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Abstract—In blockchain networks, so-called “full nodes” serve
data to and relay transactions from clients through an RPC
interface. This serving layer enables integration of “Web3” data,
stored on blockchains, with “Web2” mobile or web applications
that cannot directly participate as peers in a blockchain network.
In practice, the serving layer is dominated by a small number of
centralized services (“node providers”) that offer permissioned
access to RPC endpoints. Clients register with these providers
because they offer reliable and convenient access to blockchain
data: operating a full node themselves requires significant compu-
tational and storage resources, and public (permissionless) RPC
nodes lack financial incentives to serve large numbers of clients
with consistent performance.

Permissioned access to an otherwise permissionless blockchain
network raises concerns regarding the privacy, integrity, and
availability of data access. To address this, we propose a
Permissionless Accountable RPC Protocol (PARP). It enables
clients and full nodes to interact pseudonymously while keeping
both parties accountable. PARP leverages “light client” schemes
for essential data integrity checks, combined with fraud proofs,
to keep full nodes honest and accountable. It integrates payment
channels to facilitate micro-payments, holding clients accountable
for the resources they consume and providing an economic
incentive for full nodes to serve. Our prototype implementation
for Ethereum demonstrates the feasibility of PARP, and we
quantify its overhead compared to the base RPC protocol.

Index Terms—Blockchain Networks, Node-as-a-Service, Light
Client, Payment Channel, RPC Protocol, Verifiable Data Access

I. INTRODUCTION

Blockchain networks support decentralized applications or
“dApps” by storing data on a peer-to-peer (P2P) network,
as opposed to traditional “Web2” applications supported by
centralized server-centric data storage. This shift introduces
complexities for application clients because participating di-
rectly in a blockchain network’s P2P protocol is challenging.
Not only does it require the client to act as a server, but it
also requires the client to potentially maintain a full copy
of the network state. However, the computational and storage
demands of running a so-called “full node” are considerable
(e.g., Ethereum nodes require 2TB of SSD storage and 25
MBit/s bandwidth [1]). Clearly, it is not practical for all end-
users to set up such infrastructure.

Additionally, due to the resource-intensiveness of operating
a full node, combined with the lack of any economic incen-
tives, the owners of those full nodes are hesitant to provide
end-users with free and unrestricted access to blockchain data

through their nodes’ RPC interfaces, especially as the demand
and number of application clients grows larger.

Consequently, many resource-limited clients rent access to
full nodes through node-as-a-service (NaaS) [2] providers
or simply “node providers”. Popular node providers include
Infura [3] and Alchemy [4], which operate full nodes on
several blockchain networks and offer hosted RPC services.
The NaaS trend emerged as a convenient solution for users
to interact with Web3 protocols. Figure 1 illustrates a typical
scenario where a dApp connects to a node provider, which
relays user transactions to the blockchain network and retrieves
data from the blockchain for presentation to the user.

Fig. 1: A schematic of the typical serving layer underlying
decentralized applications (dApps) using Web3 protocols.

The connection between applications and nodes run by node
providers involves an API key, which authenticates who the
user of this key is. By tracking and controlling how the API
is used, node providers can charge the user based on their
pricing plans. In the majority of cases, applying for an API
key requires users to undergo a registration process, which
may include sharing sensitive information such as personal
identification or financial information.

The reliance on a trusted intermediary to interact with
a trustless, decentralized network runs counter to the core
principles of why Web3 protocols were invented in the first
place [5]. In particular, users often trade privacy, integrity,
and availability for convenience, much like they did in
“Web2”. Specifically:

• Privacy. When registering at a NaaS provider, users
have to authorize the collection of personally identifiable
information (PII), sometimes including their full name
and credit card details, making it easy to profile users.
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• Integrity. Node providers can manipulate or misrepresent
blockchain data without penalties [5], leaving users with-
out hard guarantees that the retrieved data is in accord
with the latest data stored on the blockchain.

• Availability. Node providers face regulatory implications
from laws in their operating countries, potentially leading
to censorship of sanctioned applications and users in
specific regions [6].

The blockchain RPC serving layer lacks accountability
and economic incentives to provide applications and end-
users with reliable access to on-chain data. In Ethereum, for
example, full nodes receive financial rewards for validating
transactions using “Proof-of-Stake” consensus and by charging
fees on validated transactions, but not for serving RPC requests
or relaying transactions. Misbehavior as a validator (e.g., by
attesting to an incorrect block in Ethereum) is discouraged
through slashing conditions, but no such mechanism exists
for misbehavior in the serving layer. Yet, both validation and
serving play a crucial role in a healthy network.

In short, Web3 protocols heavily rely on economic in-
centives to keep nodes honest and participatory, while such
incentives are missing for the serving layer. We aim to address
this gap by introducing mechanisms in the serving layer that
enable (proportional) financial rewards for nodes that serve
and, at the same time, ensure detection and punishment of
misbehavior towards clients.

To introduce these mechanisms, we designed PARP, a
Permissionless Accountable RPC Protocol that wraps a block-
chain network’s base layer RPC protocol with additional layers
of authentication and accounting. PARP aims to enhance the
end users’ access to reliable blockchain data while at the same
time compensating full nodes fairly for the service provided.
PARP leverages known light client schemes to improve data
integrity for the clients. In addition, it introduces payment
channels between clients and full nodes to allow full nodes
to accept micro-payments from clients while safeguarding the
pseudonymity of both parties. To act as a PARP server and
accept such micro-payments, a full node must lock up funds
that can be slashed on misbehavior, thus deterring malicious
actors in the serving layer.

