
ar
X

iv
:2

50
6.

04
64

7v
1

 [
cs

.C
R

]
 5

 J
un

 2
02

5
MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Authenticated Private Set Intersection: A Merkle
Tree-Based Approach for Enhancing Data Integrity

Zixian Gong, Zhiyong Zheng, Zhe Hu, Kun Tian, Yi Zhang, Zhedanov Oleksiy, Fengxia Liu*

Abstract—Private Set Intersection (PSI) enables secure com-
putation of set intersections while preserving participant pri-
vacy, standard PSI existing protocols remain vulnerable to
data integrity attacks allowing malicious participants to extract
additional intersection information or mislead other parties. In
this paper, we propose the definition of data integrity in PSI
and construct two authenticated PSI schemes by integrating
Merkle Trees with state-of-the-art two-party volePSI and multi-
party mPSI protocols. The resulting two-party authenticated PSI
achieves communication complexity O(nλ + n logn), aligning
with the best-known unauthenticated PSI schemes, while the
multi-party construction is O(nκ + n logn) which introduces
additional overhead due to Merkle tree inclusion proofs. Due
to the incorporation of integrity verification, our authenticated
schemes incur higher costs compared to state-of-the-art unau-
thenticated schemes. We also provide efficient implementations
of our protocols and discuss potential improvements, including
alternative authentication blocks.

Index Terms—Private Set Intersection, Merkle Tree, Oblivious
Key-Value Store.

I. INTRODUCTION

PRIVATE set intersection (PSI) [Mea86], [FNP04] is a
cryptographic protocol that enables two parties—often

characterized as a client and a server—to compute the inter-
section of their respective sets, X and Y , without revealing
any additional information about elements outside of the in-
tersection. Concretely, if one or both parties learn X∩Y , they
learn nothing else about their counterpart’s dataset. As one of
the most extensively studied protocols in secure multi-party
computation (MPC), PSI has emerged as a critical enabler
for privacy-preserving applications ranging from genomic data
analysis [SCW+18] to private Ad conversion measurement
[IKN+17].

However, even when a PSI protocol provides security
against malicious adversaries, it may still permit dishonest
participants to insert fabricated or extraneous elements into
their sets. By doing so, they can mislead the other party or
glean additional information about the other party’s data. In
particular, if the universe of possible elements is enumerable,
a malicious participant could potentially add every element
in that universe to their set. This strategy may allow them
to discover which elements the other party holds, thereby
undermining the intended privacy guarantees of PSI.

Manuscript created March, 2025; Zixian Gong (e-mail: gzx@ruc.edu.cn),
Zhiyong Zheng, Zhe Hu, Kun Tian, Yi Zhang and Zhedanov Oleksiy with the
School of Mathematics, Renmin university of China, Beijing, 100872, P. R.
China.

Fengxia Liu (e-mail: shunliliu@gbu.edu.cn) with the Great Bay Institute
for advanced study, Mathematics and Information Security Research Center,
Dongguan, Guangdong 523000, P. R. China.

The earliest PSI protocol was built upon the Diffie-Hellman
key exchange [Mea86]. Since PSI was formally introduced in
[FNP04], extensive research has been devoted to enhancing
both its efficiency and security. Depending on the sizes of
the participants’ datasets, PSI protocols can be classified as
balanced PSI or unbalanced PSI. Moreover, numerous vari-
ants have emerged, including PSI cardinality and threshold
PSI. Regardless of the specific functionality sought in a
PSI construction, it invariably relies on several fundamental
building blocks, including homomorphic encryption, oblivious
transfer (OT) and OT-extension, and oblivious pseudo-random
functions (OPRF)[MAL23].

Following the research line of homomorphic encryption,
this method originates from traditional Oblivious Polynomial
Evaluation (OPE) protocols [NP06]. By leveraging techniques
such as Single Instruction Multiple Data (SIMD) [SV14], the
data sets are encoded into polynomial form, whose coefficients
are subsequently encrypted using homomorphic encryption
[ZLT23]. Participants can then repeatedly invoke membership
tests on these polynomials in a homomorphic manner, ulti-
mately deriving the intersection information. However, purely
OPE-based protocols often incur higher costs compared to
those that rely on alternative cryptographic primitives [KK17].
Some protocols also employ Bloom filters or Cuckoo filters to
represent sets more efficiently. By leveraging BFV homomor-
phic encryption to construct polynomials, along with hash-
to-bins techniques and Cuckoo Hashing, [CLR17] offers a
cutting-edge PSI protocol in this line of research.

As for OT- and OPRF-based PSI schemes, although OT can
be employed directly for PSI construction, it is often combined
with hashing strategies (e.g., simple hashing, permutation-
based hashing, or Cuckoo Hashing) for improved efficiency
[PSZ14], [PSWW18], [PSZ18]. In essence, OPRF-based PSI
seeks to construct an OPRF by leveraging OT or OT-extension
in conjunction with various cryptographic primitives (e.g.,
hash functions and encryption algorithms) and efficient data
structures (e.g., Bloom filters and hash tables). This enables
membership tests between sets, ultimately determining the
intersection.

A recent line of research is OKVS-based PSI, initially
introduced in [PRTY20]. By incorporating a novel linear
solver called PaXoS-a binary OKVS built upon an encrypted
cuckoo filter and combining it with OT, this approach achieves
malicious security in PSI protocols and exhibits robust perfor-
mance. Building on this, [RS21] proposed an OPRF-based PSI
scheme where the OPRF is constructed via Vector Oblivious
Linear Evaluation (VOLE). Subsequently, [RR22] presented
a more efficient OKVS solution that replaces PaXoS from

https://arxiv.org/abs/2506.04647v1

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

[PRTY20] and, compared with [RS21], further adopts subfield-
VOLE to enhance performance. These developments represent
the current state of the art in PSI. Our two-party and multi-
party authenticated PSI protocols, introduced later in this
work, build upon the OKVS-based research line [RS21],
[RR22], [NTY21].

In this work, we address the integrity concerns by proposing
an authenticated PSI framework. This approach is designed to
thwart data integrity attacks by ensuring that each party’s input
set is both valid and verified, thereby preventing adversaries
from leveraging artificially inflated or falsified sets.

A. Contribution

In this work, we introduce new scenarios for authenticated
PSI and propose a new definition of data integrity for PSI.
Additionally, building on volePSI [RS21], [RR22] and mPSI
[NTY21], we present two new constructions that are resistant
to data integrity manipulation in the two-party and multi-party,
along with their corresponding implementations.

• New Scenarios. Most existing PSI protocols lack mech-
anisms to ensure data authenticity in the presence of
malicious parties. Due to the lack of data authenticity
guarantees, malicious participants can achieve data in-
tegrity attacks by manipulating their datasets and ex-
tracting additional information from the intersection. The
new scenario aims to ensure that participants engaging
in malicious data manipulation cannot obtain intersection
outputs, thereby safeguarding the security of the entire
protocol.

• New Definition. The second contribution is the integrity
for PSI, in both two-party and multi-party PSI protocols,
satisfying the integrity of PSI implies that all partic-
ipants have their datasets verified during the protocol
interactions to ensure they have not been tampered with.
This means that all participants use their genuinely held
datasets when engaging in the protocol and we define a
PSI protocol that satisfies the property of integrity as an
authenticated PSI.

• New constructions. We proposed several tools to achieve
PSI integrity and utilized the representative Merkle Tree
to integrate with state-of-the-art two-party PSI (volePSI)
and multi-party PSI (mPSI) protocols. Based on these
integrations, we developed corresponding authenticated
PSI schemes and validated their security and integrity.
Our two-party authenticated PSI has communication cost
O(nλ + n log n) which matches the cost of the best
unauthenticated schemes [RR22]. As to the multi-party
construction, it has communication cost O(nκ+n log n)
which introduces additional complexity arising from the
merkle tree inclusion proofs compared to the best multi-
party psi [NTY21].

• Corresponding Implementations. Building on the au-
thenticated PSI we proposed, we integrated the im-
plementation of [RR22] available at github.com/Visa-
Research/volepsi with github.com/microsoft/merklecpp to
implement our two-party authenticated PSI. Similarly,
we constructed our multi-party authenticated PSI by

combining [NTY21] and its implementation available at
github.com/asu-crypto/mPSI with github.com/micr
osoft/merklecpp.

B. Notation

We denote by κ the computational security parameter and
by λ the statistical security parameter. The notation [a, b]
represents the set {a, a + 1, . . . , b}, while [a] is used as a
shorthand for the set {1, . . . , a}. The symbol ⟨A,B⟩ denotes
the inner product between vectors A and B. For a set S, the
notation s ← S indicates that s is selected as a uniformly
random element from the set S. Moreover, the symbol ←
is also used to represent the output generated by a specific
algorithm defined in this work.

C. Outline

In Section 2, we will introduce the concept of data integrity,
which is essential for safeguarding data security and reliability,
and it forms the core motivation for this work. This section
will also introduce the Data Manipulation Attack on the PSI
protocols, which compromises data integrity. Such an attack
can obscure or mislead the actual intersection data, allowing
the malicious participant to gain access to more information
than they are entitled to. Besides, merkle tree [Mer89] will be
introduced as our core building block which is used to against
the attack.

In Section 3, we will provide a unified definition of PSI,
along with the associated security and correctness definitions.
Additionally, we will introduce a new definition of data
integrity for PSI and provide a complete definition of authen-
ticated PSI that is resistant to data manipulation. Furthermore,
this section will present the basic building blocks required for
our two-party and multi-party PSI protocols, including VOLE
[BCGI19], OKVS [PRTY20], [GPR+21], and the key block
for ensuring data integrity, the Merkle tree [Mer89], along with
their relevant definitions.

