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Abstract

Membership inference attack (MIA) has become one of the most widely used and
effective methods for evaluating the privacy risks of machine learning models.
These attacks aim to determine whether a specific sample is part of the model’s
training set by analyzing the model’s output. While traditional membership infer-
ence attacks focus on leveraging the model’s posterior output, such as confidence
on the target sample, we propose IMIA, a novel attack strategy that utilizes the
process of generating adversarial samples to infer membership. We propose to
infer the member properties of the target sample using the number of iterations re-
quired to generate its adversarial sample. We conduct experiments across multiple
models and datasets, and our results demonstrate that the number of iterations for
generating an adversarial sample is a reliable feature for membership inference,
achieving strong performance both in black-box and white-box attack scenarios.
This work provides a new perspective for evaluating model privacy and highlights
the potential of adversarial example-based features for privacy leakage assessment.

1 Introduction

Machine learning has widespread applications in many fields, such as autonomous driving [1, 33],
medical [15] and financial systems [8, 23]. Training a model requires collecting a large amount
of data and aims to help the model learn knowledge that generalizes well from the training data
through multiple epochs. For example, a hospital may train a diagnostic model using thousands of
patients’ CT scans and treatment outcomes. While, this model is used to assist in diagnosis and
treatment, several studies [7, 22, 24] have shown that neural network models tend to remember their
training data and an adversary can exploit this weakness to launch membership inference attack
(MIA) [6, 12, 25]. In such case, an adversary could infer whether a particular patient’s record was
used during the training process - potentially disclosing sensitive information like diagnosis results.

As a fundamental method to evaluate the privacy risk of machine learning models, membership
inference attack (MIA) has received a lot of attention in recent years [2, 13, 24, 30]. Specifically,
given a target model, an adversary aims to know if a target sample was part of the model’s training
set (being a member) or not (being a non-member). Successful membership inference attack can
reveal individual’s health, consumption habits, or even home location [5]. Therefore, studying attack
methods such as MIA is important for understanding and evaluating the privacy risk of machine
learning models.
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Membership inference attacks (MIA) typically fall into two categories. Distribution-based MIA
methods rely on differences between the training and test data distributions but require large datasets
and shadow models, making them resource-intensive [6, 9, 29]. In contrast, metric-based MIA
methods infer membership from the model’s output, such as confidence scores, without access to
the training data or shadow models [11, 26, 32]. However, these methods are limited to scenarios
where the model exposes soft outputs (e.g., probabilities). For instance, the Softmax Response attack
is effective only when the target model outputs confidence values and fails when only hard labels are
available.

These limitations prompt us to ask: whether there exists a universal method that can solve these
limitations, and remain effective in black-box as well as white-box scenarios without requiring
extensive data or computation.

In this paper, we affirmatively answer this question by proposing a novel membership inference
attack method, Iterations for Membership Inference Attack (IMIA), from the lens of adversarial
samples’ generation. Our key observation is that member samples, being closer to the decision
boundary, generally require more iterations to generate adversarial examples than non-member
samples. IMIA leverages this iteration gap across different settings—including white-box and black-
box—by employing suitable adversarial attack strategies such as HopSkipJumpAttack, SimBA,
and PGD [10, 17, 18]. Unlike prior work that relies on shadow models or access to similar data
distributions [6, 29], IMIA operates without requiring the training set, making it lightweight and
broadly applicable.

In general, our contributions are summarized as follows:

1. In this study, we propose a novel member inference attack method IMIA to infer whether the
data belongs to the training set by analyzing the number of iterations required to generate
adversarial samples. Different from traditional attack methods based on the posterior output
of the target model, IMIA focuses on the generation process of adversarial samples, providing
a tool to evaluate privacy leaks from the perspective of the internal operation of the model.

2. IMIA does not require any training data and training shadow models. The target sample is
sufficient for IMIA to execute the attack. This strategy leverages the number of iterations
required to generate adversarial samples from the target sample for MIA instead of posterior
outputs of the target model.