Our main contributions are the following:

• We propose a new serving layer model that complements
the current endpoint infrastructure provided by permis-
sioned services (NaaS providers). It features account-
ability mechanisms and incentives that mutually benefit
clients and full nodes.

• We propose a design that safeguards the end users data
security and does not require trust in a centralized third
party.

• We implement PARP for the Ethereum RPC layer and
integrate it into a widely used Ethereum execution node
implementation (Geth), providing evidence for the feasi-
bility of the protocol and its compatibility with current
blockchain networks.

II. WEB3 SERVING LAYER ISSUES

In this section, we discuss key considerations in the Web3
serving layer, including insufficient economic incentives for
full nodes, dominance of major node providers and how their
permissioned registration processes enable extensive profiling,
and the trade-offs between accountability and permissionless-
ness in accessing blockchain networks.

A. Lack of Economic Incentives for Full Nodes

As light clients emerge to address heavy resource require-
ments for devices like smartphones, they face the challenge
of bootstrapping and synchronizing themselves securely and
efficiently [10]. However, serving requests from many light
clients places a substantial burden on these full nodes regard-
ing network resources and communication. Therefore, with an
increasing number of light clients benefiting from enhanced
privacy and security joining the network, the establishment of
effective incentives to compensate full nodes for supporting
light clients becomes crucial.

B. Centralization among Node Providers

To evaluate the role of node providers, we analyzed a dataset
[11] from Torres et al. [12], which contains detailed records
of web traffic from 1572 dApps. From this, we specifically
focused on 383 dApps that send JSON-RPC calls directly from
their frontend to node providers for blockchain data access. We
then mapped these JSON-RPC calls to identify which node
providers each dApp interacts with, noting that a single dApp
can connect to multiple providers. This allows us to determine
the extent of traffic received by each provider. The results
indicate that 47.52% of the dApps in our dataset connect
to Infura [3], making it the most widely used provider by a
significant margin. Alchemy [4] is the second-most common,
used by 31.07% of dApps, followed by Binance (12.01%),
Ankr (9.4%), Cloudflare (6.79%) and other providers.

C. Permissioned Nature of Node Providers

We picked five top node providers from our dataset, exclud-
ing network-specific ones. We examined their traits on their
websites during the API key application process, as shown in
Table I.

First, we inspected the registration requirements of each
provider to see if their services could be used without regis-
tration. Ankr stands out as the only provider that has a list of
free endpoints.

For wallet-based identity, only Ankr supports this, granting
users flexibility in service access. Conversely, the remaining
providers ask for at least an email address for registration.

We also assessed free monthly requests and the pricing
models of each provider. All providers offer some free daily
service to users, while 3 out of 5 charge based on varied call
types for a fairer fee calculation.

Finally, we reviewed the accepted payment methods, find-
ing that 2 out of 5 providers accept crypto.

In conclusion, end users still need to register for an account
to access a reliable blockchain connection, much like in Web2

2



TABLE I: Comparison of Features and Registration Requirements of Node Providers‡

Node Provider Free Public Service Login Sign-up Pricing Plan Freemium Node Service Payment Traffic Share

N
o

Signup

Via
w

allets

Em
ail

Full nam
e

O
rg

nam
e

Call-Based
Plan

tiers

Free
usage †

Credit card
Crypto

Infura [3] - -   - - 5 3 million credits (daily)  - 182/383 (47.52%)
Alchemy [4] - -   -  4 300 million compute units (monthly)  - 119/383 (31.07%)

Ankr [7]   * G# - - - 4 30 requests (per sec)   36/383 (9.4%)
Quicknode [8] - -     5 10 million API credits (monthly)  - 16/383 (4.18%)
Chainstack [9] - -     4 3 million request units (monthly)   5/383 (1.31%)

 = indicates that the property is provided; in the Sign-up column, it means the property is required.;
G# = indicates that property is not necessarily required; - = does not provide property.

* Wallets must have active transactions in the past to be supported by the node provider. ‡ All the data was collected before December 2024.
† These metrics (compute units, requests, credits, etc.) represent the amount of computational work and resource usage as defined by different node providers.

services. In combination with all the Web3 requests sent to
these node providers, it becomes fairly easy for them to
construct user profiles.

D. Tradeoffs Between Accountability and Permissionlessness

Today clients can access some public RPC endpoints, either
from node providers or anonymous full nodes [13], [14], but
each option comes with its own tradeoffs. For node providers,
access is permissioned due to registration requirements, but
users can put some trust in the data as node providers
have a reputation and commercial interests to uphold. By
contrast, public anonymous RPC endpoints are permissionless,
but there is no accountability for these anonymous nodes
to serve information reliably and correctly. Hence, achieving
both permissionlessness and accountability in the serving layer
remains an open issue.

III. BACKGROUND

In this section, we discuss the state of practice in bridging
Web2 and Web3 protocols. We also provide the necessary
background on light client schemes and payment channels.

A. Endpoint Infrastructure

To interact with the blockchain network, clients connect to a
full node via universally supported APIs like JSON-RPC. An
RPC endpoint is the network location where an application
sends its API requests to a full node for execution. The
endpoint typically provides access to various functionalities
of the blockchain network, including broadcasting transactions
and retrieving blocks and block headers.

