
ar
X

iv
:2

50
6.

02
66

0v
1

 [
cs

.C
R

]
 3

 J
un

 2
02

5

Tarallo: Evading Behavioral Malware Detectors
in the Problem Space

This paper has been accepted at the International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA ’24). Cham: Springer Nature Switzerland, 2024.

Gabriele Digregorio1, Salvatore Maccarrone1, Mario D’Onghia1, Luigi Gallo2,
Michele Carminati1, Mario Polino1, and Stefano Zanero1

1 Politecnico di Milano, Milan, Italy
{gabriele.digregorio,mario.donghia,michele.carminati,

mario.polino,stefano.zanero}@polimi.it
salvatore.maccarrone@mail.polimi.it

2 Cybersecurity Lab, TIM S.p.A., Turin, Italy
luigi1.gallo@telecomitalia.it

Abstract Machine learning algorithms can effectively classify malware
through dynamic behavior but are susceptible to adversarial attacks.
Existing attacks, however, often fail to find an effective solution in both
the feature and problem spaces. This issue arises from not addressing the
intrinsic nondeterministic nature of malware, namely executing the same
sample multiple times may yield significantly different behaviors. Hence,
the perturbations computed for a specific behavior may be ineffective for
others observed in subsequent executions. In this paper, we show how
an attacker can augment their chance of success by leveraging a new
and more efficient feature space algorithm for sequential data, which
we have named Position Sensitive - Fast Gradient Sign Method , and
by adopting two problem space strategies specially tailored to address
nondeterminism in the problem space. We implement our novel algorithm
and attack strategies in Tarallo, an end-to-end adversarial framework
that significantly outperforms previous works in both white and black-
box scenarios. Our preliminary analysis in a sandboxed environment and
against two Recurrent Neural Network (RNN)-based malware detectors,
shows that Tarallo achieves a success rate up to 99% on both feature
and problem space attacks while significantly minimizing the number of
modifications required for misclassification.

Keywords: adversarial machine learning · dynamic analysis · malware detection

1 Introduction

Malware detectors rely on software analysis techniques to identify malicious
programs. These techniques are grouped into two main categories: static and
dynamic. Static analysis techniques examine the code without running the pro-
gram, such as strings or IP addresses within the code [20]. While providing a

https://arxiv.org/abs/2506.02660v1

2 Digregorio et al.

fast way to analyze software, static analysis falls short against obfuscated sam-
ples [11,48,16,53]. On the other hand, dynamic analysis gathers information
while the program is running, capturing its dynamic behavior. This includes sys-
tem calls, network traffic, and memory usage. One commonly employed dynamic
feature is the sequence of executed Application Programming Interface (API)
calls, which can effectively represent the program functions and goals.

Machine Learning (ML), and particularly Deep Learning (DL), can be em-
ployed to detect or classify malware, leveraging both static [38,4,5] and dy-
namic [39,54,32] features. They represent a more effective alternative to tra-
ditional approaches focusing on pattern identification (e.g., byte signatures) or
heuristics due to their well-understood generalization capabilities [31,7]. Nonethe-
less, ML algorithms are susceptible to adversarial attacks, which consist in forc-
ing an ML model to misclassify specially perturbed samples [18]. These attacks
may heavily impact the reliability of ML for cybersecurity applications, forcing
their advocates to preemptively research and address vulnerabilities. A substan-
tial body of work in adversarial attacks against static analysis and ML-based
malware detectors exists in the literature [24,23,45,27,10]. Fewer works have ad-
dressed the security of classifiers employing dynamically extracted features. Of
great relevance are the works by Rosenberg et al. [43,42], which introduced an
adversarial framework that can target a variety of ML-based malware detectors
that employ API call sequences. The authors also discussed and showed how
to modify a program’s dynamic behavior without breaking its functionality, an
essential requirement for the attack to be considered successful, formally known
as preserved semantics [35]. However, these works do not explicitly discuss or
evaluate the real impact of their attacks in the problem space. Our preliminary
experiments show that only “attacking” the final ML classifier does not suffice
to evade the whole detection system. This is due to the nondeterminism and
probabilistic nature of malware behavior. Hence, computing an adversarial per-
turbation after observing a specific behavior may not be enough to guarantee a
successful attack in subsequent executions. Furthermore, as shown in Section 5,
the original feature space attack proposed by Rosenberg et al. [43] requires a very
large number of additional API calls to evade newer and more sophisticated clas-
sifiers such as [25,54]. This may affect both the stealthiness of the attack as well
as its capacity to deliver its original and intended behavior.

Our main contribution consists in designing an Adversarial Machine Learn-
ing (AML) attack that is effective both in the feature and problem spaces while
targeting systems that employ sophisticated DL algorithms such as [25,54]. First,
we propose Position Sensitive - Fast Gradient Sign Method , a new adversarial
attack specific to sequential data, able to produce evasive behaviors with mini-
mal perturbations. Then, we address the problem space limitations through two
variants: with the first, the attacker executes several times the malware sam-
ple, recording all behaviors, and then selects the longest. The second approach
consists of performing the attack while considering multiple behaviors at once.

We preliminary evaluate our attacks through an array of experiments against
two state-of-the-art Recurrent Neural Networks (RNNs)-based malware detec-

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 3

tors, measuring the attack success in the problem space [35] in both white- and
black-box scenarios. We confirm that after modification and re-execution in the
sandbox, the adversarial samples can still evade detection. Our more stringent
criterion contrasts with those adopted in previous works [43,42], which solely
focused on evaluating the evasion rate in the feature space. Tarallo achieved a
success rate of 99% in the feature space. Additionally, it significantly reduced the
number of injections required to achieve misclassification, with an average of 27
additional API calls required, a value significantly lower than what is required by
current state-of-the-art approaches against weaker models. In the problem space
experiments, our method attains a success rate of up to 99%. While securing
high evasion rates, our approach also maintains the original malware function-
ality. In 89% of the cases, the modified malware preserves its original behavior,
thus ensuring its capability to execute its original malicious functions while evad-
ing detection. Overall, the results from our experimental evaluations highlight
the effectiveness and efficiency of our approach, particularly when compared to
state-of-the-art attacks.

The main contributions of this research are summarized below:

– We introduce Position Sensitive - Fast Gradient Sign Method , a novel AML
attack algorithm that targets discrete sequences, which, against RNN mod-
els, proves to be more effective and efficient than state-of-the-art approaches.

– We design two strategies to compute an optimal API call sequence that aims
to evade detection in the problem space, addressing the nondeterminism
between executions.

– We propose a less invasive code-modification strategy that preserves the
original functionality of modified malware samples.

– We present Tarallo, an end-to-end framework that modifies the apparent
dynamic behavior of malware, revealing vulnerabilities in state-of-the-art
RNN-based detection systems. We make Tarallo publicly available to ensure
reproducibility and encourage further research on the topic3.

2 Related Work

Mimicry Attacks. In the original formulation [50], mimicry attacks aimed to
camouflage malicious activities by emulating legitimate goodware behavior. A
follow-up work refined this strategy, enabling to fool Intrusion Detection Systems
(IDSs) that monitor system calls by adding ones that have no effect or swapping
some for equivalent system calls [51]. Nevertheless, mimicry attacks, as well
as the related countermeasures (e.g., [17]), targeted IDSs relying on simpler
anomaly detection techniques (e.g., by comparing recorded behaviors against
known benign ones and modeling behaviors as automata [52,44,46]) than the
one based on ML and DL targeted in this work.

