
ar
X

iv
:2

50
6.

02
15

6v
2

 [
cs

.C
R

]
 1

6
Ju

n
20

25

Mitigating Data Poisoning Attacks to Local Differential Privacy
Xiaolin Li

Purdue University

West Lafayette, IN, USA

li4955@purdue.edu

Ninghui Li

Purdue University

West Lafayette, IN, USA

ninghui@purdue.edu

Boyang Wang

The University of Cincinnati

Cincinnati, OH, USA

boyang.wang@uc.edu

Wenhai Sun

Purdue University

West Lafayette, IN, USA

whsun@purdue.edu

Abstract
The distributed nature of local differential privacy (LDP) invites

data poisoning attacks and poses unforeseen threats to the un-

derlying LDP-supported applications. In this paper, we propose a

comprehensive mitigation framework for popular frequency estima-

tion, which contains a suite of novel defenses, including malicious

user detection, attack pattern recognition, and damaged utility re-

covery. In addition to existing attacks, we explore new adaptive

adversarial activities for our mitigation design. For detection, we

present a new method to precisely identify bogus reports and thus

LDP aggregation can be performed over the “clean” data. When

the attack behavior becomes stealthy and direct filtering out ma-

licious users is difficult, we further propose a detection that can

effectively recognize hidden adversarial patterns, thus facilitating

the decision-making of service providers. These detection meth-

ods require no additional data and attack information and incur

minimal computational cost. Our experiment demonstrates their

excellent performance and substantial improvement over previ-

ous work in various settings. In addition, we conduct an empirical

analysis of LDP post-processing for corrupted data recovery and

propose a new post-processing method, through which we reveal

new insights into protocol recommendations in practice and key

design principles for future research.

1 Introduction
Local differential privacy is a promising privacy-enhancing tool [8,

9, 16, 22, 23, 28] and widely used in many applications [11, 18, 20,

24]. Recent studies show that LDP is vulnerable to data poisoning

attacks, i.e., its results can be manipulated by a small portion of

malicious local users [5, 6, 14, 15, 21, 27]. This emerging threat urges

people to rethink the security implications of LDP and highlights

the pressing need for effective defense for vulnerable LDP protocols.

The existing research centered on attack exploration and under-

standing of adversarial behavior, while little attention has been paid

to a systematic study of countermeasures. In this work, we focus

on mitigating data poisoning attacks on state-of-the-art categorical

frequency oracles (CFOs) for frequency estimation [6, 13, 23]. In

the literature, the detection methods were briefly discussed supple-

mentary to the main effort of attack discovery [5] and suffer from

many limitations. For instance, in the state-of-the-art maximal gain

attack (MGA) [5], the attackers set the target item indexes to 1 in

This paper was accepted by ACM CCS 2025 (https://doi.org/10.1145/3719027.3744839).

their reports to boost the corresponding frequencies. Meanwhile,

they also set a fixed number of non-target indexes to masquerade as

benign users. Despite being intuitive, such a fixed number may leak

attack patterns. Therefore, a practical detection should consider

stealthier attacks that can adaptively set non-target indexes (see

Section 3.2). In addition, the existing detection methods often re-

quire extra knowledge and incur non-negligible false positives and

time costs. On the other hand, post-processing as a utility boosting

method for LDP was also adapted to tackle post-attack data recov-

ery [5, 12, 19]. However, there is a lack of investigations on their

comparative performance and understanding of the relationship

between the for-attack methods and those for no-attack settings,

which is crucial for attack-aware post-processing design. In this

paper, we want to answer the following research questions to pro-

vide guidance in developing a reliable and informed mitigation

framework that is adaptive to various challenging attack scenarios.

RQ-1. Can the attacker go beyond the state-of-the-art MGA [5]
and launch a more adaptive attack as mentioned above for elevated
stealthiness? MGA is an intuitive adversarial strategy. A discussion

on more advanced attack behaviors is paramount for us to under-

stand the attacker’s capabilities and build a meaningful foundation

for better defense.

RQ-2. Can we accurately and efficiently identify malicious users?
The current fake user detection targets MGA only with high false

positives [5]. It also incurs significant computational overhead,

which is not friendly to time-sensitive applications.

RQ-3. Can we still effectively detect attack behaviors without ad-
ditional data and attack knowledge when identifying bogus reports is
challenging? Fake user detection is not always possible against adap-
tive, stealthy attacks. It is important to capture abnormal behavior

with minimal cost for rapid and informed decision-making.

RQ-4. Given positive results from the detections mentioned in RQ-
2 and RQ-3, can we recover the corrupted data utility? How good
are the current post-processing methods for attack suppression and
utility boosting? Prior work studied the attack [5, 19] and non-attack
[26] settings independently. Discussing them with comparative

analyses helps us understand their respective enabling components

and interpret their performance for practical recommendations and

new designs in the future.

In this paper, we study defenses against advanced data poisoning

attacks on state-of-the-art CFOs protocols, i.e., GRR [13], OUE [23],

OLH [23] and HST [6]. We investigate extending existing attacks to

https://arxiv.org/abs/2506.02156v2

new LDP settings and study the potentials to achieve more hidden

attack behaviors. We propose a new metric to effectively measure

the attack efficacy across various LDP protocols and data settings.

Based on a realistic set of attack variants, we propose amitigation

framework consisting of novel attack detections and attack-resilient

post-processing methods for data recovery. In particular, we present

a new differential statistical anomaly detection to find fake LDP

participants controlled by the attacker. The method leverages the

abnormal patterns of bogus reports to identify malicious users. Our

experiment shows a substantial performance improvement com-

pared to the prior work [5] (e.g., about 0.8 versus 0.3 for 𝐹1 scores

in most cases for MGA) while enabling fake user identification in

an adaptive MGA setting for the first time. To respond to the chal-

lenges of detecting bogus reports with our new attack strategy, we

propose an abnormal statistics detection by using the inherent LDP

characteristics to statistically differentiate the attack and non-attack

scenarios. The experiment reports a detection accuracy of 100%

in almost all tested settings. We consider our detection methods

zero-shot since they only depend on known data knowledge and

are agnostic to attack details. In addition, we significantly reduce

the time costs for running detections and make them suitable for

applications that are sensitive to latency in practice.

In this work, we further study utility recovery under the data

poisoning attack. We propose a novel LDP post-processing method,

robust segment normalization, and empirically study the perfor-

mance of state-of-the-art for attack and non-attack purposes at

the same time. We find that the widely adopted post-processing

method – consistency (i.e., non-negative frequency estimates and

sum to 1) [26], plays a more important role in effectively recov-

ering corrupted data than other existing strategies. Based on the

experimental results, we make recommendations to help service

providers select appropriate LDP post-processing methods under

varying attack influences. The relevant code is provided at https:
//github.com/Marvin-huoshan/MDPA_LDP/. We summarize

our contributions below.

• We comprehensively investigate the mitigation against the data

poisoning attack on LDP frequency estimation, including new

attack exploration, novel detection methods, and attack-resilient

utility recovery, which advances the much-needed defensive

technology development and generates new knowledge for LDP

security.

• Our research reveals a new stealthy attack strategy on existing

CFO protocols, deepening our understanding of attacker capabil-

ities. We also present a metric to help measure the attack efficacy

over diverse protocols and data settings.

• We propose novel zero-shot detection methods for underlying at-

tacks to identify malicious users and hidden attack patterns. The

experimental results show significant improvement in detection

accuracy and time cost compared to the state-of-the-art.

• We design a new LDP post-processing method and empirically

study the impact of post-processing in the presence of attackers

with varying capabilities for the first time. The study produces

new insight into the recoverability of corrupted LDP data. The ex-

perimental results also help with recommendations for practical

deployment.

2 Background and Related Work
2.1 Local Differential Privacy
LDP enables 𝑛 users to share their data 𝑣 with an untrusted server

through a local perturbation function Ψ(·) such that only obfus-

cated items Ψ(𝑣) is obtained by the server. Formally,

Definition 1. (𝜖-Local Differential Privacy [8]). An algorithm
Ψ(·) : D → ˆD satisfies 𝜖-LDP if for any 𝑣1, 𝑣2 ∈ D and for 𝑦 ∈ ˆD,
Pr[Ψ(𝑣1) = 𝑦] ≤ 𝑒𝜖 Pr[Ψ(𝑣2) = 𝑦].

2.1.1 Categorical Frequency Oracles. We briefly introduce some

state-of-the-art CFOs used in this paper for frequency estimation in

LDP. We assume that there are 𝑑 items in D. 𝑣 ∈ [𝑑] is the index of
the item in the encoding space, where [𝑑] is {1, ..., 𝑑} for simplicity.

Generalized Randomized Response (GRR) [13]. In GRR, a

user directly encodes their item 𝑣 . The perturbation function keeps

𝑣 with probability 𝑝 = 𝑒𝜖

𝑒𝜖+𝑑−1 and changes it to another item with

probability 𝑞 = 1

𝑒𝜖+𝑑−1 . By collecting perturbed user report 𝑦 (𝑗)

from all 𝑛 users, the frequency of each item can be estimated by

the aggregation function ΦGRR (𝑣) =
𝐶𝑣−𝑛𝑞
𝑛 (𝑝−𝑞) , where𝐶𝑣 is the count

of 𝑣 instances in report 𝑦.

Optimal Unary Encoding (OUE) [23]. OUE achieves the the-

oretical lower bound of 𝐿2 errors. In OUE, each item 𝑣 is encoded

into a one-hot vector v = [0, . . . , 1, . . . , 0] with 1 in the 𝑣-th position
only. v is further randomized to the report y by flipping 1 to 0 with

probability 𝑝 = 1

2
and 0 to 1 with probability 𝑞 = 1

𝑒𝜖+1 . We obtain

the frequency of item 𝑣 by ΦOUE (𝑣) =
∑𝑛

𝑗=1 y
(𝑗) [𝑣]− 𝑛

𝑒𝜖 +1
𝑛 (1

2
− 1

𝑒𝜖 +1)
.

Optimal Local Hashing (OLH) [23]. OLH can also achieve the

same minimum 𝐿2 error as OUE. It is preferred for large domain

sizes by encoding input items to a smaller domain of size 𝑔 =

⌊𝑒𝜖 + 1⌋ ≪ 𝑑 . In the user setting of OLH, each user randomly

selects a hash function ℎ from a universal hash family H to encode

𝑣 ∈ [𝑑] into 𝑣ℎ ∈ [𝑔]. The perturbation function keeps 𝑣ℎ = 𝑣ℎ
with probability 𝑝 = 𝑒𝜖

𝑒𝜖+𝑔−1 and changes it to another hash value

with probability 𝑞 = 1

𝑒𝜖+𝑔−1 . Given the reports 𝑦 (𝑗) = ⟨ℎ (𝑗) , 𝑣 (𝑗)
ℎ

⟩
from all 𝑛 users, the frequency of each item can be estimated by

ΦOLH (𝑣) =
𝐶𝑣− 𝑛

𝑔

𝑛 (𝑒𝜖

𝑒𝜖 +𝑔−1 −
1

𝑔
)
, where 𝐶𝑣 = |{ 𝑗 | ℎ (𝑗) (𝑣) = 𝑣

(𝑗)
ℎ

}| counts

the number of reports that support the item 𝑣 .

ExplicitHist (HST) [6]. In HST, a uniform public vector s of
length 𝑑 is generated. HST becomes OLH with 𝑔 = 2 [23]. The

user 𝑗 randomizes the 𝑣-th element s(𝑗) [𝑣] to 𝑒𝜖+1
𝑒𝜖−1 × s(𝑗) [𝑣] with

probability
𝑒𝜖

𝑒𝜖+1 and to − 𝑒𝜖+1
𝑒𝜖−1 × s(𝑗) [𝑣] with probability

1

𝑒𝜖+1 .
The frequency of each item thus can be estimated by ΦHST (𝑣) =
1

𝑛

∑𝑛
𝑗=1 𝑦

(𝑗) × s(𝑗) [𝑣].

2.1.2 LDP Post Processing. Consistency condition (i.e., non-negative
frequency estimates and sum to 1) is widely used along with CFOs

as a post-processing strategy to improve the utility [26]. We briefly

describe Norm-Sub and Base-Cut as they are based on consistency

and do not assume prior data knowledge (versus Power and Pow-

erNS [26]). They were also recommended in prior work for non-

attack situations [26]. We denote the estimated frequency as
˜𝑓 and

the one after post-processing as
˜𝑓 ′.