Most dApp developers obtain an API key with a node
provider for the network they wish to use (as discussed in
the Introduction I). DApp end-users often can’t configure the
underlying API keys that their dApps are using. Although
many wallets do allow end-users to configure their own RPC
URL, most opt to use the default settings, commonly referring
to a node provider url. For example, MetaMask, a widely-
used Web3 wallet for Ethereum uses Infura [15] as its default
endpoint provider to query the Ethereum blockchain and
obtain the balance for the end-user’s addresses.

B. Light Client Solutions

Light client schemes, such as simple payment verification
(SPV) [16], offer a compromise between the resource-intensive
demands of operating a full node and the security risks of
relying on third-party servers.

Efficiency. Light clients download only block headers, sig-
nificantly reducing data requirements (e.g., an 80-byte header
vs. a 1MB full block). Schemes, such as FlyClient [17] and
Coda [18], achieve fast block header synchronization even up
to a constant size to the length of the chain.

Data integrity. By leveraging Merkle trees, light clients can
verify transactions or information against the transaction root
or state root of the tree contained in the block header.

Reliance on full nodes. Due to storage limitations of light
clients, they still rely on their peer full nodes to obtain essential
information to keep up-to-date with the tip of the chain.

C. Payment channels

Payment channels were proposed to enable micropayments
between two parties without recording each individual pay-
ment as a transaction on the blockchain [19], thus increasing
throughput and reducing costs (fees).

A payment channel operates under predefined rules set by a
smart contract [20]. It is opened with one on-chain transaction
in which both parties deposit funds, indicating the total amount
available for “off-chain” transactions. The parties then manage
a local off-chain ledger to track their balances. Upon closing
the channel, if both agree on the final balance, funds are settled
accordingly on the blockchain. In case of disputes, the smart
contract acts as a mediator, verifying the provided evidence
and disbursing funds based on the validated final state.

IV. PARP PROTOCOL OVERVIEW

We describe the design goals of PARP, introduce termi-
nology and assumptions specific to our protocol, and then
describe the full lifecycle of a PARP connection.

A. Overview and Design Goals

PARP is an RPC protocol designed to allow a light client
to interact with a blockchain through a full node in such a
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way that the interaction is both permissionless, accountable
and economically sustainable for both parties.

To participate as a full node in PARP, the node’s operator
must first deposit tokens as collateral to incentivize honest be-
haviour. While alternative approaches to accountability exist,
PARP adopts a collateral-based mechanism to provide clear
and quantifiable assurances for both parties.

To receive service from a PARP full node, a PARP light
client must first open a payment channel and commit to deposit
funds in the channel before it can start making RPC requests.
These funds represent the light client’s budget to pay the full
node for its service. Additionally, the PARP protocol allows
the light client to detect incorrect RPC responses and report
them (via another full node) through a fraud-proof protocol,
penalizing the misbehaving PARP full node (by withholding
part of its collateral).

The design goals of PARP include:
1) Accountability:

• Bilateral assurances. Deposits by light clients and full
nodes establish mutual accountability, ensuring reliable
services and fair compensation within the protocol.

• Trust and verification. By leveraging merkle proofs,
light clients can verify the correctness of the data
returned in an RPC response. Together with a fraud-
proof protocol, the full node is incentivized to serve
RPC requests correctly.

2) Permissionlessness:
• Pseudonymity. Our protocol reduces the leakage of

personally identifying information by enabling end-
users and dApps to interact with blockchains without
requiring registration and without API keys that can
correlate requests and build up user profiles.

• Enhanced availability. PARP full nodes are discov-
erable via an on-chain registry and because of the
lack of any sign-up process, clients can trivially switch
between different PARP full nodes, e.g., for fail-over.

3) Economic incentives:
• Cost-efficient payments. Micropayments in a payment

channel are used to compensate full nodes for their
services, incentivizing them to serve light clients. The
funds deposited by a light client are specifically allo-
cated for payments to a full node within the channel.

B. Roles

The protocol involves three main roles:
Full Node: A computer running the PARP-compatible full

node software and connecting to other (PARP or non-PARP
compatible) full node peers. It stores complete blockchain
data, though in practice, it may be periodically pruned to save
disk space [21]. To serve as a full node, it must deposit tokens
to a PARP-specific smart contract as collateral.

Light Client: A computer with limited storage, compute
and network resources. A light client downloads only block
headers rather than full blocks. It interacts with its connected
PARP full node by making RPC requests, manages essential

chain information, verifies data integrity using Merkle proofs
against the root hash in block headers. It generates fraud-
proofs if it detects invalid RPC responses.

Payment Channel: A unidirectional ledger payment channel
set up between a light client and a full node, signifying a
successful connection between the two parties. A light client
must deposit funds into this channel on-chain, representing the
total amount of tokens it will pay a full node for its services.

C. On-Chain Modules

The protocol also includes three additional on-chain mod-
ules deployed as smart contracts:

Full Nodes Deposit Module: This module enables a full
node to deposit its tokens, making it eligible to serve light
clients in the network.

Channels Management Module: This module manages
payment channels for each PARP connection. It is responsible
for managing the state of the payment channels, including the
allocation of funds between the participating light client and
the full node upon connection closure. Each payment channel
has a unique identifier, based on the identity of the participants,
which is recorded in this module.

Fraud Detection Module: This module processes fraud
proofs from light clients. If verified, it penalizes misbehaving
full nodes by slashing their collateral and rewards the reporting
participants, as detailed in Section IV-F.