DL-based Behavioral Malware Detection. This section presents a brief dis-
cussion of DL algorithms for malware detection employing dynamically extracted

3 https://github.com/necst/Tarallo

4 Digregorio et al.

API call sequences as features. In particular, we focus on the use of RNNs to
process long sequences of API calls, as those are the targets of the attacks pre-
sented in this paper. We refer the readers interested in a more in-depth analysis
of the topic, including the use of traditional ML as in [49,47,13], to [6].

In [54], the authors presented a feature representation for arguments of API
calls, in contrast with most existing works that focus primarily on API names.
They designed a Deep Neural Network (DNN) architecture tailored to process
these features, which are encoded using a hashing trick method. Samples are ex-
ecuted in a sandbox that records the sequences of API calls. To capture the rela-
tionships between these API calls, the model incorporates gated-Convolutional
Neural Networks (CNNs), batch normalization layers, a bidirectional Long Short-
Term Memory (LSTM) [3], a global max-pooling layer, and a dense layer. This
configuration achieved an accuracy of ≈ 95% and a recall of ≈ 71%.

In [25], the authors introduced a DNN for dynamic malware detection based
on intrinsic features extracted from API call sequences. Similar to [54], each
malware sample is executed in a sandbox, where all the API call sequences are
recorded. However, instead of using arguments to encapsulate the semantic infor-
mation of each API call, their proposed model considers three distinct attributes:
the category, the action, and the operation object associated with it. Let us con-
sider the API RegCreateKeyExW : here, Create is the action, RegKeyEx the op-
eration object, and registry the category. The architecture of the model consists
of embedding layers, multi-layer CNNs, a bidirectional LSTM, and dense layers.
This architecture achieved an accuracy and recall of 97% and 98%, respectively.

Adversarial Machine Learning. Research in AML has focused on inducing
misclassification in ML classifiers at inference time, particularly in the image do-
main [12,28,18]. However, traditional AML attacks for images (e.g., FGSM [18])
cannot be directly applied to malware detectors due to specific problem-space
constraints (i.e., functionality preservation) and the discrete and sequential na-
ture of API call sequences.

There is a growing body of research on perturbing Windows Portable Exe-
cutable (PE) files; in particular, attacks on static features have been extensively
explored in the literature. These attacks involve modifying the headers [41,40]
or the raw bytes of PE files [10,23,45,27]. Fewer works have instead targeted
dynamic and machine learning-based malware detectors [30,22,21,43,42]. While
Ming et al. focused on evading a particular detection strategy based on the
system call dependency graph [30], we tackle a more general and powerful detec-
tion approach that looks at the actual dynamic behaviors (namely, the API call
sequence) as discriminating features.

Most closely related to ours are the works by Rosenberg et al. [43,42], which
propose an adversarial framework for deceiving ML detectors that work on se-
quences of dynamically recorded API calls, including RNNs and feed-forward
DNNs. Furthermore, they included a tool that modifies malware samples to re-
flect the required changes in their dynamic behavior. In contrast to [43], our
experimental evaluation considers state-of-the-art DL-based behavioral malware
detectors. We show that the method from [43] is less effective and efficient against

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 5

these advanced models, while our strategy proves both highly effective and ef-
ficient in evading them. Additionally, Rosenberg et al. [43] assess their attack
effectiveness solely in the feature space, deeming it successful if the adversarial
algorithm can transform a malicious API call sequence into a variant misclas-
sified as benign by the target detector. In contrast, our study adopts a more
complex and realistic approach. An attack is deemed successful if it can alter a
malicious sample in a manner that, upon re-execution, it produces an API call
sequence misclassified as benign by the target model. Our method addresses the
significant challenge of varying API call sequences that result from different exe-
cutions of the same malware sample, an aspect overlooked in [43]. Lastly, in [43]
the authors suggest using a wrapper as proxy code, serving as an intermedi-
ary between the malware and the DLLs executing the API calls. Our method
directly modifies the malware bytecode to intercept API calls. This alteration
of the bytecode itself removes the necessity for an extra proxy layer, making
the attack more realistic and potentially lowering the likelihood of detecting
the modification. Rosenberg et al. also introduced a more efficient black-box at-
tack, necessitating fewer queries to the target model [42]. This method employs a
Generative Adversarial Network [9] to mimic genuine benign API call sequences.
The authors evaluated the efficacy of this attack with varying query budgets.
While it outperforms their earlier method [43] under a limited query budget,
their findings also indicate that a gradient-based attack becomes more effective
with a larger budget. In contrast, our adversarial algorithm not only surpasses
the gradient-based attack from [43] in efficiency and query requirement but also
remains effective even with minimal or no knowledge of the target model.

3 Background & Threat Modeling

Adversarial Malware. Based on the work by Pierazzi et al. [35], we formally
define the notions employed in this paper. Consider a set of executable programs
denoted as E. Let F represent the feature space in which our model operates. We
define g as the feature extraction function that maps an executable to a specific
point within the feature space, i.e., g : E → F . The readers must notice that
g is generally not a surjective function, as it may be generally not possible to
identify an executable corresponding to a certain point in the feature space [18].
Let M represent a machine learning classifier, which accepts as input a point in
the feature space representing a sequence of API calls. M outputs a prediction
from the predefined label set L = {malware, goodware}, i.e., M : F → L. Given
an executable e belonging to the set E and its corresponding representation in
the feature space xe ∈ F , we define the adversarial sample x̂e for the model M
as x̂e ≜ xe+δ where δ ∈ F is the adversarial perturbation, such that M classifies
correctly xe while misclassifies x̂e.

Crafting adversarial samples in the malware problem space presents signifi-
cant challenges. In contrast to computer vision, where attackers aim to introduce
subtle and imperceptible perturbations to images, adversarial malware must be
valid and executable programs. This requirement limits the range of possible

6 Digregorio et al.

points in the feature space that can be considered, as not all points correspond
to valid and executable programs. Furthermore, the original functionality of the
program must be preserved for the attack to be considered successful. This fur-
ther restricts the extent of possible modifications that an attacker can apply. An
attacker can only add extra API calls to the original sequence; in fact, deleting
or modifying existing ones would compromise its original functionality.

Threat Model. We examine two different scenarios based on the attacker’s
knowledge of the target model. In the white-box scenario, the attacker has com-
plete access to its internal parameters. In this case, the model used as the target
in the white-box attack directly serves as an oracle. In the black-box scenario, the
attacker has no access to the target model architecture or parameters. Instead,
the attacker relies on a surrogate oracle, which may have a different structure
than the target detector. The only assumption in our experimental evaluation is
that the target model employs API call sequences as features.

