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Abstract—The challenges derived from the data-intensive na-
ture of machine learning in conjunction with technologies that
enable novel paradigms such as V2X and the potential offered
by 5G communication, allow and justify the deployment of
Federated Learning (FL) solutions in the vehicular intrusion
detection domain. In this paper, we investigate the effects
of integrating FL strategies into the machine learning-based
intrusion detection process for on-board vehicular networks.
Accordingly, we propose a FL implementation of a state-of-
the-art Intrusion Detection System (IDS) for Controller Area
Network (CAN), based on LSTM autoencoders. We thoroughly
evaluate its detection efficiency and communication overhead,
comparing it to a centralized version of the same algorithm,
thereby presenting it as a feasible solution.

Index Terms—Controller Area Network, Federated Learning,
Intrusion Detection

I. INTRODUCTION

The shift of the automotive industry towards a more con-
nected and autonomous landscape, while offering increased
functionality and convenience, also makes automotive sys-
tems more susceptible to cyber-attacks. Amongst the security
measures against such threats, Intrusion Detection Systems
(IDSs) for automotive on-board networks are becoming a
popular tool for identifying and addressing unusual activities.
Machine Learning (ML) enhances the performance of such
IDSs by processing and learning from large datasets, but its
data-heavy approach poses challenges in automotive contexts.
Creating effective IDSs models demands extensive data re-
flecting diverse driving conditions and high computational
power for training and deployment, often exceeding in-vehicle
system capabilities. Hence, up to now, training algorithms for
vehicular contexts have mostly relied on Centralized Learning
(CL), which collects and stores data from multiple vehicles in
a centralized location, where the training process takes place.

Emerging technologies like V2X, edge computing, and ad-
vancements in data communication with 5G and upcoming 6G,
have largely addressed the challenges of requiring numerous
vehicles to transmit substantial amounts of data to a centralized
server. However, sending raw vehicle data to a central node
raises privacy issues, as this data can contain personal and
sensitive information that ideally should not be shared with a
central server. Federated Learning (FL) addresses these con-
cerns allowing IDSs to benefit from the collective knowledge
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of the entire system without compromising individual privacy,
as the raw information does not need to be shared.

Implementing federated versions of effective Controller
Area Network (CAN) IDSs could be the key to their fea-
sibility in real-world scenarios. This approach addresses the
challenges of limited dataset diversity and the privacy issues
related to transmitting vast amounts of CAN data from vehicles
to a centralized training location. However, implementing a
ML algorithm in a federated manner introduces its own chal-
lenges, particularly in integrating data from various entities.

This paper proposes and assesses the viability of using
FL algorithms for intrusion detection within the automotive
sector. We have developed a federated version of a state-of-
the-art ML-based IDS for CAN, CANdito [1], and examined
its effectiveness by comparing it with a centralized version of
the same algorithm.

Our experimental evaluation focused on the tradeoffs in
terms of detection capabilities and communication overhead
in FL approaches. We found that the volume of data each
participant needs to transmit in a federated setup is greater than
in a corresponding centralized model. However, this increased
data requirement is reasonable, thanks to the potential offered
by advancements in communication technologies. While the
detection capabilities of the federated model are slightly lower
compared to the centralized model, they still demonstrate
robust performance. This slight reduction in detection effec-
tiveness is a reasonable cost to pay for the substantial privacy
benefits that FL offers, addressing one of the key challenges
in modern data-driven applications.

By using a Long Short-Term Memory (LSTM) autoencoder-
based ML algorithm, we address limitations in current liter-
ature, namely the limited use of Recurrent Neural Network
(RNN) in FL for CAN bus anomaly detection. Additionally,
we explore the relatively new area of applying federated
algorithms to LSTM autoencoders.

In short, our contributions are the following:

• We propose a federated approach for intrusion detection
in on-board vehicular networks based on CANdito [1], a
state-of-the-art LSTM autoencoder-based IDS for CAN.

• We extensively evaluate the performances of our approach
against a centralized version of the same IDS, demon-
strating comparable detection capabilities of the federated
version in relation to its centralized counterpart.
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• We assess the communication overhead of MQTT over
5G during the training rounds of the federated implemen-
tation.