3. IMIA is highly adaptable and universal. Our proposed method IMIA can be exploited in all
settings compared with previous methods that can only be used in one specific situation. We
have conducted experiments on multiple models and datasets, covering different network
architectures and data distributions. Though our proposed method is simple, experimental
results show that our method can effectively evaluate the privacy leakage risk of the model
under both black-box and white-box settings.

2 Background and Related Work

In this section, we review research on membership inference attack, adversarial samples, and existing
methods that we use as baselines.

2.1 Membership Inference Attack

Membership inference attack has achieved great attention because it revealed that machine learning
models have serious risks of privacy leakage and remember its training data [2, 4, 20, 21, 27]. In
membership inference attack, given the target sample x, the adversary aims to infer whether this
sample is in the training set Dtr of the target model fθ. As a result, membership inference attack can
be seen as a binary classification privacy game. The participants in this game are the challenger C
and the adversary A. The game process can be broken down into several steps:

1. The challenger samples a training set Dtr ∼ D, and trains the target model fθ.

2. The challenger randomly chooses a bit b ∈ {0, 1}. If b = 0, he will choose the target sample
(x, y) ∈ D where y is the ground-truth label of the target sample x, but (x, y) is not in Dtr.
If b = 1, he will choose the target sample in Dtr directly.
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3. The challenger sends the target sample to the adversary and allows the adversary to query
the target model.

4. The adversary gets the target sample and returns a bit b̂ by querying the target model. If
b̂ = b, the adversary will win this game.

Based on the adversary’s ability to access the target model, MIA can be divided into two categories:

Black-box Membership Inference. In the black-box setting, the adversary can only access the
posterior output of the model (like confidence or hard labels) [19, 31]. This is a true scenario in the
real world. In the black-box case, the attack methods can also be divided into two categories: the first
is a distribution-based MIA [6, 9, 13, 29], in which the adversary needs to train a lot of additional
shadow models as a proxy to mimic the target model. These shadow models require a large amount of
data in the same distribution as the target sample and use the same model framework. The adversary
trains shadow models with and without the target sample to learn the distribution difference between
members and non-member samples, and then judges the member attributes of the target sample.

The second is the metric-based MIA, in which the adversary does not need to train additional shadow
models. In Step 4, the adversary only uses the posterior output of the target model and designs a
metric Me(·), such as Softmax Response [19, 26], Prediction Entropy [22, 32] and Modified Entropy
[25]. Specifically, Softmax Response [26] computes the output probabilities of the target model fθ(x)
for the input sample x, obtaining the predicted probability fθ(x)i for each class i, and compares it
with a preset threshold τ . If the maximum predicted probability exceeds the threshold, the adversary
infers that the sample belongs to the training set. Formally,

Isoft(fθ, (x, y)) = 1{max fθ(x)i ≥ τ}

Salem et al. [22] proposed to use the Prediction Entropy to conduct MIA. Prediction Entropy measures
the uncertainty of the model’s prediction and they thought that the prediction entropy of the member
data would be close to 0 and a larger entropy value to the non-member data on the target model. This
is formally expressed as:

Ient(fθ, (x, y)) = 1{ −
∑
i

fθ(x)i log(fθ(x)i) ≤ τ}

Besides, Song and Mittal [25] proposed Modified Entropy that considered the ground-truth label of
the target sample by decreasing the uncertainty on the true label of the target sample and increasing
the uncertainty on the wrong label. It can be computed through:

Mentr(fθ(x), y) =− (1− fθ(x)y) log(fθ(x)y)

−
∑
i ̸=y

fθ(x)i log(1− fθ(x)i)

They inferred a target sample in Dtr according to:

IMentr(fθ, (x, y)) = 1{Mentrfθ(x, y) ≤ τ}

That is if the modified entropy value of the target sample is lower than the preset threshold, it will be
recognized as a member.