4 Tarallo

The Tarallo framework operates in an end-to-end manner, to modify the appar-
ent dynamic behavior of malware. It comprises three key components, the first
being a Cuckoo sandbox [1] controller that automates the submission of malware
samples and the retrieval of the corresponding reports. The second component
is responsible for computing the adversarial API call sequence and consists of
the Position Sensitive - Fast Gradient Sign Method (PS-FGSM) algorithm and
the two problem space strategies to maximize the evasion probability. Lastly, it
comprises a PE patcher that parses and modifies a PE file to make it reflect the
evasive behavior computed by the second component. Figure 1 depicts Tarallo’s
workflow. To transform a given malware sample into a functioning adversarial
sample, it performs the following steps: 1. It executes the sample multiple times
in a controlled environment (sandbox) and records the dynamic behavior of each
execution as a sequence of API calls. 2. It runs the PS-FGSM to manipulate the
original API call sequence and generate a modified version that can evade the
target machine learning model. 3. It modifies the original malware sample to
alter its apparent dynamic behavior so that it closely resembles the evasive be-
havior produced by the adversarial machine learning attack. 4. It executes the
modified sample multiple times in the sandbox, recording its dynamic behavior.
5. It lastly evaluates the attack success by examining the effect on the target
machine learning model, while also ensuring the preservation of its functionality.

4.1 Position Sensitive - Fast Gradient Sign Method

The main contribution of this work is a novel AML attack designed to target
ML models that rely on discrete and sequential data. We call this attack Posi-
tion Sensitive - Fast Gradient Sign Method as it builds upon the Fast Gradient
Sign Method introduced by Goodfellow et al. [18]. Specific to malware detection,
we employ PS-FGSM against models that employ API call sequences as input

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 7

. . .

API Calls to Inject

PE FILE

Cuckoo Sandbox Interaction

Position Sensitive - Fast
Gradient Sign Method

. . .

Recorded API Call Sequence 1
(Dynamic Behavior)

. . .

Recorded API Call Sequence n
(Dynamic Behavior)

.

.

.

PE PatcherPatched
PE FILE

Functionality Preservation
Evaluation

Figure 1. The workflow of the Tarallo framework.

features. The algorithm relies on an oracle with known architecture and param-
eters. It can either work in a white-box mode, in which the oracle is the target
model, or in a full black-box manner. As a variation of the Fast Gradient Sign
Method [33,18], the algorithm we present in this work relies on the sign of the
inverse Jacobian of the model’s output with respect to its input to minimize the
probability of the sample to be classified as belonging to its real class, in this
case “malware.” As a reminder, the Jacobian matrix represents all the partial
derivatives of a function. Since we are considering the inverse Jacobian, we are
computing the gradients of the model from the output to the input.

The PS-FGSM repetitively selects the best position within a given sub-
sequence of consecutive API calls (henceforth called windows) and adds an extra
API call at that position. The algorithm iteratively attacks windows instead of
whole sequences because the targeted models are most often RNNs which process
one window per time. We take inspiration for the PS-FGSM from the algorithm
originally introduced by Rosenberg et al. [43], significantly improving its effec-
tiveness. In particular, we found a way to explicitly compute the position that
most affects the output of the model at each iteration, significantly augment-
ing the impact of each single injection. The rationale behind choosing a specific
position within the current window — rather than just focusing on the type
of API — is that single API calls cannot be strictly classified as malicious or
benign. Therefore, the impact of injecting an API call may vary significantly
depending on its position within the original sequence. Indeed, some positions
may disrupt “malicious” windows, while others may have little to no effect on
the final classification. Furthermore, as the attacker is only allowed to add API
calls, it intuitively follows that the algorithm must work by displacing a certain
API within a sequence, rather than eliminating it.

In Algorithm 1, which showcases the PS-FGSM algorithm for API sequence-
based malware detectors, ⊥ represents the concatenation operation. In its basic
implementation, the stop condition is triggered either when the oracle is evaded
or when the maximum number of injected API calls is reached. At each iteration,
the algorithm processes a window of API calls of size n, which is constrained by
the accepted input sequence length of the oracle model. Sequences shorter than
n are padded, whereas sequences longer than n are truncated. Moreover, our ap-

8 Digregorio et al.

Algorithm 1 Position Sensitive - Fast Gradient Sign Method
Require: f (target model), x (malicious sequence to perturb), n (window size)
1: procedure AdversarialAttack(f, x, n)
2: xnew ← []
3: r ← 0
4: for window wj of size n in x do
5: while stop condition do
6: Jj ← Jf (wj)[f(wj)]
7: P∗ ← ComputeBestPosition(Jj, r)
8: wj [P

∗]← argmina ||sign(wj [0 : P∗ − 1] ⊥ a ⊥ wj [P
∗ : n− 1])− sign(Jj)||

9: r ← r + 1
10: end while
11: xnew ← xnew ⊥ wj

12: end for
13: return xnew

14: end procedure
15: procedure ComputeBestPosition(Jj, r)
16: if r mod 4 == 0 then
17: norm← ∥Jj∥1
18: else
19: norm← ∥Jj∥−1

20: end if
21: P∗ ← argmax(norm)
22: return P∗

23: end procedure

proach includes a mechanism to shift the last API call from the current window
to the subsequent one each time a new API call is injected. The position where
we inject the additional API call is selected by looking at the norms of the Jaco-
bian matrix. Being API calls discrete entities, these are generally embedded into
multidimensional tensors of order k by the classifier. Hence, to evaluate the im-
pact of each API call, we compute their norms along the second-last dimension of
their embedding (i.e., assuming k is the number of dimensions of the embedding,
we only consider the dthk−1 dimension). In this way, the algorithm will produce
a matrix of norms with one column for each API call. To select the best candi-
date in the window, we then select the position with the greatest smallest norm.
In other words, we collect the smallest norm for each API in that window and
then select the greatest. We have empirically verified that this works generally
better than selecting the position corresponding to the greatest absolute norm.
Nonetheless, selecting the greatest smallest norm may lead the solution to stag-
nate; we combine the two norms by adopting the greatest absolute norm every c
iteration, where c is a small integer (4 in our experiments). Given Ui ∈ Rd×n and
Ui := [u1, . . . , un−1, un] s.t. uj = [1, 1, . . . , 1] iff j = i else uj = [0, 0, . . . , 0],
this process is defined as:

Nw,r =

n∑
i

ℓ1 (Jemb apii) ∗ Ui

Pw,r,∗
1 := arg

n
max

i
(minNw,r

i) ,Pw,r,∗
2 := arg

n
max

i
(maxNw,r

i)

In the above equations, Nw,r is the norm matrix computed for the wth

API call window at the rth iteration. Pw,r,∗
1 and Pw,r,∗

2 both compute the best
position in the wth window at the rth iteration, with Pw,r,∗

1 selecting the one
corresponding to the greatest smallest norm whereas Pw,r,∗

2 selects the position
where the greatest absolute norm is found.

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 9

After determining the optimal position, the PS-FGSM selects the API call
for injection among those that do not disrupt the original functionality of the
program. Moreover, the set is restricted to API calls that are both accurately
tracked by Cuckoo and employed as features by the oracle. We denote the ordered
set of available API calls as A. Adding API calls not belonging to A would not
affect the final classification, as they would be filtered out before classification
in the problem space.

Given a window of API calls w and a best position P∗ with respect to w,
PS-FGSM selects the API call ainj ∈ A as:

ainj = argmin
a∈A

||sign(w [0 : P∗ − 1] ⊥ a ⊥ w [P∗ : n− 1])− sign(J)||

In the above equation, we compute the ℓ1 norm between the sign of the
modified window (w [0 : P∗ − 1] ⊥ a ⊥ w [P∗ : n− 1]) and the Jacobian of the
original one. In other words, we select the API that most closely draws the
modified window in the direction of the gradient, expressed by the Jacobian
matrix J (similarly to [43]). Despite the constraints posed by the limited set of
API calls — a detail frequently overlooked in previous research [30,22,21,43,42]
— Tarallo still manages to evade detection using a particularly small number of
injected API calls, especially when compared to Rosenberg et al. [43].