In Section 4, we will present the constructions of our merkle
tree enhanced PSI for data integrity for both two-party and
multi-party settings, and prove their correctness, data integrity,
and security. Additionally, in Section 5, we will provide the
implementation and performance analysis of the authenticated
PSI, combining volePSI [RS21], [RR22] and mPSI [NTY21].
Finally, in Section 6, we will provide a summary of the
entire work and discuss alternative approaches for constructing
authenticated PSI.

II. MOTIVATION AND MERKLE TREE

This section highlights the necessity of data authentication
in PSI scheme and give a brief background of merkle tree.

A. Data Integrity

Standard PSI protocols focus on preserving the privacy of
the participants’ sets but provide no guarantees about the
authenticity or integrity of the data. If a malicious party (e.g.,
a server or client) deviates from the protocol, they could
manipulate the input sets or the intersection results, leading

https://github.com/Visa-Research/volepsi
https://github.com/Visa-Research/volepsi
https://github.com/microsoft/merklecpp
https://github.com/asu-crypto/mPSI
https://github.com/microsoft/merklecpp
https://github.com/microsoft/merklecpp

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

to incorrect or even harmful outcomes. This lack of integrity
protection undermines trust in outputs of PSI and poses critical
risks in sensitive applications:

• Medical Research Collaboration: Multiple institutions
might use PSI to identify shared patient cohorts for joint
studies. If an adversary injects falsified patient records
into the intersection, researchers could draw erroneous
conclusions, jeopardizing treatment efficacy or clinical
trial validity.

• Financial Fraud Detection: Banks might privately com-
pare transaction blacklists to flag suspicious accounts.
A malicious participant could remove entries from the
intersection to shield fraudsters or insert innocent users
into the result, causing unwarranted account freezes.

• Supply Chain Security: Suppliers and manufacturers
could use PSI to validate shared components’ origins.
Tampering with the intersection might conceal unautho-
rized sources, enabling counterfeit parts to infiltrate the
supply chain and compromise product safety.

In non-private applications, integrity can be enforced through
established mechanisms. For instance, blockchain systems like
Bitcoin use cryptographic hashing and decentralized consen-
sus to ensure the immutability of transaction records, while
document management platforms (e.g., DocuSign) employ
digital signatures to bind authenticity to verified identities.
Similarly, TLS/SSL protocols leverage digital certificates to
authenticate website identities and guarantee data integrity in
web communications [TLS1.3]. The challenge, however, is to
extend these integrity guarantees to private variants of such
systems.

B. Data Integrity Attacks on PSI

Data integrity attacks, often termed Data Manipulation,
Data Poisoning, or Data Tampering, constitute a severe yet
frequently underestimated threat to numerous organizations.
They encompass unauthorized alterations to existing data or
the unapproved insertion of fraudulent entries, thereby under-
mining the accuracy, trustworthiness, and overall security of
critical systems.

Fig. 1: Diagram Illustrating Data Integrity Attacks on PSI

Data integrity attacks in PSI occur when a malicious par-
ticipant deliberately submits forged or manipulated data to
obtain unauthorized insight into the intersection or to mislead
other participants. The malicious participants can selectively
corrupt inputs or infer hidden information through targeted
data manipulation. Such attacks can compromise both the

correctness of the computed intersection and the privacy of
input sets. As shown in figure 1. For instance, in a scenario
where multiple suppliers rely on PSI to determine overlapping
inventory for collaborative logistics, a malicious supplier could
insert fictitious product identifiers into its dataset. By observ-
ing whether these spoofed entries appear in the intersection,
the attacker can deduce additional information about the
inventory holdings of other supplier, far beyond what should
be revealed. This behavior not only subverts the intended
privacy guarantees but also undermines the reliability and
trustworthiness of the PSI protocol.

C. PSI with Merkle Tree

Data integrity can be achieved through a variety of crypto-
graphic mechanisms, such as digital signatures, hash chains, or
Learning with Errors (LWE)-based schemes. In this work, we
adopt Merkle trees [Mer89] as our primary building block for
integrity verification, drawing inspiration from prior research
[KO97], [CN23] that utilizes Merkle trees for authentication
in Private Information Retrieval (PIR).

The evolution of Merkle Trees can be traced back to
Ralph Merkle’s 1979 doctoral dissertation, which laid the
groundwork for subsequent hash-based authentication mech-
anisms. However, the formal definition of the Merkle Tree
did not appear in published form until 1989 [Mer89]. During
the intervening period, Merkle introduced a digital signature
scheme [Mer87] built on conventional cryptographic functions,
demonstrating for the first time how a hierarchical hashing
structure could be applied to verify data integrity. In the 21st
century, Michael Szydlo’s work at Eurocrypt 2004 [Szy04] sig-
nificantly advanced the state of Merkle Trees by reducing the
memory requirements of traversal algorithms from log2 n to
log n, thus greatly enhancing their applicability to large-scale
datasets. These landmark contributions collectively propelled
Merkle Trees from a theoretical tool into a core cryptographic
component.

Fig. 2: Merkle Tree

As shown in figure 2. A Merkle tree ensures data integrity by
generating a hash tree where each leaf node represents the hash
of an individual data element. The internal nodes store hashes
of their child nodes, and the root hash, known as the Tree Root,
serves as a compact representation of the entire dataset. The
inclusion of a data element is verified by traversing the tree

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

from the leaf to the root, ensuring that the data has not been
tampered with. Given a set of data blocks D1, D2, D3, D4,
to verify the inclusion of a specific data block, say D3, a
participant would provide the path consisting of the sibling
hashes at each level, starting from H3 and moving upwards to
the root which is a tuple (H3, H4, H1−2). The verification pro-
cess checks that the computed root hash matches the provided
root hash like root = Hash(H1−2||Hash(H3||H4)). This
structure ensures that any modification to a data block would
result in a change to its corresponding hash and propagate up
the tree, altering the root hash and indicating tampering.

Originally conceived for digital signatures, Merkle trees
have evolved into a versatile and efficient mechanism for data
integrity verification, assuming a critical role in numerous
applications. By hashing data blocks and arranging them
into a tree structure, Merkle trees provide concise proofs of
authenticity and tamper-resistance. For example, in blockchain
systems such as Bitcoin [Nak08] and Ethereum [But13], they
enable rapid verification of transaction histories. In version
control systems like Git, a similar hash-based structure is
used to track file revisions and ensure data authenticity in
distributed environments. Likewise, distributed storage and
file-sharing platforms (e.g., IPFS [Ben14]) rely on Merkle
trees to guard against data corruption or forgery. Consequently,
Merkle trees have become an essential cryptographic primitive
for safeguarding data integrity, finding successful applications
in blockchain, version control, distributed storage, and beyond.

III. DEFINITION OF BUILDING BLOCKS

In this section, we will provide definitions and properties
of the relevant building blocks required for our construction
of authenticated two-party PSI and authenticated multi-party
PSI schemes.

A. Private Set Intersection (PSI)

Before delving into the detailed construction of our PSI
scheme, it is necessary to provide definitions of correctness
and security for both traditional PSI schemes and the au-
thenticated PSI proposed in this paper. These definitions will
facilitate the understanding of subsequent work, including the
construction of the authenticated PSI and its security proof.

The construction of PSI protocols, regardless of whether
they are based on Oblivious Transfer (OT) and OT-extension,
Homomorphic Encryption, or Oblivious Pseudo-Random
Functions (OPRF), follows a similar fundamental logic. Each
participant needs to Transform their input set to a specific
format. These transformations often include, but are not lim-
ited to, the use of hash functions or the conversion of data
into specialized structures, such as Oblivious Key-Value Stores
(OKVS) or Hash Graphs. Following these transformations, the
participants engage in one or multiple rounds of Interaction
based on the design and structure of the protocol. Finally,
using the results from the interaction phase, participants
Reconstruct the intersection of their input.

To avoid redundant descriptions and without loss of gen-
erality, we use a unified definition for both two-party PSI

and multi-party PSI. When the parties number n = 2, it
corresponds to the definition of two-party PSI.

Definition 1. For the protocol participants P1, . . . , Pn

where n ≥ 2, each participant holds an input set
X1, . . . , Xn where Xi = {xi

1, ..., x
i
ni
} and xi

j ∈ {0, 1}∗.
To compute the intersection

⋂n
i=1 X

i of all input sets, a
PSI scheme can be represented by three phase: PSI =
(Transform, Interaction,Reconstruct):

• Transform (1λ, X) → (st, T): Given a security pa-
rameter λ and all the input sets {Xi}i∈[n] provided by
parties {Pi}i∈[n], this algorithm outputs a transformation
T of their inputs according to the construction of specific
scheme. The algorithm generates a state st, which encap-
sulates intermediate data (Protocol phase information,
randomness) required for subsequent computations .

• Interaction (1λ, st, T)→ R: This phase takes as input
a security parameter λ, T and state information st, after
one or multiple rounds of interaction as defined by the
protocol, the output R is obtained.

• Reconstruct (st,R)→ I: Given the state information
st, According to the result of Interaction phase: R. The
parties can obtain the intersection I.

A PSI scheme follows the properties Correctness and Secu-
rity as follows:

Definition 2. Correctness : For a scheme PSI = (Transf
orm, Interaction,Reconstruct) as defined in Defintion 1.
Given the security parameter λ and input set {Xi}i∈[n] from
{Pi}i∈[n] where n ≥ 2, we say the protocol satisfies the
correctness if the followings holds:

Pr

 (st, T)← Transform(1λ, X)
I =

⋂n
i=1 X

i : R ← Interaction(1λ, st, T)
I ← Reconstruct(st,R)

 = 1−ϵ

The correct execution of the protocol ensures that the output
I is equal to the intersection

⋂n
i=1 X

i of the participants’
input sets. Besides, the soundness error ϵ depends on the
specific PSI scheme. This ϵ = negl(λ) accounts for potential
errors arising from probabilistic elements such as hashing,
encoding techniques, or cryptographic assumptions used in the
PSI protocol. Consequently, ensuring a negligible ϵ is crucial
for achieving high accuracy in real-world applications.