White-box Membership Inference. In the white-box setting, the adversary can not only get the
posterior output of the target model but also the internal parameters of the target model, like the loss
and gradient information during the progress of the target model training [3, 16]. Yeom et al. [32]
used the internal weights of the model and the loss of the target sample on the model to conduct MIA.
If an adversary can get access to the logits output of the target model, he can conduct MIA through:

Iloss(fθ, (x, y)) = 1{ − l(fθ(x), y) ≤ τ}

where the loss function will be cross-entropy loss. The sample x which has lower loss value in the
training set Dtr. This capability allows an adversary to obtain more sensitive information of the
victim model, but this capability is rarely available in the real world.
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2.2 Adversarial sample

In a deep neural network, adversarial samples are inputs intentionally perturbed with small but delib-
erate perturbations that can cause deep neural networks to make incorrect predictions. Goodfellow
et al. [16] first revealed the vulnerability of neural networks to such inputs. Then, numerous attack
methods have been proposed, including white-box approaches like PGD [18] and CW [3], as well as
black-box approaches like SimBA [17], which provide effective strategies for generating adversarial
examples.

In the background of MIA, the characteristics of adversarial samples are used to infer the privacy of
the model’s training data. Song et al. [26] used the confidence output on adversarial samples to judge
the member attributes of the target samples. They believed that due to the robustness of the model, the
adversarial samples generated from the member data show relatively stable prediction results on the
model. Afterwards, Choquette-Choo et al. [12] found that the distance from the adversarial sample to
the model’s decision boundary can be directly used to carry out MIA and had a great performance
under the black-box setting. They judged a sample as a member if the distance from the adversarial
sample to its decision boundary is larger than a preset threshold:

Idis(fθ, (x, y)) = 1{d(x, x̂) ≥ τ}

Del Grosso et al. [14] also analyzed MIA from this perspective.

In our paper, we carry out the metric-based black-box membership inference from the lens of the
generation of adversarial samples. Different from prior works[12], we do not measure the boundary
distance between the adversarial sample and its decision boundary but record the number of iterations
during the process of generating adversarial samples. Softmax Response, Prediction Entropy, and
Modified Entropy as typical representatives in the score-based metric attacks, we choose these as
our baselines. In the case where the target model only outputs hard labels, we choose the boundary
distance attack as our baseline because boundary distance has a great performance in the metric-based
condition.

(a) a (b) b

Figure 1: (a) Scatter diagram showing the relationship between the distance from samples to the
decision boundary and the number of iterations required to generate adversarial examples using
SimBA for ResNet trained on CIFAR10. (b) Histogram about the number of iterations per-sample
over 2k samples from the training set (blue) and the same number from the testing set. The adversarial
samples are generated using SimBA for ResNet trained on CIFAR100.

3 Membership Inference Attack during Adversarial Examples Iteration

In this section, we discuss the methodology of this paper, which aims to reveal privacy risks of the
target model from the lens of adversarial samples’ generation process.
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3.1 Motivation

While prior MIA methods often rely on confidence scores or boundary distance [12, 26], we find
that boundary distance may not reliably distinguish members from non-members because different
samples can have similar distance regardless of membership, as shown in Figure 1(a). We plotted a
scatter diagram showing the relationship between the distance from samples to the decision boundary
and the number of iterations required to generate adversarial samples.

Instead, we observe that the member samples generally require more iterations to generate adversarial
samples than non-members. We use “SimBA” [17] to generate adversarial samples and record the
number of iterations to generate its adversarial sample for each sample. The histogram is shown in
Figure 1(b): the samples from the training set (blue, member) need more iterations than those from
the test set (pink, non-member).

This insight reveals a new, consistent signal for membership inference and motivates our method,
IMIA, which leverages the number of iterations required to generate an adversarial sample for a target
sample. If this number exceeds a preset threshold, this target sample will be inferred as a member;
otherwise, as a non-member. The overall framework of IMIA is shown in Figure 2.

Figure 2: Diagrammatic sketch for IMIA to conduct MIA.

3.2 Methodology

Given the target model and the target images, the adversary can choose an adversarial strategy S in
SimBA [17], HopSkipJumpAttack [10] and PGD [18] based on different MIA settings to generate
adversarial samples and measure the number of iterations during this process.