Dealing with nondeterminism. As a premise for this work, we stated that
state-of-the-art attacks do not address the nondeterminism typical of real-world
malware. This characteristic results in differences among behaviors observed
across multiple executions, which in turn strongly impacts the effectiveness of
the attack in the problem space. Several factors contribute to nondeterminism,
including the system’s state at the time of execution (e.g., available resources
and network status), operating system scheduling combined with hardware and
software multithreading [26], interactions with other executing processes, and
evasion techniques like probabilistic control flow approaches [34] and dormant
periods [8]. These factors affect the API call sequences observed during different
executions of the same malware, a phenomenon that is known in the litera-
ture [37] and we encountered in our experiments. While nondeterminism has
been studied in the context of dynamic analysis, to the best of our knowledge,
this work is the first to address this problem in the context of evading behavioral
malware detectors that rely on API call sequences.

We propose two possible strategies to address this issue: Longest Known Be-
havior (LKB) and Behavior Cascade Optimization (BCO), which maximize the
attack success in case the exhibited behavior differs from the one observed by the
adversary. Both variations build upon the intuition that the success probability
will increase as the confidence score associated with the malicious class decreases.
Therefore, the general PS-FGSM is modified to not interrupt the optimization
process for the current window when this is classified as benign by the oracle.
Instead, the window is optimized until all nA allowed API calls are injected. The
algorithm stores every prediction score obtained after each injection, along with
the partial API call sequence composed so far. After all nA sequences are gen-
erated, the algorithm then selects the one that obtained the lowest score by the
oracle (i.e., the closest to the goodware label 0). The LKB variant runs the same

10 Digregorio et al.

sample b times, obtaining this way up to b different behaviors. It then selects
the behavior that contains the most information, namely the longest sequence
of API calls. It lastly performs the variation of the PS-FGSM. Conversely, the
BCO builds upon the intuition that the probability of success will increase as the
number of behaviors simultaneously considered in the feature space grows: i.e.,
the more behaviors the attacker considers when running the PS-FGSM, the more
successful the attack will be. Specifically, the attacker considers b behaviors col-
lected from b executions of the same sample. They sort them out in descending
order by looking at the classification scores given by the oracle. Then they attack
the most “malicious” sequence and propagate the solution found to all the other
behaviors. Suppose the solution found by the PS-FGSM for the first sequence
is to inject API calls ar before the first aj occurrence and ab before the first
av, so that s1 = |ao|ap|ab|aj |ab|az|av| becomes s∗1 = |ao|ap|ab|ar|aj |ab|az|ab|av|.
Now suppose s2 = |aa|ab|aj |ad| and s3 = |ai|aj |ak|az|av|; before computing s∗2
and s∗3, the solution found for s1 is propagated to the two sequences, obtaining
in this way: s′2 = |aa|ab|ar|aj |ad| and s′3 = |ai|ar|aj |ak|az|ab|av|. The attacker
then computes the solution s′∗2 from s′2 and propagates the results to s∗1 and
s′3. The algorithm repeats this procedure until all the modified sequences are
simultaneously classified as benign by the oracle.

4.2 PE Patcher

Lastly, the PE patcher component is responsible for altering the dynamic be-
havior of malware samples to resemble the adversarial sequence generated by
the PS-FGSM. The PE patcher does not require access to the malware source
code but is able to preserve its functionality. It supports both x86 and x86-64
PEs. The PE patcher identifies the assembly instructions corresponding to calls
to imported APIs through heuristics (e.g., matching call and jump assembly
instruction opcodes). It then modifies the arguments of those instructions to
redirect them to a code snippet that implements the hijacking logic and that
was previously injected into the PE. Indeed, our PE patcher directly modifies
the malware bytecode, in contrast to state-of-the-art solutions that rely on a
wrapper as an intermediary between the malware and the DLLs. This approach
makes the PE patcher arguably stealthier. The PE patcher can selectively choose
which assembly calls to hijack and modify, while leaving other API calls of the
same type unaltered. This level of granularity and flexibility enables to replicate
the desired API call sequences with high precision.

Hijacking Logic.When hijacking many API calls, allocating a separate handler
for each is inefficient. Such an approach would require modifying extensively the
PE, compromising the attack’s stealthiness. Instead, the PE patcher creates
a single, adaptable code segment capable of handling the different injections.
The underlying logic operates following the static directives produced by the
PS-FGSM. These directives specify which API calls to hijack and inject. The
code segment produced by the PE patcher consists of two modules. The first one
is a jump table, which acts as a trampoline for the second module. This second

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 11

module contains the actual code responsible for performing both the injected
and hijacked API calls. Upon hijacking an API call, its assembly call instruction
is modified to point to a specific entry in the jump table. Each entry in this table
sets up the stack with relevant information about the current execution context,
such as the details of the specific API call that has been hijacked. The entire
hijacking logic is placed in an additional section added at the end of the PE.

Functionality Preservation. One of the main goals of the Tarallo framework
is to preserve the functionality of the malware sample while altering its apparent
dynamic behavior. However, formally proving that the modified program behaves
exactly as the original is impossible as it can be reduced to the halting problem.
Instead, Tarallo adopts a dual strategy.

To avoid changes in its functionality, the PE patcher ensures that each API
call performed by the original malware is also executed by the modified one
with the same memory and register state. The values of caller-saved registers
are stored before calling any injected API, to later enable the reconstruction of
the original stack state. In this way, Tarallo ensures that the execution of the
original API call produces the intended output, prevents subsequent injected
API calls from interfering with one another, and, therefore, does not alter the
original functionality. To prevent any disruption in the process flow, the PE
patcher ensures that all injected API calls are performed with valid parameters,
and conform to the guidelines outlined by the Microsoft documentation [29].
The PE patcher achieves this by passing the correct parameters4 via the stack
or registers, adhering to the calling convention specified by the executable. When
the API call needs a pointer as an argument, a pointer within the section added
by the PE patcher is provided. If the argument is used only in read mode, the
PE patcher fills the location pointed to by that pointer, with null characters
or a random string of the required size [29]. Conversely, if the pointer is used
in write mode, a pointer to a sufficiently large area of the section, not used for
other operations, is provided. Additionally, before executing any injected API
call, the stack is aligned to avoid potential issues that could arise from SIMD
(Single Instruction, Multiple Data) operations [15].

To demonstrate the preservation of functionality between the original and
modified versions, the PE patcher employs an empirical approach. The frame-
work runs both the original and modified versions, recording their API call
sequences. It then compares these sequences to determine if the modified ver-
sion maintains the original behavior. If executed under the same conditions, the
sequences should match, except for injected API calls in the modified version.
However, replicating identical execution conditions is not always feasible due to
nondeterminism. To address this issue, each malware sample is executed multi-
ple times, both before and after the attack. From each run, Tarallo extracts a set
of the executed API calls and their parameters. It then computes an invariant
that represents the pre-modification behavior. This is done by computing inter-
sections among sets of non-empty API call sequences from the original malware

4 The list of parameters can be found at: https://github.com/necst/Tarallo/blob/main/
ChainFramework/config/config api args.py

12 Digregorio et al.

executions. The invariant serves as a reference point to compare against post-
modification behaviors, which are derived through a set union operation of API
call sequences from different executions of the modified malware. If the invariant
(i.e., the original behavior) is a subset of the post-modification behavior, then
Tarallo preserves the program functionality.