2

https://github.com/Marvin-huoshan/MDPA_LDP/
https://github.com/Marvin-huoshan/MDPA_LDP/

Norm-Sub. Norm-Sub adjusts a frequency estimate to
˜𝑓
′
𝑣 =

max(˜𝑓𝑣 +Δ, 0) by converting negative estimates to zero and adding

Δ to the remaining estimates. As a result, the sum of all frequency

estimates equals 1, i.e.,

∑
𝑣∈D max(˜𝑓𝑣 + Δ, 0) = 1.

Base-Cut. Base-Cut does not consider sum to 1. Instead, it simply

keeps the estimates that are above a sensitivity threshold and sets

the rest to zero.

Post-processing methods are also adopted for utility recovery

under data poisoning attacks.

Normalization. The server re-calibrates the frequency of each

item 𝑣 by ˜𝑓 ′𝑣 =
˜𝑓𝑣− ˜𝑓𝑚𝑖𝑛∑

𝑣 (˜𝑓𝑣− ˜𝑓𝑚𝑖𝑛)
, where

˜𝑓𝑚𝑖𝑛 is the smallest estimate [5].

LDPRecover. In LDPRecover [19], the observed frequency ˜𝑓𝑍 (𝑣)
of an item is assumed to be a combination of the genuine component

˜𝑓𝑋 (𝑣) and bogus component
˜𝑓𝑌 (𝑣), weighted by the proportions

of genuine and fake users. LDPRecover divides items into two

sets based on their observed frequencies and focuses on restoring

genuine frequencies
˜𝑓
′
𝑋
by solving a constraint inference problem.

LDPRecover also ensures the consistency condition.

In addition, LDPGuard [12] used two rounds of reports to es-

timate attack details, including the percentage of fake users and

attack strategies, to inform the recovery, which may not be practical.

We do not consider it in this paper.

We propose a new post-processing method in this work and

empirically study it with the above state-of-the-art approaches

in both attack and non-attack environments. We expect this will

generate new knowledge about the recoverability of corrupted

utility and shed light on attack-resilient designs in the future.

2.2 Attack Detection
Frequent itemset anomaly detection (FIAD) was proposed in [5]

to detect fake users for MGA. The intuition is that the reports of

fake users always support a set of target items regardless of LDP

perturbation. The method adopted frequent itemset mining to find

malicious users by checking their supported items. However, FIAD

fails when 𝑟 (i.e., the number of target items) is small and becomes

ineffective against the adaptive MGA attack. FIAD also suffers from

a high false positive rate (refer to [5] for more details). A conditional

probability-based attack detection was also presented in [5] to

detect polluted item frequencies instead of bogus users. It depends

on ground-truth data knowledge, such as fake user percentage and

attacked items, which may not be available in practice.

In this paper, we propose a novel method for fake user detection,

which requires no prior data and attack knowledge. It significantly

outperforms the state-of-the-art and produces fewer false positives.

In addition, we present a new detection approach for scenarios

where identifying bogus reports is challenging.

3 Mitigation Overview
In this section, we overview the proposed mitigation. We introduce

the threat model, target attacks, and metrics for evaluation.

3.1 Threat Model
Attacker’s Capability and Goal. Consistent with prior work [5,

14], we assume that the attacker can control𝑚 = 𝛽 · 𝑛 fake users,

where 𝑛 is the total number of users and 𝛽 ∈ [0, 1] is the percentage
of fake users. Since the LDP perturbation function is on the user

end, the attacker can circumvent it and directly craft bogus values

in its output domain
ˆD. As a result, the fake reports will be injected

and aggregated with benign ones on the server side. The attacker

also knows the related information, such as privacy budget 𝜖 , the

item domain D and its size 𝑑 , and the support set 𝑆 (𝑦), which is a

set of items that report 𝑦 supports [23].

The attacker’s goal is to increase the estimated frequencies of

a set of 𝑟 target items 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑟 }. To this end, the attacker

carefully crafts the perturbed values 𝑌 to maximize the overall gain

of target items:

max

𝑌

∑︁
𝑡 ∈𝑇
E
[
Δ ˜𝑓𝑡

]
(1)

where Δ ˜𝑓𝑡 = ˜𝑓𝑡,after − ˜𝑓𝑡,before is the frequency gain of target item 𝑡

after the attack. We also consider a baseline attack with the same

goal, but the attacker can only provide false values in the input

domain of the perturbation. Thus its behavior is indistinguishable

from honest users.

Knowledge of Defender. We assume that the defender knows

nothing about attack details (e.g., 𝛽 and 𝑇) and underlying data,

other than the LDP parameters (e.g., 𝜖 and 𝑛) and received reports.

3.2 Attacks
Maximal Gain Attack.MGA is the state-of-the-art data poisoning

attack on CFOs [5]. Themain idea is to craft the perturbed values for

the fake users via solving the optimization problem in Eq. (1). The

original MGA only supports OUE, OLH-User (i.e., the user setting)

and GRR. We extend it to OLH-Server (i.e., the server setting) and

HST. We briefly describe it here and refer readers to [5] for details

of the original MGA.

• OUE. For each fake user, the attacker initializes a zero vector

𝑦 (𝑗) of length 𝑑 and sets 𝑦
(𝑗)
𝑡 = 1 for all 𝑡 ∈ 𝑇 . To further hide

traces, the attacker randomly sets 𝑙 = ⌊𝑝+ (𝑑−1)𝑞−𝑟⌋ non-target
bits to ensure the number of 1’s matches the expected number in

the report of a genuine user.

• OLH-User. In OLH-User, users randomly select the hash func-

tion. Therefore, each fake user will choose a hash function ℎ (𝑗)

that maps all items in 𝑇 to 𝑣
(𝑗)
ℎ

, i.e.,

∑
𝑡 ∈𝑇 1𝑆 (𝑦 (𝑗)) (𝑡) = 𝑟 and

submit the report 𝑦 (𝑗) = ⟨ℎ (𝑗) , 𝑣 (𝑗)
ℎ

⟩ to the server. 1𝑆 (𝑦 (𝑗)) (𝑣) is
a characteristic function and outputs 1 if 𝑦 (𝑗) supports item 𝑡 .

The number of items supported by the hash value is made close

to

∑
𝑣∈D 1𝑆 (𝑦 (𝑗)) (𝑣) =

𝑑
𝑔 to further hide the attack.

• OLH-Server. In OLH-Server, the server chooses the hash func-

tion ℎ (𝑗) such that the attacker aims to find a hash value 𝑣ℎ =

argmax

(∑
𝑡 ∈𝑇 1𝑆 (𝑦 (𝑗)) (𝑡)

)
that maps the most items 𝑡 ∈ 𝑇 with

ℎ (𝑗) .
• HST-User. In this setting, a user samples her public vector s(𝑗) .
For each fake user, the attacker initializes a public vector s(𝑗) =
[−1,−1, . . . ,−1] of length 𝑑 , and sets s(𝑗) [𝑡] = 1 for all 𝑡 ∈ 𝑇 .

Since s(𝑗) is expected to follow uniform distribution (i.e., equal

numbers of −1 and 1), the attacker randomly sets 𝑙 = ⌊𝑑/2 −
3

𝑟⌋ non-target positions to 1 in s(𝑗) . 𝑦 (𝑗) is then set to
𝑒𝜖+1
𝑒𝜖−1 to

maximize the frequencies of the target set.

• HST-Server. In HST-Server, the server sets a public binary vec-

tor for each user uniformly. Fake users can only promote the ex-

pected frequencies of the aggregated target set, i.e.,

∑
𝑡 ∈𝑇

[
1

𝑛

∑𝑛
𝑗=1

𝑦 (𝑗) × s(𝑗) [𝑡]
]
, by manipulating 𝑦 (𝑗) .

• GRR. A user report is a perturbed item in GRR. We have

∑
𝑡 ∈𝑇

1𝑆 (𝑦 (𝑗)) (𝑡) ≤ 1 and

∑
𝑡 ∈𝑇 1𝑆 (𝑦 (𝑗)) (𝑡) = 1 when 𝑦 (𝑗) is a target

item in 𝑇 . Therefore, MGA selects any 𝑡 ∈ 𝑇 for each fake user.

Adaptive Maximal Gain Attack (MGA-A).MGA-A is an en-

hanced MGA that can evade the FIAD detection [5] by crafting

a perturbed value that only supports a subset of the target set 𝑇 .

Specifically, the attacker randomly selects and supports an item-

set of size 𝑟 ′ from
(𝑟
𝑟 ′
)
possible subsets for each fake user, where

𝑟 ′ < 𝑟 . MGA-A was shown to significantly reduce the effectiveness

of FIAD, especially when 𝑟 ′ ≤ 2, while maintaining high attack effi-

cacy (refer to [5] for more details). MGA-A was originally designed

for OUE. In this paper, we extend it to cover OLH and HST. MGA-A

cannot be applied to GRR which only reports a single value.

Adaptive Pattern Attack. Though MGA-A may evade FIAD,

our detection method can still effectively identify fake users (see

Section 5.2). In this paper, we discover a new attack strategy, adap-
tive pattern attack (APA), where the attacker can further hide at-

tack patterns by strategically setting bits in the crafted report. In

MGA-A, the support of the values in a crafted report is matched

with the expected support of a genuine user, for instance, setting∑
𝑣∈D 1𝑆 (𝑦 (𝑗)) (𝑣) = ⌊𝑝 + (𝑑 − 1)𝑞⌋ in OUE; the proposed APA

further tweaks the support at non-target positions to maximize the

estimated frequencies of target items while reducing detectability.

Specifically, APA can be applied to the following CFOs.

• OUE. For the number 𝑘 ∈ [0, 𝑑] of 1’s in the report produced by

the LDP, APA generates 𝜔 [𝑘], which represents the number of

fake users whose perturbed reports support 𝑘 items, such that∑
𝑘 𝜔 [𝑘] =𝑚.𝑚 is the total number of fake users. For different 𝑘 ,

𝜔 [𝑘] fake users are selected and 𝑙 = max(⌊𝑘 − 𝑟⌋, 0) non-target
items are randomly set to 1 in their reports.

• OLH-User. For any user report 𝑦 (𝑗) , let 𝑘 ∈ [0, 𝑑] be the number

of supported items 𝑣 ∈ D. For all 𝑘 , 𝜔 [𝑘] is generated such that∑
𝑘 𝜔 [𝑘] = 𝑚. For a specific fake user, assuming its assigned

target support count is 𝑘 , APA ensures that the items supported

by the hash value 𝑣
(𝑗)
ℎ

are close to 𝑘 , i.e.,
∑

𝑣∈D 1𝑆 (𝑦 (𝑗)) (𝑣) = 𝑘 .

• HST-User. For 𝑘 ∈ [0, 𝑑] bits set to 1 in a report, 𝜔 [𝑘] is gen-
erated and

∑
𝑘 𝜔 [𝑘] = 𝑚. For different 𝑘 , 𝜔 [𝑘] fake users are

selected and 𝑙 = max(⌊𝑘 − 𝑟⌋, 0) non-target positions are ran-
domly set to 1 in the report. The report 𝑦 𝑗 is then set to

𝑒𝜖+1
𝑒𝜖−1 to

maximize the frequencies of the target set.

Note that in the server setting of OLH and HST, the attacker is

significantly constrained in selecting hash functions or setting bits

in the public vector since these are assigned by the server; in GRR,

the report is a single value. Therefore, we do not consider APA in

these protocols.

Baseline Attack. The baseline attack is a universal strategy

that follows an LDP protocol but supplies bogus data in the in-

put domain of LDP [5, 14]. Therefore, the behavior of a baseline

attacker is indistinguishable from that of an honest user without

prior knowledge of the ground truth data. We use the baseline

attack as a benchmark and propose a new metric based on it for

a more meaningful interpretation and comparison between our

recovery methods and existing ones (see Section 3.3.1).

3.3 Workflow
We overview our mitigation for data poisoning attacks on LDP in

Figure 1. The defense occurs on the server side and contains two

modules: attack detection and post-processing. We propose two novel

detection methods. The first is to identify fake users. The other is

to detect abnormal statistics in the LDP estimates. The detection

results will inform mitigation strategies in the following steps. The

post-processing will further reshape the LDP estimates to suppress

the attack gain and boost data utility.

Path 1: a ⇒ b ⇒ c .Given the collected LDP reports, our fake
user detection attempts to identify malicious users (step a). The

corresponding user reports will be subsequently removed from the

report collection before being sent to the LDP aggregation (step
b). At this point, we consider the collected dataset to be clean

without attack influence. The post-processing methods will be used

to further boost the data utility (step c). The experiment shows

that our detection outperforms the state-of-the-art in identifying

bogus users in MGA and MGA-A attacks.