II. BACKGROUND AND MOTIVATION

A. CAN security

The CAN protocol [2] is the industry standard for intra-
vehicle communication. Its widespread adoption can be at-
tributed to several key features: low cost, high resilience
to interference, robust error detection, and the capability to
handle numerous short messages in a multi-master system,
making it well-suited for real-time applications. A drawback
of the age and simplicity of the CAN protocol is that it lacks
embedded security measures. It uses broadcast communica-
tions without cryptography protection, and identifiers are not
authenticated, which leaves these networks open to packet
injection, deletion, and modification. Attacks against CAN
include: 1) Denial of Service (DoS) attacks that flood the
bus with a vast amount of high-priority messages, resulting
in communication disruption for legitimate Electronic Control
Units (ECUs), impacting vehicle functionalities; 2) Injection
attacks that involve inserting messages into the CAN bus
introducing unauthorized commands or data that could alter
the vehicle’s physical behavior. The stealthiness of attacks
depends on tactics employed such as replaying payloads
from previously observed packets (replay attacks), gradually
adjusting sensor and actuator values to avoid abrupt changes
(seamless change attacks), or modifying the timing of packet
delivery; 3) Drop attacks that delete legitimate packets, dis-
rupting communication flow and potentially resulting in the
loss of critical data essential for the correct functioning of the
vehicle; 4) Masquerade attacks that usually combine drop and
injection tactics to mimic behaviors of legitimate ECU. This
method inserts unauthorized commands or data onto the bus
while maintaining packet arrival frequency, evading detection.

B. CAN Intrusion Detection

Intrusion detection for vehicular systems can be roughly
divided into hardware-, specification-, flow-, and payload-
based detection. Hardware-based detection [3] fingerprints
the ECUs physical characteristics. Since only a specific ECU
is allowed to send a given ID, a mismatch between the packet
ID and the ECU fingerprint may indicate a data injection attack
by an attacker that is spoofing a different ECU’s ID. While
effective in detecting injection attacks, it usually requires extra
hardware to generate the fingerprint and may not recognize
misbehavior if the attacker has direct control of targeted ECU.
Specification-based detection focuses on detecting misbehav-
ior in the use of the CAN protocol, e.g. by monitoring the
network to detect ID conflicts [4] or detecting if an ECU is
disconnected from the CAN network [5]. While effective, it
usually requires to be installed in all ECUs and additional
hardware. Flow-based detection analyzes packet flow on the
network, focusing on the arrival frequency of packets with
identical IDs [6], [7] or the sequence of ID appearances on
the bus [8]. These methods suit the CAN protocol due to

its message flow regularity and predictability. However, they
might not detect advanced masquerade attacks, where the ID
periodicity is maintained but the payload is altered. Payload-
based detection scrutinizes packet contents, studying temporal
relationships within packets [1], [9], examining correlations
between packets with different IDs in the same timeframe [10],
or employing a mix of these methods [11]. They can handle
complex patterns not identifiable through simple rules but
face practical limitations due to high computation and training
demands. For a comprehensive overview of existing solutions
for CAN intrusion detection, we refer the reader to [12].

A vast subset of works in this area focuses on employing
ML techniques to distinguish between normal and anomalous
patterns. Deep learning techniques, especially time-series anal-
ysis with RNNs and LSTM autoencoders, have proven to be
effective recently [1], [12].