5 Experiments

The experiments aim to establish whether the PS-FGSM is effective in deceiving
state-of-the-art detectors [25,54] both in the feature and problem spaces, whether
the resulting adversarial malware samples preserve their original functionality,
and to measure the number of injections required to evade detection (i.e. attack
overhead). The feature space evaluation quantifies the attack ability to defeat
only the DL classifier, which means that the object of the evaluation is solely the
API call sequence modified by the PS-FGSM. On the other hand, the problem
space evaluation concerns the ability to modify a malware sample that, upon re-
execution, will display a behavior able to evade the target DL classifier. In brief,
the following experimental evaluation aims to answer four research questions:

RQ1. Is the original functionality of the malware sample preserved after applying the
changes to make it evasive? (Functionality preservation)

RQ2. Can PS-FGSM generate API call sequences from previously detected malware that
can evade state-of-the-art detectors? (Feature space experiment).

RQ3. Can PS-FGSM combined with either the LKB or the BCO effectively fool a detec-
tion system in an end-to-end manner? (White- and black-box problem space experiments).

RQ4. Does the attack transfer to different RNN models employing a different encoding
for the API call sequences? (Black-box problem space experiment).

Sandbox Setup. We employ 35 Oracle VirtualBox (v5.1.38) virtual machines
running Windows 7. Each sample is run with a time limit of 300 seconds [36,16],
a duration greater than in [43,42,19]. We disabled the Cuckoo options for sim-
ulating random human interactions to ensure a controlled analysis environment
and enabled deterministic human interactions, like button-clicking operations, to
manage software requiring human interactions before exhibiting their behavior.
However, these options cannot encompass all scenarios, leading to software that
exhibits limited behaviors in the sandbox environments. This is a recognized
challenge in dynamic analysis, part of the Reverse Turing Test[2].

Datasets. Throughout the experiments, we employ different datasets. The first
dataset, presented in [25], includes 2000 malware samples first observed in 2019
and 2000 benign executables. The malware was sourced from VirusShare [14],
and the benign samples were obtained from popular free software sources like
Softonic, SourceForge, and Portableapps. Another dataset, referenced in [54],
encompasses the features extracted from 15931 malicious samples detected in
April 2017 and an additional 11856 samples from May 2017. This dataset also
contains 11417 benign samples gathered in April 2017 and a further 21983 sam-
ples collected in May 2017. We also employ Dataset n.375 from VirusShare,

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 13

Figure 2. Box plot of the overhead distribution for the feature-level attack against Li
et al. [25], using both the proposed PS-FGSM and Rosenberg et al. [43].

comprising 5474 PE files. Of these, 4917 are 32-bit PEs, and 557 are x86-64 PE
files. Finally, Dataset n.290 from VirusShare is used, consisting of 7651 PE files.
Among these, 7636 are 32-bit and 15 are 64-bit, all collected in May 2017.

Functionality Preservation (RQ1). We executed the original and the mod-
ified malware five times in the Cuckoo sandbox. Comparing their behaviors,
we observed functionality preservation in 89% of the cases, slightly lower than
Rosenberg et al. [43] where all modified malware maintain their functionality.
However, 89% is a lower bound. Some differences might result from nondeter-
minism rather than actual disruptions in functionality, a factor not treated by
previous works that do not execute the original and modified malware multiple
times. Additionally, Tarallo modifies the malware’s bytecode directly instead of
using wrappers, increasing realism but also implementation complexity.

5.1 Feature Space Experiment (RQ2)

The feature space experiment evaluates the performance of the PS-FGSM against
both state-of-the-art and random algorithms in deceiving the malware detector
presented by Li et al. [25]. This evaluation is conducted in a white-box setting,
where both the oracle and the target model are the same as Li et al. [25]. Each
adversarial sequence is generated from a malicious API call sequence extracted
from the execution of a real malware sample. Each test is deemed successful
if the adversarial sequence is misclassified as benign by the target detector.
Additionally, we measure the number of injected API calls required to achieve
misclassification. We refer to this number as the “attack overhead,” and we use
this as an indicator of the attack efficiency.

Evaluation Result. In this experiment, we employ the VirusShare dataset
n.375 and the one used in [25]. The first one is the closest temporally to the one
used to train the oracle. Using datasets from different time periods would result
in a weak performance by the target detector, which would in turn introduce a
bias in favor of the adversarial attack success. We also filter out all the malware
samples not detected by the target model, ending up with 2708 malware samples

14 Digregorio et al.

Table 1. Effectiveness scores for the feature-level attack against Li et al. [25] using
the proposed PS-FGSM, Rosenberg et al.[43], and a random approach, evaluated with
both the VirusShare Dataset No. 375 and the Li et al. Dataset [25].

VirusShare Dataset n.375 Li et al. Dataset [25]

Overhead limit 20% 50% 70% 20% 50% 70%

PS-FGSM 0.9742 0.9841 0.9863 0.9815 0.9920 0.9925
Rosenberg et al.[43] 0.6492 0.8556 0.9261 0.5696 0.8178 0.9044
Random Approach 0.2670 0.3674 0.7020 0.2638 0.3634 0.7192

from the VirusShare dataset and 2000 from the one in [25]. In Table 1, we
present the results obtained with our PS-FGSM, the approach devised in [43],
and an attack consisting in randomly injecting API calls. Both PS-FGSM and the
approach in [43] demonstrate almost 100% effectiveness when not imposing strict
limits on the attack overhead. However, when we consider a more reasonable
attack overhead, the PS-FGSM significantly outperforms the approach in [43].
The box plot in Figure 2 provides a visual representation of the attack overhead
by PS-FGSM and the approach in [43]. In the VirusShare dataset, the average
overhead for PS-FGSM is 27, indicating that, on average, we have to inject only
27 additional API calls to evade detection. In contrast, the approach in [43] has
an average overhead of 202. The same happens for dataset in [25], where the
average overhead for the PS-FGSM is 30, while for [43] is 252. Furthermore,
when looking at the median overhead, we observe that half of the evaluated
samples require 12 or fewer API calls to achieve misclassification when employing
the PS-FGSM. In contrast, the median overhead for the approach in [43] is 110,
indicating that the majority of samples require a much higher number of injected
API calls. Similarly, the median overhead of PS-FGSM is 13 for the dataset
in [25], while the approach in [43] has an average overhead of 165.

5.2 White-Box Problem Space Experiment (RQ3)

This experiment shows the capability of Tarallo to produce a modified malware
with an evasive dynamic behavior. These settings present additional challenges
compared to the feature space attack; e.g., the solution computed in the feature
space may include calls to API that are not imported by the original malware.
Moreover, it explicitly addresses the nondeterminism in the execution of mal-
ware samples in a sandbox, which results in different API call sequences during
different executions of the same malware sample, a problem not addressed in
previous works such as [43]. To explicitly tackle the complexity of the problem
space settings, we employ the LKB and the BCO strategies, both based on the
PS-FGSM. We consider the attack successful if and only if re-executing the ma-
licious sample produces an API call sequence that is misclassified as benign by
the target model. In the white-box tests, we use the malware detector described
by Li et al. in [25] as both the oracle and the target model.