Score-based black-box attacks. Adversary can obtain the full probability output of the target
sample. As a result, we choose SimBA [17] to conduct adversarial attack which provides a simple
but efficient strategy to change the target sample’s output. The optimization goal in SimBA is to
minimize the probability on the true label y of the target sample x :

min
δ

pfθ (y|x+ δ)

subject to: ∥δ∥2 < d, queries ≤M,

where δ represents the perturbations and M is the budget for the number of queries to the target
model. SimBA solves this problem through randomly selecting a predefined orthonormal basis and
either adding or subtracting it from the target sample according to the confidence scores which are
checked if the target sample moves toward the decision boundary. During the process of generating
adversarial samples for the target sample, we are concerned about the number of iterations after
getting adversarial samples successfully.

Decision-based black-box attacks. Different from score-based black-box attacks, the adversary
can only obtain the label of the target input without any other information. In this case, we choose
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Algorithm 1 IMIA

Require: Target model fθ, target sample (xt, yt), adversarial strategy S , threshold τ
1: τt ← S(fθ, (xt, yt))

Ensure: Number of iterations τt for generating adversarial sample
2: if τt ≥ τ then
3: return 1(τt ≥ τ) ▷ Classify as member
4: else
5: return 0 ▷ Classify as non-member
6: end if

“HopSkipJumpAttack” [10] whose performance is close to the white-box attack. Given the target
image (x, y), adversary starts from randomly choosing a point x′ that is not classified to label y by
the target model and walks along the decision boundary to minimize the distance between the original
image x to its adversarial image x′. In our methodology, we measure the number of iterations that
adversarial samples can satisfy our request.

White-box attacks. In the white-box setting, We choose Projected Gradient Descent (PGD) [18] to
generate adversarial samples. Formally, adversarial sample xadv is generated by:

xadv = Clipx,ϵ(x
adv
N + α sign

(
∇xJ(x

adv
N+1, y)

)
In IMIA, we will choose one of them to generate adversarial samples according to different MIA
settings. The pseudocode for IMIA is listed in Algorithm 1. As shown in Algorithm 1, given
a target model fθ, a target sample (xt, yt), an adversarial attack strategy S, and a threshold τ ,
IMIA first computes the number of iterations τt required by S to generate a successful adversarial
example. The adversarial strategy S is chosen based on the attack setting including PGD, SimBA
and HopSkipJumpAttack as we described before. If τt ≥ τ , the sample is classified as a member;
otherwise, it is classified as a non-member.

In this paper, we consider three different attack strategies for different MIA settings, and we demon-
strate the implementation details for each adversarial strategy in Appendix A. Note that we do not
propose a novel method for adversarial attacks, instead, we only care about how the adversarial
sample is generated from the original target sample.

4 Evaluation

In this section, we will evaluate the effectiveness and universality of our algorithm.

4.1 Experiment Setup

Datasets. In our experiment, we consider three different datasets which are all common in image
recognition tasks. CIFAR10 and CIFAR100 all include 60k images and can be split into 10 and
100 classes respectively. In PyTorch, CIFAR10 and CIFAR100 are divided into 50k images in the
training dataset and others are in the test dataset. STL-10 includes 5k images in the training set and
8k images in its test set. In our experiment, we use all samples from the training dataset to train the
target model for each model architecture, and samples in the test set which do not participate in the
training process are used to validate the model’s accuracy.

Target Model. In our experiments, we use four different model architectures: ResNet50, VGG19,
ResNeXt29_2x64d, and DenseNet121. These models represent a diverse set of machine learning
architectures. We train each model for 100 epochs in every dataset during the training process to
ensure that the models are sufficiently trained and can produce meaningful outputs for membership
inference attack. And we use the test set of the target model to verify the accuracy of the target model
avoiding the low accuracy of the target model on the test set.

Metrics. We use a balanced evaluation set to evaluate our method and report the inference accuracy,
AUROC scores, and the false positive rate (fpr) under different true positive rate (tpr). The inference
accuracy considers both the true positive rate and the false positive rate and gives 50% if the adversary
guesses randomly. Area Under the Receiver Operating Characteristic Curve (AUROC) is the area
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under ROC curve, which is obtained by plotting the ratio of TPR to FPR at different thresholds. The
closer the AUROC value is to 1, the better the attack performance.

In a balanced evaluation set, there is an equal number of member samples and non-member samples
of the target model. As a result, our evaluation set consists of 3k samples from the target model’s
training set as member samples and uniformly selects the same number of samples from the test set
as non-member samples. We repeat this many times to get different combinations of evaluation sets
and finally report results on average.