Figure 2 illustrates how all the participants in the PARP
protocol interact.

Fig. 2: Primary participants in a PARP connection.

D. Assumptions

A light client relies on trusted sources to remain updated
with the latest block headers in the blockchain [16]–[18]. We
assume that the light client can request and receive block
header, which is compact, not client-specific, and serves as
the root of trust, from any full node (PARP-compatible or
not), without payment. Access to block headers enables the
light client to independently verify data integrity and network
liveness.

Furthermore, our protocol assumes a strong synchrony
model. Specifically, we assume that messages between honest
parties are delivered within a bounded delay.

E. Settings and Lifecycle of a PARP Connection

1) Bootstrapping: Before initiating a PARP connection,
the light client retrieves block headers from full nodes sum-
marizing the blockchain state, including the chain tip and
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relevant Merkle roots. It then handshakes with a selected
PARP-compatible full node to agree on connection parameters.

2) Connection Setup: The connection is created through
an on-chain transaction to open a payment channel. This
transaction is authorized by the light client and mediated via
the full node, and includes the transfer of a client deposit, and
the (pseudonymous) identity of both participants.

3) Request and Response phase: Once the payment chan-
nel is created, light client and full node can transact “off-
chain”. Light clients can send any number of Request mes-
sages, and full nodes respond with Response messages.

When a light client initiates a Request, it must include a
micropayment, which indicates the payment amount, along
with a blockchain-specific RPC call (e.g., for Ethereum, a
call like eth getBalance(address)), and other parameters. The
payment amount is cumulative, meaning it adds up the total
amount owed by the light client for all previous calls along
with the current call. Subsequently, the full node responds
to the request, and both parties retain relevant records. Both
the light client and the full node primarily track the requests,
as each request contains a signed cumulative payment amount
that enables the full node to redeem these funds. The response,
recorded by the light client, may be used to generate a fraud-
proof, as discussed in Section IV-F.

4) Closure (with or without dispute): The connection
closure can be triggered by either party through another on-
chain transaction. The transaction must include the latest
signed payment amount to close the channel. The channel will
have a dispute window for a period of time before it closes.

Closure without dispute. The final state of the channel is
settled on-chain. The funds are distributed accordingly: the
remaining unspent budget is returned to the light client, and
the full node receives payment. Once this process is completed,
the channel is settled, and the connection is closed.

Closure with dispute. Either party can present the latest state
of the channel, represented by a payment proof (a signed
message from the light client) with the largest cumulative
payment amount. After the dispute period ends and the dispute
is resolved based on the validity of the submitted payment
proof, the channel is settled, and the connection is closed.

F. Fraud-Proof Protocol

The light client verifies the response from the full node by
applying several checks. Based on the checks, the response is
treated as:

• Valid: All checks pass successfully; the client trusts it.
• Invalid: The client cannot trust the response, but also

cannot hold the full node accountable for fraud. It is
sensible for the client to terminate the connection.

• Fraudulent: The client cannot trust the response, termi-
nates the connection, and can take steps to construct a
fraud proof to penalize the full node for its misbehavior.

In the case of fraud, to penalize the full node, the client
must submit a fraud proof to the Fraud Detection Module
contract. Obviously we cannot trust the full node to submit a
proof of its own fraudulent behavior to the blockchain. The

light client must instead resort to another PARP-compatible
full node, which we refer to as a witness full node.

To verify the fraud proof, the Fraud Detection contract can
use the request and response data to re-check all the conditions
stated above.

If the fraud proof is deemed valid by the Fraud Detection
Module, the contract will instruct the Deposit Module to
confiscate the deposit of the full node and distribute it to
three parties: the network’s serving layer nodes (to incentivize
punishment of fraudulent nodes), the light client (to incentivize
reporting of fraudulent nodes), and the witness full node
(to incentivize assistance in reporting fraudulent nodes). The
witness node is compensated by the contract directly. The light
client does not need to establish a payment channel with the
witness node.

V. PARP DESIGN DETAILS

This section outlines the network assumptions, introduces
the protocol states and messages, and further illustrates the
state transition within participants in a PARP connection. It
also discusses the liveness check on payment channels and
fraud detection mechanisms.

A. Protocol States and Messages

A full node is denoted as FN , a light client as LC , and a
payment channel as P . Let (pkFN , skFN ) and (pkLC , skLC )
denote their public/private key pairs, respectively, with addr
denoting their corresponding addresses.

Within the off-chain connection, a light client’s request to
a full node is denoted as req , while a corresponding response
is represented as res . Both the request and response in each
RPC call round i must be signed by their respective parties
before being sent. The data structure is defined in Figure 3.

Fig. 3: Structure of a PARP request and a PARP response

Let the request be denoted by req and defined as follows:

req = (α, hB , a, γ, hreq , σa, σreq)

where:
• α is the identifier of the channel between LC and FN .
• hB is the most recent valid hash of a blockchain block,

denoted as B, stored by LC .
• a indicates the amount LC is willing to pay for all

previous calls along with the current call. It should satisfy
reqi.a ⩾ reqi−1.a , indicating cumulative payments.

• γ is an RPC call that LC wants to get executed.
• hreq is the result of Hash(α, hB , a, γ).
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Fig. 4: Tripartite state transition diagram illustrating the lifecycle of a PARP connection.