Path 2: a ⇒ d ⇒ e ⇒ f . If detecting fake users is challeng-
ing (e.g., under APA or weak attacks close to the baseline attack),

the collected data will first be sent to the LDP aggregation function

(step d). The estimated result will be further examined by looking

for abnormal statistics (step e). Should an attack be recognized,

depending on the data practices and available resources, the server

either terminates the protocol and recollects data, or post-processes

the result to reduce the attack gain and recover utility (step f).

Path 3: a ⇒ d ⇒ e ⇒ g . This path is identical to Path 2
except for the last step, where no attack is detected. In this case, the

LDP estimate will be post-processed to increase utility (step g).

3.3.1 Metrics. For fake user detection, we measure the 𝐹1 score

while we evaluate the abnormal statistics detection using accuracy.
We consider both utility boosting and attack suppression for LDP

post-processing in the presence of data poisoning attacks. We use

the widely adopted metric, mean square error (MSE) [23, 26] for

utility. For attack suppression, frequency gain reduction is an in-

tuitive metric to measure the change of the attack gain after post-

processing. However, this metric is inherently limited in interpret-

ing a meaningful comparison of the attack recoverability across

various post-processing methods. For instance, a positive gain re-

duction, without additional context information, is a weak indicator

of how much of the attack has been contained. In other words, it is

unclear if the attack can still significantly impact the LDP result.

In addition, this metric varies given different target itemset size 𝑟

and malicious user percentage 𝛽 . A more precise measure of attack

influence at the per-fake-user and per-item level is desired. In this

paper, we present a new metric, item gain ratio (IGR), inspired by

prior work [15] to address the above issues. IGRmeasures a normal-

ized frequency gain change per target item caused by a fake user

after post-processing versus the attack gain by the baseline attack.

4

Genuine Users

Malicious Users

LDP

Perturbation

+
LDP Reports

Bogus Reports

User Side

Server Side

Attack Detection Module

Y

N

Final Results

Detected?

Y

Remove Bogus

Reports

LDP Aggregation

N

Fake User

Detection

Detected?

Abnormal Statistics

Detection

LDP Estimates

LDP Estimates

a

gb

c

d

e

f Post-Processing

Module

Figure 1: Mitigation workflow for data poisoning attacks on LDP

This is because the baseline represents the minimum damage the

attacker can always cause in any circumstances. Formally,

IGR =

∑
𝑡 ∈𝑇 E(˜𝑓 ′𝑡,recovery − ˜𝑓𝑡,before)∑
𝑡 ∈𝑇 E(˜𝑓𝑡,base − ˜𝑓𝑡,before) · 𝑟

(2)

where
˜𝑓𝑡,before is the frequency before attack,

˜𝑓 ′𝑡,recovery is the fre-

quency after post-processing, and
˜𝑓𝑡,base is the frequency under a

baseline attack.

Intuitively, when IGR ≫ 1/𝑟 , the attack is still considered to

be strong compared to the baseline at the per-item level. When it

decreases and approaches 1/𝑟 , the efficacy of the attack gets close to

that of the baseline attack, which is generally considered no longer

a significant threat. When IGR ∈ [0, 1𝑟], the attack becomes even

weaker than the baseline. A negative IGR indicates excessively sup-

pressed frequencies of target items, which may lead to deteriorated

data utility.

4 Attack Detection
In this section, we introduce the proposed attack detection methods.

4.1 Fake User Detection
In prior work [5], FIAD uses frequent itemset mining to find ma-

licious itemsets by checking if the number of supporting users is

greater than a predefined threshold. As a result, all the supporting

users for these itemsets will be considered malicious. However, the

detection accuracy is largely contingent on how precise we can

derive the threshold, which is often challenging in practice. More-

over, the mining process is time-consuming, leading to delayed

detection. In this paper, we propose a novel differential statistical
anomaly detection (Diffstats) to overcome the above limitations.

Diffstats (in Algorithm 1) identifies malicious users by adopting a

different strategy that looks at the statistical differences, i.e., 𝐸𝑠𝑞 (𝑘)
and 𝐸𝑓 𝑟𝑒𝑞 , between fake and genuine reports. Our detection in-

cludes two steps. First, Diffstats computes the discrepancy 𝐸𝑠𝑞 (𝑘)
between the observed frequency 𝑂𝑘

(line 1) of bits set to 1 in the

reports of 𝑛 users and the expected frequency 𝑌𝑘
(line 2). It then

leverages 𝐸𝑠𝑞 (𝑘) to determine a candidate fake user set U𝑠 from

all usersU (line 6-10). Second, to reduce false positives, Diffstats
calculates 𝐸𝑓 𝑟𝑒𝑞 for all {U/U𝑠𝑐 } (line 15), whereU𝑠𝑐 are subsets

of U𝑠 (line 14). Consequently, the smaller 𝐸𝑓 𝑟𝑒𝑞 is, the more likely

Algorithm 1 Diffstats for Fake User Detection

Input: Users’ reports Y.

Output: Fake usersU𝑓 .

1: Set 𝑂𝑘 = |{𝑦 (𝑗) ∈ Y | ∑𝑣∈D 1𝑆 (𝑦 (𝑗)) (𝑣) = 𝑘}|
2: Set 𝑌𝑘 = 𝑛 · 𝑃 (𝑋 = 𝑘).
3: Initialize the minimum 𝐸𝑓 𝑟𝑒𝑞 as 𝐸𝑚𝑖𝑛 = +∞,U𝑓 = ∅
4: Set K = {0, 1, 2, ..., 𝑑}
5: while K ≠ ∅ do
6: Let 𝛿 = argmin𝑘∈K 𝐸𝑠𝑞 (𝑘)
7: Update K = {K\𝛿}
8: Initialize candidate fake users setU𝑠 = ∅
9: for 𝑘 ∈ K do
10: Add users toU𝑠 whose reports contain 𝑘-bit “1”.

11: end for
12: For the top-𝐿 supported items S𝐿 in the common support

set 𝑆 , compute all combinations P(S𝐿) inU𝑠 .

13: for 𝑠 in P(S𝐿) do
14: Obtain subsetU𝑠𝑐 ⊆ U𝑠 that supports 𝑠 .

15: Compute 𝐸𝑓 𝑟𝑒𝑞 for all users in {U\U𝑠𝑐 }.
16: if 𝐸𝑓 𝑟𝑒𝑞 < 𝐸𝑚𝑖𝑛 then
17: Update 𝐸𝑚𝑖𝑛 = 𝐸𝑓 𝑟𝑒𝑞 andU𝑓 = U𝑠𝑐

18: end if
19: end for
20: end while
21: return U𝑓

that the corresponding {U/U𝑠𝑐 } contains more genuine users and

U𝑠𝑐 is malicious (line 16-17). The two steps are performed itera-

tively for all 𝑘 until producing the final result of fake usersU𝑓 . The

detailed description of identifyingU𝑠𝑐 for reduced false positives

is provided in Section 4.1.3. In addition, our method is much faster

in fake user identification compared to FIAD (see Section 5.2).

4.1.1 Frequency Approximation. In this section, we first describe

deriving the frequency 𝑋 of the number of “1” bits for one user and

then extend it to 𝑌𝑘
for 𝑛 users. We take OUE as an example and

later discuss OLH, HST, and GRR.

For the OUE perturbation, we consider the event of keeping the

bit of 1 (i.e., the user’s item) a Bernoulli trial, i.e.,𝑋𝑎 ∼ Bernoulli(𝑝)
5

and flip the remaining 𝑑 − 1 bits independently to 1 with proba-

bility 𝑞. As a result, we may use a binomial distribution for this

process, i.e., 𝑋𝑏 ∼ 𝐵(𝑑 − 1, 𝑞). The distribution 𝑋 of the number of

“1” bits in a user’s report can be estimated as the sum of two ran-

dom variables,𝑋𝑎 and𝑋𝑏 , following a Poisson binomial distribution

𝑋 ∼ 𝑃𝐵(𝑝1, 𝑝2, . . . , 𝑝𝑑), where 𝑋 =
∑𝑑
𝑖=1 𝑋𝑖 and each 𝑋𝑖 is an inde-

pendent Bernoulli random variable with expected value 𝐸 [𝑋𝑖] = 𝑝𝑖 .

𝑝𝑖 = 𝑝 if 𝑖 = 𝑣 , and 𝑝𝑖 = 𝑞 otherwise. We subsequently approximate

𝑋 ∼ 𝑃𝐵(𝑝1, 𝑝2, . . . , 𝑝𝑑) using a binomial distribution 𝑋 ∼ 𝐵(𝑑, 𝑝),
where 𝑝 =

𝑝+(𝑑−1)𝑞
𝑑

is the mean of 𝑝𝑖 . The approximated error

bound can be derived as 𝑑𝑖𝑠𝑡 (𝑃𝐵, 𝐵) ≤ (1−𝑝𝑑+1−𝑞𝑑+1)
∑𝑑

𝑖=1 (𝑝𝑖−�̃�)2
(𝑑+1) ·�̃� ·�̃�

according to [10], where 𝑞 = 1−𝑝 . 𝑑𝑖𝑠𝑡 (𝑃𝐵, 𝐵) gets close to 0 if and
only if the ratio 𝑅𝑣𝑎𝑟 of the variance of 𝑃𝐵 to that of 𝐵 approaches

1. To see this, for 𝐵(𝑑, 𝑝) and its variance 𝑉𝑎𝑟 (𝐵) = 𝑑𝑝 (1 − 𝑝), we
have 𝑅𝑣𝑎𝑟 =

𝑉𝑎𝑟 (𝑃𝐵)
𝑉𝑎𝑟 (𝐵) = 1 − (𝑑−1) (𝑝−𝑞)2

𝑑2�̃� (1−�̃�) . Since 𝑑 is typically large

in underlying applications (e.g., 𝑑 > 100 items), 𝑅𝑣𝑎𝑟 approaches 1,

resulting in 𝑑𝑖𝑠𝑡 (𝑃𝐵, 𝐵) close to 0. Therefore, we can readily approx-

imate 𝑋 ∼ 𝐵(𝑑, 𝑝+(𝑑−1)𝑞
𝑑

) for a single user. Since the perturbations
for 𝑛 users are i.i.d. processes, the expected frequency 𝑌𝑘

of bits

set to “1” in the reports of 𝑛 genuine users is

𝑌𝑘 ≈ 𝑛 · 𝑃 (𝑋 = 𝑘),

where 𝑃 (𝑋 = 𝑘) =
(𝑑
𝑘

)
𝑝𝑘 (1−𝑝)𝑑−𝑘 is the probability mass function

of the binomial distribution, given that exactly 𝑘 bits in a single

user’s vector are set to 1.

Other Target CFOs Protocols. The expected frequency 𝑌𝑘

serves as a baseline for calculating errors 𝐸𝑓 𝑟𝑒𝑞 and 𝐸𝑠𝑞 . Under

different CFOs, the distribution 𝑋 varies given distinct encoding

and perturbation functions, which thus results in different 𝑌𝑘
. In

OLH, a malicous user crafts a fake report 𝑦 (𝑗) = ⟨ℎ (𝑗) , 𝑣 (𝑗)
ℎ

⟩ with∑
𝑡 ∈𝑇 1𝑆 (𝑦 (𝑗)) (𝑡) = 𝑟 . OLH requires that the choice of the hash

function from H is uniform. This ensures the expected size of the

support set of the perturbed value 𝑦 (𝑗) in the input domain D
is

𝑑
𝑔 . Therefore, 𝑋 ∼ 𝐵(𝑑, 1𝑔). Likewise, in HST, we consider the

number of 1’s in the public vector. Assuming an ideal and uniform

public vector, the distribution is modeled as 𝑋 ∼ 𝐵(𝑑, 1
2
). GRR

is more vulnerable to MGA attacks compared to OUE and OLH

when 𝑑 > (2𝑟 − 1) (𝑒𝜖 − 1) + 3𝑟 [5]. Since each user only reports a

single value, our fake user detection and prior work do not apply.

However, the attack can still be caught by our abnormal statistics

detection (see Section 4.2).