Definition 3. Security : Let n parties scheme PSI = (Trans
form, Interaction,Reconstruct) as defined in Defintion 1.
For the input sets {Xi}i∈[n], the scheme ensures security if
the following holds:

View =

 I :
(st, T)← Transform(1λ, X)
R ← Interaction(1λ, st, T)
I ← Reconstruct(st,R)

For a simulator SPSI,

Sim =
{
I ′ = {ai}i ← SPSI(1

λ, {0, 1}∗)
}

View ≈c Sim.

The definition essentially means that, from the perspective
of an adversary, it is impossible to distinguish between the

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

intersection result obtained through the protocol (View) and a
set sampled randomly from a simulator (Sim).

B. Authenticated PSI

In [DT09], the notion of Authorized PSI is introduced,
bearing some resemblance to authenticated PSI in that it
requires verifying that each element in the client’s dataset
has been authorized (signed) by a recognized and mutually
trusted authority. However, our authenticated PSI differs in its
requirement to validate the input datasets of all participants,
rather than focusing on one party alone.

Moreover, Authorized PSI places greater emphasis on the
authorization of data, allowing for tiered access control to
restrict different participants’ data access rights—a feature
often employed in international collaborations or proxy-based
cloud PSI. This approach strives to balance privacy protection
with the need to share data in compliance with organizational
or regulatory mandates. In contrast, our authenticated PSI
aims specifically to guard against malicious data tamper-
ing—ensuring that no participant can undermine the protocol
by submitting falsified inputs or glean additional intersection
information through fraudulent data manipulation.

Compared to the conventional PSI, authenticated PSI em-
phasizes the integrity of input set, this subsection presents
the definitions for authenticated PSI, including correctness,
integrity, and security. Notably, the correctness property
aligns with Definition 2. For n parties scheme PSI =
(Transform, Interaction,Reconstruct). The parties {Pi}i∈[n]

hold input sets {Xi}i∈[n] where Xi = {xi
1, ..., x

i
ni
}, xi

j ∈
{0, 1}∗ the integrity is defined as follows:

Definition 4. Integrity : The scheme PSI = (Transform,
Interaction,Reconstruct) with original announced input sets
{Xi}i∈[n]. There is an adversarially modified dataset Xi∗ ̸=
Xi. It satisfies the integrity as follows:

Pr

 (stA, T)← A(1λ, X∗)
I ≠⊥: R ← Interaction(1λ, stA, T)

I ← Reconstruct(stA,R)

 ≤ negl(λ)

This definition implies that if any participant attempts
to manipulate their data to gain additional information, the
probability that the process does not terminate is negligible.

Definition 5. Security : Based on the integrity de-
fined in Definition 4, for adversary A = (A0,A1), the
AuthenticatedPSI satisfies the security as follows:

REALA,X,λ =

 V̂ :

(stA, T)← A0(1
λ, X∗)

R ← Interaction(1λ, stA, T)
I ← Reconstruct(stA,R)
a← 1{I ≠⊥}
V̂ ← A1(stA, a)

Similarly, for simulator S = (S0,S1):

REALA,S,X,λ =

 V :

(stA, T)← A0(1
λ, X∗)

(stS , I)← S0(1λ, T)
a← S1(stS , I)
V ← A1(stA, a)

REALA,X,λ ≈c REALA,S,X,λ.

This definition guarantees that authenticated PSI protocol
is computationally indistinguishable between real-world exe-
cution and ideal-world simulation, ensuring that no adversary
can gain additional information beyond the defined outputs.

C. Merkle Tree

As the essential verification block, the Merkle Tree is
critical for implementing our authenticated PSI, In the context
of our work, the Merkle Tree serves as a critical block
in combining with PSI to ensure that participants cannot
maliciously tamper with their datasets to gain additional in-
formation beyond the intended intersection. By leveraging the
Merkle Tree’s structure, each party commits to their dataset by
creating a Merkle Root, which summarizes their data. During
the PSI process, each participant must provide proofs (Merkle
paths) for their data elements, allowing the other party to verify
the integrity of the dataset without directly accessing it. This
integration prevents dishonest participants from modifying
their inputs in an attempt to infer non-intersecting elements,
thereby enhancing the security and trustworthiness of the
authenticated PSI protocol. We now begin by introducing the
algorithms and processes involved in the Merkle Tree.

Definition 6. We represent the Merkle tree as a
scheme consisting of three algorithms: Merkle =
(Root,GenPath,Verify), parameterized by ℓroot, ℓπ ∈ N
which represent the root length and tree-path length
respectively. For an input set X = {x1, ..., xn}, xi ∈ {0, 1}∗,
and index i for xi. Given a security parameter λ, the
scheme is composed of two probabilistic algorithms and one
deterministic algorithm:

• Root (1λ,X) → root: Given a security parameter λ
and dataset X = {x1, ..., xn}, this probabilistic algo-
rithm outputs a tree root ∈ {0, 1}ℓdig representing the
set.

• GenPath (1λ,X, xi) → πi: The deterministic algo-
rithm takes as input a security parameter λ, a input set
X, and a element xi ∈ {0, 1}∗, outputs a unique tree
path πi ∈ {0, 1}ℓπ which is used to verify the inclusion.

• Verify (root, i, πi)→ {⊥, 1}: Given a root ∈ {0, 1}ℓdig

and a tree path πi ∈ {0, 1}ℓπ for xi, this algorithm
outputs 1 if πi proves that the corresponding element
xi is included in the merkle tree represented by root;
otherwise, verification of the path failed, the program
terminates.

The main definitions of the Merkle Tree are categorized into
three key properties: Correctness, Uniqueness, and Soundness
as follows.

Definition 7. Correctness : For a Merkle tree scheme de-
fined in Definition 6, Merkle = (Root,GenPath,Verify) is
parameterized by a root length ℓroot ∈ N and a corresponding
tree path length ℓπ ∈ N. For an input set X = {x1, ..., xn}
with xi ∈ {0, 1}∗, we say that the Merkle scheme satisfies
correctness if, for all i ∈ [n], the following holds:

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Pr

 root← Root(1λ,X)
b = 1 : πi ← GenPath(1λ,X, xi)

b← Verify(root, i, πi)

 = 1

If an element is indeed present in the dataset, the proof
generated by the Merkle tree should be successfully verified.
The following properties, uniqueness and soundness, empha-
size the one-to-one correspondence between xi and its tree
path in the merkle tree.

Definition 8. Uniqueness : Let Merkle = (Root,GenPath
,Verify) be a Merkle-tree scheme as specified in Definition 6,
with parameters for the root ℓroot ∈ N and the tree path
length ℓπ ∈ N. Given an input set X = {x1, ..., xn} with
xi ∈ {0, 1}∗, let A be an efficient adversary. Merkle ensures
uniqueness if the following holds:

Pr

(X, xi, πi, π

′
i)← A(1λ, n)

πi ̸= π′
i :

b = b′ = 1 : root← Root(1λ,X)
b← Verify(root, i, πi)
b′ ← Verify(root, i, π′

i)

 ≤ negl(λ)

This definition ensures that each element xi in the input set
X has a unique tree path πi. It prevents an adversary from
finding two distinct paths that authenticate the same element
under the same root.

Definition 9. Soundness : A scheme Merkle = (Root,Gen
Path,Verify) as defined in Definition 6, with the root length
and tree path length ℓroot, ℓπ ∈ N. For the input set X =
{x1, ..., xn}, xi ∈ {0, 1}∗,. let A be an adversary. We say that
Merkle satisfies Soundness if the following holds:

Pr

 b = 1 :

(X, xi, x
∗
i , π

∗
i)← A(1λ, n)

xi ̸= x∗
i :

root← Root(1λ,X)
b← Verify(root, i, π∗

i)

 ≤ negl(λ)

This property ensures that an tree path for any arbitrary
element x∗

i cannot be used to verify a different element xi.
It guarantees that each path corresponds exclusively to its
specific element.

D. Oblivious Key-Value Store (OKVS)

The Oblivious Key-Value Store (OKVS) creates a special
data structure which enables secure storage and retrieval of
key-value pairs without revealing information about the keys
or values, providing a critical building block for privacy-
preserving data operations.

Before defining OKVS, it is essential to first understand the
basic concept of a Key-Value Store (KVS), which serves as
the foundation for its construction.

Definition 10. A Key-Value Store (KVS) scheme is defined as
KVS = (EncodeH,DecodeH), where H represents a set of
Hash functions which indicate a specific mapping, K is a set
of keys, and V is a set of values. The input to the KVS scheme
consists of a set of key-value pairs (ki, vi) ∈ K × V , where

K ⊂ K and V ⊂ V . A KVS scheme provides the following
two algorithms:

• EncodeH (K,V) → {S,⊥}: This algorithm encodes
a set of key-value pairs into a single object S. If the
encoding process fails, it outputs an error indicator ⊥,
which occurs with statistically small probability.

• DecodeH (S, k)→ w: Given an encoded object S and
a key k ∈ K, this algorithm retrieves and outputs the
value w = v ∈ V if (k, v) ∈ {(ki, vi)}i. Otherwise, it
outputs a randomly generated value w = r.

The probability of the KVS Encode algorithm outputting
⊥ depends on the hash functions used in the data structure,
i.e., the specific mapping relationship. For instance, if the
key-value pairs are simply stored in a polynomial structure,
the Encode algorithm will always succeed. According to the
Lagrange interpolation theorem, n key-value pairs can always
be represented and reconstructed using a polynomial of degree
n− 1.

