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Abstract

We introduce URANIA, a novel framework for generating insights about
LLM chatbot interactions with rigorous differential privacy (DP) guarantees.
The framework employs a private clustering mechanism and innovative
keyword extraction methods, including frequency-based, TF-IDF-based,
and LLM-guided approaches. By leveraging DP tools such as clustering,
partition selection, and histogram-based summarization, URANIA provides
end-to-end privacy protection. Our evaluation assesses lexical and seman-
tic content preservation, pair similarity, and LLM-based metrics, bench-
marking against a non-private Clio-inspired pipeline (Tamkin et al., 2024).
Moreover, we develop a simple empirical privacy evaluation that demon-
strates the enhanced robustness of our DP pipeline. The results show the
framework’s ability to extract meaningful conversational insights while
maintaining stringent user privacy, effectively balancing data utility with
privacy preservation.

1 Introduction

Large language models (LLMs) have become ubiquitous tools used by hundreds of millions
of users daily through chatbots such as ChatGPT, Gemini, Claude.ai, and DeepSeek. It
is valuable for both LLM platform providers and the general public to understand the
high-level use cases for which these chatbots are employed. For example, such information
could help platform providers detect if the chatbots are used for purposes that violate safety
policies. However, while LLM platform providers have access to data of user queries, there
are serious privacy concerns about revealing information about user queries.

Recently, Tamkin et al. (2024) proposed CLIO, a system that uses LLMs to aggregate insights
while preserving user privacy; building on Zheng et al. (2023); Zhao et al. (2024) (see §D for
more details). CLIO provides insights about how LLM chatbots (Claude.ai in their case) are
used in the real world and visualizes these patterns in a graphical interface. Subsequently,
Handa et al. (2025) applied CLIO to more than four million Claude.ai conversations, to
provide insight into which economic tasks are performed by or with chatbot help.

CLIO is based on heuristic privacy protections. It starts by asking an LLM to produce
individual summaries and to strip them out of private information from original user
queries. The queries are clustered based on their individual summaries, and only large
clusters are finally released, along with a joint summary of all the queries within each cluster.
Furthermore, these clusters are organized into a hierarchy.

In other words, the privacy protection that CLIO provides is loosely based on the notion
of k-anonymity (Sweeney, 2002). However, the exact privacy guarantee of CLIO is hard to
formalize, as it depends on properties of the LLM used in the method. For example, it relies
on prompts such as “When answering, do not include any personally identifiable information (PII),
like names, locations, phone numbers, email addresses, and so on. When answering, do not include
any proper nouns”. While such approaches can work reasonably well in practice, they rely on
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Figure 1: Illustration of our proposed URANIA method.

heuristic properties of the LLMs, and hence may or may not work well with future versions
of the LLMs, thereby making such a system hard to maintain. To counter this, CLIO also
includes a privacy auditor, also based on an LLM via a prompt that starts as “You are tasked
with assessing whether some content is privacy-preserving on a scale of 1 to 5. Here’s what the scale
means: . . .”, while acknowledging that no such system can be perfect. In fact, Tamkin et al.
(2024) explicitly note that “since Clio produces rich textual descriptions, it is difficult to apply
formal guarantees such as differential privacy and k-anonymity”. Thus, a natural question arises:

Is it possible to obtain acceptable utility for the task of summarizing user queries,
with formal end-to-end differential privacy guarantees?

Differential privacy (DP) (Dwork et al., 2006) is a powerful mathematical privacy notion
that is considered the gold standard for privacy protection in data analytics and machine
learning, and had been widely applied in practice (see, e.g., Desfontaines, 2021).

Our Contributions. We propose URANIA, a novel framework for summarizing user queries
to an LLM chatbot with a formal end-to-end DP guarantee, that does not rely on any heuristic
properties of the underlying LLM used (§4); our approach uses LLMs for keyword extraction,
and utilizes existing tools including differentially private clustering, partition selection and
histogram release (see §2 for descriptions of these tools). En route,

In §2: we introduce the formal problem statement of text summarization of user queries and
discuss the DP tools used in the work,

In §3: we propose a simplified version of CLIO that we refer to as SIMPLE-CLIO (similar
to CLIO, this does not satisfy any formal privacy guarantees). We consider this
simplified version since the implementation of CLIO is not publicly available, and
also, CLIO has additional aspects where it obtains many “facets” for each query, e.g.,
a “concerning content” score, language of query, etc., which we ignore for simplicity.

In §5: we propose a family of evaluation metrics to compare the quality of any two
query summarization methods, and we use these to compare the performance of
SIMPLE-CLIO and URANIA, and finally,

In §E: we propose a simple empirical privacy evaluation method to conceptually demonstrate
that indeed URANIA is more robust than SIMPLE-CLIO.

Although we focus here on the application of summarizing user queries to an LLM chatbot,
our techniques could be more generally applicable to summarizing arbitrary text corpora.1

1This might require a change to the specific prompts that we use.

2



Preprint. Under review.

We view the formalization of the text summarization problem and the design and evaluation
of the first DP mechanism for it as our main contributions. We believe there are several
avenues for improving such a system, either by better prompt engineering or by using better
DP subroutines (e.g., for private clustering). Thus, we view our work as the first step in this
promising and important research direction.

2 Formal Problem and Preliminaries

We formalize the “text summarization” problem by describing the (i) input to the problem,
(ii) desired output, and (iii) approaches that we use for measuring utility.

Input. The input is a dataset of conversations x = {x1, . . . , xn}, where each element xi
represents a conversation between a user and an LLM.

Output. The desired output for our problem is s = {s1, s2, . . . , sm} ∈ S∗ consisting of
summaries sj ∈ S . The set S is potentially infinite (e.g., the set of all strings in our case). The
DP guarantee applies only to this output set s of summaries.

Utility. Evaluating the utility of privacy-preserving summaries presents unique challenges
due to the unstructured nature of text data. For utility measurement purposes only, we
produce a mapping φ : x → s so that φ(xi) is the summary with which the record xi is
associated. Importantly, this mapping violates DP and is never returned—it serves solely as
an internal mechanism for evaluation.

Rather than defining an explicit utility function, we adopt a comparative evaluation frame-
work that assesses utility across multiple dimensions: (i) Lexical and semantic content
preservation, (ii) Topic coverage and representation, (iii) Embedding-based semantic sim-
ilarity, (iv) LLM-based assessment. This multifaceted approach allows us to quantify the
privacy-utility trade-off across different privacy parameter settings and implementation
configurations. We defer the detailed discussion of these evaluations and their results to §5.