Evaluation Result. The VirusShare dataset n.375 is employed in this experi-
ment; in particular, we keep only executables classified as malicious by the target

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 15

Table 2. Longest Known Behavior (LKB) and Behavior Cascade Optimization (BCO)
white-box attacks overhead and effectiveness in problem space against Li et al. [25].

Overhead Limit 5% 20% 120%

Arsenal size (2%, 3%] (2%, 6%] Any (2%, 3%] (2%, 6%] Any Any

LKB

Total Executions 73 165 416 115 267 800 1414
Evasive Executions 72 129 249 98 189 455 806
Avg Injected APIs ≈ 19 ≈ 19 ≈ 22 ≈ 56 ≈ 56 ≈ 74 ≈ 406
Attack Effectiveness 0.9863 0.7818 0.5986 0.8522 0.7079 0.5688 0.5700

BCO

Total Executions 90 219 723 100 278 1120 1571
Evasive Executions 80 196 629 90 252 837 1018
Avg Injected APIs ≈ 15 ≈ 17 ≈ 18 ≈ 25 ≈ 40 ≈ 56 ≈ 219
Attack Effectiveness 0.8889 0.8950 0.8700 0.9000 0.9065 0.7473 0.6480

model. Moreover, we exclude all malware with API call sequences shorter than
a threshold set to 15 APIs, ensuring that only malware with significant recorded
dynamic behavior is considered for modification. For each malware sample, we
define an “arsenal” of API calls available for injection, which comprises the inter-
section of the APIs imported by the malware, the APIs considered safe to inject
without disrupting its normal execution, and the APIs recorded by Cuckoo. The
results are evaluated using various arsenal size ranges to measure their impact
on the attack performance. To evaluate the attack’s effectiveness, we run each
malware sample five times in Cuckoo. Then, after applying the LKB and BCO
strategies, each modified sample is executed five more times per strategy. The
resulting API call sequences are submitted for evaluation. In Table 2, we present
the results of this evaluation, detailing different arsenal ranges and overhead
limits. The arsenal ranges are expressed as the percentage of the total number
of API calls recorded by Cuckoo, which is just over 300. For example, a 2% value
corresponds to approximately 6 API calls. We compute the attack effectiveness
as EvasiveExecutions/TotalExecutions.

The problem space constraints have an impact on the attack effectiveness
to some extent. However, despite the complex settings, the modified malware
still manages to exhibit an evasive apparent dynamic behavior that successfully
deceives the white-box target model. For the LKB strategy, we find that the
attack effectiveness score decreases as the arsenal size and the overhead limit
increase. A larger arsenal size implies a greater variety of API calls available to
the malware, which implies that the problem space is broader and, therefore,
more challenging from the attacker’s perspective, as it amplifies the impact of
nondeterminism on the attack performance. As a result, when the malware is re-
executed post-attack, the resulting API call sequence may significantly deviate
from the original, including differences in API calls used. Moreover, increased
overhead generally results in a more fragile attack. Specifically, a high number of
injected API calls has an increased chance that variations in the sequence of API
calls due to nondeterminism will shift these injections, rendering them ineffec-
tive. The BCO strategy shows a more stable attack effectiveness than the LKB
strategy, underscoring its superior ability to navigate the breadth of the prob-
lem space and handle variations in executed behaviors due to nondeterminism.
Moreover, the BCO strategy generally outperforms the LKB strategy, support-

16 Digregorio et al.

ing the soundness of its underlying rationale. The only instance where the LKB
strategy surpasses BCO is in scenarios with the most limited overhead and ar-
senal size. This is expected as it is the scenario with a narrower problem space,
where nondeterminism has minimal impact. This observation further reinforces
the link between the BCO strategy’s effectiveness and nondeterminism.

Additionally, we analyze the ability of the BCO and LKB strategies to gen-
erate adversarial API call sequences in a constrained environment. We use a
subset of the VirusShare dataset no. 375, limiting to a maximum of 800 injected
API calls per window and an overall overhead of 120%. Interestingly, the BCO
and LKB strategies are successful with different malware samples. In our tests,
only about 15% of the samples with an adversarial sequence are targeted by
both strategies. Furthermore, the malware samples effectively attacked by the
BCO strategy have an average pre-attack sequence length that is roughly 25%
shorter than those targeted by the LKB strategy. The LKB strategy succeeds
with the most informative (i.e., longest) sequence across different executions of
the same malware sample, showing greater effectiveness in creating adversarial
sequences with longer available sequences. Conversely, the BCO strategy derives
information from all executions of a sample. Consequently, shorter sequences in
each run, being less informative, fit within the set overhead limit, making BCO
effective in these cases. Notably, unlike the LKB strategy, the BCO strategy’s
suggested injections are meant for different executions of the same sample, al-
lowing for higher overhead limits compared to LKB. With increased overhead,
BCO can attack more samples, including some previously only vulnerable to
LKB, although these do not completely overlap.

5.3 Black-Box Problem Space Experiment (RQ3, RQ4)

The black-box, problem space test follows a procedure similar to the white-box
one, with a key difference. In this test, the final API call sequences extracted
from the modified malware are not evaluated against the model by Li et al. [25],
which serves as the oracle for the PS-FGSM attack. Instead, these sequences
are tested against a different model, unknown to the attacker. The target model
for this black-box test is the DL framework proposed by Zhang et al. [54]. This
model presents a significant challenge as it takes into account the arguments of
API calls, which are not explicitly manipulated by the AML attack. Instead, the
arguments for the injected API calls are defined by the PE patcher to be valid
and ensure they do not disrupt the malware’s normal execution.

Evaluation Result. We train the black-box model using the dataset and code
provided in [54]. We follow the recommendation from the original work to set the
prediction threshold corresponding to a FPR of 0.1%. However, we encountered
challenges with this configuration as the model is unable to accurately identify
the original malware samples from both dataset n.375 and dataset n.290 from
VirusShare. This suggests that the chosen threshold and configuration may not
be suitable for our specific purposes and dataset. Hence, we select threshold
values that correspond to high TPRs, rather than focusing on a specific FPR.

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 17

Table 3. Effectiveness scores of Longest Known Behavior (LKB) and Behavior Cas-
cade Optimization (BCO) approaches in black-box, problem space settings against
Zhang et al.[54]—evaluated across different prediction thresholds, True Positive Rate
(TPR), and False Positive Rate (FPR)—using the model by Li et al.[25] as an oracle.