Next, we will present the definition of the oblivious version
of KVS and notice that the subscript H in Encode and Decode
will be omitted in the following content.

Definition 11. Correctness : For a KVS scheme KVS =
(Encode,Decode), given the key-value pairs set K × V and
security parameter λ, the scheme satisfies Correctness if the
following holds:

Pr [Encode(K,V) =⊥] ≤ negl(λ)

and

Pr

(k′i, v′i) = (kj , vj)

∣∣∣∣∣
S ← Encode(K,V),

v′i ← Decode(k′i, S)

s.t. S ̸=⊥ ∧ k′i = kj ∈ K

 = 1

The correctness of the scheme encompasses the accuracy of
both the Encode and Decode algorithms. From the perspective
of Encode, the probability that it correctly outputs a valid
data structure must be smaller than a negligible function
based on the security parameter. In the context of OKVS
schemes, this negligible function is often 2−λ. As noted in
[RR22] and [GPR+21], this probability can reach 2−40. For
Decode, correctness implies that, given a data structure S
generated by a properly executed program, decoding any key
from the original key-value pairs K should reliably produce
the corresponding value v. Next, we formally present the
definition of OKVS.

Definition 12. Obliviousness : A Key-Value Store (KVS)
is considered an Oblivious KVS (OKVS) if, for any distinct
sets K0 = {k01, . . . , k0n} and K1 = {k11, . . . , k1n}, when the
Encode algorithm does not output ⊥ for either K0 or K1, the
distribution DEncode,K0 is computationally indistinguishable
from DEncode,K1 . Here, DEncode,K denotes the output distri-
bution of the Encode algorithm for the set K as follows:

DEncode,K =

{
Encode(K,V) :

vi ← V, i ∈ [n]
V = {v1, . . . , vn}

}
DEncode,K0 ≈c DEncode,K1 .

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

DEncode,K0 and DEncode,K1 are computationally indistin-
guishable, meaning that an adversary cannot infer whether
the output of the Encode algorithm originates from K0 or
K1. This property is precisely what defines obliviousness and
ensures strong privacy guarantees.

Next, we will specifically define a particular type of OKVS.
This is because many existing works are based on this type of
OKVS, achieving impressive efficiency results, including the
scheme [RR22], [NTY21] on which our work is built.

Definition 13. An OKVS is considered linear over a field F
if the value set V consists of elements in F, the output of the
Encode algorithm is represented as a vector S ∈ Fm, and the
Decode function is expressed as:

Decode(S, k) = ⟨d(k), S⟩ def
=

m∑
j=1

d(k)jSj = v

or
d(k1)
d(k2)

...
d(kn)

S⊤ =

v1
v2
...
vn

where d : K → Fm is a specific function. Consequently, the

Decode operation for a fixed k is a linear map from Fm to F
which is typically defined under the hash function H .

Notice that the Linear OKVS satisfies the obliviousness
property defined in Definition 12, since for all distinct
{k1, . . . , kn}, the set {d(k1), . . . , d(kn)} is linearly inde-
pendent with overwhelming probability, and vi and S are
uniformly distributed.

There is a specialized form of a linear OKVS named binary
OKVS, which is defined over a field F, where the vectors
d(k) are limited to binary values within {0, 1}m ⊆ Fm. In
this construction, the Decode operation simplifies to summing
specific entries from the vector S.

For practical implementations, we often work with the
field F = GF (2ℓ) ∼= {0, 1}ℓ, where addition corresponds
to XOR operations on binary strings. This variant, known as
a probe and XOR of strings (PaXoS) data structure, was
introduced in [PRTY20] and has been widely adopted for
its efficiency in handling binary values [RS21], [NTY21].The
prior work [RS21] of scheme [RR22] is based on PaXoS and
extends it into a new version called XoPaXoS for its Circuit
PSI construction. XoPaXoS offers several improvements over
the original PaXoS, including enhanced randomization, and
improved practical utility.

E. Vector Oblivious Linear Evaluation (VOLE)

Vector Oblivious Linear Evaluation (VOLE) is an extension
of Oblivious Linear Evaluation (OLE), a secure two-party
protocol. While OLE allows a receiver to learn a secret
linear combination of two elements held by the sender, VOLE
expands this functionality to vectors. VOLE is particularly
useful in cryptographic applications as it significantly re-
duces the cost of generating multiple OLE instances, this
efficiency makes VOLE an essential tool in various advanced

cryptographic schemes such as zero-knowledge proofs and
PSI [BCGI19], [SGRR19], [WKYW20], [YWL+20], [RS21],
[RR22].

A common method for generating VOLE correlations in-
volves reducing the problem to random string OT. Random
string OT correlations can be efficiently compressed using
pseudorandom generators (PRGs). [BCGI19] proposes simple
and efficient constructions of VOLE correlation generators.
This work leverages Function Secret Sharing (FSS) with
Distributed Point Functions (DPF) to construct Function Secret
Sharing for Multi-Point Functions (MPFSS), and subsequently
bases its security on the Learning Parity with Noise (LPN)
assumption over large fields. Unlike the Learning With Errors
(LWE) assumption, the LPN assumption restricts the noise to
have a low Hamming weight [Zheng23]. This assumption can
also be equivalently described as requiring that the syndrome
of a randomly chosen low-weight noise vector appears pseudo-
random.

Definition 14. A VOLE scheme is defined by two probabilistic
polynomial-time (PPT) algorithms, denoted as VOLE =
(GenSeed,Extend), which are parameterized by the security
parameter λ and operate over a finite field F as follows:

• GenSeed (1λ,F) → {seed0, seed1}: Given a security
parameter λ, and with the field of output pre-specified,
the algorithm generates a pair of seeds (seed0, seed1)
for Receiver and Sender, where seed1 includes a scalar
x ∈ F.

• Extend (seedσ)→ Zσ: Given a party index σ ∈ {0, 1}
and the corresponding seed seedσ . For σ = 0 (Receiver),
it outputs a pair of random vectors Z0 = (a, c) ∈ Fm ×
Fm. For σ = 1 (Sender), it outputs a scalar-vector pair
Z1 = (b, x) ∈ Fm × F, where x ∈ F is a scalar. These
outputs satisfy the linear combination c = a · x+ b.

A VOLE scheme always possesses the properties Correct-
ness and Security as follows.

Definition 15. Correctness : For a VOLE scheme VOLE =
(GenSeed,Extend) as defined in Definition 14 which is
parametrized by field F and security parameter λ, we say
VOLE scheme satisfies correctness if:

Pr

 {seed0, seed1} ← GenSeed(1λ,F)
c = a · x+ b : (a, c)← Extend(seed0)

(b, x)← Extend(seed1)

 = 1−ϵ

This definition signifies that the seeds generated by a
well-defined algorithm, along with the corresponding outputs
derived from these seeds, are guaranteed to satisfy the linear
relationship. As for the security of VOLE, it is generally
divided into two parts: the security of the GenSeed algorithm
and the security of the Extend algorithm.

Definition 16. For any polynomial-time adversary A, attempt-
ing to extract additional information from the output seed0
of the GenSeed algorithm, the resulting distribution remains
computationally indistinguishable, as described below:

DGenSeed =
{
A(seed0) : (seed0, seed1)← GenSeed(1λ)

}
Since the GenSeed algorithm in VOLE is a PPT algorithm,
its outputs differ with each execution. Specifically, the scalar

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

included in seed1, denoted as x, will not be equal to x′ in two
separate runs. Consequently, an adversary cannot recognize
the distribution of the seeds, nor derive any meaningful
information from seed0.

As to the security of Extend algorithm, for any polynomial-
time adversary A, it holds that

DExtend =

{
A(a, c, seed1) : (seed0, seed1)← GenSeed(1λ)

(a, c)← Extend(seed0)

}

D′
Extend =

 A(a, c, seed1) :
(seed0, seed1)← GenSeed(1λ)
(b, x)← Extend(seed1)
a← Fm, c← a · x+ b

DExtend ≈c D

′
Extend.

The overall security ensures that, whether the algorithm is
GenSeed or Extend, an adversary cannot distinguish between
their output distributions within polynomial time and can not
extract any additional information.

IV. MERKLE TREE ENHANCED PSI FOR DATA INTEGRITY

In this chapter, we present the constructions of our two-
party authenticated PSI and multi-party authenticated PSI pro-
tocols: Authenticated volePSI and Authenticated mPSI. These
constructions build upon and improve the works of [RS21],
[RR22] and [NTY21], respectively, to satisfy the property of
Integrity, ensuring resistance against malicious participants’
data manipulation attacks.

A. Two-party PSI

Construction 1: Authenticated volePSI
For our two parties PSI scheme which is denoted
as PSI = (Transform, Interaction,Reconstruct) de-
fined in Definition 1. Given the statistical security
parameter λ and computational security parameter κ.
The construction is parametrized by a size of input
sets nx, ny ∈ N where X = {x1, . . . , xnx

} and Y =
{y1, . . . , yny

} and xi, yi ∈ {0, 1}∗ for Receiver and
Sender respectively. The parties need to announced the
root of their sets where root ← Merkle.Root(1, X).
There is a field B with extension F such that |F| =
O(2κ) and |B| ≥ 2λ+log2(nx)+log2(ny). Let HB :
{0, 1}∗ → B,H◦ : {0, 1}∗ → {0, 1}out be random
oracles in the set of Hash functions from OKVS where
out = λ + log2(nxny). The construction is combined
with Merkle Tree, OKVS and VOLE as defined in
Definition 6, 12, 14. (Notice that the computational
security parameter κ is used in the parameter selection
for component of algorithm such that the randomness
of Hash functions, and st is used to record the state
information of procedure, for simplicity, these details
are omitted)
a) Transform (1λ, X, Y)→ (st, T):

1) The Receiver and Sender generate tree paths for
their input sets:{
ΠX = {πxi

}i∈[nx], πxi
← Merkle.GenPath(1λ, X, xi),

ΠY = {πyi
}i∈[ny], πyi

← Merkle.GenPath(1λ, Y, yi).