C. Collaborative Learning: Centralized vs Federated

Training effective IDSs requires substantial data and com-
putational capabilities difficult to fulfill by single vehicles.
Hence, cooperation between vehicles is required. This co-
operation can follow the different principles of Centralized
Learning (CL) and Federated Learning (FL), which differ in
terms of use cases, system requirements, communication costs,
privacy concerns, and the level of cooperation.
Centralized Learning. The CL strategy involves a central
entity, like a roadside infrastructure or a remote server, that
collects, processes, and coordinates vehicle information. Each
vehicle transmits its raw data to the central entity and then
the central entity performs all the necessary computation
and decision-making processes. However, this approach raises
concerns about vehicle data privacy.
Federated Learning. The FL approach addresses some draw-
backs of CL. In FL applied to the automotive sector, each ve-
hicle in the network has its processing capabilities and shares
summarized or aggregated data with the remote server, instead
of the entire dataset. This ensures that sensitive information
remains localized within each vehicle, thus reducing the risk
of privacy breaches. A FL strategy is usually composed of
several communication rounds. At each round, a group of
vehicles independently trains a ML model using their local
data. Then, rather than sharing the entire model or data, each
vehicle exchanges only model updates with a central server.
The central server strategically combines the received model
updates to create a global model, which is then shared back
with each vehicle. This process is iteratively repeated.

III. APPROACH

Our approach, as illustrated in Figure 1, comprises three
primary components: a detection algorithm, a communication
infrastructure, and a federated aggregation strategy. It incor-
porates an LSTM autoencoder-based IDS for CAN, deployed
across a vehicle fleet and trained using FL. In each round
of federated training, detection systems transmit their local
model weights to a designated Message Queuing Telemetry
Transport (MQTT) topic via their vehicle’s 5G connection.
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Fig. 1. Overview of our system. From the left, the intrusion detection process shows the detection steps of CANdito [1], which - in the training phase - feed
the local weights through the 5G communication of the vehicle to the MQTT broker, which provides them to the Global Server. The server computes the
global weights for the round, decides whether early stopping is necessary, and provides the weights to the vehicles.

The Global Server, which subscribes to this topic, collects
this data. It computes the global weights for the round using
a federated aggregation algorithm, such as FedAvg [13] or
FedProx [14]. Subsequently, the Global Server distributes
these global weights back to the vehicles by posting them to a
different MQTT topic, to which all vehicles are subscribed.
Additionally, in each round, the Global Server determines
whether to continue or halt the training process based on early
stopping criteria.

A. Detection Algorithm

We identified CANdito [1] as the best candidate for our ap-
proach, given the results demonstrated both in detection perfor-
mances and in computation time, which–especially combined–
outperform current state-of-the-art detection systems for CAN.
CANdito relies on LSTM-autoencoders, which has shown to
be an effective detection method for CAN [12], and is based
on the assumption that a vehicle’s behavior can be seen as
a sequence of finite events where each event depends on
the previous ones. At training time, the autoencoder analyzes
legitimate data streams from the CAN bus and builds a
latent representation of the CAN traffic data without requiring
knowledge of data semantics. At runtime, the autoencoder
attempts to reconstruct the CAN traffic in the sequence. It then
computes the reconstruction error as the difference between
the forecasted packets and the actual packets in the sequence.
If the reconstruction error is above a certain threshold, attacks
or anomalies are detected.
Preprocessing and data acquisition. Feeding the raw CAN
stream to CANdito requires specifying the location and type
of signals within the payload for each CAN ID. This step has
to be coherent for all vehicles participating in the FL process.
Following the preprocessing steps of the previous work [1], we
employed READ [15] to identify signals and their categories
by analyzing the frequency of bit changes in CAN payloads.

While this process would not be necessary for a carmaker,
which has access to the signal definitions, it has already
been used multiple times as an effective alternative [1], [9],
[16]. Once this segmentation and categorization are known,
the CANdito algorithm requires to be fed time series of 40
sequential packets with the same ID to detect an intrusion.

Threshold in the federated algorithm. We assessed different
configurations for calculating the optimal model threshold
for the reconstruction error, involving different levels of
decentralization. In these setups, each vehicle computes its
optimal model threshold using a small, local dataset not
previously used, after receiving the final model from the
Global Server. These individual thresholds are then sent to
the Global Server, which aggregates them to determine the
final threshold. However, this method resulted in significant
performance degradation due to the model’s high sensitivity
to threshold accuracy. We also found that the threshold com-
putation is a relatively lightweight operation compared to the
whole training process. Therefore, in our final implementation,
the threshold is computed by a single vehicle, which then
shares the computed value with others. This designated vehicle
could be one that has already participated in the training
process, possessing sufficient data and resources, or it could
be an additional vehicle specifically tasked with threshold
computation, rather than participating in training.

