrupted by attack-
ing embeddings rather than attention. This is understand-
able, as token-to-token relationships are not so important
for the task as instead the overall representation of the im-
age is. On the contrary, more fine-grained tasks such as cap-

Target Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

CLIPViT→ ALBEF

Sep-Attack 2.50 0.40 0.10 4.93 1.44 1.01
Co-Attack 2.50 0.60 0.20 5.80 1.78 1.11
SGA 3.86 0.70 0.30 7.69 2.73 1.52
Ours (Latn) 2.61 0.20 0.20 5.29 1.29 0.99
Ours (Lemb) 2.92 0.40 0.20 5.05 1.54 0.99
Ours (Lcomb) 2.40 0.40 0.10 5.10 1.54 0.97

CLIPViT→ TCL

Sep-Attack 4.85 0.20 0.20 8.17 2.27 1.46
Co-Attack 5.27 0.40 0.20 9.12 2.75 1.48
SGA 6.43 0.60 0.20 10.93 3.47 2.05
Ours (Latn) 5.42 0.60 0.20 10.55 2.93 1.78
Ours (Lemb) 5.63 0.70 0.10 10.59 2.91 1.76
Ours (Lcomb) 5.53 0.70 0.10 10.76 2.93 1.66

CLIPViT→ CLIPCNN

Sep-Attack 5.36 1.16 0.72 8.44 2.35 1.54
Co-Attack 7.66 1.90 1.44 9.37 3.90 2.53
SGA 11.24 5.39 2.68 15.68 6.88 5.08
Ours (Latn) 6.13 1.48 1.24 8.30 3.30 2.12
Ours (Lemb) 6.64 1.59 0.82 8.75 3.06 1.83
Ours (Lcomb) 6.39 1.80 0.93 8.58 2.86 2.30

Table 7. Transferability experiment on Flicr30K dataset.

tioning (Tab. 3), depth estimation (Tab. 5) and segmentation
(Tab. 6), suffer more when attacked using attention since
spatial relations between objects or pixels have a direct ef-
fect on the outputs. Using a combination of both results to
be effective throughout most downstream tasks.

Transferability Adversarial transferability is a crucial yet
challenging aspect of adversarial robustness, particularly
important in real-world scenarios. In Tab. 7, we compare
our method against existing adversarial attacks, including
SGA [29] and Co-Attack [48], for image-to-text and text-to-
image retrieval tasks on Flickr30k. We use as source model
CLIP with ViT-B/16 backbone and as target model ALBEF,
TCL and CLIP with a CNN-based backbone (ResNet101).
While SGA achieves the highest transfer success rates, it
is important to note that this advantage largely stems from
its joint optimization with text, allowing it to perturb both
modalities. However, the absolute retrieval degradation re-
mains relatively low, limiting its threat level in real-world
scenarios. This suggests that adversarial transferability re-
mains an open problem requiring further investigation.

5. Conclusions

We presented a novel task-agnostic adversarial attack
method tailored for attention-based vision foundation mod-
els. Our approach targets both the attention mechanism
and the embedding space within these models, resulting in
significant disruptions of performance across a variety of
downstream tasks. Our experiments, conducted on widely-
used datasets show that our method achieves high attack
success rates using only image perturbations, without the
need for textual data or joint multi-modal optimization. The
simplicity and effectiveness of the proposed methods high-
lights potential issues of relying on widespread foundation
models.
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