2) The Receiver computes:
P⃗ ← OKVS.Encode(L), L = {(x,HB(x)) | x ∈ X}.
T ← P⃗ .

3) The Receiver and Sender exchange the
(rootR,ΠY) and (rootS ,ΠX).

b) Interaction (1λ, st, T)→ R:
1) The Receiver and Sender process the verify pro-

cedure such that:{
CX ← Merkle.Verify(rootX ,ΠX),

CY ← Merkle.Verify(rootY ,ΠY).

If CX or CY contain ⊥, output R =⊥ and abort
the procedure.

2) The Receiver and Sender invoke:

(seed0, seed1)← VOLE.GenSeed(1λ,F).

with output length m = |P⃗ |, the Receiver receive
seed0 while Sender receive seed1.

3) The Receiver and Sender computes respectively:{
(A⃗, C⃗)← VOLE.Extend(seed0),

(B⃗,∆)← VOLE.Extend(seed1).

where A⃗, B⃗, C⃗ ∈ Fm and ∆ ∈ F and C⃗ = A⃗ ·
∆+ B⃗.

4) The Receiver sends A⃗′ = A⃗+ P⃗ ∈ Bm to sender
and Sender computes B⃗′ = B⃗ + A⃗′ ·∆ ∈ Fm.

5) The Sender outputs and sends:

R = {H◦(OKVS.Decode(B⃗′, y)−∆ ·HB(y)
)
| y ∈ Y }.

c) Reconstruct (st,R)→ I:
1) The Receiver computes:

R′ = {H◦(OKVS.Decode(C⃗, x)
)
| x ∈ X}.

2) Output I ← R
⋂
R′.

Theorem 1. Correctness of Construction1 : First, we
are going to analyze the correctness of this protocol. Be-
fore doing so, we need to examine the construction of
the OKVS proposed in [RR22]. Let us define row(ki) =
row′(ki)|| ˆrow(ki), where row′(ki) ∈ {0, 1}m

′
is a uniformly

random weight ω vector, and ˆrow(ki) ∈ Fm̂ for m̂ = m−m′.
where m′ ≈ 1.23nx, The OKVS.Encode(x,HB(x)) algorithm
of [RR22] works as follows: row(x1)

...
row(xnx

)

 P⃗⊤ =
(
HB(x1), . . . ,H

B(xnx)
)⊤

The [RR22] uses the Triangulate and Back-substitution
to obtain the P⃗ satisfies the above condition. The
OKVS.Decode(P⃗ , x) will return ⟨P⃗ , row(x)⟩.

This OKVS follows the linearity for x ∈ X according to the
property of inner product:

C⃗′ − B⃗′ = ∆ · P⃗
Decode(C⃗′, x)−Decode(B⃗′, x) = ∆ ·Decode(P⃗ , x) = ∆ ·HB(x)

Decode(C⃗′, x) = Decode(B⃗′, x) + ∆ ·HB(x)

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

For R = {H◦(OKVS.Decode(B⃗′, y)−∆ ·HB(y)
)
| y ∈ Y },

if x ∈ X
⋂

Y :

Decode(B⃗′, x)−∆ ·HB(x)

= ⟨B⃗′, row(x)⟩ −∆ ·HB(x)

= ⟨B⃗ + A⃗′ ·∆, row(x)⟩ −∆ ·HB(x)

= ⟨B⃗ + (A⃗+ P⃗) ·∆, row(x)⟩ −∆ ·HB(x)

= ⟨C⃗ + P⃗ ·∆, row(x)⟩ −∆ ·HB(x)

= ⟨C⃗, row(x)⟩+∆ · ⟨P⃗ , row(x)⟩ −∆ ·HB(x)

= ⟨C⃗, row(x)⟩+∆HB(x)−∆HB(x)

= Decode(C⃗, x).

Regarding the parameters out and B, the probability that an
element x /∈ Y still satisfies the given equation is 2−outny =
2−out+log2(ny). Consequently, the overall probability of a colli-
sion is nx2

−out+log2(ny) = 2−out+log2(nynx) = 2−λ. To achieve
the desired functionality against a semi-honest adversary, the
size of B must be chosen such that |B| ≥ 2λ+log2(nx)+log2(ny),
ensuring that the collision probability constraint nxny|B|−1 ≤
2−λ is satisfied.

Thus, the Receiver only need to compare the R and R′,
then can obtain the intersection X

⋂
Y , and the Correctness

of the protocol can be obtained according to the property of
building blocks (Merkle Tree, OKVS, VOLE) Definitions 7, 11,
15 directly.

Now, we turn to the proof of the protocol’s Integrity and
security. For the integrity of our protocol, we need to prove
the property in Definition 4.

Theorem 2. Integrity of Construction1 : We assume
there is an adversarial participant attempting to tamper with
input set to gain additional information, without lose of gen-
erality, we assume the original input set X = {x1, . . . , xnx}
has been modified to X∗ = {x1, . . . , x

∗
l , . . . , xnx} for xi ∈

{0, 1}∗ where x∗
l = xl ⊕ ∆x, and the according tree path

πx∗
l
← Merkle.GenPath(1λ, X∗, x∗

l) where πx∗
l
= πxl

⊕∆π .
We prove the integrity property by contradiction. The following
holds:

Pr

 (stA, T)← A(1λ, X∗)
I ≠⊥: R ← Interaction(1λ, stA, T)

I ← Reconstruct(stA,R)

 ≥ v

where v is non-negligible in the security parameter λ. We
can rewrite the above probability in details as:

Pr

I ≠⊥:

(st, T)← Transform(1λ, X∗)
R ← Interaction(1λ, st, T) :

{πi}i ̸=l ← Merkle.GenPath(1λ, X∗, {xi}i ̸=l)
πl ⊕∆π ← Merkle.GenPath(1λ, X∗, x∗

l)
Π∗ = {π1, . . . , π

∗
l , . . . , πnx

}

I ←

{
⊥ if ⊥← Merkle.Verify(root,Π∗)

Reconstruct(st,R) otherwise.

≥ v

According to the Definition 7, the output I ̸=⊥ only when
the output of Merkle.Verify(root,Π∗) is not ⊥ which indicates
1← Merkle.Verify(root, X∗, x∗

l). Considering x∗
l = xl⊕∆x

and πx∗
l
= πxl

⊕∆π :

• if ∆x ̸= 0, the adversary break the Soundness in
Definition 9, which means that the x∗

l ̸= xl passes the
verify procedure successfully.

• if ∆x = 0, but ∆π ̸= 0, the adversary break the
Uniqueness in Definition 8 which means the one x passes
two verify procedure under πxl

and π∗
xl

and πxl
̸= π∗

xl
.

Thus, the probability satisfies the probability ≥ v only when
∆x = 0 and ∆π = 0 which means the input set has not been
tempered, thus we proved that our construction satisfies the
integrity of authenticated PSI in Definition 4.

After the above content, we proceed to prove the security
in Definition 5 of our protocol, which is a crucial part of the
security proof.

Theorem 3. Security of Construction1 : For our
proctol, there is an efficient adversary A = (A0,A1),
we assume the adversary tempered the input set to
X∗ = {x1, . . . , x

∗
l , . . . , xnx

} for xi ∈ {0, 1}∗ where
x∗
l = xl ⊕ ∆x and its tree path πx∗

l
= πxl

⊕ ∆π , we can
prase the real distribution of information as follows:

REALA,X,λ =

V̂ :

(stA, T)← A0(1
λ, X∗)

R ← Interaction(1λ, stA, T) :
{πi}i ̸=l ← Merkle.GenPath(1λ, X∗, {xi}i̸=l)
πl ⊕∆π ← Merkle.GenPath(1λ, X∗, x∗

l)
Π∗ = {π1, . . . , π

∗
l , . . . , πnx

}

I ←

{
⊥ if ⊥← Merkle.Verify(root,Π∗)

Reconstruct(st,R) otherwise.
a← 1{I ≠⊥}
V̂ ← A1(stA, a)

We parse the ideal distribution with simulator S = (S0,S1)

as follows:

IDEALA,S,X,λ =

 V :

(stA, T)← A0(1
λ, X∗)

(stS , I)← S0(1λ, T)
a← S1(stS , I)
V ← A1(stA, a)

For any adversary A = (A0,A1), the simulator S = (S0,S1)

works as follows where the SPSI is the simulator mentioned
in standard PSI in Definition 3 which is used to sample the
interaction element from the information space:

Simulator S0(1
λ, T) Simulator S1(stS , I)

1 : I ← SPSI(1
λ, {0, 1}∗)

2 : (x∗
l , π

∗
l)← T

3 : stS ← (x∗
l , π

∗
l)

4 : return(stS , I)

1 : (x∗
l , π

∗
l)← stS

2 : ∆x ← x∗
l ⊕ xl

3 : ∆π ← π∗
l ⊕ πl

4 : a← 1{∆ = 0}
5 : return a

We proceed to demonstrate that the real and ideal distributions
are computationally indistinguishable, thereby establishing
that the scheme described in Construction 1 follows the
authenticated PSI security in Definition 5. We first construct
four hybrid distribution: H0,H1,H2,H3:

• H0 : The real distribution REALA,X,λ where x∗
l = xl⊕

∆x and its tree path πx∗
l
= πxl

⊕∆π .
• H1 : Same as the H0, we change the conditional

statemrnt of bit a, instead of I ≠⊥:

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

H1 =

V̂ :

(stA, T)← A0(1
λ, X∗)

R ← Interaction(1λ, stA, T) :
{πi}i̸=l ← Merkle.GenPath(1λ, X∗, {xi}i ̸=l)
πl ⊕∆π ← Merkle.GenPath(1λ, X∗, x∗

l)
Π∗ = {π1, . . . , π

∗
l , . . . , πnx

}

I ←

{
⊥ if ⊥← Merkle.Verify(root,Π∗)

Reconstruct(st,R) otherwise.
a← 1{∆x = 0 and ∆π = 0}
V̂ ← A1(stA, a)

• H2 : For this hybrid distribution, comparing to the

hybrid H1, we consider about use the simulator SPSI to
directly sample the intersection elements from the data
space to simulate the generation of the intersection:

H2 =

V̂ :

(stA, T)← A0(1
λ, X∗)

R ← Interaction(1λ, stA, T) :
{πi}i̸=l ← Merkle.GenPath(1λ, X∗, {xi}i ̸=l)
πl ⊕∆π ← Merkle.GenPath(1λ, X∗, x∗

l)
Π∗ = {π1, . . . , π

∗
l , . . . , πnx

}
I ← SPSI(1

λ, {0, 1}∗)
a← 1{∆x = 0 and ∆π = 0}
V̂ ← A1(stA, a)

• H3 : The ideal distribution IDEALA,S,X,λ.