Federated Early Stopping. To mitigate the risk of overfitting
and optimize the number of training rounds, we implemented a
decentralized early stopping strategy. After each global model
update, every vehicle evaluates the model’s performance using
the Mean Squared Error (MSE) loss on a small local validation
set. The vehicles then share their individual validation losses
to the Global Server, which computes an average to obtain
a global loss. This method is similar to centralized early
stopping: training ceases if the global loss does not show



improvement for a number of consecutive rounds, as specified
by the ‘patience’ parameter. The minimum magnitude of
improvement between rounds is quantified by the δ parameter.

B. Communication Infrastructure

For update sharing, we implemented a publish-subscribe
system via the MQTT 5.0 over TCP protocol. We enabled TLS
encryption and authentication to ensure update confidentiality
and prevent unauthorized vehicles from submitting updates.
We chose Eclipse Mosquitto [17], an open-source message
broker, in its latest version as of January 2024. To ensure
accurate update delivery, we set the Quality of Service (QoS)
level to ‘exactly once delivery’ (QoS 2) [18]. The infrastruc-
ture we designed includes two distinct topics. The first topic,
or the ’local’ topic, is used by each vehicle to publish its local
updates, primarily consisting of weight updates resulting from
local training. The second topic, or the ’global’ topic, is des-
ignated for the Global Server, which publishes global updates
after aggregating and averaging vehicle updates. This setup
ensures an efficient and organized exchange of information
between the vehicles and the Global Server.

C. Aggregation Strategy

We focused on Federated Averaging (FedAvg) [13] and
Federated Proximal (FedProx) [14], two FL algorithms, which
differ primarily in the local objective function employed.

FedAvg [13]. Each node in the network downloads an initial
global model and locally improves it by training on a local
dataset over a specified number of epochs. After this, each
node sends its model updates to a global server. The server ag-
gregates these updates to produce a new global model, which is
then redistributed to the nodes for further local training epochs.
This cycle of local training and aggregation continues until
the global model attains the targeted accuracy or meets other
predefined criteria. The two principal parameters of FedAvg
are the number of epochs E and the number of communication
rounds R. The number of epochs refers to the iterations of
training each node performs before transmitting its weights to
the global server in a round. The number of communication
rounds indicates how often the nodes interact with the global
server sending their locally trained model weights. FedAvg is
efficient and helps address privacy concerns since raw data
remains within its original node. Nonetheless, it demands
careful management of aspects like network bandwidth, het-
erogeneous data distributions, and the handling of non-i.i.d.
(independent and identically distributed) data across nodes.

FedProx [14]. It extends the principles of FedAvg introducing
a proximal term µ to the local objective function, which
ensures local updates align closely with the global model.
This enhances stability in non-i.i.d. environments with high
heterogeneity. On the other hand, FedProx adds complexity
due to the need for careful tuning of the proximal term,
balancing between local and global model accuracy.

IV. EXPERIMENTAL EVALUATION

Previous studies [13], [19] have highlighted the challenges
associated with the selection of hyperparameters for FedAvg
and FedProx, noting that improper choices can lead to di-
vergence and suboptimal outcomes. Hence, our experimental
evaluation aims to optimize local training epochs per round
(E) for FedAvg and FedProx, optimize the proximal term
(µ) for FedProx, evaluate decentralization’s effect on model
convergence across different vehicle counts (V ), and compare
the federated CANdito’s efficiency and communication costs
to its centralized version, trained on the same dataset.