• σa is Sign(Hash(α, a), skLC ), for payments.
• σreq is Sign(hreq , skLC ), for verification.
And the response is denoted as res:

res = (α,mB , a,R(γ), πγ , hreq , σreq , σres)

where:
• α is the identifier of the channel between LC and FN .
• mB is the current block height, indicating the time of

response and also specifies which block header should
be checked for πγ . It has to be greater than or equal to
the block height indicated in the request by req i.hB .

• a needs to match the input value req .a for hreq .
• R(γ) is the result for req .γ, if applicable.
• πγ is the Merkle Proof of Inclusion of R(γ).
• σres is the result of Sign(hres , skFN ), where

hres = Hash(α,mB , a,R(γ), πγ , hreq , σreq)

A unidirectional payment channel stored in the Channels
Management Module (CMM) on the blockchain is denoted as
P:

P = (α,LC ,FN , b, cs,T )

where:
• α is the unique identifier for the payment channel.
• LC is the address of the light client.
• FN is the address of the full node.
• b is the budget locked in this channel by LC , limiting

the maximum allowable req .a .
• cs represents the latest state of the payment channel,

submitted by either participant and must be validated by
a correct a and σa to be accepted.

• T denotes the status of the payment channel, with three
possible values: Open , Closing , Closed .

In our scenario, LC only manages one payment channel
P locally, while FN and the CMM oversee several payment
channels using identifiers with a mapping (α 7→ P).

The channel state of a P stored locally by LC and FN are
the values of α, a and σa exchanged in each round. Following

the settlement of the channel, where the final channel state
will be submitted on-chain, the funds are redistributed to the
participants based on the payment amounts owed by LC to
FN . Moreover, res serves as a part of a fraud-proof sent by
LC to the CMM to detect inconsistent returned data from FN .

B. State Transition of Participants

The state transition diagram depicting the entire lifecycle of
a PARP connection is illustrated in Figure 4.

A PARP-compatible full node can either be available or
not available to a light client’s payment channel connection
request. To become available, a full node must deposit funds
to the FNDM and indicate they are ready to serve.

The state of a light client LC is deemed IDLE if there is
no established connection with a full node. It begins with the
Handshaking state to the Unbonded state and subsequently to
the Bonded state upon establishing a payment channel. Later,
it may enter the Unbonding state if the connection is ending,
ultimately returning to the IDLE state.

The state of a payment channel P can be classified into
three states: Open means it is successfully set up; Closing
means one party wants to settle the channel, the channel will
be under a period of time for disputes where the fund is
time-locked; Closed means it is successfully settled, and both
parties receive the correct balance from the channel back.

1) Initialization: During this phase, LC seeks consent from
FN to establish the payment channel P . In our design,
where a full node is not required to deposit funds into
a payment channel, mutual consent between LC and
FN is crucial for channel creation. This confirmation
includes an expiry time, indicating when the confirmation
will expire, requiring LC to initiate another handshake if
necessary. The algorithm is explained in Algorithm 1.

2) Channel Opening: The creation of a payment chan-
nel P is initiated by an OpenChannel transaction sent
from LC , transitioning LC ’s state to Unbonded . This
transaction includes metadata such as the budget amount
P.b, participant addresses P.LC and P.FN , and the
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Algorithm 1 Light Client State Transition Logic during Initialization and Channel Opening Stages

1: Initialization:
Generate (pkLC , skLC ) and its address denoted as LC
DECLARE hB : a block HASH
DECLARE FN : an ADDRESS that represents a full node FN
DECLARE step: one of the values in (IDLE, Handshaking, Unbonded, Bonded, Unbonding)
DECLARE α: an INTEGER to identify a payment channel
DECLARE a: an INTEGER to record the usage of the budget, representing the latest local state of a channel

2: upon start call StartHandShaking()
3: function STARTHANDSHAKING
4: hB ← Fetch the latest block hash from the network
5: FN ← Pick a full node
6: Send msg⟨HANDSHAKE, LC ⟩ to FN
7: step← Handshaking
8: Set the hsT imer timer
9: end function

10: upon receive msg⟨HSCONFIRM, pkFN , expiryDate, Sign((LC ||expiryDate), skFN )⟩from FN while hsTimer is active
and step = Handshaking

11: Verify Sign((LC ||expiryDate), skFN ) with pkFN

12: return if signature is not valid
13: Form and Sign the Tx⟨OpenChannel(Sign((LC ||expiryDate), skFN ), pkFN , pkLC , expiryDate⟩
14: Attach the budget to Tx⟨OpenChannel⟩
15: Send Tx⟨OpenChannel⟩ to FN
16: step← Unbonded
17: upon receive TxReciept⟨OpenChannel, Sign(channelId , skFN ), channelId⟩ from FN while step = Unbonded
18: Verify Sign(channelId , skFN ) with pkFN

19: α← channelId
20: a ← 0
21: step← Bonded

signed confirmation from FN . Additionally, it involves
the transfer from LC of a certain amount of money
equal to P.b. Upon receiving the TxReceipt of the
OpenChannel transaction, LC transitions to the Bonded
state, and the channel’s state managed by FN and CMM
is set to be Open , with the identifier α assigned.

3) Active Phase: This phase does not involve any on-chain
participation. LC generates a req and sends it to FN . FN
then responds with a res and stores req .a and req .σa. LC
stores the req .a locally and verifies res .