2.1 Differential Privacy

All the datasets in this paper are collections of records. A randomized function that maps
input datasets to an output space is referred to as a mechanism. For mechanismM and
dataset x, we useM(x) to denote the random variable returned over the output space of
M. Two datasets x and x′ are said to be adjacent, denoted x ∼ x′, if, one can be obtained
by adding or removing one record from the other. We consider the following notion of
(ε, δ)-differential privacy (DP).
Definition 2.1. Let ε > 0 and δ ∈ [0, 1]. A mechanismM satisfies (ε, δ)-differentially privacy
((ε, δ)-DP for short) if for all adjacent datasets x ∼ x′, and for any (measurable) event E it
holds that Pr[M(x) ∈ E] ≤ eε Pr[M(x′) ∈ E] + δ.

We also say that a mechanism satisfies ε-DP if it satisfies (ε, 0)-DP. To prove privacy guaran-
tees, we will use basic properties of DP stated in Proposition A.1 (in §A).

DP Clustering. Clustering is a central primitive in unsupervised machine learning (see, e.g.,
Ikotun et al., 2023).Abstractly speaking, a (Euclidean) clustering algorithm takes as input
a dataset of vectors in Rd, and returns a set C ⊆ Rd of k “cluster centers” (for a specified
parameter k), that are representative of the dataset; formalized for example, via the k-means
objective (Lloyd, 1982). Clustering algorithms have been well-studied in the literature
for several decades, and more recently with DP guarantees as well. We discuss more
related work in §D. While our framework is compatible with any DP clustering algorithm,
specifically, we use the implementation of DP clustering in the open-source Google DP
library2, as described in Chang & Kamath (2021); we denote the (ε, δ)-DP instantiation of
any such algorithm producing (up to) k clusters as DP-K-Meansk,ε,δ.

2https://github.com/google/differential-privacy/tree/main/learning/clustering
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DP Histogram Release. In the private histogram release problem over a set of bins B, the
input is a multi-set h := {h1, h2, . . . , hk} where each hi ⊆ B with |hi| ≤ k. The desired
output is a histogram h∗ ∈ ZB , that is desired to be as close to ∑i hi as possible, where we
abuse notation to interpret hi as an indicator vector in {0, 1}B .

There are multiple algorithms for this problem (e.g., the Laplace mechanism, Gaussian
mechanism, etc.); in this paper, we use the discrete Laplace mechanism introduced by
Ghosh et al. (2012), where PHRk,ε is the instantiation of this algorithm that is ε-DP and
tolerates removal of up to k elements. See §A for formal details.
Theorem 2.2 (Ghosh et al. (2012)). For all integers k > 0 and ε > 0: PHRk,ε satisfies ε-DP.

DP Partition Selection. In the private partition selection problem over a (potentially infinite)
set B, the input is a multi-set h := {h1, h2, . . . , hk} where each hi ⊆ B with |hi| ≤ k. The
desired output is a subset S ⊆ B such that S ⊆ ⋃

i hi and S is as large as possible. We
use the partition selection algorithm introduced by Desfontaines et al. (2022); PPSk,ε,δ is the
instantiation of this algorithm that is (ε, δ)-DP. See §A for formal details.
Theorem 2.3 (Desfontaines et al. (2022)). For all integers k > 0, ε > 0 and δ ∈ [0, 1]: PPSk,ε,δ
satisfies (ε, δ)-DP.

3 SIMPLE-CLIO

We present a non-DP (public) framework for hierarchical text summarization, which is
a simplified version of CLIO (Tamkin et al., 2024). Our approach transforms a dataset
x = (x1, x2, . . . , xn) ∈ X n of conversations into high-level summaries s = (s1, . . . , sm) ∈ Sm

through three stages. The pseudocode can be found in Algorithm 4 with the implementation
details as discussed below.

1. [Embedding Generation] To use a clustering algorithm, we convert conversations to
numerical vectors. A typical way for doing so is to use pre-trained embedding models,
specifically we use all-mpnet-base-v2 (Reimers & Gurevych, 2019; 2022). However,
following Tamkin et al. (2024), we first map the conversation to a summary text before
applying the embedding model; this ensures that conversations that are similar in content
but structured differently get mapped to embeddings that are closer. We use an LLM to
map each conversation to the summary text, using a prompt as described in §F.1.

2. [Clustering] We apply the standard k-means clustering (Lloyd, 1982) to group similar
conversations based on their embeddings. We select k to achieve an average cluster size
of approximately 150 conversations. We assume KMEANSk(e) returns the centers of
cluster and its assignments (points in that cluster).

3. [Summary Generation] For each cluster Cj, we generate a representative summary by
sampling both random conversations from the cluster and contrastive conversations near
the cluster centroid. We then use an LLM to produce a summary that captures the central
theme of the cluster. The prompt used for this step is provided in §F.2.

This framework provides an approach for organizing and summarizing large collections of
conversations, enabling the identification of key topics without relying on manual annota-
tion or predefined categories. However, as mentioned earlier, it does not satisfy any formal
privacy guarantee. We next proceed to describing URANIA, our DP framework.

4 URANIA: A DP Framework for Text Summarization

We present URANIA, a framework for hierarchical text summarization (with Hierarchy
and Simple Visualization presented in Appendix G) that builds on the public framework
while providing formal DP guarantees. Unlike the non-DP approach, URANIA incorporates
privacy-preserving mechanisms at critical steps to ensure that the resulting summaries do
not leak sensitive information about individual conversations.

Our approach takes a dataset x = (x1, x2, . . . , xn) ∈ X n of conversations, a predefined set K
of keywords (discussed in §4.1), a number k ∈N of clusters, a number of keywords used for
summary, and privacy parameters εc, εhist, εsize > 0 and δc ∈ [0, 1]. It produces high-level
topical summaries s = (s1, . . . , sm) ∈ Sm through the following privacy-preserving pipeline:
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Algorithm 1 URANIAk,t,εc,εhist,εsize,δc : Differentially Private Text Corpora Summarization
Parameters: Number of clusters k, number t of keywords used for summaries, and cluster size

threshold τ.
Parameters: Privacy parameters εc, εhist, εsize > 0, δc ∈ [0, 1].
Input: Input dataset x = (x1, x2, . . . , xn) ∈ X n, keyword set K
Output: High Level Summaries s = (s1, . . . , sk) ∈ Sk

// Step 1: Extract Embeddings from Conversations
e← {ExtractEmbedings(xi) : i ∈ [n]}
// Step 2 (a): Cluster embeddings and assign records to cluster centers
c← DP-KMEANSk,εc,δc (e)
Let C1, . . . , Ck ⊆ {x1, . . . , xn} such that xi ∈ Cj iff j = arg minj′ ∥cj′ − ei∥2
// Step 3: Extract keywords
Let Kj ← ∅ for j ∈ [k] ; // Initialize empty keyword sets