In our paper, IMIA is a metric-based universal attack method which does not need any training data
or shadow models, so to ensure a fair comparison, we also choose the metric-based method as our
baselines instead of these methods using shadow models. The specific reasons can be found in the
Appendix B. Moreover, we display the specific time cost of computation to run IMIA and compare
this to the cost of these methods based on shadow models in Appendix C.

Table 1: Membership inference results for different score-based attacks on CIFAR10, CIFAR100,
and STL10 datasets in the black-box settings. We choose “SimBA” to generate adversarial samples
for measuring the number of iterations for target samples. The evaluation set is composed of 3k
samples from the training set and 3k samples from the test set of the target model, and we repeat this
procedure 20 times. The inference accuracy(%) and AUROC(%) are reported in the average value
with standard deviation. The best results in each case are in bold.

Strategy ResNet ResNeXt VGG DenseNet

AUROC ↑ Accuracy ↑ AUROC Accuracy AUROC Accuracy AUROC Accuracy

CIFAR100
Softmax 88.91± 0.13 84.57± 0.15 63.66± 0.09 60.42± 0.10 63.73± 0.12 59.94± 0.18 67.70± 0.11 63.26± 0.14
Entropy 88.97± 0.08 84.59± 0.11 64.22± 0.13 54.42± 0.07 64.95± 0.14 61.26± 0.12 68.78± 0.16 64.00± 0.11
Mentr. 89.24± 0.15 85.43± 0.16 68.42± 0.10 64.48± 0.12 69.61± 0.14 65.41± 0.13 73.19± 0.12 67.90± 0.18

IMIA(ours) 89.11± 0.29 83.62± 0.29 68.93± 0.58 64.82± 0.55 67.36± 0.64 64.68± 0.55 73.80± 0.48 68.91± 0.40

CIFAR10
Softmax 70.97± 0.05 65.84± 0.15 74.02± 0.13 68.05± 0.19 64.15± 0.16 60.60± 0.15 69.21± 0.15 64.17± 0.14
Entropy 71.05± 0.13 65.87± 0.29 74.35± 0.14 68.24± 0.17 64.39± 0.15 60.70± 0.12 69.51± 0.16 64.27± 0.14
Mentr. 71.95± 0.12 66.17± 0.16 73.54± 0.15 67.95± 0.11 64.56± 0.12 60.58± 0.14 69.44± 0.15 64.23± 0.12

IMIA(ours) 74.43± 0.15 68.35± 0.13 73.34± 0.09 67.77± 0.15 66.53± 0.13 62.87± 0.15 75.20± 0.09 68.97± 0.15

STL10
Softmax 56.49± 0.13 55.53± 0.15 61.68± 0.17 59.43± 0.11 57.06± 0.16 56.63± 0.12 72.97± 0.12 68.52± 0.13
Entropy 55.91± 0.18 55.28± 0.19 62.08± 0.12 59.72± 0.11 57.75± 0.14 57.61± 0.13 73.22± 0.13 68.59± 0.15
Mentr. 61.05± 0.11 59.02± 0.13 70.84± 0.18 66.37± 0.10 62.68± 0.14 59.92± 0.12 78.41± 0.11 73.97± 0.09

IMIA(ours) 61.26± 0.15 59.70± 0.12 69.25± 0.15 66.35± 0.14 61.32± 0.08 59.87± 0.14 81.18± 0.12 75.41± 0.11

4.2 Results

We analyze our results in the black-box and the white-box settings separately. In the black-box setting,
there are two types: one is score-based attack where the target model outputs the confidence and
labels at the same time; the other is the target model that only outputs hard labels. In the white-box
setting, adversaries have access to the loss during the process of generating adversarial samples.
Specifically, IMIA resorts to generate adversarial samples like “PGD” [18, 28] for white-box MIA
attack, “SimBA” [17] for black-box MIA attack and “HopSkipJumpAttack” for hard labels MIA
attack.