We now tend to demonstrate that every pair of consecutive
hybrids is indistinguishable and use Ei for i ∈ {0, 1, 2, 3} to
denote the event of distribution:

• H0 → H1 : H1 is identical to H0 except for the ac-
ceptance of the bit a. When comparing the conditions
I ̸=⊥ and ∆x = 0,∆π = 0, based on Theorem 2 and
Definition 7, we know that:

Pr[I ≠⊥| ∆ ̸= 0] ≤ negl(λ).

When ∆ = 0, the probability of I ≠⊥ should approach
1, i.e.,

Pr[I ≠⊥| ∆ = 0] ≈ 1.

Thus, the overall probability Pr[I ≠⊥] can be expressed
as:

Pr[I ≠⊥] = Pr[I ≠⊥| ∆ = 0] · Pr[∆ = 0]

+ Pr[I ≠⊥| ∆ ̸= 0] · Pr[∆ ̸= 0].

Since Pr[I ̸=⊥| ∆ = 0] ≈ 1 and Pr[I ̸=⊥| ∆ ̸= 0] is
negligible, we have:

Pr[I ≠⊥] ≈ Pr[∆ = 0].

Additionally, the difference between two probabilities can
be bounded as:

|Pr[a← 1{∆x = 0 ∧∆π = 0}]
− Pr[a← 1{I ≠⊥}]| ≤ negl(λ).

This implies that:

|Pr[E1]− Pr[E0]| ≤ negl(λ).

• H1 → H2 : The only difference between hybrids H1 and
H2 is the generation of intersection information I, ac-
cording to the security of standard PSI in Definition 3,
we have:

|Pr[E2]− Pr[E1]| ≤ negl(λ).

• H2 → H3 : Actually, the hybrid H3 can be seen as a
reformulation of H2, achieved by simply omitting the
results of the interaction phase. In the original protocol,
R played a critical role in the third phase, Reconstruct,
to derive the final intersection I. However, with the
introduction of the simulator and the new method for
generating I, the focus of the second phase has shifted
primarily to verifying the Merkle tree paths of the input
data. Consequently, we have:

|Pr[E3]− Pr[E2]| = 0.

By a series of indistinguishable comparisons, we finally
obtain that:

REALA,X,λ = H0 ≈c H1 ≈c H2 = H3 = IDEALA,S,X,λ.

B. Multi-party PSI

Before the description of our construction on authenti-
cated multiparty PSI based on the t collusion scheme in
[NTY21], the unconditional zero sharing protocol proposed
in [KMP+17] will first be introduced as a tool in the scheme.
As the name suggests, the zero shareing can share n parts with
XOR sum equals 0.

Zero-Sharing
For n parties in the scheme denoted as P1, . . . , Pn hold
the input sets {Xi}i∈[n] where the parties have the
same size of input x. Let Fk(x) be a pseudo-random
function (PRF), where k is the secret key associated
with the function.

1) Each party Pi is required to generate and trans-
mit a random seed ki,j to every subsequent
participant Pj , where j ∈ [i + 1, n]. Conse-
quently, each party Pi obtains a key set Ki

consisting of n − 1 elements, specifically Ki =
{ k1,i, . . . , ki−1,i, ki,i+1, . . . , ki,n }.

2) Each party Pi computes share S(Ki, x) for every
x in their input set Xi as follows:

S(Ki, x) =

⊕
j<i

Fkj,i(x)

⊕
⊕

j>i

Fki,j (x)

Subsequently, if n participants jointly possess a data x,

the XOR of their shares S(Ki, x) associated with this data
equals zero which is

⊕n
i=1 S(Ki, x) = 0. Since as for the

shared data x, for different participants Pa and Pb, the pseudo-
random function output Fka,b

(x) appears exactly twice: once
in S(Ka, x) from Pa and once in S(Kb, x) from Pb, such
terms always pair up and XOR to 0. By continuing this
reasoning, the final result simplifies to

⊕n
i=1 S(Ki, x) = 0.

We provide a brief introduction to the Oblivious Pro-
grammable PRF (OPPRF), which serves as a crucial com-
ponent in the mPSI scheme [NTY21]. OPPRF is an enhanced
variant of the Oblivious Pseudorandom Function (OPRF) func-
tionality. While it retains the core properties of OPRF, OPPRF
introduces the capability for the sender S to initially supply

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

a predefined set of points P = {(x1, y1), . . . , (xm, ym)} that
are programmed into the pseudorandom function. The receiver
R obtains the secret output based on the input as follows:

OPPRFS(x) =

{
yi if x ∈ {x1, . . . , xm}
$ otherwise

This expression demonstrates that the receiver will obtain
the corresponding pre-programmed value yi if the input x is
included in P . Otherwise, a random value $ will be generated.
By enabling the sender to define specific input-output pairs,
OPPRF enhances the flexibility and functionality of traditional
OPRF in privacy-preserving computations.

Construction 2: Authenticated mPSI
Our multi parties PSI scheme follows the same no-
tation as Construction 1 from Definition 1. Given
the statistical security parameter λ and computational
security parameter κ. For parties P1, . . . , Pn with in-
put sets X1, . . . , Xn, the construction is parametrized
by a size of input sets nl ∈ N where Xi =
{xi

1, . . . , x
i
nl
}, i ∈ [n] for each party P i. The root of

their sets where rooti ← Merkle.Root(1, Xi). The
construction is combined with Merkle Tree, OKVS as
defined in Definition 6, 12 where specially the OKVS
construction is Paxos from [PRTY20]. The proposed
scheme is an n-party PSI protocol that can tolerate up
to t collusion.
a) Transform (1λ, X, Y)→ (st, T):

1) All the parties P1, . . . , Pn generate tree paths for
their input sets:

ΠXi = {πxi
j
}j∈[nl], πxi

j
← Merkle.GenPath(1λ, Xi, xi

j)

2) Let v = n − t and divide all n participants into
two groups and a central coordinator: group A
consists of {P1, . . . , Pv−1}, group B consisting
of {Pv+1, . . . , Pn}, and the central coordinator
Pv .

3) Party Pi in group A generates and sends the keys
{kji } for the party Pj in group B.

4) Party Pi in group A sends the Ti to center Pv

where:
Ti ← OKVS.Encode(L), L =

{
(xi

q,
⊕n

j=v+1 Fkj
i
(xi

q)) | xi
q ∈ Xi

}
.

T = {T1, . . . Tv−1}.

5) Party Pi in group A sends the Ti to the cen-
tral coordinator Pv and all parties exchange the
(rootX ,ΠX).

b) Interaction (1λ, st, T)→ R:
1) All Parties Pi processes the verify procedure as:

Cji ← Merkle.Verify(rootjX ,Πj
X).

Among all the output of verify procedure, if there
is an ⊥, output R =⊥ and abort the procedure.

2) The central coordinator computes the key value

set based on the Ti from the parties in group A:

Av =

{
(xv

q ,

v−1⊕
i=1

OKVS.Decode(Ti, x
v
q))

}
q∈[nl]

3) Parties in group B generate their key value set
through the keys they received which was gener-
ated by the parties in Group A:

Ai =

(xi
q,

v−1⊕
j=1

Fki
j
(xi

q))

q∈[nl]

R = {Av, Av+1, . . . , An}.
c) Reconstruct (st,R)→ I:

1) Party Pi in Pv, . . . , Pn invokes Zero-Sharing pro-
tocol on xi

j and obtains its share S(Ki, x
i
j) for

every j ∈ [nl].
2) Party Pi∈[v,n−1] and Pn jointly invoke OPPRF

according to their key value set Ai as follows:
• Pv and Pv+1, . . . , Pn−1 act as the sender, pro-

gramming:

Pv =

{
(xv

q , S(Kv, x
v
q)⊕

v−1⊕
i=1

OKVS.Decode(Ti, x
v
q))

}
q∈[nl]

Pi =

{
(xi

q, S(Ki, x
i
q)⊕

v−1⊕
j=1

Fki
j
(xi

q))

}
q∈[nl]

• Pn acts as the receiver with queries {xn
q }q∈[nl]b

and obtains {(xn
q , z

i
q)}q∈[nl],i∈[v,n−1] where ziq

is equal to the corresponding value if xn
q is in-

cluded in in Pv, . . . ,Pn−1 and a pseudorandom
value otherwise.