Let C(size) ← PHR1,εsize ({|Ci|}i∈[k]) ; // Estimate sizes of clusters.

for j← 1 to k such that C(size)
j ≥ τ do

if |Cj| = 0 then
Kj ← RandomKeywords(K, t) ; // Random keywords for empty clusters

else
// Step 3 (b): Keyword generation for qualifying clusters
samplesj ← RandomSample(Cj, m) ; // Sample up to m conversations from cluster

Let relevant keywordsj be an empty collection
for x ∈ samplesj do

Append LLMSelectKeywords(x,K, 5) to relevant keywordsj ; // Select up to 5

relevant keywords
Let rj,k be the number of times a keyword k ∈ K is present in relevant keywordsj
private histj ← PHR5,εhist ({rj,k}k∈K) ; // Apply DP histogram mechanism

Kj ← TopKeywords(private histj, t) ; // Select top t keywords

// Step 4: Generate summaries
s← {LLMSummarize(Kj) : j ∈ [k]}
return s

1. [Embedding Generation] This step is the same as in the public pipeline.
2. [Clustering] Non-private clustering algorithms usually output both cluster centers and

cluster assignments. However, cluster assignments are non-private in the add-remove
model; hence, DP clustering algorithms output only cluster centers.

(a) First, we generate cluster centers using an (εc, δc)-DP k-means algorithm. Although
we use the algorithm from Chang & Kamath (2021), any DP clustering algorithm can
be used here and the same privacy guarantees would follow.

(b) Each conversation is assigned to its nearest cluster center.
3. [Keyword Extraction] For each cluster, we:

• Apply DP to the cluster size with privacy parameter εsize. If the noisy size falls below
a threshold τ, we skip the cluster to prevent privacy leakage from small groups.

• Sample several conversations from the cluster. For empty clusters that pass the
threshold due to noise, we randomly select keywords from the predefined set.

• Use an LLM to extract relevant keywords from the predefined set K for each sampled
conversation. For the purpose of DP, we restrict the keywords chosen from each
conversation, say 5 keywords for each conversation. See Prompts in Appendix F.3.

• Apply a DP histogram mechanism with privacy parameter εhist to identify the most
frequent keywords.

• Test various settings of εsize and τ to evaluate the trade-off between privacy protection
and utility.

4. [Summary Generation] For each cluster, we generate a high-level summary using only
the selected keywords. See Prompts in Appendix F.4

Theorem 4.1 (Privacy Guarantee). Let k, t ∈ N, εc, εhist, εsize > 0, and δc ∈ [0, 1]. Then
URANIA satisfies (εc + εhist + εsize, δc)-DP.

5
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Proof. The algorithm can be split into four parts: cluster center generation from the original
dataset (steps 1-2(a)), estimating cluster sizes, an algorithm generating key words for a given
list of cluster centers passing size test and the original dataset (step 3 (b)), and summary
generation from a given set of keywords (step 4). We use DP properties (Proposition A.1).

The first part satisfies (εc, δc)-DP since it consists of operations applied per record and
after that application of the (εc, δc)-DP instantiation of the DP-KMEANS algorithm. The
second part is εsize-DP provided that the set of cluster centers is fixed since it again applies
per-record operations and an εsize-DP histogram release algorithm. The third part is εhist-DP
provided that the set of cluster centers is fixed since it again applies per-record operations
and an εhist-DP histogram release algorithm, by parallel composition. Altogether, this means
that the algorithm producing K1, . . . , Kk is (εc + εhist + εsize, δc)-DP due to basic composition.

Finally, note that the third part is processing the output of the first two parts, so due to the
post-processing property of DP, the entire algorithm satisfies (εc + εhist + εsize, δc)-DP.

4.1 Choosing the Set of Keywords K

The effectiveness of URANIA crucially depends on the quality of the keyword set K used
during cluster summarization. We explore four approaches for constructing keyword sets
K, with varying privacy guarantees: namely, KwSet-TFIDF and KwSet-LLM satisfy DP,
KwSet-Public uses a public dataset to obtain keywords, and KwSet-Hybrid uses a hybrid
approach. We discuss some related work in §D.

TF-IDF-Based Selection with Partition Selection (KwSet-TFIDF). We compute the doc-
ument frequency (DF) of all terms with additive Laplace noise to satisfy DP. Using these
noisy DF values with token frequency (TF), we select 3–5 keywords for each conversation.
We then apply partition selection to privately identify significant keywords (Desfontaines
et al., 2022), followed by LLM refinement to obtain ∼200 final keywords. This approach is
better suited when direct LLM access to conversations raises additional privacy concerns.

LLM-Based Selection with Partition Selection (KwSet-LLM). We first use an LLM to select
3–5 keywords for each conversation independently. This produces a large candidate set of
keywords across all conversations. We then apply partition selection to privately identify
the most representative keywords while satisfying (ε, δ)-DP. This yields several thousand
keywords, which we refine using the LLM to produce a final set of ∼200 keywords.

Iterative TF-IDF Refinement (KwSet-Public). As a non-private baseline, we first use TF-
IDF to extract an initial set of keywords from a subset of the corpus. We then sequentially
update this set using an LLM. In each iteration, we present the LLM with the current set
and new conversations, prompting it to output words to remove and words to add. This
sequential refinement continues until the keyword set stabilizes or reaches a desired size.

Combined Public-Private Selection (KwSet-Hybrid). In this hybrid approach, we leverage
KwSet-Public while maintaining privacy guarantees. We provide the LLM with KwSet-
Public along with several private conversations, asking it to output relevant keywords only
when necessary. We then apply partition selection over these selected keywords to ensure
DP. We propose this approach to address potential distribution shifts between the public
conversations used in constructing KwSet-Public and the private conversations we aim to
analyze. This hybrid method allows for adaptation to new topics or terms in the private
dataset while still benefiting from the high-quality foundation of the public keyword set.

5 Evaluations

Our evaluation strategy adopts a multifaceted approach to assess the privacy-utility tradeoff
in our DP pipeline. We compare summaries generated by our private pipeline against those
from the public CLIO pipeline Tamkin et al. (2024) on identical conversation sets, using the
public outputs as a reasonable proxy for ground truth—an advantage not available in the
original work.

6
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We employ both non-LLM methods (comparing key phrases, n-grams, topics, and em-
bedding similarities) and LLM-based evaluations (comparative quality assessments and
independent scoring) to comprehensively measure how well our privacy-enhanced sum-
maries preserve the essential information captured in the public summaries. This approach
allows us to quantify both the utility preservation and information retention of our DP
pipeline while maintaining stronger formal privacy guarantees than the original framework.
Additionally, we evaluate privacy protection through AUC score comparisons between
the public and private pipelines, providing a more complete picture of the privacy-utility
tradeoff in our system, which will be presented in the later sections (See §E).