4.2.1 score-based setting

In the score-based setting, the target model outputs the confidence and labels at the same time. In
this case, we choose “SimBA” [17] as our strategy to generate corresponding adversarial samples of
the original samples. Softmax Response [26], Prediction Entropy [22] and Modified Entropy [25] as
typical representatives in the score-based metric membership inference attack, we choose these as
our baselines.

Table 1 shows the results of our attacks and comparisons between IMIA and other baselines in
the score-based setting. The results show our strategy that depending on the number of iterations
performs well in distinguishing member samples and non-member samples. For example, for
our proposed attack against CIFAR10 DenseNet classifier, the membership inference AUROC is
increased from 69.21 to 75.20 on average and the accuracy is increased from 64.17 to 68.97. In other
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Table 2: Membership inference results for different decision-based attacks that only output hard
labels on CIFAR10, CIFAR100 and STL10 datasets. We choose “HopSkipJumpAttack” strategy, and
measure the distance and the number of iterations between original samples and adversarial samples.
The inference accuracy(%) and AUROC(%) are reported in the average value with standard deviation.
The best results in each case are in bold.

Strategy ResNet ResNeXt VGG DenseNet

AUROC ↑ Accuracy ↑ AUROC Accuracy AUROC Accuracy AUROC Accuracy

CIFAR100
Boundary 86.12±0.35 81.59±0.43 69.49±0.29 66.90±0.34 63.29±0.33 61.90±0.26 69.72±0.32 66.90±0.33

IMIA(ours) 85.95±0.27 81.39±0.25 69.20±0.21 66.70±0.25 63.39±0.31 62.39±0.30 70.03±0.22 67.20±0.22

CIFAR10
Boundary 72.84±0.30 66.70±0.25 70.43±0.26 65.60±0.31 66.50±0.23 63.0±0.21 69.72±0.15 66.00±0.22

IMIA(ours) 73.12±0.25 67.39±0.27 69.77±0.25 65.10±0.23 69.31±0.21 65.10±0.21 71.81±0.19 66.90±0.17

STL10
Boundary 61.45±0.27 60.24±0.31 70.82±0.35 67.34±0.31 63.78±0.24 61.60±0.20 82.42±0.13 75.29±0.17

IMIA(ours) 62.00±0.19 60.41±0.22 72.21±0.25 69.38±0.20 63.93±0.18 61.63±0.24 83.36±0.19 76.57±0.21

Table 3: Membership inference results for Loss and our method on CIFAR10, CIFAR100, and STL10
in the white-box setting. We choose “PGD” to generate adversarial samples and for the loss, we
choose the cross entropy loss for each target sample. The inference accuracy(%) and AUROC(%) are
reported in the average value with standard deviation. The best results in each case are in bold.

Strategy ResNet ResNeXt VGG DenseNet

AUROC ↑ Accuracy ↑ AUROC Accuracy AUROC Accuracy AUROC Accuracy

CIFAR100
Loss 89.24± 0.24 85.68± 0.26 68.47± 0.46 65.14± 0.51 69.95± 0.59 65.87± 0.60 73.31± 0.43 68.42± 0.46

Boundary 88.37± 0.31 82.82± 0.26 66.16±0.45 63.97±0.49 64.69±0.50 62.62±0.51 66.43 ±0.40 64.46±0.43
IMIA(ours) 96.12± 0.21 90.54± 0.28 69.31± 0.54 65.82± 0.51 71.47± 0.45 68.55± 0.42 73.41± 0.40 68.91± 0.39

CIFAR10
Loss 72.26± 0.49 66.61± 0.45 74.33± 0.35 68.96± 0.39 65.09± 0.36 61.72± 0.44 69.94± 0.35 64.79± 0.32

Boundary 75.45±0.47 69.03±0.45 74.19±0.37 68.62±0.37 65.94±0.40 61.67±0.42 75.69±0.33 69.82±0.29
IMIA(ours) 74.49± 0.46 68.97± 0.39 74.45± 0.34 69.83± 0.31 66.96± 0.35 62.67± 0.32 76.29± 0.33 70.15± 0.31

STL10
Loss 61.52± 0.45 59.20± 0.33 71.01± 0.45 66.39± 0.42 62.94± 0.49 59.68± 0.36 78.57± 0.46 74.06± 0.45