3) Party Pn obtains the intersection

I =

xn
q | S(Kn, x

n
q)⊕

v−1⊕
j=1

Fkn
j
(xn

q) =

n−1⊕
i=v

ziq

Theorem 4. Correctness of Construction2 :We now
tend to present the correctness of Construction 2, if a value
x is included in the intersection of all parties such that
x ∈

⋂
i∈[n] X

i :

S(Kn, x)⊕
v−1⊕
j=1

Fkn
j
(x)⊕

n−1⊕
i=v

ziq

= S(Kn, x)⊕
v−1⊕
j=1

Fkn
j
(x)⊕

(
S(Kv, x)⊕

v−1⊕
i=1

OKVS.Decode(Ti, x)
)

⊕
(n−1⊕

i=v+1

S(ki, x)⊕
v−1⊕
j=1

Fki
j
(x)

)
= S(Kn, x)⊕ S(Kv, x)⊕

n−1⊕
i=v+1

S(ki, x)⊕
v−1⊕
j=1

Fkn
j
(x)

⊕
v−1⊕
i=1

n⊕
j=v+1

F
k
j
i
(x)⊕

n−1⊕
i=v+1

v−1⊕
j=1

Fki
j
(x)

=
(n⊕

i=v

S(ki, x)
)
⊕

(v−1⊕
i=1

n⊕
j=v+1

F
k
j
i
(x)

)
⊕

(n⊕
i=v+1

v−1⊕
j=1

Fki
j
(x)

)

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

TABLE I: Performance of Merkle Tree-volePSI

Protocol Times(ms) Communication(bits/n)
210 212 214 216 210 212 214 216

Merklecpp+volePSI(useQC) 49.67 123.57 509.39 2050.78
Merklecpp+volePSI(useSliver) 39.73 124.49 479.52 1962.60 462n 437n 455n 467n
Merklecpp+volePSI(useSliver,MT) 36.83 94.31 460.33 1897.89
Merklecpp+volePSI(malicious) 49.84 134.35 512.95 2160.41 1257n 1187n 1213n 1263n

TABLE II: Performance of Merkle Tree-mPSI

Protocol n 3 4 5 8

nl

t
1 1 2 1 3 1 4

28 117.13 118.21 183.77 116.45 202.76 134.21 205.76
Merklecpp+mPSI 210 165.13 186.54 241.25 188.76 261.90 183.03 274.56

212 791.61 795.47 910.91 817.34 907.18 818.51 935.47

We observe that the parties Pv, . . . , Pn invoke
the Zero-Sharing protocol. Consequently, we have⊕n

i=v S(ki, x) = 0 according to the Zero-Sharing process
mentioned above. For the remaining part of the equation(⊕v−1

i=1

⊕n
j=v+1 Fkj

i
(x)

)
⊕

(⊕n
i=v+1

⊕v−1
j=1 Fki

j
(x)

)
, in

the left part, the keys used by OPPRF are come from
P1, . . . , Pv−1, which are generated for Pv+1, . . . , Pn.
Similarly, in the right part, the same keys are used; however,
the users switch from members of Group A to members of
Group B. This is equivalent to each key being used twice
with the same x, resulting in the final XOR sum being zero.
Therefore, the above content indicates that the output I
that satisfies the conditions is the intersection set of all
participants.

As for the integrity and security of the construction, they
heavily rely on proofs of the relevant properties of Merkle
trees. The specific process is consistent with the proof of
Construction 1 in Theorem 2,3.

V. IMPLEMENTATION AND PERFORMANCE

Our construction aims to enhance the security of traditional
PSI schemes, particularly emphasizing the integrity property
required by authenticated PSI. As an extension of traditional
PSI functionality, authenticated PSI introduces additional se-
curity guarantees. To achieve authenticated PSI, auxiliary tools
such as Merkle trees or other potential solutions (e.g., digital
signatures and secret sharing) are required. The introduction of
these new tools and schemes impacts the overall performance
of PSI. Furthermore, the efficiency of the entire scheme is
highly dependent on the performance of the underlying PSI
scheme, which is why Construction 1 and Construction 2
in this paper integrate one of the current best two-party
PSI schemes and one of the best multi-party PSI schemes,
respectively. Even in the absence of comparable PSI schemes
within the same category, the implementation of our scheme
partially demonstrates its feasibility, and related issues can be
further optimized in future work.

Our scheme is entirely implemented in C++ and used
3x NVIDIA A40 48GB GPU and 256GB of RAM. In

both constructions, the Merkle Tree component relies on
Microsoft’s merklecpp project. Additionally, the underlying
two-party PSI scheme is based on [RR22] and its imple-
mentation github.com/Visa-Research/volepsi, which optimizes
the VOLE and OKVS components from [RS21] and incor-
porates the subfield-VOLE optimizations from [CRR21]. For
the OKVS component, it replace the original PaXos method
from [PRTY20] with improvements from [GPR+21] and their
implementation github.com/cryptobiu/OBDBasedPSI, modify-
ing the row weight from ω = 2 in [PRTY20] to ω =
3 and performing targeted optimizations. Furthermore, the
scheme utilizes Oblivious Transfers from libOTe. The multi-
party PSI scheme relies on [NTY21] and its implemen-
tation github.com/asu-crypto/mPSI. The OPRF and table-
based OPPRF constructions are derived from [KKRT16] and
[KMP+17], respectively, while the OKVS construction is
based on [PRTY20]. The usage of pseudorandom functions
(PRF) depends on the AES-NI instruction set. Additionally,
this scheme also employs OT from libOTe. Both constructions
adopt a statistical security parameter λ = 40 and a computa-
tional security parameter κ = 128.

In Table I, useQC represents the utilization of the Qua-
siCyclic VOLE encoder as described in [BCG+19], while
useSilver highlights the adoption of the Silver VOLE encoder
from [CRR21]. The use of these VOLE encoders significantly
improves the speed of the PSI component. Aligning with the
description in [RR22], ”MT” indicates that each party uses
4 threads to execute the process. In Table II, the configura-
tions (n, t) ∈ {(3, 1), (4, {1, 2}), (5, {1, 3}), (8, {1, 4})} are
compared to evaluate the efficiency under different levels of
collusion. Additionally, due to the construction employed in
the scheme of [NTY21], which is based on [CDG+21], the
number of collusions is restricted to t ≤ n

2 .
For our proposed scheme, the most time-consuming compo-

nent lies in the Merkle tree operations. Specifically, the time
required for generating the tree root and performing insertions
is minimal, typically within the range of 10 milliseconds.
The major computational overhead stems from the verification
of Merkle tree paths. This is currently a key bottleneck of
authenticated PSI, as achieving data integrity comes at a
significant cost. With increasing data set sizes, the depth of
the Merkle tree grows correspondingly, leading to a substantial

https://github.com/microsoft/merklecpp
https://github.com/Visa-Research/volepsi
https://github.com/cryptobiu/OBDBasedPSI
https://github.com/osu-crypto/libOTe
https://github.com/asu-crypto/mPSI
https://github.com/osu-crypto/libOTe

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

increase in communication overhead and the time required by
participants to verify integrity. However, when dealing with
smaller datasets (e.g., less than 210 elements), the impact
of Merkle tree operations becomes negligible. This aligns
with the intended application scenarios of authenticated PSI,
which primarily focus on managing smaller-scale datasets
while ensuring data integrity.

VI. CONCLUSION

In this work, we introduce a novel definition of integrity
for PSI and further propose authenticated PSI as a means of
addressing data integrity attacks. By integrating Merkle Trees
[Mer89] with state-of-the-art two-party PSI protocols [RS21],
[RR22] and multi-party PSI protocols [NTY21], we construct
both two-party and multi-party authenticated PSI schemes and
demonstrate their implementation and performance. Authenti-
cated PSI augments the strong privacy guarantees of traditional
PSI with robust data authentication.

Moreover, we suggest several avenues for further enhance-
ments. In practice, authenticated PSI and conventional PSI
serve different scenarios; the additional verification required
for input datasets makes authenticated PSI less efficient than
the fastest existing PSI protocols. In addition, the specific
type of authenticated PSI closely depends on the underly-
ing PSI scheme (whether honest-majority or malicious, two-
party or multi-party, balanced or unbalanced). Consequently,
advancements in base PSI constructions will naturally drive
improvements in authenticated PSI. With regard to the veri-
fication block, the sequential leaf-computation algorithm and
authentication-path generation for Merkle trees have essen-
tially reached optimal complexity [Szy04]. Nonetheless, alter-
native methods such as digital signatures [LZG+24] or func-
tion secret sharing could also be employed to realize integrity
verification, is it feasible to design multi-party authenticated
PSI protocols that matches the best standard schemes? As
these building blocks continue to mature, authenticated PSI
will play a pivotal role in supply-chain management, cross-
organizational collaboration, as well as in medical data sharing
and collaborative diagnostics.

VII. ACKNOWLEDGEMENTS

This work was supported by Information Security School-
Enterprise Joint Laboratory (Dongguan Institute for Advanced
Study, Greater Bay Area) and Project (No. H24120002,
H24120003) and High-level Talent Research Start-up Project
Funding of Henan Academy of Sciences (Project NO.
232019007), and in part by Joint Fund of Henan Province
Science and Technology R&D Program (Project NO.
225200810036).

REFERENCES

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, Peter Rindal, and Peter Scholl, Efficient Two-Round OT Extension
and Silent Non-Interactive Secure Computation, in: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019, DOI: 10.1145/3319535.3354255

[BCGI19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai,
Compressing Vector OLE, in: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2018,
DOI: 10.1145/3243734.3243868

[Ben14] Juan Benet, IPFS – Content Addressed, Versioned, P2P File System,
arXiv, 2014, vol. abs/1407.3561.