4.1.2 Quantifying Frequency Discrepancies. In this subsection, we

elaborate on quantifying the errors 𝐸𝑠𝑞 and 𝐸𝑓 𝑟𝑒𝑞 to measure the

gap between observed frequency 𝑂𝑘
and expected frequency 𝑌𝑘

,

which helps us identify malicious users. 𝐸𝑠𝑞 indicates the error

between 𝑂𝑘
and 𝑌𝑘

for a particular 𝑘 for all 𝑛 users. Therefore, we

have

𝐸𝑠𝑞 (𝑘) = (𝑂𝑘 − 𝑌𝑘)2

where 𝑂𝑘 = |{𝑦 (𝑗) ∈ 𝑌 | ∑𝑣∈D 1𝑆 (𝑦 (𝑗)) (𝑣) = 𝑘}|. We define the

error 𝐸𝑓 𝑟𝑒𝑞 as the chi-square statistic in the chi-square goodness-

of-fit test [17]. Formally,

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘 , 𝑌𝑘) =
∑︁
𝑘

(𝑂𝑘 − 𝑌𝑘)2

𝑌𝑘
, (3)

where the degree of freedom is 𝑘 − 1. Thus, 𝐸𝑓 𝑟𝑒𝑞 is the sum of

𝐸𝑠𝑞 (𝑘) for all 𝑘 . Note that our analyses below are generic and apply

to OUE, OLH, and HST.

Error Analysis for MGA and MGA-A. MGA and MGA-A

adopt the same attack strategy by setting additional bits up to the

expected number of “1” in a report of a genuine user. Therefore,

the following results apply to both.

Theorem 4.1. For𝑚 fake users and 𝑘 ∈ [0, 𝑑], the expected error
E
[
𝐸𝑠𝑞 (𝑘)

]
of the MGA and MGA-A is

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
=

{
𝑚2 · (𝑃 (𝑋 = 𝑘) − 1)2 +𝑉𝑎𝑟 (𝑂𝑘

𝑀𝐺𝐴
), if 𝑘 = 𝑙𝑔,

𝑚2 · (𝑃 (𝑋 = 𝑘))2 +𝑉𝑎𝑟 (𝑂𝑘
𝑀𝐺𝐴

), otherwise,

where 𝑙𝑔 = ⌊𝑝 + (𝑑 − 1)𝑞⌋ is the expected number of “1” in a genuine
user’s report and 𝑉𝑎𝑟 (𝑂𝑘

𝑀𝐺𝐴
) = (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))

denotes the variance of the observed frequency𝑂𝑘
𝑀𝐺𝐴

under the MGA
attack.

Proof. See Appendix A □

Given Theorem 4.1, we further derive 𝐸𝑓 𝑟𝑒𝑞 in Theorem 4.2.

Theorem 4.2. The error 𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝑀𝐺𝐴

, 𝑌𝑘) between the observed
frequency 𝑂𝑘

𝑀𝐺𝐴
under MGA or MGA-A attack and the expected

frequency 𝑌𝑘 is

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝑀𝐺𝐴, 𝑌

𝑘) = 𝑚2

𝑛

(
1

𝑃 (𝑋 = 𝑙𝑔)
− 1

)
+ (𝑛 −𝑚) · 𝑑

𝑛
(4)

Proof. See Appendix B □

Theorem 4.1 and Theorem 4.2 show that both errors have a

quadratic relationship with𝑚, i.e., the number of fake users. They

are sensitive to the change of 𝑚, which is desirable. This aligns

with our intuition that more fake users generally lead to a stronger

attack with more skewed statistics, thus benefiting the detection.

In addition, the fake users in MGA and MGA-A set 𝑙𝑔 “1" in their

reports while in practice the probability 𝑃 (𝑋 = 𝑙𝑔) for genuine users
is low. Therefore, 𝐸𝑓 𝑟𝑒𝑞 becomes evident in the presence of attacks.

The detection performance also relies on the domain size 𝑑 . For

simplicity, we approximate 𝑋 ∼ 𝑁 (𝜇 = 𝑑𝑝, 𝜎 =
√︁
𝑑𝑝 (1 − 𝑝)). Since

E
[
𝑃 (𝑋 = 𝑙𝑔)

]
= E [𝑓 (𝑥 = 𝜇)] = 1

𝜎
√
2𝜋

= 1√
2𝜋𝑑�̃� (1−�̃�)

, a small 𝑑

gives rise to a large 𝑃 (𝑋 = 𝑙𝑔) and a small 𝐸𝑓 𝑟𝑒𝑞 , thus rendering

the detection less effective.

ErrorAnalysis forAPA.Weanalyze the expected errorE
[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
for APA by Theorem 4.3 below.

Theorem 4.3. For m fake users and 𝑘 ∈ [0, 𝑑], the expected error
E
[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
under APA attack is

E
[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
= (𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2 +𝑉𝑎𝑟 (𝑂𝑘

𝐴𝑃𝐴).

6

𝜔 [𝑘] ∈ [0,𝑚] is the number of attacker vectors in which exact 𝑘 bits
are set to 1 and 𝑉𝑎𝑟 (𝑂𝑘

𝐴𝑃𝐴
) = (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))

denotes the variance of the observed frequency 𝑂𝑘
𝐴𝑃𝐴

under the APA
attack.

Proof. See Appendix C. □

Theorem 4.4 gives the error 𝐸𝑓 𝑟𝑒𝑞 for the APA attack.

Theorem 4.4. The error 𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝐴𝑃𝐴

, 𝑌𝑘) between the observed
frequency 𝑂𝑘

𝐴𝑃𝐴
under APA attack and the expected frequency 𝑌𝑘 is

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝐴𝑃𝐴, 𝑌

𝑘) = 1

𝑛

𝑑∑︁
𝑘=0

(𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2
𝑃 (𝑋 = 𝑘) + (𝑛 −𝑚) · 𝑑

𝑛

Proof. See Appendix D □

Unlike in MGA and MGA-A, Theorem 4.3 shows that 𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘) in
APA is affected by not only𝑚 but also 𝜔 [𝑘]. A similar relationship

is observed in 𝐸𝑓 𝑟𝑒𝑞 in Theorem 4.4. In other words, the attacker

can hide traces by adjusting𝜔 [𝑘] for different 𝑘 to offset the impact

of𝑚, which makes the detection challenging in practice. We further

theoretically analyze the detection performance under different

attacks in Section 4.1.4.

4.1.3 Put All Together. Diffstats employs 𝐸𝑠𝑞 and 𝐸𝑓 𝑟𝑒𝑞 to iden-

tify potential bogus reports, as in Algorithm 1. Specifically, 𝐸𝑠𝑞 is

adopted to find fake user candidates, while 𝐸𝑓 𝑟𝑒𝑞 is subsequently

used to minimize false positive rates and refine the final result.

To generate a candidate set U𝑠 of fake users, we first determine

𝛿 = argmin𝑘∈K 𝐸𝑠𝑞 (𝑘) for K = [0, 1, ..., 𝑘]. Subsequently, we add
users intoU𝑠 whose reports contain 𝑘-bit 1’s for 𝑘 ∈ K \𝛿 , as their
𝐸𝑠𝑞 (𝑘) is relatively large compared to 𝐸𝑠𝑞 (𝛿). However, the derived
U𝑠 may contain genuine users.

To reduce false positives, we measure the error 𝐸𝑓 𝑟𝑒𝑞 of a group

of “genuine” users {U\U𝑠 }. The smaller the derived 𝐸𝑓 𝑟𝑒𝑞 , the

higher the likelihood that U𝑠 is malicious. Note that this counters

the intuition of directly measuring the distance between malicious

and benign groups. This is because 𝑂𝑘
and 𝑌𝑘

are anticipated to

characterize statistically similar populations by definition, and in

practice, we only know the expected pattern 𝑌𝑘
of genuine users.

To filter out “clean” users, we examine the behavioral differences

between attackers and benign users. We observe that the fake users

consistently set corresponding bits of the target items to 1 in their

reports, which is unlikely among genuine users. After determining

the common support set S = {𝑆𝑖 }𝑖∈[1,...,𝑑] by summing up the bits

at 𝑖-th position of the user reports, we derive top-𝐿 supported items

S𝐿 from S. For all combinations P(S𝐿) of S𝐿 , Diffstats identifies a
subsetU𝑠𝑐 ofU𝑠 and computes 𝐸𝑓 𝑟𝑒𝑞 for “clean” users in {U\U𝑠𝑐 }.
If the error is smaller than the current minimum,U𝑠𝑐 is likely to

be malicious since the attacker aims to maximize the attack gain.

The algorithm will eventually determine a group of users U𝑓 as

fake users by iterating through all 𝑘 ∈ K .

4.1.4 Performance Analysis of Diffstats. We theoretically analyze

the performance of the detection for different attacks. In MGA-A,

the attacker can adjust 𝑟 to evade FIAD detection (e.g., 𝑟 ≤ 2 in

[5]). Theoretically, a large 𝑟 helps Diffstats distinguish honest and

malicious users through common support. On the other hand, the

candidate setU𝑠 also facilitates this process. The experiments show

that our detection can effectively identify fake users even with a

small 𝑟 . We analyze the error relationship 𝑅 between APA and MGA

(MGA-A) in Theorem 4.5.

Theorem 4.5. For 𝑘 = ⌊𝑝 + (𝑑 − 1)𝑞⌋ the relationship between

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
and E

[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
satisfies

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
= E

[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
, if 𝜔 [𝑘] =𝑚,

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
> E

[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
, if 𝜔 [𝑘] < 𝑚

Proof. See Appendix E □

In addition to𝑚, E[𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)] is also affected by 𝜔 [𝑘], which is

the number of attacker vectors where 𝑘 bits are set to 1. Adjusting

𝜔 [𝑘] will effectively change the stealthiness of APA. Theorem 4.5

shows that when 𝜔 [𝑘 = 𝑙𝑔] =𝑚, APA is in the worst-case scenario

and becomes equivalent to MGA; when𝜔 [𝑘] < 𝑚, APA is stealthier

than MGA. According to Theorem 4.3, when 𝜔 [𝑘] =𝑚 · 𝑃 (𝑋 = 𝑘)
for all 𝑘 , E[𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)] reaches its lower bound 𝑉𝑎𝑟 (𝑂𝑘

𝐴𝑃𝐴
), which

represents the optimal attack strategy for APA. In this case, it is

difficult to identify suspicious users even if𝑚 is large. To address

this issue, we present a new detection method below.

4.2 Abnormal Statistics Detection
We propose abnormal statistics detection (ASD) to detect the APA
attack and the MGA and MGA-A attacks in GRR. The design is

inspired by the observation that the sum of the true item counts∑𝑑
𝑖=1𝐶𝑖 should not exceed 𝑛; thus the sum of all perturbed counts∑𝑑
𝑖=1𝐶𝑖 > 𝑛 may indicate the presence of the attack that promotes

the target items by amplifying the corresponding frequencies. How-

ever,

∑
𝐶𝑖 may exceed 𝑛 due to random LDP noise, making the

naïve use of this condition unreliable. To address this challenge,

we derive a threshold 𝜉 that divides {𝐶𝑖 }𝑖∈[𝑑] into two subsets,

A = {𝐶𝑖 |𝐶𝑖 > 𝜉} and B = {𝐶𝑖 |𝐶𝑖 ≤ 𝜉}, such that for the items

in A, the sum of their perturbed counts should be close to 𝑛 but

still not surpass it. Since the attack gain is unlikely to exist in the

lower count domain B,

∑
�̃�𝑖 ∈A 𝐶𝑖 > 𝑛 will be a tighter and more

sensitive detection condition. We elaborate on how to find such 𝜉

below.

4.2.1 Determining 𝜉 . Directly determining 𝜉 as the lower bound of

A is challenging. Instead, we attempt to find 𝜉 as the upper bound

of B, which is anticipated to contain much fewer items compared to

A. As a result,A can be derived by excluding B in the full domain.

Intuitively, B should at least contain items whose true frequen-

cies 𝑓𝑖 = 0, because the expected sum of their perturbed counts

would not contribute to 𝑛. Thus, we are looking for a heuristic

B = {𝐶𝑖 |𝑓𝑖 = 0} for 𝑖 ∈ [𝑑]. It is difficult to derive the precise upper

bound 𝜉 of B without underlying data knowledge, such as true item

frequencies. Instead, we aim to find an approximation 𝜉 (𝛾) with
confidence level 𝛾 . To this end, we first estimate the distribution

of 𝐶𝑖 . Prior work [23] shows that 𝐶𝑖 ∼ 𝑁 (𝑛 · 𝑓𝑖 , 𝜎2𝑖). Theorem 4.6

gives the upper bound 𝜉 (𝛾) of the set B below.