A. Dataset Overview

For our experiments, we used the ReCAN C-1 dataset [20],
a real-world CAN traffic dataset recorded in an Alfa Romeo
Giulia Veloce during both city and highway driving. The
dataset is divided into 9 driving sessions, totaling 25,082,275
packets. For our experiments, we used data from driving
session numbers 1, 2, 6, 8, and 9 for the training stage,
data from driving session number 5 for the validation stage,
and data from driving session number 7 for the test stage.
The presence of data from different driving sessions makes
the setting non-i.i.d., potentially influencing the convergence
capabilities of the employed federated algorithms. On the other
hand, this setting makes the experiments more representative
of real-world scenarios and hence more relevant. We evaluated
the performance of our approach on 13 selected CAN IDs,
chosen based on their use in CANdito [1] and CANova [16].
Attack generation. We injected attacks into both the vali-
dation and test datasets using the CANtack tool, already pro-
posed and used in the literature [1], [16] and available online1.
The tool allows for the simulation and injection of a wide
range of attacks in the ReCAN datasets. Our methodology
aims to challenge the IDS’s effectiveness against both basic
and sophisticated attackers. To this end, we created injection
attacks by introducing a sequence of 25 packets into the
datasets. For masquerade attacks, which simulate an advanced
adversary taking control of a CAN node and transmitting on its
behalf, we altered the payload of existing packets. The attack
strategies include signal data fuzzing, which avoids obvious
detection by not changing bits that are static in authentic
payloads, executing replay attacks, and avoiding unrealistic
changes subtly shifting signal values to their extreme limits
from the last genuine packet’s value. Additionally, we con-
ducted drop attacks by removing a sequence of 25 consecutive
packets with the targeted ID from the dataset.

B. Experimental Results

Federated Algorithm Convergence. We validated the per-
formance of both FedAvg and FedProx using the validation
dataset containing the injected attacks. For both FedAvg and
FedProx, we distributed the training data across 5, 10, 20, and
50 vehicles (V ) and conducted training with local epochs (E)
set at 1, 3, and 5. For FedProx, we tested four proximal term

1https://bitbucket.org/necst/attack tool code



TABLE I
DATASET SIZE (IN NUMBER OF PACKETS) FOR EACH VEHICLE FOR

DIFFERENT LEVELS OF DECENTRALIZATION. V REPRESENTS THE NUMBER
OF VEHICLES PARTICIPATING IN THE LEARNING PROCESS.

ID CL V = 5 V = 10 V = 20 V = 50

0DE 722000 144400 72200 36100 14440
0EE 724830 144966 72483 36241 14496
0FB 721331 144266 72133 36066 14426
0FC 721330 144266 72133 36066 14426
0FE 724830 144966 72483 36241 14496
0FF 721333 144266 72133 36066 14426
1F7 363168 72633 36316 18158 7263
1FB 360922 72184 36092 18046 7218
11C 724827 144965 72482 36241 14496
100 721333 144266 72133 36066 14426
104 726338 145267 72633 36316 14526
116 724828 144965 72482 36241 14496
192 724350 144870 72435 36217 14487

Fig. 2. FedAvg Detection Rate convergence results for different levels of
decentralization. V represents the number of vehicles participating in the
learning process and E denotes the number of local epochs that each vehicle
trains during each round.

(µ) values: 1, 0.1, 0.01, and 0.001. Table I displays the training
data size for the CL case and for different values of V .

For FedAvg, we trained each configuration over 200 com-
munication rounds (R). Figure 2 depicts the average perfor-
mance in terms of Detection Rate (DR), varying the values of
E and V , specifically focusing on CAN ID 192. To more ef-
fectively highlight the differences in convergence speed among
the various settings, the figure only displays the first 130
rounds. Beyond 130 rounds, the performance trend becomes
almost stationary around the same value for all the model
settings. Increasing the value of E marginally accelerates the
convergence, whereas increasing the number of vehicles V
results in a delayed convergence point in terms of rounds R.
This outcome aligns with expectations, as higher values of E
and lower values of V more closely resemble a CL setup.
For the FedProx algorithm, we extended the training to 500
communication rounds for each configuration. This decision is
based on a slower convergence speed observed during the vali-
dation process (omitted due to space constraints), compared to
FedAvg. While the results across different settings of E and V
are in line with those observed for FedAvg, the introduction of
the proximal term µ in FedProx does not result in performance
improvements. Conversely, increasing the value of µ appears
to further slow down the convergence process.