Boundary 60.29±0.43 58.75±0.32 68.38±0.50 65.25±0.47 59.66±0.45 59.05±0.35 81.78±0.46 75.63±0.47
IMIA(ours) 61.94± 0.47 59.64± 0.36 70.07± 0.53 66.19± 0.51 61.46± 0.52 59.61± 0.49 82.19± 0.61 75.63± 0.50

words, our strategy can effectively reveal the privacy risk of the target model during the process of
generating adversarial samples. Figure 3 show the false positive rate under different true positive rate
corresponding to Table 1. The figures illustrate how the false positive rate varies as the true positive
rate changes. Our proposed attack has a relatively lower fpr than others.

4.2.2 decision-based setting

In another black-box setting called decision-based attack, the target model only outputs hard labels.
In this case, we use “HopSkipJumpAttack” [10] strategy to generate adversarial samples. We then
compare our attack with the “ Decision boundary” method [12] which has strong performance when
the target model only outputs hard labels. The “Boundary” measures the distance from the adversarial
samples to their decision boundary. Our IMIA measures the number of iterations during the generation
of adversarial samples. The comparison results are shown in Table 2. We can observe that IMIA has
advantages over “Boundary” method. For example, the membership inference AUROC and accuracy
in STL10 are all higher than “Boundary” method for all classifiers. Furthermore, for the VGG model
on the CIFAR10, our IMIA achieves an accuracy about 2.8% higher than “Boundary”. Though IMIA
is simple, in this most difficult situation, it can still work efficiently.

4.2.3 white-box setting

We also evaluate IMIA in the white-box setting and show the comparison in Table 3 where the best
results in each case are in bold. In the white-box setting, “Loss” method [32] is one of the most
common methods to measure the degree of privacy leaks, so we also use “Loss” method as baseline
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and compute the cross entropy loss to quantify the privacy risks associated with the target model. At
the same time, we also compare the results of “Decision Boundary” method. In this setting, we use
“PGD” [18] methodology to generate adversarial samples. Table 3 shows that IMIA surpasses the
“Loss” method both in the inference accuracy and AUROC in most classifiers and datasets. Especially,
when applied to the DenseNet architecture on CIFAR10 dataset, IMIA can achieve an accuracy over
5% higher than the “Loss” method.
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(e) ResNet-CIFAR10
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(g) VGG-CIFAR10
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(h) DenseNet-CIFAR10
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(i) ResNet-STL10
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(j) ResNeXt-STL10

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Softmax Response (AUC = 0.57)
Entropy (AUC = 0.58)
Modified Entropy (AUC = 0.63)
IMIA(ours) (AUC = 0.61)
Random Guess (AUC = 0.5)

(k) VGG-STL10
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(l) DenseNet-STL10

Figure 3: ROC curve on MIA for the combination of different models on CIFAR100, CIFAR10 and
STL-10. They are drawn on the balanced evaluation set and correspond to Table 1.

4.3 Summary

In three different application conditions, the increasing inference accuracy and AUROC value prove
that our methodology IMIA has great performance in distinguishing the member data and the non-
member data. Even in the most difficult situation, our methodology can still work well. All results
show that IMIA has great adaptive ability and can be applied in both white-box and black-box settings
without knowing data from the training set.

5 Conclusion

In this paper, We propose a universal membership inference attack method, called IMIA, which
performs the membership inference attack from the perspective of adversarial samples’ generation
process. The key idea of IMIA is to measure the number of iterations by the process of generating the
adversarial samples, and use this metric to infer whether the target samples belong to the model’s
training set or not. IMIA with different adversarial strategies can be applied in different settings.
Accordingly, we conduct experiments in different MIA settings and on different datasets such as
CIFAR10, CIFAR100 and STL10 datasets under different model architectures. Our experiment

9



results show that our proposed methodology has great performance in different situations with
higher AUROC values and inference accuracy compared to the other metric-based MIA algorithms.
All experiments highlight the superior performance of IMIA and prove that IMIA is universal and
adaptable in most settings to detect the privacy risk of the target model while requiring fewer
computational resources, making it a more efficient choice for MIA.
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A Implementation details for each adversarial strategy

In Table 4, we show the implementation details for the Simple Black-box Attack (SimBA) under
the score-based setting. The parameters in our experiments are similar with Guo et al. [17]. The
most difference is the perturbation size (ϵ) which we set a small value for observing the number of
iterations during the adversarial samples’ generation process.