5.1 Evaluation Methodology

Our evaluation methodology involves running both the public and private pipelines on the
same conversation dataset, generating two sets of summaries: public (non-DP) and private
(DP). We then compare these summaries using both automated metrics and LLM-based
evaluations.

Automated Evaluation. We employ three automated approaches to measure the similarity
between private and public summaries:

1. Lexical Content Analysis: We extract key phrases, noun chunks, and TF-IDF keywords
from both sets of summaries and compute similarity metrics including Jaccard similarity
and cosine similarity between these feature sets.

2. N-gram and Topic Analysis: We analyze tokens and 2-grams extracted from both sets
of summaries to assess content preservation at different granularities. In particular, we
use BERTopic (Grootendorst, 2022) to extract topics from both sets of summaries and
measure their overlap.

3. Embedding Space Proximity: For each private summary, we compute its distance to the
nearest public summary in the embedding space using the SentenceTransformer model
with the all-mpnet-base-v2 embedding. This measures how well the private summaries
preserve the semantic content of their public counterparts.

LLM-based Evaluation. We complement automated metrics with LLM-based evaluations
that assess summary quality. In the prompt, we randomly chose the order of public and
private summaries to avoid positional bias.

4. Comparative Ranking: We randomly sample conversations along with their correspond-
ing private and public summaries. An LLM evaluator rates which summary is better on
a scale from 1-5, where 1 indicates the private summary is clearly better and 5 indicates
the public summary is clearly better.

5. Binary Preference: For sampled conversations, an LLM evaluator makes a binary choice
between private and public summaries, selecting which one better summarizes the
original conversation.

Tables 1 and 2 present the results of our comprehensive evaluation, comparing the private
and public summaries across various metrics and configurations. The results of lexical
content, N-gram and topic Analysis are presented in Table 1, and the embedding space
proximity and LLM-based evaluation results can be found in Table 2.

5.2 Experimental Setup & Results

We try to analyze the conversations from the popular public datasets LMSYS-1M-Chat
(Zheng et al., 2023). The LLM we used is Gemini-2.0-flash-001. In constructing KwSet-
Public, we use the public WildChat dataset (Zhao et al., 2024). In particular, we set the
cluster size privacy parameter εsize = 1 for cluster size verification and implement a 1-DP
keyword set generation.

We evaluate our approach across different privacy parameter settings and keyword set
configurations. We consider varying values of εc and εhist, while keeping the keyword set

7
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Table 1: Lexical content, n-gram, and topic similarity Between Private and Public Summaries.

Configuration Key Noun TF-IDF Tokens 2-Grams Topics
Phrases Chunks

Very Low Privacy (εc=10.0, εhist=5.0) 0.028 0.026 0.96 0.133 0.100 0.723
Low Privacy (εc=8.0, εhist=4.0) 0.026 0.025 0.96 0.130 0.096 0.461

Medium Privacy (εc=4.0, εhist=2.0) 0.027 0.023 0.96 0.113 0.077 0.271
High Privacy (εc=2.0, εhist=1.0) 0.035 0.021 0.94 0.063 0.033 0.078

KwSet-LLM (Low Privacy) 0.032 0.031 0.98 0.090 0.065 0.589
KwSet-Public (Low Privacy) 0.035 0.021 0.98 0.131 0.083 0.514

KwSet-Hybrid (Low Privacy) 0.030 0.022 0.96 0.145 0.092 0.446
No Privacy (ε = ∞) 0.024 0.027 0.98 0.139 0.112 0.907

to be generated using KwSet-TFIDF. We also fix εc = 8.0 and εhist = 4.0 and evaluate with
different choices of keyword sets.

Table 2: Embedding space proximity between and comparative LLM evaluation of private
and public summaries.

Configuration Mean Median Comparative Binary
Cosine Ranking (1–5, Preference

Similarity lower is better) (% DP preferred)

Very Low Privacy (εc=10.0, εhist=5.0) 0.750 0.745 2.56 62
Low Privacy (εc=8.0, εhist=4.0) 0.749 0.744 2.40 65

Medium Privacy (εc=4.0, εhist=2.0) 0.748 0.742 2.39 69
High Privacy (εc=2.0, εhist=1.0) 0.774 0.773 2.50 64

KwSet-LLM (Low Privacy) 0.747 0.744 2.37 68
KwSet-Public (Low Privacy) 0.735 0.728 2.64 69

KwSet-Hybrid (Low Privacy) 0.739 0.732 2.55 70
No Privacy (ε = ∞) 0.759 0.754 - -

5.3 Discussion

The evaluation results reveal several key insights about the performance of our framework.

Privacy-Utility Trade-off. As expected, we observe a trade-off between privacy protection
and summary quality. Higher privacy guarantees (lower ε values) generally result in lower
similarity to public summaries, particularly evident in the declining topic similarity scores
in Table 1, where coverage drops from 0.723 at very low privacy to just 0.078 at high privacy.
However, the degradation is not uniform across all metrics, suggesting that some aspects of
summary quality are more robust to privacy noise than others.

Impact of Keyword Set Selection. The choice of keyword set significantly influences the
quality of private summaries. Table 1 demonstrates that different keyword sets yield varying
performance despite identical privacy parameters. For example, KwSet-LLM has better
topic coverage compared to KwSet-TFIDF at the same level of privacy. This suggests that
carefully curated keyword sets can partially mitigate the utility loss from DP.

Topic Coverage and Preservation. Following CLIO’s evaluation approach, we treat public
summaries as ground truth and measure the percentage of topics successfully captured by
our DP method. Our private approach demonstrates reasonable topic coverage at lower

8
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privacy levels (0.723 at εc = 10.0), but this metric proves highly sensitive to increased
privacy protection, precipitously declining to 0.078 at high privacy (εc = 2.0).

Examining the transition from very low privacy (εc = 10.0) to low privacy (εc = 8.0) in Table 1,
while the number of private summaries decreases modestly from approximately 3,700 to
3,300 (an 11% reduction), topic coverage drops more dramatically from 0.723 to 0.461 (a
36% reduction). This disproportionate decline suggests that the DP clustering algorithm
may systematically exclude certain conversation types even at this early privacy transition,
though our current evaluation cannot determine which specific topics are affected. This
sharp threshold effect raises important research questions about how different topic types
respond to privacy constraints and whether alternative DP approaches might exhibit more
gradual degradation.