Performance Overhead. This test aims to assess the federated
CANdito IDS’s effectiveness in detecting CAN bus attacks,
focusing on performance trade-offs caused by decentralization.
We compare DR and False Positive Rate (FPR) of the feder-

ated CANdito against its centralized version, trained on the
same dataset. We focused on the FedAvg algorithm due to its
superior convergence performance, which reduces the number
of rounds needed for the federated process while maintaining
or improving performance compared to FedProx. To better
evaluate decentralization’s effect on CANdito’s attack detec-
tion capabilities, we selected the most decentralized scenario
from Section IV-B, involving 50 vehicles (V = 50) and one
local training epoch per vehicle in each round (E = 1). We
applied federated early stopping with a patience setting of 10
rounds and a dynamic minimum δ of 3% of the loss value. Our
validation tests (omitted for brevity) indicated that different
values for the patience and δ parameters result in either poorer
performance or stalling during the training process.

Figure 3 shows the comparative results between the central-
ized and federated versions of the CANdito IDS. Overall, the
federated model exhibits good detection capabilities, though it
does not reach the performance of its centralized counterpart.
This result aligns with our expectations, as the difference in
performance can be ascribed to the approximations introduced
in the learning process by the federated settings. The boxplot
depicting the FPR reveals for the federated CANdito model a
marginally greater spread of FPR values around 0.1 compared
to the centralized model. Both models exhibit FPR outliers, but
the federated version tends to have outliers with slightly higher
absolute values. Conversely, the federated model demonstrates
a lower median FPR, suggesting that it maintains low FPR
across a broader range of IDs than its centralized counterpart.

Communication Overhead. We consider the communication
overhead caused by the decentralization of CANdito IDS.
Each test was conducted over a 5G network in a crowded
university area of Milan for a few hours. To simulate a realistic
scenario where the server is rarely close to the vehicles, the
MQTT broker was placed on a remote server in London. We
assessed the latency involved in a vehicle publishing a new
model update to the ‘local’ topic and in receiving a global
update from the ‘global’ topic by the Global Server. In this
discussion, we do not account for the communication resources
used to transmit the local validation loss to the Global Server
for federated early stopping. This decision is based on the
negligible size of the payload associated with these loss values
when compared to the size of the model updates.

Our tests showed model updates to be highly homogeneous,
with an average update size of 372,893 bytes and a standard
deviation of 8 bytes. The largest and smallest payloads were
372,898 bytes and 372,862 bytes, respectively. We further
evaluated latency by simulating 10,000 local and 7,500 global
updates, with the average latency detailed in Table II. From
these findings, Table III estimates the average communication
overhead from the perspective of a single vehicle, using the
most decentralized settings in Section IV-B. For each model
trained on an ID, we consider the number of rounds R required
before the federated early stopping mechanism terminates the
learning process. The metrics evaluated include the download
time for global model updates (DL Time), the time needed



Fig. 3. Average Detection Rate on all attacks for each CAN ID and average False Positive Rate on all attacks and all CAN IDs for centralized (CL) and
50-vehicle federated (FL) models, computed across attacks on the test set.

TABLE II
LATENCY RESULTS FOR MQTT PUBLISH AND RECEIVE TEST.

Average Std Median Min Max

Subscriber 0.180s 0.040s 0.169s 0.066s 0.726s
Publisher 0.411s 0.149s 0.365s 0.229s 2.990s

TABLE III
COMMUNICATION OVERHEAD OF THE FEDERATED LEARNING PROCESS.

ID R DL Time UL Time DL Data UL Data δData
(s) (s) (MiB) (MiB) (MiB)

0DE 104 18.72 42.74 37.34 36.98 +72.56
0EE 42 7.56 17.26 15.29 14.94 +28.17
0FB 79 14.22 32.47 28.45 28.09 +54.49
0FC 83 14.94 34.11 29.87 29.52 +57.34
0FE 183 32.94 75.21 65.43 65.08 +128.45
0FF 23 4.14 9.45 8.53 8.18 +14.66
1F7 117 21.06 48.09 41.96 41.61 +82.36
1FB 135 24.3 55.48 48.36 48.01 +95.17
11C 58 10.44 23.84 20.98 20.63 +39.55
100 101 18.18 41.51 36.27 35.92 +70.14
104 175 31.5 71.92 62.59 62.23 +122.76
116 37 6.66 15.21 13.51 13.16 +24.61
192 118 21.24 48.5 42.32 41.96 +82.66