4) Termination: Either party can send a CloseChannel
transaction which includes (α, a, σa) to the network. The
action transitions LC to the Unbonding state and P to
the Closing state.
• No dispute. If there is no dispute, which is the

ideal case, after a period of dispute time, the channel
is officially and successfully closed on-chain. CMM
distributes P.b accordingly based on a . The channel
state managed by FN proceeds to Closed , while LC
returns to IDLE .

• Dispute present. Before the closure of the channel,
either party can submit a final state different from the
P.cs recorded by CMM. The valid state with a higher
value of a will be acknowledged as the most recent

state. Whenever a party submits a new valid latest state,
the dispute time will be reset to allow the other party
enough time to respond. The rest is the same as for the
no-dispute scenario.

C. Liveness Check on the Payment Channel

To facilitate a light client to monitor the payment channel’s
liveness, for example, if the payment channel is closed secretly
by a full node, LC periodically sends a request to FN asking
for P.T . By getting block header information from other
sources in the network as described in Section IV-D, a light
client can verify the liveness of a channel.

D. Fraud Detection and Reporting

To ensure system integrity, both the light client and the
on-chain module perform a series of verification steps. The
light client serves as the first line of defense, performing local
checks to classify responses as valid, invalid, or fraudulent.
If fraud is detected, it submits the relevant information as a
fraud proof to the on-chain Fraud Detection Module, which
then independently verifies the proof and enforces penalties.

The light client verifies the response from the full node
through the following checks:

• Verify Request Hash: To cryptographically link a PARP
request with its response (which is needed to establish a
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fraud proof), the response must include the hash of its
associated request (request hash). The client must verify
that the request hash matches the expected one. If not, the
response is classified as invalid because the light client
would not be able to generate a fraud proof, thus it cannot
trust the response. If the hash matches but the request’s
signature fails verification, the response is also invalid.

• Verify Response Signature: The response message must
contain a valid signature from the full node. If the
signature is invalid, then again the client would not be
able to generate a fraud proof to hold the full node
accountable, so the response is classified as invalid.

• Channel Identifier Check: The channel ID in the re-
sponse must match the one in the request. Any mismatch
is classified as invalid.

• Payment Amount Check: The payment amount in the
response must match the cumulative amount signed by
the light client in the request. Any mismatch is fraud.

• Timestamp Check: The block height in the response must
not be lower than the one indicated in the request by the
block hash. Any mismatch is considered fraud.

• Verify Merkle Proof : The response must contain a
Merkle proof showing the data is part of the tree specified
by the request type (e.g., transaction trie or state trie) at
the current block height in the response. If the proof fails
to verify, the response is considered fraud.

When the light client detects fraud, it submits the request
req , the response res , and the address of the witness node
addrWN to the on-chain module.

The on-chain module requires a trusted root hash hroot for
the relevant Merkle tree, determined by the return block height
res.mB . It will conduct the following checks:

The integrity of the request: It verifies req .σreq using
addrLC associated with α by reconstructing the hash value
from the request contents.

The origin of the response: It verifies res.σres using
addrFN associated with α by reconstructing the hash value
from the response contents.

The match of the identifier: It verifies the identifier α in
req matches the one in res .

The incorrectness of the response: To penalize the full
node, the module must confirm that res contains incorrect
information. This includes any of the following scenarios:

• Mismatch between the payment amount a in req and res .
• Outdated information due to return block height res.mB

smaller than the one indicated by req.hB .
• Invalid res.πγ when verified against hroot .
The verification logic of a fraud-proof in the Channels

Management Module (CMM) is shown in Algorithm 2.

VI. IMPLEMENTATION AND EVALUATION

We developed a PARP prototype for Ethereum with three
components: a full node, a light client, and on-chain modules.
The full node, built on Geth (version 1.13.12 [22]), adds 1827
lines of Go (v1.20) for PARP compatibility. The light client

Algorithm 2 Fraud Proof Verification in the CMM

1: function FRAUDPROOFDETECTION
2: Input: req , res, addrWN

3: Procedure:
reqDec ← decodeRequest(req)
resDec ← decodeResponse(res)
// The match of the identifier
require(reqDec.α == resDec.α)
chan ← getChannelInfo(reqDec.α)
require(chan.T ̸= “closed”)
// The origin of the request
hreq ← hash(reqDec)
require(hreq == reqDec.hreq )
require(chan.LC == recover(hreq , reqDec.σreq ))
// The origin of the response
hres ← hash(resDec)
require(chan.FN == recover(hres , resDec.σres ))
// Payment Amount Check

4: if reqDec.a ̸= resDec.a then
5: slashAndReward(chan.FN , chan.LC , addrWN )
6: end if

// Timestamp Check
mreq ← getBlockHeightByHash(reqDec.hB )

7: if resDec.mB < mreq then
8: slashAndReward(chan.FN , chan.LC , addrWN )
9: end if

// Verify Merkle Proof
10: hroot ← getRootHash(resDec.mB )
11: if verifyProof(hroot , resDec.πγ) ̸= true then
12: slashAndReward(chan.FN , chan.LC , addrWN )
13: end if
14: end function

uses around 1500 lines of Go. 1631 lines of Solidity (v0.8.25)
manage deposits, payment channels, and fraud-proof detection.
The prototype supports full interaction between components.
We release our implementation for open science 1.