7

Theorem 4.6. For a given confidence level 𝛾 , the upper bound of
B = {𝐶𝑖 |𝑓𝑖 = 0} for 𝑖 ∈ [𝑑] is

𝜉 (𝛾) = 𝑍 (𝛾) ·

√︄
𝑛𝑞(1 − 𝑞)
(𝑝 − 𝑞)2

Proof. See Appendix F. □

𝜉 (𝛾) indicates that we have confidence𝛾 that all the items in setB
have their true frequencies 𝑓𝑖 = 0. A larger 𝛾 also results in a larger

𝜉 (𝛾), which increases the likelihood that all the items with 𝑓𝑖 = 0

are included in B. On the other hand, A may also contain zero-

frequency items with probability 1 − 𝛾 . Thus the introduced error

𝐸𝑟𝑟 may cause expected sum E[∑
�̃�𝑖 ∈A 𝐶𝑖] > 𝑛 and affect detection

accuracy. It is challenging to precisely calculate 𝐸𝑟𝑟 since we need

to know the true frequencies 𝑓𝑖 (see Appendix G). Alternatively, we

approximate the error as

𝐸𝑟𝑟 = |B| · 𝜉 (𝛾) · (1 − 𝛾)

where |B| is the size of the set B and 𝜉 (𝛾) · (1 − 𝛾) indicates the
occurrence of an error event thatA contains an item of 𝑓𝑖 = 0 with

probability 1 − 𝛾 . This error is an approximation of the true error

(Eq. (5) in Appendix G) and represents the upper-bound of the error

corresponding to the items with 𝑓𝑖 = 0.

Therefore, we formulate the detection as an optimization prob-

lem to find the minimum 𝛾

min 𝛾

s.t. 𝐸𝑟𝑟 < 𝜆 · 𝑛
0 < 𝜆 < 1

The condition confines the error below a predefined threshold 𝜆 · 𝑛
while ensuring a minimum 𝛾 to keep E[∑

�̃�𝑖 ∈A 𝐶𝑖] close to 𝑛.

4.2.2 Performance Analysis of ASD. Since we estimate 𝐶𝑖 ∼ 𝑁 (𝑛 ·
𝑓𝑖 , 𝜎

2

𝑖
), a larger 𝑛 makes the distribution closer to the normal dis-

tribution according to the central limit theorem and thus may

lead to better detection results. We may also derive

∑𝑑
𝑖=1𝐶𝑖 ∼

𝑁 (𝑛,∑𝑑
𝑖=1 𝜎

2

𝑖
) due to independent 𝐶𝑖 . We can see that with more

items, the variance will increase and thus it is difficult to satisfy

E[∑
�̃�𝑖 ∈A 𝐶𝑖] ≤ 𝑛. The detection accuracy is also expected to de-

cline. On the other hand, a weak attack with a large 𝜖 and a small 𝛽

will cause the attacked 𝐶𝑖 to be close to their expected true count

𝑛 · 𝑓𝑖 . Therefore, the detection will be less effective by satisfying

the condition

∑
�̃�𝑖 ∈A 𝐶𝑖 > 𝑛.

5 Detection Evaluation
5.1 Experimental Setup
Datasets. We use one synthetic dataset and two real-world datasets

to evaluate the proposed detection methods.

• zipf. We synthesize a dataset containing 𝑑 = 1, 024 items

and 𝑛 = 1, 000, 000 users satisfying a zipf distribution, where

𝑠 = 1.5.

• emoji. We use 𝑑 = 1, 496 emojis from [1] and treat their

average “sent” statistics as the number of users, i.e., 𝑛 =

218, 477.

• fire. The dataset contains information on calls for the San

Francisco Fire Department [2]. We only use the “Alarms”

records and take each unique unit ID as an item. Therefore,

there are 𝑑 = 296 items from 𝑛 = 723, 090 users.

The datasets and their pre-processing details, along with the

source code, are provided athttps://github.com/Marvin-huoshan/
MDPA_LDP/.

Settings. The experiments were conducted on a server with

Ubuntu 22.04.5 LTS, 2× AMD EPYC 9554 CPU, and 768GB RAM.

We use a default 𝜖 = 1 for LDP and 𝛽 = 0.05, 𝑟 = 10 for all attacks

unless specified in the paper. We also set 𝑟 ′ = 4 by default for APA

for balanced stealthiness and efficacy of the attack. We follow the

optimal APA attack strategy by setting 𝜔 [𝑘] = ⌊𝑚 · 𝑃 (𝑋 = 𝑘)⌋
for all 𝑘 as discussed in Section 4.1.4. In OLH-User, we allow the

attacker to find an optimal hash function ℎ (𝑗) that maps all target

items in 𝑇 to 𝑣
(𝑗)
ℎ

.

For Diffstats detecting fake users, we select 𝐿 = 6 by default and

set the hyperparameter 𝜆 = 0.02 in ASD detection.

Metrics. We measure 𝐹1 score for our method Diffstats to cor-

rectly identify fake users while minimizing false positives and false

negatives. The results are an average of 10 trials. We measure the

detection accuracy for ASD over a total of 40 instances including

20 attack and 20 no-attack cases.

In the experiment, we compare the proposed Diffstats with the

state-of-the-art fake user detection, FIAD [5] and only shows the

performance of ASD since no similar method exists for detecting

MGA and MGA-A attacks on GRR and APA attack.

5.2 Results for Diffstats
The detection results against MGA are shown in Figure 2 and those

against MGA-A in Figure 3. A higher 𝐹1 score indicates better de-

tection performance, and shaded regions represent 95% confidence

intervals (CI). Since the majority of the measured CIs are narrow,

i.e., typically [0.02, 0.05], which makes them difficult to see in the

figures.

Detection for MGA. In general, our experiment shows that

Diffstats outperforms FIAD by a large margin across all datasets

with varying parameters. Both detection methods become less ef-

fective under the server setting of OLH and HST. This is because

those protocols are naturally more robust to the attacks, which is

consistent with prior results [15]. In addition, we have the following

key observations.

• Diffstats performs almost constantly with 𝐹1 greater than

0.8 versus 𝐹1 of FIAD below 0.4 for a common setting of

𝜖 ≤ 1 across all datasets.

• We observe a performance drop of our method in the fire

dataset of a small domain size 𝑑 when 𝜖 = 1 in OLH-User.

This aligns with our analysis of the error 𝐸𝑓 𝑟𝑒𝑞 in Eq. (4)

that a small 𝑑 leads to a loss in detection performance. At the

same time, the attack becomes weak when it is difficult to

find a hash function that covers all target items as 𝜖 grows.

However, performance bounces back quickly with a larger

𝜖 since fewer genuine users are included in the common

8

https://github.com/Marvin-huoshan/MDPA_LDP/
https://github.com/Marvin-huoshan/MDPA_LDP/

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0

0.01 0.05 0.10 0.15 0.20
0.0
0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0

0.01 0.05 0.10 0.15 0.20
0.0
0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.5 1.0 1.5 2.0
ε

0.0
0.2
0.4
0.6
0.8
1.0

0.01 0.05 0.10 0.15 0.20
β

0.0
0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
r

0.0
0.2
0.4
0.6
0.8
1.0

F1

zip
f

em
oj

i
fir

e

FIAD_OUE
Diffstats_OUE

FIAD_OLH-User
Diffstats_OLH-User

FIAD_OLH-Server
Diffstats_OLH-Server

FIAD_HST-User
Diffstats_HST-User

FIAD_HST-Server
Diffstats_HST-Server

Figure 2: Performance comparison between the proposed Diffstats and FIAD [5] against the MGA attack.

support in Diffstats, thus reducing false positives. In con-

trast, the performance of FIAD for OLH-User is significantly

affected given a large 𝜖 .

• We observe that the 𝐹1 of FIAD first increases and then re-

duces with growing 𝜖 for OLH-User with all three datasets.

Given a smaller 𝜖 , though a stronger attack presents for it is

easier for more fake users to find hash functions to cover all

target items, more LDP noise also results in higher false posi-

tives, which is more prominent in detection performance (i.e.,

low 𝐹1 score). As the negative impact of LDP noise dimin-

ishes much faster than the difficulty of obtaining ideal hash

functions with increasing 𝜖 , the combined effect makes the

𝐹1 score of FIAD first peak at about 𝜖 = 1 and then decrease

rapidly. This phenomenon is consistent across all datasets,

with a wider CI in the emoji dataset. This is because the

number of fake users in the emoji is much smaller than that

in the other two, leading to a more “volatile” measurement.

• While our method performs stably in OUE across all 𝜖 with

a narrow 95% CI typically ranging from 0.02 to 0.05, FIAD

only becomes more effective as 𝜖 increases. With less LDP

noise, the identified frequent itemsets in FIAD are likely to

include the target items.

• The performance (i.e., 𝐹1 and CI) of both detection methods

improves for stronger attacks with more malicious users (i.e.,

larger 𝛽) except for the server settings. Compared to FIAD,

our method stays sensitive to small 𝛽 and grows much faster

to an 𝐹1 score of above 0.9 as 𝛽 increases.

• Diffstats is insensitive to changes in the target set size 𝑟 ,

consistently showing superior performance. The 𝐹1 score

drops when 𝑟 becomes larger for OLH-User as the attacker

fails to find a qualified hash function. On the other hand,

FIAD cannot identify fake users when 𝑟 ≤ 2. It performs

best at 𝑟 = 5 and worsens as 𝑟 further grows. This is because

a relatively large target set helps FIAD filter out malicious

items in general. However, excessively large 𝑟 leads to a

higher false positive rate in FIAD.

Detection for MGA-A. For MGA-A attack, Figure 3 shows that:

• The performance gap between our method and FIAD be-

comes even clearer against the MGA-A attack. Diffstats
shows a constantly high and stable 𝐹1 score while FIAD

fails to detect fake users in most cases.

• Consistent with the MGA case, our detection is more effec-

tive when a strong attack with a large 𝛽 is present.

• Compared to other protocols, Diffstats in HST-User is more

subject to the changes of 𝑟 ′. Especially when 𝑟 ′ gets larger,
higher false positives may appear as more items exist in the

common support.

• Diffstats performs better in zipf and emoji since the fire

dataset has a small domain size 𝑑 , making the detection

more challenging.

We further evaluate our approach and FIAD for APA with the

optimal strategy described in Section 4.1.4. The experiment con-

firms our theoretical analysis that APA is much stealthier than

9

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0

0.01 0.05 0.10 0.15 0.20
0.0
0.2
0.4
0.6
0.8
1.0

2 3 4 5 6 7 8
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0

0.01 0.05 0.10 0.15 0.20
0.0
0.2
0.4
0.6
0.8
1.0

2 3 4 5 6 7 8
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.5 1.0 1.5 2.0
ε

0.0
0.2
0.4
0.6
0.8
1.0

0.01 0.05 0.10 0.15 0.20
β

0.0
0.2
0.4
0.6
0.8
1.0

2 3 4 5 6 7 8
r ′

0.0
0.2
0.4
0.6
0.8
1.0

F1

zip
f

em
oj

i
fir

e

FIAD_OUE
Diffstats_OUE

FIAD_OLH-User
Diffstats_OLH-User

FIAD_OLH-Server
Diffstats_OLH-Server

FIAD_HST-User
Diffstats_HST-User

FIAD_HSTS-Server
Diffstats_HST-Server

Figure 3: Performance comparison between the proposed Diffstats and FIAD [5] against the MGA-A attack.

existing data poisoning attacks of similar IGR and evades detec-

tion in all three datasets, i.e., 𝐹1 = 0 with 𝑟 ′ = 4, 𝜖 ∈ [0.1, 1] and
𝛽 ∈ [0.01, 0.1]. In addition, neither FIAD nor ours supports GRR.

Time Cost. We measure the time cost for Diffstats and FIAD in

Table 1. Our experiments demonstrate up to about 120× detection

speedup versus FIAD, with a 1-hour timeout
1
. Thus, Diffstats is

more friendly to time-sensitive applications.

5.3 Results for ASD
We assess the detection accuracy of the proposed ASD method

under challenging circumstances where malicious users cannot

be identified under APA attack (Table 2), and MGA and MGA-A

attacks on GRR (Table 3).

Detection for APA. Table 2 shows that our ASD can effectively

detect the APA attack with various 𝜖 irrespective of the underlying

LDP protocols. In general, a small 𝛽 results in a decrease in accu-

racy since the attack also becomes weaker. We do not observe a

performance drop until 𝛽 = 0.01, which indicates the effectiveness

of ASD even when the attacker controls a small portion of users in

the system. The detection becomes stable with a narrower CI as 𝛽

increases. Our analysis in Section 4.2.2 also shows that the perfor-

mance improves with increasing 𝑛 and decreases with a larger 𝑑 .

This is confirmed by our experiment, i.e., the best result is observed

in zipf with 𝑛 = 1, 000, 000 and 𝑑 = 1, 024, while the worst occurs in

emoji with 𝑛 = 218, 477 and 𝑑 = 1, 496. With a small 𝛽 , the detection

performs better in OUE and OLH-User than in HST-User. This is

1
37.04% of FIAD instances were not recorded due to the timeout.