to publish local updates (UL Time), the total raw data size
downloaded for global updates (DL Data), and the total raw
data size uploaded for local updates (UL Data). Additionally,
the metric δData measures the difference in the amount of raw
data exchanged (both download and upload) by each vehicle
to complete the FL process, compared to a CL scenario where
vehicles only upload their CAN raw data to a remote server
and download the final model. As shown by Table III, the FL
process incurs a significant overhead in terms of the amount of
raw data exchanged compared to CL. This increase is due to
several factors: the number of rounds needed for convergence,
the size of the model updates, the nature of CAN data that
makes them lightweight w.r.t. other types of data used in ML,
and the relatively small amount of data possessed by each
vehicle in a highly federated setting involving 50 vehicles.

C. Discussion

The results presented for the centralized version of CANdito
are based on the assumption that all data, which in the
federated setting are distributed among vehicles and always
kept local, are instead aggregated by a central server. While

we demonstrated that a decentralized approach might be rel-
atively disadvantageous in terms of communication overhead
and detection capabilities, it also avoids sending potentially
sensitive local CAN bus data to a central remote server. Given
that underestimating privacy and security concerns is not an
option in real-world applications, a centralized model becomes
less viable, especially when extensive data are required for
training a ML model.

Our analysis indicates that in a federated setting, each
contributor transmits more data than it would by simply
sending its local dataset to a remote server and then receiving
the final model directly. Nevertheless, this increase in data
exchange is sustainable and aligns with advancements in data
communication technologies like 5G and the forthcoming 6G.
The slight reduction in detection capabilities of the federated
CANdito compared to the centralized model, while still main-
taining robust performance, represents a reasonable trade-off.
This represents the cost of the significantly enhanced security
and privacy that the federated approach offers, making it well-
suited for real-world scenarios.

V. RELATED WORKS

FL has emerged as a prominent distributed ML paradigm
that facilitates training models on decentralized data sources
while preserving data privacy. McMahan et al. introduced the
concept of FL [13], enabling collaborative model training
across mobile devices without transmitting raw data to a
central server. Secure multi-party computation techniques are
proposed by Bonawitz et al. [21] to achieve secure aggregation
of model updates while safeguarding individual data privacy.
Optimization techniques leveraging stochastic gradient descent
are explored to enhance the efficiency and convergence speed
of FL, as FedAvg [13] and FedProx [14]. The application of
FL in healthcare [22]–[24] and IoT [25], [26] domains has
demonstrated the feasibility of training models on distributed
data while ensuring data privacy. Scalability and communi-
cation efficiency are critical considerations as FL scales to
more participants and more complex models. Approaches such
as hierarchical aggregation schemes [27] have been proposed
to reduce communication overhead in large-scale federated
settings. Additionally, model compression techniques, includ-
ing knowledge distillation and quantization [28], are explored
to mitigate the communication costs associated with FL. In
the vehicular context, studies have examined the feasibility



of FL for ML-based vehicular applications [29], investigating
object detection using image-based datasets as a case study.
For in-vehicle networks, a practical privacy-preserving IDS
approach called ImageFed is proposed [30], utilizing federated
Convolutional Neural Network (CNN). The robustness of
ImageFed is evaluated in scenarios such as non-i.i.d. clients
and limited training data availability during the FL process.
Another work focuses on developing a CAN bus anomaly
detection system using Graph Neural Networks (GNN) [31] to
address the vulnerability of the CAN bus to various attacks.

VI. CONCLUSION

In this paper, we explored the use of FL algorithms for
intrusion detection in the automotive industry. Our work
involved developing a federated version of the state-of-the-art
ML-based IDS for CAN known as CANdito and evaluating
its performance against a centralized version of the same
algorithm. The results of our experiments, which focus on
detection capabilities and communication overhead, suggest
that FL could be a suitable approach in real-world scenarios
where ignoring data privacy and security is not an option.
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