The proof verification uses a Merkle proof. In our Ethereum-
based implementation, Merkle Patricia Tries (MPT) generates
a state trie, a transaction trie, and a transaction receipt
trie, with root hashes stored in block headers. For the cost of
submitting a fraud-proof, since Solidity cannot natively fetch
root hashes for specific block numbers, the light client submits
block header fields, including the trie roots, to regenerate the
block hash on-chain. Ethereum’s built-in block hash verifica-
tion supports validation within the last 256 blocks, therefore,
ensuring a trustworthy root hash.

We evaluated our prototype with these questions:
• Additional communication costs of a PARP RPC request

and its response in terms of message size? (Sec. VI-C)
• Additional processing time caused by PARP, and how

does it impact request processing latency? (Sec. VI-D)
• On-chain costs incurred by PARP? (Sec. VI-E)

1https://github.com/podiumdesu/parp-dev
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• Additional CPU and memory are required by a PARP-
compatible node compared to a standard Geth node as a
function of the number of served clients? (Sec. VI-F)

A. Read and Write Workloads

A read workload includes requests that query and retrieve
data from the blockchain without altering its state. It is typical
for data verification and status checks.

A write workload refers to requests that change the state of
the blockchain, typically by sending a signed transaction that
will be validated and recorded on the blockchain.

In PARP, each request and response includes base layer RPC
data with additional PARP metadata for accountability.

B. Test Setup

We established a local Ethereum network with three full
nodes using Geth [22] as the execution client. One node ran a
PARP-compatible Geth version processing the connection and
requests from a light client. The network was deployed on
local OpenStack virtual machines with 4 vCPUs and 8 GB of
RAM each, including a similarly configured light client.

C. Communication Costs and Message Size

As shown in Figure 5, an RPC call is wrapped with PARP
metadata to form a PARP request sent to the full node. The
full node processes it, executes the call, and wraps the result
with response metadata before returning it to the light client.

Fig. 5: Additional computation steps required in processing a
PARP request and response.

For context, the size of an Ethereum JSON-RPC request for
a raw transaction call, such as opening a payment channel, is
422 bytes, while retrieving an account balance is 118 bytes.

A PARP request includes two 65-byte signatures for trans-
action integrity (returned in the response) and payment au-
thentication. The total overhead per request is 226 bytes.

A PARP response adds 187 bytes of metadata, including two
signatures (one from the request), plus variable-sized proof
verification data depending on the request type. The message
size overheads are detailed in Table II.

Size Overhead (in bytes)
PARP request 226 bytes
PARP response 187 bytes + Size of Merkle Proof

TABLE II: Message Size overhead for PARP RPC requests
and responses compared to standard Ethereum RPC calls.

We evaluated the size of Merkle proofs for transaction
inclusion within blocks. Write requests use the transaction
trie root. As shown in Figure 6, Merkle proof sizes vary
not only with the number of transactions included in one
block but also with the transaction index within those blocks
(explaining the sudden drop in the figure). For instance, for a
transaction located in a block containing 200 transactions, the
average Merkle proof size is approximately 1150 bytes.

Fig. 6: Merkle proof size variation with transaction index
across a range of different block sizes.

D. Computation Overhead and Latency

Our protocol introduces additional steps and computational
overhead compared to standard Geth interactions (Figure 5).
Table III details the additional processing time of the steps
marked (A) through (D). The reported numbers are the average
increase in latency for 100 requests for both a write and a read
workload. For the write workload, we generated a transaction
in a block with 200 transactions. For the read workload, we
use an RPC request that retrieves an account balance.

Light Client Process Steps Write Read
(A) Request Generation 10.91ms 4.82ms
(D) Response Verification (proof) 7.13ms 5.78ms
(D) Response Verification (in total) 8.109ms 1.01ms
Full Node Process Steps Write Read
(B) Request Verification 714.43µs 703.13µs
(C) Response Generation (proof) 3.08ms 477.12µs
(C) Response Generation (in total) 3.37ms 1.29ms

TABLE III: Additional computational latency introduced by
the protocol (average over 100 PARP RPC requests).

Action Gas Cost MainNet
(USD)

Arbitrum
(USD)

Full Node Deposit
Deposit funds 45238 2.171 0.018
Channel Management
Open a channel 196183 9.417 0.078
Close a channel 110118 5.286 0.044
Confirm closure 87128 4.182 0.035
Fraud Proof Detection
Submit a fraud proof 762508 36.6 0.305
Median Transaction Fee (9/12/2024) 1.606 0.350

TABLE IV: On-Chain Cost Analysis of PARP Protocol.
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E. On-chain costs

The PARP protocol includes several on-chain actions that
incur costs in terms of gas fees. Table IV summarizes the gas
costs and their corresponding USD values on the Ethereum
Mainnet and Arbitrum L2 network. At the time of calculation,
we assumed an ETH price of $4000 USD and gas prices of
12 Gwei for Ethereum Mainnet and 0.1 Gwei for Arbitrum.

Fig. 7: Additional computation steps required in processing a
PARP request and response.

F. Scalability and Performance Metrics

To evaluate scalability and performance, we tested a PARP-
compatible full node with light clients sending two requests
per second over two minutes. Using 4 vCPUs and 8GB RAM,
the results in Figure 7, indicate that when the number of
simultaneous light client connections reached 20, the average
CPU usage was 14.3%, and the average memory usage was
2.63%. Even though these numbers represent a 3.43x increase
in CPU usage and a 2.38x increase in memory usage compared
to a standard Geth node, we argue that they remain within
an acceptable performance range and support our claim that
PARP can be integrated into real-world blockchain networks
with reasonable overhead. We expect future optimizations
could further reduce resource consumption.