Table 1: Time cost in seconds of FIAD and Diffstats. Default
𝜖 = 1, 𝑟 = 10, and 𝛽 = 0.05. “–” indicates passing the 1-hour
timeout.

Dataset

OUE OLH-User OLH-Server HST-User HST-Server

FIAD / Ours FIAD / Ours FIAD / Ours FIAD / Ours FIAD / Ours

0.1 – / 117 – / 116 – / 103 – / 117 – / 104

𝜖 0.5 – / 122 – / 124 – / 107 – / 115 – / 102

1 – / 129 2,441 / 130 2,389 / 109 – / 114 – / 101

1% 2,677 / 118 2,336 / 120 2,270 / 105 – / 106 – / 100

zipf 𝛽 5% – / 128 2,368 / 131 2,357 / 107 – / 117 – / 100

10% – / 140 2,531 / 146 2,432 / 115 – / 129 – / 103

1 2,586 / 123 2,190 / 126 2,326 / 111 – / 113 – / 101

𝑟 5 2,826 / 127 3,294 / 130 2,390 / 115 – / 119 – / 101

10 – / 126 2,355 / 129 2,430 / 111 – / 117 – / 99

0.1 3,491 / 29 – / 28 – / 25 – / 28 – / 24

𝜖 0.5 2,230 / 29 1,761 / 27 1,876 / 25 – / 27 – / 24

1 1,171 / 30 1,045 / 28 1,077 / 25 – / 27 – / 24

1% 1,206 / 27 1,062 / 27 1,075 / 25 – / 25 – / 25

emoji 𝛽 5% 1,169 / 28 1,030 / 30 1,056 / 24 – / 27 – / 25

10% 3,073 / 31 1,007 / 32 1,072 / 26 – / 30 – / 23

1 1,214 / 28 976 / 31 1,052 / 25 – / 27 – / 24

𝑟 5 1,187 / 29 1,037 / 30 1,070 / 25 – / 27 – / 24

10 1,190 / 29 1,054 / 30 1,109 / 25 – / 27 – / 24

0.1 1,043 / 109 – / 106 589 / 99 2,414 / 106 587 / 101

𝜖 0.5 544 / 110 – / 112 289 / 108 1,786 / 108 592 / 99

1 341 / 118 228 / 122 182 / 113 1,986 / 109 577 / 99

1% 225 / 118 209 / 113 176 / 112 1,831 / 101 589 / 96

fire 𝛽 5% 337 / 122 230 / 123 176 / 111 1,869 / 106 587 / 98

10% 458 / 127 277 / 129 191 / 114 1,792 / 115 590 / 99

1 195 / 120 170 / 122 170 / 111 557 / 106 586 / 97

𝑟 5 201 / 117 307 / 122 184 / 115 728 / 107 609 / 97

10 396 / 125 238 / 124 180 / 112 1,435 / 107 616 / 98

10

Table 2: Detection accuracy with 95% CI of ASD against APA.
We set 𝛽 = 0.1 and 𝜖 = 0.5 by default.

Dataset OUE OLH-User HST-User

zipf

𝜖

0.1 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

0.5 1.00 [0.912, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

0.8 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

1 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

𝛽

1% 0.98 [0.88, 0.99] 0.88 [0.73, 0.95] 0.53 [0.36, 0.68]

5% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

7.5% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

10% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

emoji

𝜖

0.1 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

0.5 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

0.8 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

1 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

𝛽

1% 0.50 [0.33, 0.66] 0.50 [0.33, 0.66] 0.50 [0.33, 0.66]

5% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

7.5% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

10% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

fire

𝜖

0.1 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

0.5 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

0.8 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

1 1.00 [0.91, 1] 0.98 [0.88, 0.99] 1.00 [0.91, 1]

𝛽

1% 0.50 [0.33, 0.66] 0.65 [0.48, 0.79] 0.53 [0.36, 0.68]

5% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

7.5% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

10% 1.00 [0.91, 1] 1.00 [0.91, 1] 1.00 [0.91, 1]

because the attack under the same setting on HST-User is weaker

than the other two.

Detection for MGA and MGA-A in GRR. Similar to the de-

tection against APA attack, Table 3 shows that ASD consistently

achieves high accuracy (≥ 88%) for all settings. Unlike in APA, the

detection is still effective even with small 𝛽 but is more subject to

change of 𝜖 . In other words, a small 𝜖 results in low detection accu-

racy. The reason is that the variance of GRR is greater than that of

other protocols, which introduces more LDP noise and negatively

affects the detection performance.

Time Cost. Our experiment shows that ASD is very fast, consis-

tently under 1𝑠 across all tested settings (see Table 4 and Table 5).

6 Attack Recovery of LDP Post-processing
Post-processing was previously intended to remove excessive LDP

noise to boost utility in a compliant environment without attack

concerns. Depending on underlying data tasks and available re-

sources, service providers may not be able to recollect data when

the ASD detection result is positive. Therefore, it is crucial to select

a post-processing method that can reconstruct as many characteris-

tics of the original data from polluted LDP estimates as possible. In

this section, we empirically study the data recoverability of state-

of-the-art LDP post-processing methods introduced in Section 2.1.2,

Table 3: Detection accuracy with 95% CI of ASD for GRR. We
set 𝛽 = 0.1, 𝜖 = 0.5 and 𝑟 = 10 by default.

Dataset MGA MGA-A

zipf

𝜖

0.1 0.93 [0.79, 0.98]

𝜖

0.1 0.88 [0.73, 0.95]

0.5 1.00 [0.91, 1] 0.5 1.00 [0.91, 1]

0.8 1.00 [0.91, 1] 0.8 1.00 [0.91, 1]

1 1.00 [0.91, 1] 1 1.00 [0.91, 1]

𝛽

1% 1.00 [0.91, 1]

𝛽

1% 1.00 [0.91, 1]

5% 1.00 [0.91, 1] 5% 1.00 [0.91, 1]

7.5% 1.00 [0.91, 1] 7.5% 1.00 [0.91, 1]

10% 1.00 [0.91, 1] 10% 1.00 [0.91, 1]

𝑟

1 1.00 [0.91, 1]

𝑟 ′

2 1.00 [0.91, 1]

2 1.00 [0.91, 1] 4 1.00 [0.91, 1]

5 1.00 [0.91, 1] 6 1.00 [0.91, 1]

10 1.00 [0.91, 1] 8 1.00 [0.91, 1]

emoji

𝜖

0.1 0.93 [0.79, 0.98]

𝜖

0.1 0.95 [0.83, 0.99]

0.5 1.00 [0.91, 1] 0.5 1.00 [0.91, 1]

0.8 1.00 [0.91, 1] 0.8 1.00 [0.91, 1]

1 1.00 [0.91, 1] 1 1.00 [0.91, 1]

𝛽

1% 1.00 [0.91, 1]

𝛽

1% 1.00 [0.91, 1]

5% 1.00 [0.91, 1] 5% 1.00 [0.91, 1]

7.5% 1.00 [0.91, 1] 7.5% 1.00 [0.91, 1]

10% 1.00 [0.91, 1] 10% 1.00 [0.91, 1]

𝑟

1 1.00 [0.91, 1]

𝑟 ′

2 1.00 [0.91, 1]

2 1.00 [0.91, 1] 4 1.00 [0.91, 1]

5 1.00 [0.91, 1] 6 1.00 [0.91, 1]

10 1.00 [0.91, 1] 8 1.00 [0.91, 1]

fire

𝜖

0.1 1.00 [0.91, 1]

𝜖

0.1 1.00 [0.91, 1]

0.5 1.00 [0.91, 1] 0.5 1.00 [0.91, 1]

0.8 1.00 [0.91, 1] 0.8 1.00 [0.91, 1]

1 1.00 [0.91, 1] 1 1.00 [0.91, 1]

𝛽

1% 1.00 [0.91, 1]

𝛽

1% 1.00 [0.91, 1]

5% 1.00 [0.91, 1] 5% 1.00 [0.91, 1]

7.5% 1.00 [0.91, 1] 7.5% 1.00 [0.91, 1]

10% 1.00 [0.91, 1] 10% 1.00 [0.91, 1]

𝑟

1 1.00 [0.91, 1]

𝑟 ′

2 1.00 [0.91, 1]

2 1.00 [0.91, 1] 4 1.00 [0.91, 1]

5 1.00 [0.91, 1] 6 1.00 [0.91, 1]

10 1.00 [0.91, 1] 8 1.00 [0.91, 1]

including Norm-Sub and Base-Cut [26] for regular no-attack sce-

narios and the one specifically designed for attack recovery, i.e.,

Normalization [5] and LDPRecover [19]. In addition, we propose a

new post-processing method, robust segment normalization (RSN),
which strikes a balance between robustness and accuracy. We first

describe the design of RSN below.

6.1 Robust Segment Normalization
In Norm-Sub, Δ introduces positive bias for low frequencies and

negative bias for high frequencies. This approach may reduce the

frequencies of all non-target items to 0 under a substantial attack;

normalization reduces the attack influences by scaling down all

11

Table 4: Time cost (ms) of ASD against APA. Default 𝜖 = 0.5,
𝑟 = 10, and 𝛽 = 0.1.

Dataset OUE OLH-User HST-User

zipf

𝜖

0.1 539 546 554

0.5 375 370 356

1 360 369 348

𝛽

1% 542 539 525

5% 363 366 347

10% 349 351 348

emoji

𝜖

0.1 592 592 615

0.5 451 428 486

1 416 421 411

𝛽

1% 597 591 735

5% 424 411 411

10% 411 410 411

fire

𝜖

0.1 514 557 631

0.5 283 294 290

1 244 249 241

𝛽

1% 449 454 481

5% 274 272 287

10% 348 318 286

frequency estimates multiplicatively and introduces significant neg-

ative errors to high frequencies.

Our RSN is inspired by existing methods and aims to control

the incurred bias more precisely. We observe that the perturba-

tion errors within high-frequency estimates H are relatively small

compared to their true frequencies. Thus, a minimal error adjust-

ment is needed there. On the other hand, we want to find a re-

gion L that contains 𝐶𝑖 whose corresponding frequency after LDP

may become negative. We only add Δ to this region instead of the

full domain in Norm-Sub to minimize the impact of bias on high-

frequency estimates. Since 𝐶𝑖 ∼ 𝑁 (𝑛 · 𝑓𝑖 , 𝜎2𝑖) (see Section 4.2.1),

we may find a 𝑓𝑖 whose minimum perturbed count 𝐶𝑖 = 0 via

𝑛 · 𝑓𝑖 − 2 · 𝜎𝑖 = 0. L can be approximated by finding the items with

perturbed counts less than 𝑛 · 𝑓𝑖 +2 ·𝜎𝑖 . RSN centers on recalibrating

estimates within L since only those frequencies can contribute to

negative values after LDP aggregation. This, therefore, reduces the

impact of bias on high-frequency estimates. Δ can be derived by∑
�̃�𝑖 ∈L max(𝐶𝑖 +Δ, 0) +

∑
�̃� 𝑗 ∈H max(𝐶 𝑗 , 0) =

∑
𝐶𝑖 . In other words,

we only adjust low frequencies to become non-negative while keep-

ing high-frequency estimates unchanged. To further maintain a

consistency condition, the final result will be
˜𝑓 ′
𝑖
=

�̃�𝑖∑
�̃�𝑖

. We use mul-

tiplicative rather than additive correction to avoid the case where a

non-target item inH is subtracted to 0. In this way, RSNmaintains

the relative ratios among the high-frequency values, which are

desired for many applications.

6.2 Evaluation
We empirically study the attack resilience and utility boost of state-

of-the-art post-processing methods. The experimental setting re-

mains the same as the detection evaluation in Section 5. The results

are an average of 10 trials.

Table 5: Time cost (ms) of ASD for GRR. Default 𝜖 = 0.5, 𝑟 = 10,
and 𝛽 = 0.1.

Dataset MGA MGA-A

zipf

𝜖

0.1 530

𝜖

0.1 619

0.5 380 0.5 381

1 372 1 378

𝛽

1% 530

𝛽

1% 543

5% 357 5% 359

10% 355 10% 356

𝑟

1 621

𝑟 ′
2 533

5 363 6 362

10 363 8 363

emoji

𝜖

0.1 568

𝜖

0.1 564

0.5 421 0.5 418

1 425 1 418

𝛽

1% 576

𝛽

1% 572

5% 403 5% 403

10% 402 10% 405

𝑟

1 571

𝑟 ′
2 581

5 400 6 403

10 397 8 400

fire

𝜖

0.1 469

𝜖

0.1 461

0.5 302 0.5 303

1 295 1 295

𝛽

1% 471

𝛽

1% 542

5% 289 5% 284

10% 289 10% 282

𝑟

1 455

𝑟 ′
2 473

5 285 6 290

10 282 8 291

6.2.1 Utility Boost after Fake User Removal. We first consider the

situation where MGA and MGA-A attacks are applied to OUE, OLH

and HST. The attack influence can be effectively minimized by our

detection and thus the underlying data is considered to be clean. We

also consider GRRwithout attack for a comprehensive evaluation of

major CFOs. We show the results for different datasets in Figure 4.