A primary contributing factor to this performance degradation is our DP-KMEANS imple-
mentation. As the privacy budget tightens, the algorithm generates fewer viable cluster
centers, with many centers positioned suboptimally relative to actual data points. Conse-
quently, some centers fail to attract any conversation assignments, further compromising
topic coverage at higher privacy levels.

The clustering performance illustrates this progressive decline quantitatively: the number
of final clusters decreases from approximately 3,700 at very low privacy to just 300 at high
privacy configurations. While this trend underscores the cascading effect of DP on clustering
quality, it also raises an intriguing research question: Can alternative DP-clustering methods
or novel implementations mitigate these limitations? Although such performance degrada-
tion appears somewhat inherent to DP techniques, which fundamentally trade granularity
for privacy protection, exploring alternative algorithmic approaches may reveal strategies
to better preserve minority representations while maintaining robust privacy guarantees.

Semantic Preservation. The embedding-based evaluation in Table 2 shows consistently
high cosine similarity scores across all configurations (0.73–0.77), indicating that private
summaries generally maintain the semantic essence of their public counterparts, even at
higher privacy levels. This is particularly notable because it suggests that overall meaning
is preserved even when specific lexical content differs.

LLM Evaluation Insights. Table 2 shows that LLM evaluators sometimes prefer private
summaries over public ones, with comparative ranking scores generally below 3 (where
3 would indicate no preference). The binary preference results further confirm this trend,
with 62–70% of evaluations favoring the DP-generated summaries. This suggests that the
constraints imposed by our DP approach (limiting to predetermined keywords, focusing on
most frequent themes) can occasionally produce more concise and focused summaries than
the unconstrained public approach.

Independent Scoring Results. We have an LLM evaluator independently score private and
public summaries on a scale from 1-5 (where 1 means very poor and 5 means excellent)
based on how well they summarize the original conversations. The private summaries are
slightly better than public summaries, but both achieve very low scores on average (<1.4).
This suggests that there might be significant room for improvement in the overall quality
of conversation summarization, regardless of privacy considerations, and highlights the
challenging nature of the summarization task itself.

These findings highlight both the capabilities and limitations of DP text summarization. Our
framework demonstrates that it is possible to generate meaningful summaries while provid-
ing formal privacy guarantees, but practitioners should carefully consider the privacy-utility
trade-off when configuring the system for real-world applications. However, qualitative
analysis of specific examples (see Appendix C) reveals important limitations in our private
summaries that may not be captured by automated evaluation metrics.

6 Discussion and Future Work

Our work demonstrates that meaningful privacy guarantees can be achieved while maintain-
ing useful conversation summarization capabilities. We identify several future directions:

9
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Stronger Privacy Attacks. While we formalized a specific empirical privacy evaluation,
developing stronger attacks against non-DP summarization systems remains an important
direction. The privacy vulnerability of clustering-based algorithms is relatively unexplored
compared to other machine learning paradigms. More sophisticated attacks would provide
valuable insights into the precise privacy risks of non-DP systems and better quantify the
benefits of DP approaches.

Online Learning and Adaptation. An important extension would be adapting our frame-
work to online settings where new conversations continuously arise. This presents chal-
lenges in maintaining privacy guarantees while incorporating new data, evolving keyword
sets to capture emerging topics, and efficiently updating cluster structures. This remains an
open problem for real-world applications of private conversation summarization.

Utility Improvements. Further improvements could narrow the quality gap between private
and non-private summarization approaches. These include exploring alternate privacy
mechanisms with better utility-privacy trade-offs, developing more sophisticated keyword
selection methods, and refining summarization prompts to generate more informative
cluster summaries.

User-level DP. Our current pipeline exclusively addresses differential privacy (DP) at the
record-level, where privacy guarantees are provided when only a single conversation is
modified. However, in practical scenarios, individual users typically contribute multiple
conversations with large language models (LLMs). This motivates an important open
research problem: extending the privacy notion to user-level differential privacy, wherein
the privacy guarantees hold when all conversations from a single user are removed.

Broader Privacy Landscape. While our work focuses on formal differential privacy guar-
antees for released summaries, we acknowledge that comprehensive privacy protection
requires addressing multiple risk vectors. Our approach provides one layer of protection
against information leakage through published analyses, but does not address other im-
portant concerns such as centralized data collection risks, third-party model processing
vulnerabilities, or inference attacks on the underlying conversation data. Future work
should explore how formal DP guarantees can be integrated with other privacy-preserving
techniques (such as federated learning, secure multi-party computation, or local differen-
tial privacy) to create more comprehensive privacy frameworks for conversation analysis
systems.

10
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A Formal Details of DP Tools

In this section we recall basic properties of DP as well as formally describe the tools of
private partition and private histogram release as alluded to in §2.
Proposition A.1 (Properties of DP).

• [Parallel Composition] IfM : Ω∗ → R satisfies (ε, δ)-DP, then for any disjoint collection
of subsets Ω1, Ω2, . . . , Ωr ⊆ Ω, given a dataset D ⊆ Ω, the mechanism that returns (M(D ∩
Ω1),M(D ∩Ω2), . . . ,M(D ∩Ωr)) also satisfies (ε, δ)-DP.

• [Basic Composition] If mechanism M1 with output space Y satisfies (ε1, δ1)-DP and the
mechanismM2,y satisfies (ε2, δ2)-DP for all y ∈ Y. Then the mechanismM that maps x to
(y1 ∼M1(x), y2 ∼M2,y1(x)) satisfies (ε1 + ε2, δ1 + δ2)-DP.

• [Postprocessing] IfM with output space Y satisfies (ε, δ)-DP, then for any function f : Y → Z,
the mechanismM′ that maps x 7→ f (M(x)) satisfies (ε, δ)-DP.

The (truncated) discrete Laplace distribution DLapτ(ε) is the distribution on Z such that

Pr
X∼DLapτ(ε)

[X = x] =

{
βε,τ · e−ε|x| for z ∈ [−τ, τ]

0 otherwise
, where βε,τ := 1−e−ε

1+e−ε−2e−ε(τ+1)

The case of τ = ∞ is simply the discrete Laplace distribution DLap(ε).

A.1 Private Histogram Release

The mechanism PHRk,ε(h1, . . . , hn) simply returns a noisy histogram obtained by adding
discrete Laplace noise DLap(ε/k) to each value of the true histogram.