G. Conclusion

Our evaluation shows that PARP introduces manageable
overhead while ensuring accountability and reliability in the
blockchain RPC layer. Communication costs remain reason-
able, and processing time adds only minor latency for both
read and write operations. On-chain costs are transparent and
can be reduced with Layer-2 solutions like Arbitrum. PARP-
compatible full nodes maintain acceptable CPU and memory
usage, even with multiple light clients. Overall, PARP inte-
grates efficiently into blockchain networks without significant
performance loss, enhancing incentives and trust.

VII. RELATED WORK

Several projects share PARP’s goal of making the
blockchain RPC layer more decentralized and permissionless.
The Portal Network [23] employs the Kademlia DHT [24] to
reduce the storage requirement for each node, allowing those
with limited storage to contribute. This setup enables light
clients to access specific network information on a peer-to-peer
basis. However, the participation of nodes remains voluntary,

with no mechanisms in place to reward serving nodes (in
contrast to PARP’s micro-payments approach). POKT [25] and
Ankr [7] enable a network of decentralized nodes that serve
requests in exchange for tokens but required to comply with
Know Your Customer (KYC) regulations and to stake tokens.
Ankr centralizes requests through a load balancer, while POKT
requires users to access blockchain data through permissioned
gateways. By contrast, PARP does not require the relay of
requests through a centralized element and utilizes different
incentives for node participation.

RPCh [26] introduces a decentralized gateway where per-
missioned entry and exit nodes relay calls to the HOPR
MixNet [27]. It incorporates “Proof of Relay” to reward nodes
for effective data relay and uses payment channels for cost-
efficient rewards. While RPCh offers enhanced privacy via a
MixNet, PARP avoids routing calls through a permissioned
entry node and uses distinct cryptoeconomic incentives.

Olshansky et. al [28] have proposed Relay Mining, where
RPC nodes charge fees based on request volume, with rewards
drawn from tokens staked by dApps. Selected RPC nodes
serve a particular dApp for a designated period, spanning
several blocks, after which they submit their proof of work on-
chain through a commit-and-reveal scheme verified by Sparse
Merkle Trees. In contrast, PARP uses cumulative payment
amounts in payment channels to calculate work performed,
establishing a different incentive model.

Among all these initiatives, PARP stands out as the only
RPC protocol that supports verifiable blockchain data access
using a fraud-proof protocol, with micro-payments as direct
compensation for serving requests.

VIII. LIMITATIONS AND FUTURE WORK

Risks of single node dependence. In practice, a light client
should connect multiple full nodes to enhance availability
and avoid single points of failure. However, our protocol
requires a light client to set up a payment channel individually
with every full node it intends to connect with, adding costs
and potentially discouraging multiple connections. Payment
channel networks [29] could address this by avoiding opening
a dedicated channel per client-server pair.

Privacy concerns in full node interactions. Another limi-
tation of our protocol is its inability to fully address concerns
related to full nodes snooping on sensitive request information,
including content and network information such as IP ad-
dresses. Future extensions may employ cryptographic methods
like homomorphic encryption [30] and commitments [31] for
content privacy and Mixnets such as the Nym infrastruc-
ture [32] for anonymous communication.

Network rewards via Proof of Serving. PARP can form
a new reward mechanism that we tentatively call “Proof of
Serving’, similar to Proof of Stake, but to incentivize full nodes
to serve light clients. Payment proofs signed by light clients
act as receipts, which full nodes can aggregate and submit
to the network and claim a portion of the block reward. The
main open issue is to address Sybil attacks whereby a full
node controls fake light clients and connections. Introducing
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a reputation system to validate the legitimacy of served light
clients could be one solution to this issue.

Formalization of cryptoeconomic incentives. We have not
yet addressed the details of the economic incentives enabled
by the PARP protocol.

Two key areas for PARP’s economic incentives include
designing a fee schedule for RPC requests and linking full
node stakes to the volume of client requests they can han-
dle. Fee schedules must balance client affordability with fair
node compensation, while staking thresholds enhance secu-
rity against misbehavior. Formalizing economic incentives to
enhance honest participation in blockchain systems has been
the subject of many studies [33]–[35]. Most relevant to our
work Moshrefi et. al [36] introduce fraud-proof mechanisms
with slashing conditions that penalize data tampering. The cost
model employed in “insured” cryptoeconomic security varies
with the value of the transaction, aligning financial risk with
transaction importance. The incentive formation principles
detailed in this paper can enhance our protocol by integrating
a formalized compatible incentive model.

IX. CONCLUSION

We have addressed the problem of the increasingly permis-
sioned access to the serving layer of otherwise permissionless
blockchain networks and its effects on the privacy, integrity,
and availability of data access by application clients and
end-users. Our Permissionless Accountable RPC Protocol
(PARP) extends the RPC protocol of blockchain full nodes
to enable pseudonymous yet accountable interaction between
light clients and full nodes. The protocol provides an alterna-
tive to permissioned and privacy-invasive but reputable NaaS
providers on the one hand, and permissionless but less reliable
public RPC nodes on the other hand. Our implementation and
evaluation of the PARP protocol for the Ethereum network
demonstrates the feasibility of a light client obtaining RPC
service from a full node with high data security for the client,
ensured payment for the full node, and acceptable computation
and communication overhead for both parties.
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