Overall, our RSN performs best by exhibiting the lowest MSE

in most settings. LDPRecover and Normalization underperform

the regular post-processing approaches, which is expected. The

performance of the attack-centered methods is less affected by 𝜖

compared to other methods whose MSE decreases as 𝜖 grows. It is

interesting to see that for small 𝜖 LDPRecover performs better than

Base-Cut recommended in prior work [26].

In GRR, Normalization shows lower MSE than other methods

when 𝜖 is small, which is more obvious with emoji and fire. This

is because the high variance of GRR and large noise significantly

affect the accuracy of the LDP result, on which the approaches, such

as Norm-Sub, rely for utility optimization, while Normalization

largely ignores. This is evidenced by consistent MSE values (i.e.,

about 10
−4
) of Normalization for all LDP protocols.

6.2.2 Attack Recovery. We consider the utility recoverability of the

post-processing methods for the APA attack as well as MGA and

MGA-A on the GRR protocol.

12

0 1 2
10 7

10 6

10 4

10 2

10 1

0 1 2
10 7

10 6

10 4

10 2

10 1

0 1 2
10 7

10 6

10 4

10 2

10 1

0 1 2
10 7
10 6

10 4

10 2
10 1

0 1 2
10 7

10 6

10 4

10 2

10 1

0 1 2
10 7

10 6

10 4

10 2

10 1

0 1 2
10 7

10 6

10 4

10 2

10 1

0 1 2
10 7
10 6

10 4

10 2
10 1

0 1 2
ε

10 7

10 6

10 4

10 2

10 1

0 1 2
ε

10 7

10 6

10 4

10 2

10 1

0 1 2
ε

10 7

10 6

10 4

10 2

10 1

0 1 2
ε

10 7

10 6

10 4

10 2

10 1

MSE OUE OLH-User HST-User GRR

Zi
pf

Em
oj

i
Fir

e

Origin RSN Norm-Sub Base-cut LDPRecover Normalization

Figure 4: Utility boost of different post-processing methods without attack.

0 1 2
0

100

101

0.01 0.10 0.20
0

100

101

0 1 2
10 5

10 4

10 3

10 2

0.01 0.10 0.20

10 5

10 4

10 3

10 2

0 1 2
0

100

101

0.01 0.10 0.20
0

100

101

0 1 2
10 5

10 4

10 3

10 2

0.01 0.10 0.20

10 5

10 4

10 3

10 2

0 1 2
ε

0

100

101

0.01 0.10 0.20
β

0

100

101

0 1 2
ε

10 5

10 4

10 3

10 2

0.01 0.10 0.20
β

10 5

10 4

10 3

10 2

IGR IGR MSE MSE

zip
f

em
oj

i
fir

e

Original RSN Norm-Sub Base-cut LDPRecover Normalization

Figure 5: Utility recoverability of different post-processing methods under APA attack on OUE.

Results for APA Attack. As the results are consistent across
different CFO protocols, we only discuss OUE in Figure 5 and leave

others in Figure 8 and 9 in Appendix H.

For attack gain suppression, the experimental results are mixed

for resilience-optimized methods. On the one hand, Normalization

shows lower IGR closer to the baseline given various 𝜖 and 𝛽 . On the

other hand, LDPRecover does not show the expected advantages in

reducing attack gain. Its performance is on par with that of Norm-

Sub and RSN in zipf, while it underperforms RSN in emoji and

fire.

For utility boosting, despite superior performance in attack gain

reduction, Normalization does not produce lower MSE than other

13

0 1 2
0

100
101

103

0.01 0.10 0.20
0

100

101

102

1 5 10
0

100
101

103

2 5 8
0

100
101

103

0 1 2
ε

10 4

10 2

101

0.01 0.10 0.20
β

10 5
10 4

10 2

100

1 5 10
r

10 4

10 2

10 1

100

2 5 8
r ′

10 3

10 2

10 1

MGA MGA MGA MGA-A

IG
R

M
SE

Original RSN Norm-Sub Base-cut LDPRecover Normalization

Figure 6: Utility recoverability of different post-processing methods under MGA and MGA-A on GRR in zipf.

0 500 1000 1500
Index

10 5

10 4

10 3

10 2

10 1

100

em
oj

i

Original Histogram

0 500 1000 1500
Index

10 5

10 4

10 3

10 2

10 1

100
OUE Estimate

0 500 1000 1500
Index

10 5

10 4

10 3

10 2

10 1

100
Norm-sub

|{v \ T}| = 1

0 500 1000 1500
Index

10 5

10 4

10 3

10 2

10 1

100
LDPRecover

|{v \ T}| = 1

0 500 1000 1500
Index

10 5

10 4

10 3

10 2

10 1

100
RSN

|{v \ T}| = 5

Frequency

Figure 7: Comparison of histograms after Norm-Sub, LDPRecover, and RSN. The target item frequencies are highlighted in red.
𝜖 = 0.5, 𝑟 = 10 and 𝛽 = 0.05.

methods due to its coarse-grained bias control. Rather, it again

shows the context-agnostic nature of utility recovery with steady

MSE values, rendering it an unreliable method. Since Norm-Sub,

LDPRecover, and RSN are all based on the consistency, they exhibit

similar performance in the experiment while RSN exhibits lower

MSE in the fire dataset.

Results for MGA and MGA-A attack. Here we only show

MGA and MGA-A with varying 𝑟 ′ in zipf in Figure 6 due to similar

results in other settings (see Figure 10 and 11 in Appendix H).

Normalization outperforms other methods in reducing attack

gain in all settings for GRR. LDPRecover, Norm-Sub and RSN are

similar in mitigating attack influence. Regarding MSE, all methods

are close with slightly better performance of Normalization. Base-

Cut shows the worst in both attack resilience and data accuracy.

As 𝑟 ′ increases in MGA-A, both IGR and MSE remain stable for

all methods, because each fake user in GRR can support only one

target item in their report with probability 1/𝑟 , independent of 𝑟 ′.

6.2.3 Summary. It is interesting to see that the regular post-processing
methods (e.g., Norm-Sub) perform similarly to state-of-the-art attack-

focusedmethods (e.g., LDPRecover) in data recovery. It is speculated

that the consistency condition plays a crucial role, not only bene-

fiting utility but also attack suppression. When there is no attack

or the attack influence has been minimized (e.g., fake users can be

identified or in the server setting of OLH and HST), our method

RSN is recommended for utility boosting. When a strong attack is

present in OUE, OLH-User, and HST-User, RSN and Norm-Sub are

both preferred methods for data recovery. In general, Normaliza-

tion is not recommended since it is not adaptive to the underlying

data and LDP settings except when large errors are expected (e.g.,

GRR with large 𝑑 and small 𝜖). Our additional experiment in Fig-

ure 7 shows that given similar MSE, RSN retains more original

high-frequency items compared to Norm-Sub and LDPRecover. As

a result, RSN would be a preferred post-processing method in gen-

eral for balanced attack mitigation and data recovery.

7 Discussion
Extension to Heavy Hitter Identification. Prior study [5] shows
that PEM protocol for heavy hitter identification [3, 4, 25] is also

vulnerable to MGA attack. As a result, the target items could be

falsely recognized as the top-𝑘 . Our detection methods can help

identify attack behaviors. Specifically, since PEM interactively ap-

plies OLH for partial vector perturbation, we may adopt Diffstats
to detect malicious users for each iteration. However, as the size

of the encoded domain in PEM is smaller than that of the original

item domain, it may affect the detection performance as discussed

in Section 4.1.2. Likewise, ASD should also be applicable but could

be less effective due to the focus on top-𝑘 items in PEM, which

prevents full domain aggregation analysis.

Extension to Numerical Data. The recent work [15] recom-

mended the SW protocol over binning-based CFOs for numerical

14

distribution estimation thanks to the more robust performance of

SW against the data poisoning attack and better results of their pro-

posed detection method on SW (i.e., higher AUC values for attack

existence). Our research can be extended to enhance the practi-

cal robustness of the binning-based CFO protocols. Specifically,

CFOs with binning apply, for example, OUE or OLH, to estimate

a histogram and adopt consistency post-processing to enforce the

distribution characteristics. Since the targeted attack in [15] is a

variant of MGA, our proposed detection methods can be adapted to

detect the attack and identify malicious users. Along with our post-

processing method, we may significantly enhance the corrupted

data recovery for vulnerable binning-based CFOs and thus provide

reliable alternatives for numerical data in hostile environments.

8 Conclusion
Data poisoning attacks pose an imminent threat to current LDP

implementations and urge the research community to rethink the

security implications in privacy-enhancing technologies. Our newly

discovered attack strategies unveil the dynamics of the threat land-

scape. To mitigate the emerging adversaries, we propose novel

detection methods with high detection accuracy and low overhead.

In addition, our new post-processing method and follow-up analy-

sis of existing approaches reveal key design principles and highlight

the importance of LDP post-processing in attack resilience, which

we believe will benefit the research in the future.

9 Acknowledgments
We would like to thank the Shepherd and anonymous reviewers

for their insightful comments and guidance. This paper was sup-

ported in part by NSF grants CNS-2238680, CNS-2207204, and CNS-

2247794.

References
[1] 2024. Emoji Stats. https://www.emojistats.org/

[2] 2024. San Francisco Fire Department Calls for Service. http://bit.ly/336sddL

[3] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta.

2017. Practical locally private heavy hitters. Advances in Neural Information

Processing Systems 30 (2017).

[4] Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for succinct

histograms. In Proceedings of the forty-seventh annual ACM symposium on

Theory of computing. 127–135.

[5] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Data poisoning attacks

to local differential privacy protocols. In 30th USENIX Security Symposium. 947–

964.

[6] Albert Cheu, Adam Smith, and Jonathan Ullman. 2021. Manipulation attacks

in local differential privacy. In 2021 IEEE Symposium on Security and Privacy.

IEEE, 883–900.

[7] Abraham De Moivre. 2020. The doctrine of chances: A method of calculating

the probabilities of events in play. Routledge.

[8] John C Duchi, Michael I Jordan, andMartin JWainwright. 2013. Local privacy and

statistical minimax rates. In 2013 IEEE 54th annual Symposium on Foundations

of Computer Science. IEEE, 429–438.

[9] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2018. Minimax optimal

procedures for locally private estimation. J. Amer. Statist. Assoc. 113, 521 (2018),

182–201.

[10] Werner Ehm. 1991. Binomial approximation to the Poisson binomial distribution.

Statistics & Probability Letters 11, 1 (1991), 7–16.

[11] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Ran-

domized aggregatable privacy-preserving ordinal response. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security.

1054–1067.

[12] Kai Huang, Gaoya Ouyang, Qingqing Ye, Haibo Hu, Bolong Zheng, Xi Zhao,

Ruiyuan Zhang, and Xiaofang Zhou. 2024. LDPGuard: Defenses against data

poisoning attacks to local differential privacy protocols. IEEE Transactions on

Knowledge and Data Engineering (2024).

[13] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. 2014. Extremal mecha-

nisms for local differential privacy. Advances in Neural Information Processing

Systems 27 (2014).

[14] Xiaoguang Li, Ninghui Li, Wenhai Sun, Neil Zhenqiang Gong, and Hui Li. 2023.

Fine-grained poisoning attack to local differential privacy protocols for mean

and variance estimation. In 32nd USENIX Security Symposium. 1739–1756.

[15] Xiaoguang Li, Zitao Li, Ninghui Li, and Wenhai Sun. 2025. On the Robustness of

LDP Protocols for Numerical Attributes under Data Poisoning Attacks. In 32nd

Annual Network and Distributed System Security Symposium, NDSS 2025, San

Diego, California, USA, February 24-28, 2025.

[16] Zitao Li, Tianhao Wang, Milan Lopuhaä-Zwakenberg, Ninghui Li, and Boris

Škoric. 2020. Estimating numerical distributions under local differential pri-

vacy. In Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data. 621–635.

[17] Karl Pearson. 1896. VII. Mathematical contributions to the theory of evolu-

tion.—III. Regression, heredity, and panmixia. Philosophical Transactions of

the Royal Society of London. Series A, containing papers of a mathematical or

physical character 187 (1896), 253–318.