Algorithm 2 Private Histogram Release PHRk,ε(x1, . . . , xn)

Parameters: ε > 0 and k ∈N.
Input: h1, . . . , hn ⊆ B with |hi| ≤ k.
Output: A histogram h̄ ∈ ZB

h∗ ← ∑i hi ; // hi interpreted as indicator vector in {0, 1}B.
for b ∈ B do

Let ζb ∼ DLap(ε/k)
h̄b ← h∗b + ζb

return h̄

A.2 Private Partition Selection

The mechanism PPSk,ε,δ(h1, . . . , hn) returns a subset of elements for which the noisy count,
after adding truncated discrete Laplace noise DLapτ(ε/k) is more than τ.
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Algorithm 3 Private Partition Selection PPSε,δ(x1, . . . , xn)

Parameters: k ∈N, ε > 0 and δ ∈ [0, 1].
Input: h1, . . . , hn ⊆ Ω with |hi| ≤ k.
Output: The set R ⊆ ⋃

i hi.

ε′, δ′ ← ε/k, δ/k
τ ← ⌈ 1

ε′ log( eε′+2δ′−1
(eε′+1)δ′

)⌉
R← ∅
for ω ∈ ⋃

i hi do
cω ← |{i : hi ∋ ω}| ζω ∼ DLapτ(ε)
if cω + zω > τ then

R← R ∪ {ω}
return R

B Description of SIMPLE-CLIO

Algorithm 4 SIMPLE-CLIOk : Non-Differentially Private Text Corpora Summarization
Parameters: k : parameter for KMeans clustering
Input: Input dataset x = (x1, x2, . . . , xn) ∈ X n

Output: High Level Summaries s = (s1, . . . , sk) ∈ Sk

// Step 1: Extract Embeddings from Conversations
e← EXTRACTEMBEDDINGS(xi) : i ∈ [n]}
// Step 2: Clustering (K-means)
c, C ← KMEANSk(e) ; // c are centers, C are assignments
// Step 3: Summarize each Cluster
s← ∅ ; // Initialize summaries set
for j← 1 to k do

samplesj ← SampleConversations(cj, Cj, x) ; // Draw representative samples based on

the center and cluster
sj ← LLM-SUMMARIZE(samplesj) ; // Generate summary using LLM

s← s ∪ {sj}
return s

14
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C Summary Comparison Examples

To better understand the trade-offs between public and private summaries, we present
several illustrative examples that highlight the key differences in specificity and contextual
relevance.

Table 3: Comparison of Public vs Private Summary Examples

CONVERSATION:
The user is asking how to extract the last character of a file in BASH and convert it to
hexadecimal.

SUMMARIES:
Public: Scripting and Command-Line Task Automation Requests
Private: Software Development, Version Control, and Educational Resources

CONVERSATION:
The assistant explains the key differences between reinforcement learning and unsuper-
vised learning, focusing on feedback and goals.

SUMMARIES:
Public: Deep Learning, Training, and Applications Explanation
Private: AI Model Training, Deployment, and Management Considerations

CONVERSATION:
The user is asking if the assistant speaks Russian and the assistant confirms and offers
help.

SUMMARIES:
Public: Russian Language Support and Communication
Private: AI-Powered Applications and Open Source Technology

As these examples demonstrate, public summaries tend to be more specific and directly
relevant to the actual conversation content, while private summaries are often broader and
sometimes miss key contextual details. This limitation stems from the privacy constraints
that prevent fine-grained keyword extraction—for instance, in the language example, spe-
cific terms like ”Russian” may not appear in our predetermined keyword sets, leading to
generic categorizations that fail to capture the conversation’s essence.

These patterns suggest that while LLM evaluators may prefer the broader categorizations
produced by our private pipeline for their apparent comprehensiveness, human evaluators
might better discern the loss of specificity and contextual relevance. The trade-offs observed
in these examples highlight the necessity of incorporating human-based evaluation in future
work to provide a more nuanced assessment of summary quality, as human judgment may
be more sensitive to the subtle but important differences in semantic accuracy and practical
utility that automated metrics might overlook.
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D Additional Related Work

Analysis of LLM conversations Our work builds on real-world conversations with LLM
chatbots from recent open-source datasets (Zheng et al., 2023; Zhao et al., 2024). Prior
work has analyzed such conversations to extract structure and insight. For instance, Zhao
et al. (2024) define a set of common conversation categories and prompt LLMs to classify
conversations accordingly. In contrast, Zheng et al. (2023) and Tamkin et al. (2024) adopt
more flexible approaches that do not rely on predefined categories. Zheng et al. (2023) cluster
conversations in the embedding space and then use LLMs to summarize each cluster’s main
theme. Tamkin et al. (2024) build on this by first summarizing individual conversations
into concise summaries and then applying hierarchical clustering. While these works
provide valuable frameworks for understanding LLM behavior, none offer formal privacy
guarantees. Our work addresses this gap by introducing the first differentially private
conversation summarization pipeline.

Clustering. Both Tamkin et al. (2024) and our work employ a clustering step to group
conversations with similar embeddings together. We use k-means, which is one of the
most popular formulations of clustering; see e.g. Ikotun et al. (2023) for a comprehensive
survey. For non-DP k-means, we use the classic algorithm of Lloyd (1982). For DP k-means,
several algorithms have been proposed, starting with Blum et al. (2005) who devised a DP
version of Lloyd’s algorithm. This was followed up by a series of works improving different
algorithmic guarantees (e.g. Nissim et al. (2007); Gupta et al. (2010); Balcan et al. (2017);
Ghazi et al. (2020)), culminating in the algorithm of Chang et al. (2021) which not only gives
a nearly optimal (theoretical) approximation ratio but is also practical. We ended up using
the open-source library Chang & Kamath (2021) based on this paper. We remark that there
are also more recent works which provide practical DP clustering algorithms, e.g. Tsfadia
et al. (2022); nevertheless, we are unaware of any open-source library based on these papers.

Membership inference attacks (MIA) Our empirical privacy evaluation is in spirit similar
to the MIA. MIA aims to infer whether specific data points were included in the training data
of a given model or algorithm, based on its outputs. While various MIA techniques have
been proposed, they primarily target machine learning models (Shokri et al., 2017; Yeom
et al., 2018; Sablayrolles et al., 2019; Carlini et al., 2022). In this work, we design an empirical
privacy evaluation method tailored to attack the LLM conversation summarization pipeline.

Keyword generation with LLMs Our keyword set generation method (section 4.1) is related
to recent work on extracting keywords from text corpora using LLMs (Grootendorst, 2020;
Maragheh et al., 2023; Wang et al., 2024). These approaches typically fine-tune or prompt
an LLM to extract keywords. However, such pipelines are not applicable in a DP setting,
as documents may contain unique keywords that could leak sensitive information. In this
work, we propose keyword generation methods that only output keywords shared across
multiple conversations, allowing us to provide formal DP guarantees.