[But13] Vitalik Buterin, Ethereum White Paper: A Next Generation Smart
Contract & Decentralized Application Platform, 2013, https://github.
com/ethereum/wiki/wiki/White-Paper

[CDG+21] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi
Bhavana Obbattu, Sruthi Sekar, and Akash Shah, Efficient Linear Mul-
tiparty PSI and Extensions to Circuit/Quorum PSI, in: Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2021.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal, Fast Private Set Inter-
section from Homomorphic Encryption, in: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2017.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman, Sil-
ver: Silent VOLE and Oblivious Transfer from Hardness of Decoding
Structured LDPC Codes, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part III, Springer-Verlag, Berlin, Heidelberg, 2021,
pp. 502–534. https://doi.org/10.1007/978-3-030-84252-9 17, DOI: 10.
1007/978-3-030-84252-9 17

[CN23] Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David J.
Wu, and Bryan Ford, Authenticated private information retrieval, in:
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
3835–3851.

[DT09] Emiliano De Cristofaro and Gene Tsudik, Practical Private Set
Intersection Protocols with Linear Computational and Bandwidth Com-
plexity, Cryptology ePrint Archive, Paper 2009/491, 2009.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas, Efficient
Private Matching and Set Intersection, in: Advances in Cryptol-
ogy – EUROCRYPT 2004, Springer, 2004, pp. 1–19, https://iacr.org/
archive/eurocrypt2004/30270001/pm-eurocrypt04-lncs.pdf, DOI: 10.
1007/978-3-540-24676-3 1

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and
Avishay Yanai, Oblivious key-value stores and amplification for private
set intersection, in: Advances in Cryptology – CRYPTO 2021, Springer,
2021, pp. 395–425.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shob-
hit Saxena, Karn Seth, David Shanahan, and Moti Yung, Private
Intersection-Sum Protocol with Applications to Attributing Aggregate
Ad Conversions, Cryptology ePrint Archive, Paper 2017/738, 2017,
https://eprint.iacr.org/2017/738

[KK17] Myungsun Kim and Benjamin Z. Kim, An experimental study of
encrypted polynomial arithmetics for private set operations, Journal
of Communications and Networks, vol. 19, 2017, pp. 431–441, http:
//dx.doi.org/10.1109/JCN.2017.000075

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni
Trieu, Efficient Batched Oblivious PRF with Applications to Private Set
Intersection, in: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016, DOI: 10.1145/
2976749.2978381

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Ro-
sulek, and Ni Trieu, Practical Multi-party Private Set Intersection from
Symmetric-Key Techniques, in: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017.

[KO97] E. Kushilevitz and R. Ostrovsky, Replication is not needed: single
database, computationally-private information retrieval, Proceedings
of the 38th Annual Symposium on Foundations of Computer Science
(FOCS), Miami Beach, FL, USA, 1997, pp. 364–373. https://doi.org/
10.1109/SFCS.1997.646125

[LZG+24] F. Liu, Z. Zheng, Z. Gong, et al., A Survey on Lattice-Based
Digital Signature, Cybersecurity, vol. 7, no. 7, 2024, https://doi.org/10.
1186/s42400-023-00198-1

[Mea86] Catherine Meadows, A more efficient cryptographic matchmaking
protocol for use in the absence of a continuously available third party,
1986 IEEE Symposium on Security and Privacy, IEEE, 1986.

[Mer87] Ralph C. Merkle, A Digital Signature Based on a Conventional
Encryption Function, Advances in Cryptology - CRYPTO ’87, Lecture
Notes in Computer Science, vol. 293, Springer, 1987, pp. 369–378.
https://doi.org/10.1007/3-540-48184-2 32

[Mer89] Ralph C. Merkle, A Certified Digital Signature, Annual Interna-
tional Cryptology Conference, 1989. https://api.semanticscholar.org/
CorpusID:37520306

10.1145/3319535.3354255
10.1145/3243734.3243868
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-030-84252-9_17
10.1007/978-3-030-84252-9_17
10.1007/978-3-030-84252-9_17
https://iacr.org/archive/eurocrypt2004/30270001/pm-eurocrypt04-lncs.pdf
https://iacr.org/archive/eurocrypt2004/30270001/pm-eurocrypt04-lncs.pdf
10.1007/978-3-540-24676-3_1
10.1007/978-3-540-24676-3_1
https://eprint.iacr.org/2017/738
http://dx.doi.org/10.1109/JCN.2017.000075
http://dx.doi.org/10.1109/JCN.2017.000075
10.1145/2976749.2978381
10.1145/2976749.2978381
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1186/s42400-023-00198-1
https://doi.org/10.1186/s42400-023-00198-1
https://doi.org/10.1007/3-540-48184-2_32
https://api.semanticscholar.org/CorpusID:37520306
https://api.semanticscholar.org/CorpusID:37520306

MANUSCRIPT FOR IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

[MAL23] Daniel Morales, Isaac Agudo, and Javier Lopez, Private set in-
tersection: A systematic literature review, Comput. Sci. Rev., vol. 49,
August 2023, https://doi.org/10.1016/j.cosrev.2023.100567

[NTY21] Ofri Nevo, Ni Trieu, and Avishay Yanai, Simple, Fast Malicious
Multiparty Private Set Intersection, in: Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2021, DOI: 10.1145/3460120.3484772

[Nak08] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,
2008, https://bitcoin.org/bitcoin.pdf

[NP06] Moni Naor and Benny Pinkas, Oblivious Polynomial Evaluation,
SIAM Journal on Computing, vol. 35, no. 5, 2006, pp. 1254–1281.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner, Faster
Private Set Intersection based on OT Extension, Cryptology ePrint
Archive, Paper 2014/447, 2014. https://eprint.iacr.org/2014/447

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner, Faster pri-
vate set intersection based on OT extension, ACM Transactions on Pri-
vacy and Security, vol. 21, 2018, pp. 797–812, DOI: 10.1145/3154794

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder, Efficient circuit-based PSI via cuckoo hashing, in: Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer, Cham, 2018.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai, PSI
from PaXoS: Fast, Malicious Private Set Intersection, in: Advances in
Cryptology – EUROCRYPT 2020, vol. 12106, 2020, pp. 739–767.

[RR22] Peter Rindal and Srinivasan Raghuraman, Blazing Fast PSI from
Improved OKVS and Subfield VOLE, in: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022.

[RS21] Peter Rindal and Phillipp Schoppmann, VOLE-PSI: Fast OPRF and
Circuit-PSI from Vector-OLE, in: Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT 2021), Springer, 2021, pp. 901–930.

[SCW+18] Liyan Shen, Xiaojun Chen, Dakui Wang, Binxing Fang, and Ye
Dong, Efficient and Private Set Intersection of Human Genomes, in:
Proceedings of the 2018 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), IEEE, 2018, pp. 761–764, DOI:
10.1109/BIBM.2018.8621291

[Szy04] Michael Szydlo, Merkle Tree Traversal in Log Space and Time, in:
Advances in Cryptology – EUROCRYPT 2004, International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2–6, 2004, Proceedings, Lecture Notes
in Computer Science, vol. 3027, Springer, 2004, pp. 541–554, https:
//iacr.org/archive/eurocrypt2004/30270536/szydlo-loglog.pdf, DOI: 10.
1007/978-3-540-24676-3 32

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mar-
iana Raykova, Distributed Vector-OLE: Improved Constructions and
Implementation, in: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019, pp. 1055–
1072, DOI: 10.1145/3319535.3363228

[SV14] Nigel P. Smart and Frederik Vercauteren, Fully Homomorphic SIMD
Operations, Designs, Codes and Cryptography, vol. 71, 2014, pp. 57–
81.

[TLS1.3] Eric Rescorla, The Transport Layer Security (TLS) Protocol Version
1.3, Cryptology ePrint Archive, Paper 2018/8446, 2018. https://www.
rfc-editor.org/info/rfc8446

[WKYW20] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao
Wang, Wolverine: Fast, Scalable, and Communication-Efficient Zero-
Knowledge Proofs for Boolean and Arithmetic Circuits, in: Proceedings
of the 2021 IEEE Symposium on Security and Privacy (SP), IEEE,
2021, pp. 1074–1091.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang, Ferret: Fast Extension for Correlated OT with Small Commu-
nication, in: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020, pp. 1607–1626,
DOI: 10.1145/3372297.3417276

[Zheng23] Zheng Z Y, Liu F X, Tian K. Mathematical Theory of Post-
Quantum Cryptography[M], Higher Education Press of China, 2023

[ZLT23] Zheng Z Y, Liu F X, Tian K. (2023) An Unbounded Fully Ho-
momorphic Encryption Scheme Based on Ideal Lattices and Chinese
Remainder Theorem. Journal of Information Security, 14, 366-395. doi:
10.4236/jis.2023.144021

https://doi.org/10.1016/j.cosrev.2023.100567
10.1145/3460120.3484772
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2014/447
10.1145/3154794
10.1109/BIBM.2018.8621291
https://iacr.org/archive/eurocrypt2004/30270536/szydlo-loglog.pdf
https://iacr.org/archive/eurocrypt2004/30270536/szydlo-loglog.pdf
10.1007/978-3-540-24676-3_32
10.1007/978-3-540-24676-3_32
10.1145/3319535.3363228
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
10.1145/3372297.3417276

	Introduction
	Contribution
	Notation
	Outline

	Motivation and Merkle Tree
	Data Integrity
	Data Integrity Attacks on PSI
	PSI with Merkle Tree

	Definition of Building blocks
	Private Set Intersection (PSI)
	Authenticated PSI
	Merkle Tree
	Oblivious Key-Value Store (OKVS)
	Vector Oblivious Linear Evaluation (VOLE)

	Merkle Tree Enhanced PSI for Data Integrity
	Two-party PSI
	Multi-party PSI

	Implementation and Performance
	Conclusion
	Acknowledgements
	References