Threshold TPR FPR
Available
Executions

Evading
Executions

Attack Effectiveness

LKB BCO LKB BCO LKB BCO

0.9683 0.992 0.325 309 161 154 82 0.4984 0.5093
0.9776 0.989 0.300 263 146 130 71 0.4943 0.4863
0.9868 0.986 0.275 225 131 115 75 0.5111 0.5725
0.9951 0.978 0.225 162 86 79 51 0.4877 0.5930
0.9981 0.971 0.178 141 82 69 52 0.4894 0.6341
0.9988 0.968 0.150 132 68 67 39 0.5076 0.5735
0.9996 0.958 0.100 115 57 54 33 0.4696 0.5789

Although this strategy results in higher FPRs, it allows us to assess the effec-
tiveness of the Tarallo framework in fooling robust machine learning systems. By
testing our method with different threshold values, we can demonstrate how this
parameter influences the effectiveness of our attack and provide a comprehen-
sive validation of the experimental evaluation. In our tests, we run the original
malware samples from the VirusShare dataset n.375 through the Cuckoo sand-
box, recording their API call sequences. We repeat this process five times to
collect a sufficient number of executions. For each threshold value considered
during the test, we select only the malware samples that are classified as ma-
licious by the black-box model in all the executions. We attack each sample
with both the LKB and BCO attack strategies and then run the modified ver-
sions of these malware executables through the Cuckoo sandbox five times for
each strategy, recording their evading API call sequences. The results of these
experiments are summarized in Table 3. The attack effectiveness is instead com-
puted as EvadingExecutions/TotalExecutions. Restricting the target model
to a lower FPR —though still above the value reported in the original work—
by increasing the classification threshold, leads to fewer correctly classified mal-
ware samples (i.e., a lower TPR), particularly those the model is most confident
about. This makes attacks on these samples harder for both the LKB and BCO,
reducing the effectiveness score compared to other threshold settings. Lowering
the threshold results in an increase in the FPR, which may be less realistic,
but it also enhances the TPR. This improvement boosts the model’s malware
detection capabilities, more accurately mirroring real-world conditions. Under
these conditions, both attacks tend to exhibit improved performance. However,
when we further increase both the TPR and the FPR, the attack effectiveness
score starts to decline again. This decrease occurs because the model begins to
incorrectly identify a large number of benign behaviors as malicious, leading to
a misclassification of the injection in the original API call sequence as harmful.
The tests underscore the need to balance TPR and FPR in detection system de-
sign, requiring careful domain-specific consideration to optimize accuracy while
reducing evasion attack risks. Additionally, the consistently better performance
of the BCO strategy confirms that considering multiple sequences during the
attack results in more resilient and general adversarial sequences.

18 Digregorio et al.

6 Conclusions

In this paper, we introduced Tarallo, an end-to-end framework designed to mod-
ify the apparent dynamic behavior of malware to deceive ML detectors that
employ API call sequences as features. Our first major contribution is a novel
AML attack that targets discrete and sequential data. Moreover, we explicitly
addressed the problem of nondeterministic execution in a sandbox, which makes
the design of problem space attacks particularly challenging. Lastly, we intro-
duced a new approach for modifying the run-time behavior of malicious software
that does not require access to the source code. The preliminary experimental
evaluation in a sandboxed environment and against two RNN-based malware
detectors, showed that our novel AML algorithm, namely the PS-FGSM, out-
performs current state-of-the-art algorithms in terms of both effectiveness and
efficiency. In both feature and problem spaces, our algorithm achieves up to
99% effectiveness, while also minimizing overhead as measured by the number
of injected APIs. Although we showed that obfuscating the behavior of exist-
ing malware is a nontrivial problem and, therefore, that current antimalware
solutions are very robust, we also demonstrated that such attacks are in fact
possible.

Future work will focus on assessing the effectiveness of Tarallo against dif-
ferent malware detectors, especially those not based on RNN. Moreover, we will
explore methodologies that allow defenders to remove non-operational APIs from
API call sequences, enhancing the overall performance of the detection systems.
We also intend to employ the PS-FGSM to build an adversarial training module
to strengthen state-of-the-art DL-based detectors.

Acknowledgements This study was carried out within the MICS (Made in Italy
– Circular and Sustainable) Extended Partnership and received funding from Next-
Generation EU (Italian PNRR –M4 C2, Invest 1.3 – D.D. 1551.11-10-2022, PE00000004).
CUPMICS D43C22003120001. Mario D’Onghia acknowledges support from TIM S.p.A.
through the PhD scholarship.

References

1. Cuckoo (2024), https://github.com/cuckoosandbox/cuckoo
2. Afianian, A., Niksefat, S., Sadeghiyan, B., Baptiste, D.: Malware dynamic anal-

ysis evasion techniques: A survey. ACM Comput. Surv. 52(6) (nov 2019).
https://doi.org/10.1145/3365001, https://doi.org/10.1145/3365001

3. Agrawal, R., Stokes, J.W., Marinescu, M., Selvaraj, K.: Neural sequential malware
detection with parameters. In: 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). pp. 2656–2660. IEEE (2018)

4. Anderson, H.S., Roth, P.: Ember: an open dataset for training static pe malware
machine learning models. arXiv preprint arXiv:1804.04637 (2018)

5. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
Drebin: Effective and explainable detection of android malware in your pocket. In:
Ndss. vol. 14, pp. 23–26 (2014)

6. Berman, D.S., Buczak, A.L., Chavis, J.S., Corbett, C.L.: A survey of deep learning
methods for cyber security. Information 10(4), 122 (2019)

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 19

7. Catak, F.O., Yazı, A.F., Elezaj, O., Ahmed, J.: Deep learning based sequential
model for malware analysis using windows exe api calls. PeerJ Computer Science
6, e285 (2020)

8. Comparetti, P.M., Salvaneschi, G., Kirda, E., Kolbitsch, C., Kruegel, C., Zanero, S.:
Identifying dormant functionality in malware programs. In: 2010 IEEE Symposium
on Security and Privacy. pp. 61–76. IEEE (2010)

9. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath,
A.A.: Generative adversarial networks: An overview. IEEE signal processing mag-
azine 35(1), 53–65 (2018)

10. D’Onghia, M., Di Cesare, F., Gallo, L., Carminati, M., Polino, M., Zanero, S.:
Lookin’out my backdoor! investigating backdooring attacks against dl-driven mal-
ware detectors. In: Proceedings of the 16th ACM Workshop on Artificial Intelli-
gence and Security. pp. 209–220 (2023)

11. D’Onghia, M., Salvadore, M., Nespoli, B.M., Carminati, M., Polino, M., Zanero,
S.: Aṕıcula: Static detection of api calls in generic streams of bytes. Computers &
Security 119, 102775 (2022)

12. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A.,
Kohno, T., Song, D.: Robust physical-world attacks on deep learning visual clas-
sification. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1625–1634 (2018)

13. Fang, Y., Yu, B., Tang, Y., Liu, L., Lu, Z., Wang, Y., Yang, Q.: A new malware
classification approach based on malware dynamic analysis. In: Information Se-
curity and Privacy: 22nd Australasian Conference, ACISP 2017, Auckland, New
Zealand, July 3–5, 2017, Proceedings, Part II 22. pp. 173–189. Springer (2017)

14. Forensics, C.: Virusshare (2023), http://virusshare.com/
15. Furht, B. (ed.): SIMD (Single Instruction Multiple Data Processing), pp. 817–819.