E Empirical Privacy Leakage Evaluation

To empirically evaluate privacy protection, we conducted a simple experiment to compare
the privacy leakage of our private and the public pipelines. Specifically, we created a
synthetic dataset of 100 conversations: 1 sensitive conversation on health/medical topics and
99 non-sensitive conversations on general topics (food, travel, homework help and health).
We ran both pipelines on this dataset, then quantify the privacy leakage by measuring
the maximum embedding similarity between the sensitive conversation and the generated
summaries. We consider a simple thresholding-based detector of the sensitive conversation,
and measure the AUC under different thresholds under 200 runs where half of the runs
include the sensitive conversation.

Figure 2 shows the results. Our DP approach achieved an AUC of only 0.53, effectively
equivalent to random guessing (0.5), demonstrating strong privacy protection. In contrast,
the non-private pipeline showed greater vulnerability with an AUC of 0.58, indicating that
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(a) Empirical Privacy Leakage Measurement
against DP pipeline (ε = 21, AUC = 0.53)

(b) Empirical Privacy Leakage Measurement
against public pipeline (AUC = 0.58)

Figure 2: ROC curves for Empirical Privacy Leakage. The DP pipeline (a) shows perfor-
mance equivalent to random guessing (AUC ≈ 0.53), while the public pipeline (b) is more
vulnerable with an AUC of 0.58.

embedding similarity can leak information of the sensitive conversations when privacy
mechanisms are absent.

It is worth noting that our experiment used casually generated synthetic conversations
rather than carefully crafted adversarial examples. A more sophisticated experiment might
potentially achieve better performance against either pipeline. However, even with this
simple approach, we can observe a clear difference in privacy protection between the DP
and non-DP methods.

These results provide empirical evidence that our DP approach offers practical protection
against such privacy leakage while maintaining useful summarization capabilities, even
when using a relatively high privacy budget (ε = 21) on a relatively small dataset (of no
more than 100 conversations).
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F LLM Prompts

We provide some example prompts we used in the pipeline.

F.1 Extracting Embeddings from Records

Below, we provide the prompt used in the ExtractEmbeddings method in Algorithm 4 and
Algorithm 1. The input record x is substituted in place of ⟨x⟩ in the prompt. Note that we
apply the embedding function specifically to the summary portion of the LLM response
obtained using this prompt, rather than to the entire response.

ExtractEmbeddings(x)

You are an advanced AI assistant that processes conversations and extracts meaningful
facets for downstream embedding and clustering tasks. For the conversation provided,
return a structured JSON object with the following:
- Topics: The overarching topics discussed in the conversation.
- Subtopics: Specific details or points under each topic.
- Intent: The main intent of the conversation (e.g., seeking help, sharing an
opinion).
- Entities: Important names, organizations, or proper nouns discussed.
- Keywords: The most important words/phrases that could help differentiate the
conversation.
- Summary: A concise, one-sentence description summarizing the conversation, up to
20 words.

Ignore the conversation if it is not in English.
Output the result as a valid JSON object with no extra text.

### Example:
User: I’m having a hard time preparing for job interviews. How do I answer behavioral
questions? I also get nervous. Any tips on how to stay calm during the process?

Expected JSON Output:
{
‘Topics’: [‘Job Interviews’, ‘Behavioral Questions’, ‘Stress Management’],
‘Subtopics’: [‘Handling difficult questions’, ‘Managing anxiety during interviews’,

‘Tips for preparation’],
‘Intent’: ‘Seeking advice’,
‘Entities’: [‘job interview’, ‘behavioral questions’],
‘Keywords’: [‘job preparation’, ‘nerves’, ‘behavioral interview tips’],
‘Summary’: ‘The user is seeking advice on preparing for behavioral questions and

managing stress during job interviews.’,
}

### Now, analyze the following conversation and generate the output in the same format:

User: ⟨x⟩

Return the structured output in JSON format.
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F.2 LLM-SUMMARIZE in Algorithm 4

We provide the prompt used for LLM-SUMMARIZE method in Algorithm 4. In both the Clio
and our proposed pipeline implementations, we occasionally select contrastive summaries
from the nearest points located outside the designated cluster. For the sake of algorithmic
clarity, we omitted this nuanced selection strategy from Algorithm 4 to maintain a simplified
representation of the core approach.

LLM-SUMMARIZE

You are tasked with summarizing a group of related statements into a short, precise,
and accurate description and name. Your goal is to create a concise summary that
captures the essence of these statements and distinguishes them from other similar
groups of statements.

Summarize all the statements into a clear, precise, two-sentence description in the
past tense. Your summary should be specific to this group and distinguish it from
the contrastive answers of the other groups. After creating the summary, generate a
short name for the group of statements. This name should be at most ten words long
(perhaps less) and be specific but also reflective of most of the statements (rather
than reflecting only one or two).

Present your output in the following format:
<summary> [Insert your two-sentence summary here] </summary>
<name> [Insert your generated short name here] </name>

Below are the related statements:
<answers>
- ⟨summary 1 in within cluster summaries⟩
- ⟨summary 2 in within cluster summaries⟩
- . . .
</answers>

For context, here are statements from nearby groups that are NOT part of the group
you’re summarizing:
<contrastive answers>
- ⟨summary 1 in contrastive summaries⟩
- ⟨summary 2 in contrastive summaries⟩
- . . .
</contrastive answers>

Do not elaborate beyond what you say in the tags. Remember to analyze both the
statements and the contrastive statements carefully to ensure your summary and name
accurately represent the specific group while distinguishing it from others.

19



Preprint. Under review.

F.3 LLMSelectKeywords

The following prompts are used to extract keywords given the conversation and the KwSet.

LLMSelectKeywords

Below is a summary of a conversation. Based on this summary, select the most relevant
{m} keywords from the given set of keywords.

Summary: {summary}

Available Keywords: {keyword1}, {keyword2}, . . .

Select up to {m} most relevant keywords from the set and return them as a Python list
(e.g., [‘keyword1’, ‘keyword2’, ...]).
If there is no relevant keyword, return the Python list [‘NA’]

F.4 LLM-SUMMARIZE in Algorithm 1

We modified the prompt for Algorithm 4, and got the following prompt for
LLM-SUMMARIZE in Algorithm 1.

LLM-SUMMARIZE

You are a language model tasked with summarizing a group of related keywords and
example texts into a concise topic description.
Your goal is to generate:
1. A **concise topic name** (≤10 words) that best describes the theme of these
keywords and examples.
2. A **brief, 2-sentence description** explaining what this cluster is about.

Please return your response in the following format:

<topic> [Insert topic name here] </topic>
<description> [Insert brief summary here] </description>

Below are the keywords associated with the cluster:
<keywords>
{keyword1}, {keyword2}, . . .
</keywords>

Ensure the topic name is **specific**, descriptive, and meaningful.