We implement the HopSkipJump Attack (HSJA) [10] under a decision-based black-box setting. We
follow the standard setup of the HopSkipJump Attack (HSJA) [10], using L2 constraint with input
clipping to [0, 1], and set the number of iterations to 100. Other hyperparameters, such as step size
search strategy and evaluation limits, are set according to default values or tuned empirically for
stability in Table 5.

We employ the Projected Gradient Descent (PGD) attack [18] under the white-box setting with an
L∞ perturbation budget of ϵ = 3

255 , step size α = 0.001, and 50 attack steps. A random start is
enabled to initialize the attack from a perturbed point within the allowed norm ball. The attack is
untargeted.

Table 4: SimBA Attack Hyperparameters
Parameter Value
Maximum iterations (max_iters) 300
Frequency dimensions (freq_dims) 32
Stride (stride) 7
Perturbation size (ϵ) 0.05
L∞ bound (linf_bound) 0.0 (unbounded)
Perturbation order (order) rand
Targeted attack (targeted) False
Pixel attack (pixel_attack) False (frequency domain)
Logging interval (log_every) 40

Table 5: HSJA Attack Hyperparameters
Parameter Value
Clipping Range (clip_min, clip_max) [0, 1]
Norm Constraint (constraint) L2

Number of Iterations (num_iterations) 100
Binary Search Confidence (gamma) 1.0
Step Size Search Strategy (stepsize_search) Geometric progression
Max Gradient Evaluations (max_num_evals) 1e4
Initial Gradient Evaluations (init_num_evals) 100

B Justification for Not Comparing with Shadow Model-Based Attacks

As mentioned in our contributions, IMIA does not need any training data or train shadow models.
But regarding the state-of-the-art MIA methods, whether it is LiRA[6], RMIA[34], Oslo[21] or
YOQO[31], all of these methods require training additional models. In LiRA[6], RMIA[34], and
YOQO[31], shadow models are trained, and in Oslo[21], source and validation models are trained.
Although some methods[21] can conduct attacks using a small number of shadow models, the fact is
that they still train shadow models. Moreover, all methods based on training shadow models require
large amounts of data, which is acknowledged in Prashanth et al. [21]. In our method, no additional
models need to be trained, and there is no requirement to know training data to perform IMIA.
Therefore, to ensure a fair comparison, we also choose these metric-based methods like Softmax and
Entropy that do not require training shadow models as our baselines.
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Table 6: The comparison results of computational time cost between IMIA and those methods using
shadow models. Time reported under the attack settings in our paper refers to the generation of a
single adversarial example per sample. Time reported for RMIA/LiRA refers to the training time of a
single shadow model. We compute different adversarial strategies under different model structures
and datasets.

Attack Setting Attack Method Model-Data Time (ms/sample)
Score-based attack SimBA ResNet-CIFAR10 709.66
Decision-based (label-only) attack HSJA DenseNet-STL10 3767.1
White-box attack PGD VGG-CIFAR100 33.41

RMIA / LiRA Shadow model ResNet-CIFAR10 30min

C The computational time cost of IMIA

In our paper, our IMIA method determines membership by counting the number of iterations required
to generate adversarial samples. This process is carried out on a per-sample basis and, since generating
adversarial samples in a black-box setting does not require storing gradient information—only forward
propagation—the time spent on a single sample is relatively small. We list the specific time cost of
computation for each adversarial strategy in Table 6. For example, in the white-box setting, achieving
an adversarial sample only needs 33.4 milliseconds under the VGG model trained with CIFAR100.
By contrast, methods that rely on training shadow models, even though the models can be reused,
typically take at least half an hour to train a single shadow model on an RTX 4090 GPU. When
the sample size is large, IMIA may take longer. However, our attack does not require a substantial
amount of training data to be effective.
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