Springer US, Boston, MA (2008). https://doi.org/10.1007/978−0−387−78414−
4220, https : //doi.org/10.1007/978− 0− 387− 78414− 4220

16. Galloro, N., Polino, M., Carminati, M., Continella, A., Zanero, S.: A systematical
and longitudinal study of evasive behaviors in windows malware. Computers &
Security 113, 102550 (2022)

17. Giffin, J.T., Jha, S., Miller, B.P.: Automated discovery of mimicry attacks. In:
Recent Advances in Intrusion Detection: 9th International Symposium, RAID 2006
Hamburg, Germany, September 20-22, 2006 Proceedings 9. pp. 41–60. Springer
(2006)

18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

19. Hariom, Handa, A., Kumar, N., Kumar Shukla, S.: Adversaries strike hard: Ad-
versarial attacks against malware classifiers using dynamic api calls as features. In:
Cyber Security Cryptography and Machine Learning: 5th International Sympo-
sium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceedings 5. pp. 20–37.
Springer (2021)

20. Hassen, M., Carvalho, M.M., Chan, P.K.: Malware classification using static analy-
sis based features. In: 2017 IEEE Symposium Series on Computational Intelligence
(SSCI). pp. 1–7. IEEE (2017)

21. Hu, W., Tan, Y.: Black-box attacks against rnn based malware detection algo-
rithms. arXiv preprint arXiv:1705.08131 (2017)

22. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on gan. In: Data Mining and Big Data: 7th International Conference, DMBD
2022, Beijing, China, November 21–24, 2022, Proceedings, Part II. pp. 409–423.
Springer (2023)

20 Digregorio et al.

23. Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., Roli,
F.: Adversarial malware binaries: Evading deep learning for malware detection in
executables. In: 2018 26th European signal processing conference (EUSIPCO). pp.
533–537. IEEE (2018)

24. Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B., Keshet, J.: Deceiv-
ing end-to-end deep learning malware detectors using adversarial examples. arXiv
preprint arXiv:1802.04528 (2018)

25. Li, C., Lv, Q., Li, N., Wang, Y., Sun, D., Qiao, Y.: A novel deep framework for
dynamic malware detection based on api sequence intrinsic features. Computers &
Security 116, 102686 (2022)

26. Liu, T., Curtsinger, C., Berger, E.D.: Dthreads: efficient deterministic multithread-
ing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. pp. 327–336 (2011)

27. Lucas, K., Sharif, M., Bauer, L., Reiter, M.K., Shintre, S.: Malware makeover:
Breaking ml-based static analysis by modifying executable bytes. In: Proceedings
of the 2021 ACM Asia Conference on Computer and Communications Security.
pp. 744–758 (2021)

28. Machado, G.R., Silva, E., Goldschmidt, R.R.: Adversarial machine learning in im-
age classification: A survey toward the defender’s perspective. ACM Computing
Surveys (CSUR) 55(1), 1–38 (2021)

29. Microsoft: Programming reference for the win32 api (2024),
https://learn.microsoft.com/en-us/windows/win32/api/

30. Ming, J., Xin, Z., Lan, P., Wu, D., Liu, P., Mao, B.: Impeding behavior-based
malware analysis via replacement attacks to malware specifications. Journal of
Computer Virology and Hacking Techniques 13, 193–207 (2017)

31. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-third annual computer security applications conference (ACSAC 2007).
pp. 421–430. IEEE (2007)

32. Or-Meir, O., Nissim, N., Elovici, Y., Rokach, L.: Dynamic malware analysis in the
modern era—a state of the art survey. ACM Computing Surveys (CSUR) 52(5),
1–48 (2019)

33. Papernot, N., McDaniel, P., Swami, A., Harang, R.: Crafting adversarial input
sequences for recurrent neural networks. In: MILCOM 2016-2016 IEEE Military
Communications Conference. pp. 49–54. IEEE (2016)

34. Pawlowski, A., Contag, M., Holz, T.: Probfuscation: an obfuscation approach using
probabilistic control flows. In: Detection of Intrusions and Malware, and Vulner-
ability Assessment: 13th International Conference, DIMVA 2016, San Sebastián,
Spain, July 7-8, 2016, Proceedings 13. pp. 165–185. Springer (2016)

35. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of
adversarial ml attacks in the problem space. In: 2020 IEEE symposium on security
and privacy (SP). pp. 1332–1349. IEEE (2020)

36. Polino, M., Continella, A., Mariani, S., D’Alessio, S., Fontana, L., Gritti, F.,
Zanero, S.: Measuring and defeating anti-instrumentation-equipped malware. In:
Detection of Intrusions and Malware, and Vulnerability Assessment: 14th Interna-
tional Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14.
pp. 73–96. Springer (2017)

37. Polino, M., Scorti, A., Maggi, F., Zanero, S.: Jackdaw: Towards automatic reverse
engineering of large datasets of binaries. In: Detection of Intrusions and Malware,
and Vulnerability Assessment: 12th International Conference, DIMVA 2015, Milan,
Italy, July 9-10, 2015, Proceedings 12. pp. 121–143. Springer (2015)

Tarallo: Evading Behavioral Malware Detectors in the Problem Space 21

38. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.K.:
Malware detection by eating a whole exe. In: Workshops at the thirty-second AAAI
conference on artificial intelligence (2018)

39. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware be-
havior using machine learning. Journal of computer security 19(4), 639–668 (2011)

40. Rosenberg, I., Meir, S.: Bypassing ngav for fun and pro t (2020)
41. Rosenberg, I., Meir, S., Berrebi, J., Gordon, I., Sicard, G., David, E.O.: Generating

end-to-end adversarial examples for malware classifiers using explainability. In:
2020 international joint conference on neural networks (IJCNN). pp. 1–10. IEEE
(2020)

42. Rosenberg, I., Shabtai, A., Elovici, Y., Rokach, L.: Query-efficient black-box attack
against sequence-based malware classifiers. In: Annual Computer Security Appli-
cations Conference. pp. 611–626 (2020)

43. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end
attack against state of the art api call based malware classifiers. In: Research
in Attacks, Intrusions, and Defenses: 21st International Symposium, RAID 2018,
Heraklion, Crete, Greece, September 10-12, 2018, Proceedings 21. pp. 490–510.
Springer (2018)

44. Somayaji, A., Forrest, S.: Automated response using {System-Call} delay. In: 9th
USENIX security symposium (USENIX security 00) (2000)

45. Suciu, O., Coull, S.E., Johns, J.: Exploring adversarial examples in malware de-
tection. In: 2019 IEEE Security and Privacy Workshops (SPW). IEEE (2019)

46. Tan, K., Maxion, R.: ”why 6?” defining the operational limits of stide, an anomaly-
based intrusion detector. In: Proceedings 2002 IEEE Symposium on Security and
Privacy. pp. 188–201 (2002). https://doi.org/10.1109/SECPRI.2002.1004371

47. Tian, R., Islam, R., Batten, L., Versteeg, S.: Differentiating malware from clean-
ware using behavioural analysis. In: 2010 5th international conference on malicious
and unwanted software. pp. 23–30. Ieee (2010)

48. Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning techniques for mal-
ware analysis. Computers & Security 81, 123–147 (2019)

49. Uppal, D., Sinha, R., Mehra, V., Jain, V.: Malware detection and classification
based on extraction of api sequences. In: 2014 International conference on advances
in computing, communications and informatics (ICACCI). IEEE (2014)

50. Wagner, D., Dean, R.: Intrusion detection via static analysis. In: Proceedings 2001
IEEE Symposium on Security and Privacy. S&P 2001. pp. 156–168. IEEE (2000)

51. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security. pp. 255–264 (2002)

52. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
Alternative data models. In: Proceedings of the 1999 IEEE symposium on security
and privacy (Cat. No. 99CB36344). pp. 133–145. IEEE (1999)

53. You, I., Yim, K.: Malware obfuscation techniques: A brief survey. In: 2010 In-
ternational Conference on Broadband, Wireless Computing, Communication and
Applications. pp. 297–300 (2010). https://doi.org/10.1109/BWCCA.2010.85

54. Zhang, Z., Qi, P., Wang, W.: Dynamic malware analysis with feature engineering
and feature learning. In: Proceedings of the AAAI conference on artificial intelli-
gence. vol. 34, pp. 1210–1217 (2020)