20



Preprint. Under review.

F.5 Prompt for KwSet-LLM

We used LLM to choose keywords from conversations in the process of generating KwSet.
We provide the prompt for generating KwSet-LLM for example.

KwSet-LLM Generation Before Refinement

You are a knowledgeable AI assistant tasked with generating a set of comprehensive
keywords that cover the topics, intents, and entities present in a dataset of human
conversations.

For the summary provided, generate a list of **3-5** keywords that reflect:
- The core topic(s) of the conversation
- Key entities or names mentioned
- Keywords useful for identifying conversation categories or topics

Keep the keywords concise and relevant.

Summary: {conversation summary}

Use this JSON schema:
Response = {{"keywords": list[str]}}

Return only the JSON object without any explanations, decorations, or code blocks.
Only the raw JSON should be returned.

As a KwSet of smaller size leads to smaller utility loss due to privacy, we asked LLM to
refine the KwSet set.

Refine KwSet

You are an expert in topic summarization. We have extracted keywords from a large
collection of conversations. These keywords are used for summarizing the main topics
of the conversations based on sentence statistics. Your task is to refine this list
and select the most relevant {num} keywords that best capture the core topics.

Here is the extracted keyword list:

{json.dumps(keywords, indent=2)}

Please return exact {num} of the most relevant keywords in JSON format using the
following schema:

‘‘‘json
{{
"keywords": ["keyword1", "keyword2", ..., "keyword{num}"]
}}
‘‘‘
Do not exceed {num} keywords. If necessary, prioritize the most commonly occurring,
diverse, and representative words.
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F.6 Prompt for Evaluation

As discussed before, we do some LLM-based evaluations. Now we provide the prompts for
the binary preference.

Prompt for Binary Preference

You are an expert evaluator of text summarization systems. You will be given an
original text and two different summaries of that text. Your task is to evaluate
which summary better captures the key themes and content of the original text.

Original Text:
{text}

Summary A:
{summary a}

Summary B:
{summary b}

Please evaluate which summary better captures the key themes and content of the
original text. Consider factors such as:
- Accuracy of the information
- Coverage of important topics
- Clarity and coherence
- Relevance to the original text

Provide your reasoning, then end with a clear choice in the format: <choice>X</choice>
where X is either "A" for the first summary or "B" for the second summary.

22



Preprint. Under review.

G Hierarchy and Visualization

G.1 Hierarchical Organization

Table 4: Examples of Summaries and Cluster Levels

SUMMARY:
The conversation starts with greetings in Portuguese, inquiring about the other person’s
well-being.

CLUSTERING:
Base: AI Travel Assistant for Multilingual and Localized Recommendations
Top: AI Assistant Capabilities, Performance, and Applications

SUMMARY:
The user requested a Python program to create a SQLite database table named ’legacy’
with specified fields.

CLUSTERING:
Base: Python Data Manipulation with Pandas and SQL
Top: Diverse AI Applications, Analysis, and Performance

SUMMARY:
The AI introduces itself, clarifies its capabilities, and offers assistance to the user.

CLUSTERING:
Base: AI Assistant Initial Interaction and Prompting
Top: Diverse AI Applications, Analysis, and Performance

SUMMARY:
The assistant provides a detailed introduction of Tilley Chemical Co., Inc., including its
history, services, and sustainability efforts.

CLUSTERING:
Base: Chemical Company Profile: Manufacturing, Performance, and Optimization
Top: Broad AI Applications, Ethics, and General Knowledge

Following CLIO’s approach (Tamkin et al., 2024), we implement a hierarchical organization
of summaries to improve navigation and comprehension of large conversation datasets.
Our process creates a two-level hierarchy with high-level topic clusters containing related
lower-level summaries:

1. Low-level Summary Generation: We first generate approximately 4,000 low-level sum-
maries using our differentially private pipeline.

2. Embedding and Clustering: These summaries are converted to embeddings and clus-
tered using k-means with k ≈ 70 to identify broader thematic groups.

3. High-level Naming: For each of the 70 high-level clusters, we prompt Gemini to suggest
descriptive names based on the contained summaries.

4. Deduplication and Refinement: We use Gemini to deduplicate and refine these sug-
gested names, eliminating overlaps and ensuring distinctiveness.

5. Low-level Assignment: We represent each high-level name as a center in the embedding
space and assign each low-level cluster to its nearest high-level name.

6. Final Renaming: Based on the final assignment of low-level clusters, we rename each
high-level cluster to better represent its contents.

This hierarchical organization allows users to navigate from broad topics to specific conver-
sation summaries, making the system more useful for exploring large conversation datasets
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while maintaining differential privacy guarantees. Some examples of the summary facet,
base, and top cluster are demonstrated in Table 4.

G.2 Visualization Interface

To improve the utility and exploration capabilities of our hierarchical organization, we
developed interactive visualization interfaces that allow users to navigate through both
high-level and low-level clusters. Our visualization system offers two complementary
views:

Tree View. The tree visualization (Figure 3a) presents clusters in a hierarchical format, with
high-level clusters containing their associated low-level clusters. One can click the button
for each high-level cluster to show and hide the associated low-level clusters. This view
enables users to navigate from broad topics (e.g., ”AI Ethics, Harmful Content, and Societal
Impact”) to more specific subtopics (e.g., ”AI Ethics, Society, and Cultural Impact”). The
tree structure includes the number of contained conversations for each cluster, providing a
sense of topic prevalence.

Map View. The map visualization (Figure 3b) projects cluster embeddings into a two-
dimensional space using UMAP McInnes et al. (2018). This representation preserves se-
mantic relationships between clusters, with similar topics appearing closer together. The
map view offers an intuitive understanding of the thematic landscape and reveals natural
groupings of related topics. Users can toggle between high-level and low-level views.

When a user selects a specific cluster (Figure 3c), the interface displays detailed information
about that cluster, including its summary and a list of its sub-clusters. For high-level clusters,
users can explore the constituent low-level clusters, each with its own descriptive title. This
allows users to quickly understand the scope and content of each cluster without needing
to examine individual conversations.

This visualization system enhances the utility of our differentially private summarization
framework by making the results more navigable and interpretable, even when dealing
with thousands of conversation summaries organized into a complex hierarchy.
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(a) Tree View (b) UMAP-based Map View

(c) Detailed view of a selected cluster

Figure 3: Visualization interfaces for exploring hierarchical clusters: (a) Tree View displaying
the hierarchical organization with nested clusters and their sizes; (b) Map View showing
semantic relationships between topics through UMAP dimensionality reduction, with
similar topics positioned closer together; (c) Detailed view of a selected cluster showing its
summary and constituent sub-clusters with their specific focus areas.
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