[18] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016.

Heavy hitter estimation over set-valued data with local differential pri-

vacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and

communications security. 192–203.

[19] Xinyue Sun, Qingqing Ye, Haibo Hu, Jiawei Duan, Tianyu Wo, Jie Xu, and Renyu

Yang. 2024. LDPRecover: Recovering frequencies from poisoning attacks against

local differential privacy. In 2024 IEEE 40th International Conference on Data

Engineering. 1619–1631.

[20] ADP Team et al. 2017. Learning with privacy at scale. Apple Mach. Learn. J 1, 8

(2017), 1–25.

[21] Wei Tong, Haoyu Chen, Jiacheng Niu, and Sheng Zhong. 2024. Data Poisoning

Attacks to Locally Differentially Private Frequent Itemset Mining Protocols. arXiv

preprint arXiv:2406.19466 (2024).

[22] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin,

Junbum Shin, and Ge Yu. 2019. Collecting and analyzing multidimensional data

with local differential privacy. In 2019 IEEE 35th International Conference on

Data Engineering. IEEE, 638–649.

[23] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

differentially private protocols for frequency estimation. In 26th USENIX Security

Symposium. 729–745.

[24] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui

Li, and Somesh Jha. 2019. Answering multi-dimensional analytical queries under

local differential privacy. In Proceedings of the 2019 International Conference

on Management of Data. 159–176.

[25] Tianhao Wang, Ninghui Li, and Somesh Jha. 2019. Locally differentially pri-

vate heavy hitter identification. IEEE Transactions on Dependable and Secure

Computing 18, 2 (2019), 982–993.

[26] Tianhao Wang, Milan Lopuhaa-Zwakenberg, Zitao Li, Boris Skoric, and Ninghui

Li. 2020. Locally Differentially Private Frequency Estimation with Consistency.

In Proceedings of the NDSS Symposium.

[27] Yongji Wu, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. Poisoning

attacks to local differential privacy protocols for key-value data. In 31st USENIX

Security Symposium. 519–536.

[28] Qingqing Ye, Haibo Hu, Xiaofeng Meng, and Huadi Zheng. 2019. PrivKV: Key-

value data collection with local differential privacy. In 2019 IEEE Symposium on

Security and Privacy. IEEE, 317–331.

Appendix A Proof of Theorem 4.1
Proof.

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
= E

[
(𝑂𝑘

𝑀𝐺𝐴 − 𝑌𝑘)2
]

= E
[
(𝑂𝑘

𝑀𝐺𝐴)
2

]
− 2𝑌𝑘E

[
𝑂𝑘
𝑀𝐺𝐴

]
+ (𝑌𝑘)2

= (E
[
(𝑂𝑘

𝑀𝐺𝐴)
2

]
− E

[
𝑂𝑘
𝑀𝐺𝐴

]
2

)

+ (E
[
𝑂𝑘
𝑀𝐺𝐴

]
2

− 2𝑌𝑘E
[
𝑂𝑘
𝑀𝐺𝐴

]
+ (𝑌𝑘)2)

= 𝑉𝑎𝑟 (𝑂𝑘
𝑀𝐺𝐴) + (E[𝑂𝑘

𝑀𝐺𝐴] − 𝑌𝑘)2

Let𝑊 𝑘
𝑏𝑒𝑛𝑖𝑔𝑛

∼ 𝐵(𝑛 −𝑚, 𝑃 (𝑋 = 𝑘)) denote the frequency of

bits set to 1 in the reports of 𝑛 −𝑚 benign users and𝑊 𝑘
𝑓 𝑎𝑘𝑒

be the

frequency of bits set to 1 in the reports of𝑚 fake users.𝑊 𝑘
𝑓 𝑎𝑘𝑒

=𝑚

15

https://www.emojistats.org/
http://bit.ly/336sddL

if 𝑘 = 𝑙𝑔 and𝑊
𝑘
𝑓 𝑎𝑘𝑒

= 0 if 𝑘 ≠ 𝑙𝑔 . Thus, the observed frequency is

𝑂𝑘
𝑀𝐺𝐴

=𝑊 𝑘
𝑏𝑒𝑛𝑖𝑔𝑛

+𝑊 𝑘
𝑓 𝑎𝑘𝑒

. Note that 𝑌𝑘 = 𝑛𝑃 (𝑋 = 𝑘).
Given the independence between𝑊 𝑘

𝑏𝑒𝑛𝑖𝑔𝑛
and𝑊 𝑘

𝑓 𝑎𝑘𝑒
, when 𝑘 =

𝑙𝑔 , we haveE
[
𝑂𝑘
𝑀𝐺𝐴

]
= E[𝑊 𝑘

𝑏𝑒𝑛𝑖𝑔𝑛
]+𝑚 = (𝑛−𝑚)𝑃 (𝑋 = 𝑘)+𝑚 and

𝑉𝑎𝑟 (𝑂𝑘
𝑀𝐺𝐴

) = 𝑉𝑎𝑟 (𝑊 𝑘
𝑏𝑒𝑛𝑖𝑔𝑛

) = (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘)).
Therefore,

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
= 𝑉𝑎𝑟 (𝑂𝑘

𝑀𝐺𝐴) + (E[𝑂𝑘
𝑀𝐺𝐴] − 𝑌𝑘)2

= (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))
+ ((𝑛 −𝑚)𝑃 (𝑋 = 𝑘) +𝑚 − 𝑛𝑃 (𝑋 = 𝑘))2

= (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘)) +𝑚2 · (𝑃 (𝑋 = 𝑘) − 1)2 .

When 𝑘 ≠ 𝑙𝑔 , since𝑊
𝑘
𝑓 𝑎𝑘𝑒

= 0, we have E
[
𝑂𝑘
𝑀𝐺𝐴

]
= E[𝑊 𝑘

𝑏𝑒𝑛𝑖𝑔𝑛
] =

(𝑛−𝑚)𝑃 (𝑋 = 𝑘) and𝑉𝑎𝑟 (𝑂𝑘
𝑀𝐺𝐴

) = 𝑉𝑎𝑟 (𝑊 𝑘
𝑏𝑒𝑛𝑖𝑔𝑛

) = (𝑛−𝑚)𝑃 (𝑋 =

𝑘) (1 − 𝑃 (𝑋 = 𝑘)). Therefore,

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
= 𝑉𝑎𝑟 (𝑂𝑘

𝑀𝐺𝐴) + (E[𝑂𝑘
𝑀𝐺𝐴] − 𝑌𝑘)2

= (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))
+ ((𝑛 −𝑚)𝑃 (𝑋 = 𝑘) − 𝑛𝑃 (𝑋 = 𝑘))2

= (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘)) +𝑚2 · (𝑃 (𝑋 = 𝑘))2 .

□

Appendix B Proof of Theorem 4.2
Proof.

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝑀𝐺𝐴, 𝑌

𝑘) =
∑︁
𝑘

(𝑂𝑘
𝑀𝐺𝐴

− 𝑌𝑘)2

𝑌𝑘

=
(𝑂𝑙𝑔

𝑀𝐺𝐴
− 𝑌 𝑙𝑔)2

𝑌 𝑙𝑔
+

𝑑∑︁
𝑘=0
𝑘≠𝑙𝑔

(𝑂𝑘
𝑀𝐺𝐴

− 𝑌𝑘)2

𝑌𝑘

According to Theorem 4.1, when 𝑘 = 𝑙𝑔 , we have

(𝑂𝑙𝑔

𝑀𝐺𝐴
− 𝑌 𝑙𝑔)2

𝑌 𝑙𝑔

=
𝑚2 · (𝑃 (𝑋 = 𝑙𝑔) − 1)2 + (𝑛 −𝑚)𝑃 (𝑋 = 𝑙𝑔) (1 − 𝑃 (𝑋 = 𝑙𝑔))

𝑛 · 𝑃 (𝑋 = 𝑙𝑔)
.

When 𝑘 ≠ 𝑙𝑔 ,

(𝑂𝑘
𝑀𝐺𝐴

− 𝑌𝑘)2

𝑌𝑘

=
𝑚2 · (𝑃 (𝑋 = 𝑘))2 + (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))

𝑛 · 𝑃 (𝑋 = 𝑘)

=
𝑚2 · 𝑃 (𝑋 = 𝑘) + (𝑛 −𝑚) (1 − 𝑃 (𝑋 = 𝑘))

𝑛
.

According to Eq. (3) we have

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝑀𝐺𝐴, 𝑌

𝑘)

=
𝑚2 · (𝑃 (𝑋 = 𝑙𝑔) − 1)2 + (𝑛 −𝑚)𝑃 (𝑋 = 𝑙𝑔) (1 − 𝑃 (𝑋 = 𝑙𝑔))

𝑛 · 𝑃 (𝑋 = 𝑙𝑔)

+
𝑑∑︁

𝑘=0
𝑘≠𝑙𝑔

𝑚2 · 𝑃 (𝑋 = 𝑘) + (𝑛 −𝑚) (1 − 𝑝 (𝑋 = 𝑘))
𝑛

=
𝑚2

𝑛

©«
(𝑃 (𝑋 = 𝑙𝑔) − 1)2

𝑃 (𝑋 = 𝑙𝑔)
+

𝑑∑︁
𝑘=0
𝑘≠𝑙𝑔

𝑃 (𝑋 = 𝑘)
ª®®®¬

+ 𝑛 −𝑚

𝑛

©«(1 − 𝑃 (𝑥 = 𝑙𝑔) +
𝑑∑︁

𝑘=0
𝑘≠𝑙𝑔

(1 − 𝑝 (𝑋 = 𝑘)))
ª®®®¬

=
𝑚2

𝑛

©«
(𝑃 (𝑋 = 𝑙𝑔) − 1)2

𝑃 (𝑋 = 𝑙𝑔)
+

𝑑∑︁
𝑘=0
𝑘≠𝑙𝑔

𝑃 (𝑋 = 𝑘)
ª®®®¬ +

(𝑛 −𝑚) · 𝑑
𝑛

.

Given

𝑑∑
𝑘=0

𝑃 (𝑋 = 𝑘) = 1, we have

𝑑∑
𝑘=0
𝑘≠𝑙𝑔

𝑃 (𝑋 = 𝑘) = 1 − 𝑃 (𝑋 = 𝑙𝑔).

Therefore,

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝑀𝐺𝐴, 𝑌

𝑘)

=
𝑚2

𝑛

©«
(𝑃 (𝑋 = 𝑙𝑔) − 1)2

𝑃 (𝑋 = 𝑙𝑔)
+

𝑑∑︁
𝑘=0
𝑘≠𝑙𝑔

𝑃 (𝑋 = 𝑘)
ª®®®¬ +

(𝑛 −𝑚) · 𝑑
𝑛

=
𝑚2

𝑛

(
1

𝑃 (𝑋 = 𝑙𝑔)
− 1

)
+ (𝑛 −𝑚) · 𝑑

𝑛
.

□

Appendix C Proof of Theorem 4.3
Proof. For APA, the proof here is similar to that of Theorem 4.1.

We have E
[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
= 𝑉𝑎𝑟 (𝑂𝑘

𝐴𝑃𝐴
) + (E[𝑂𝑘

𝐴𝑃𝐴
] − 𝑌𝑘)2.

Let𝑊 𝑘
𝑏𝑒𝑛𝑖𝑔𝑛

∼ 𝐵(𝑛 −𝑚, 𝑃 (𝑋 = 𝑘)) denote the frequency of

bits set to 1 in the reports of 𝑛 −𝑚 benign users and𝑊 𝑘
𝑓 𝑎𝑘𝑒

be

the frequency of bits set to 1 in the reports of 𝑚 fake users. For

APA, 𝑊 𝑘
𝑓 𝑎𝑘𝑒

= 𝜔 [𝑘]. Thus, the observed frequency is 𝑂𝑘
𝐴𝑃𝐴

=

𝑊 𝑘
𝑏𝑒𝑛𝑖𝑔𝑛

+𝑊 𝑘
𝑓 𝑎𝑘𝑒

. Note that 𝑌𝑘 = 𝑛𝑃 (𝑋 = 𝑘).
Since𝑊 𝑘

𝑏𝑒𝑛𝑖𝑔𝑛
is independent of𝑊 𝑘

𝑓 𝑎𝑘𝑒
, for each 𝑘 ∈ [0, 𝑑], we

have

E
[
𝑂𝑘
𝐴𝑃𝐴

]
= E[𝑊 𝑘

𝑏𝑒𝑛𝑖𝑔𝑛
] + 𝜔 [𝑘] = (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) + 𝜔 [𝑘]

and

𝑉𝑎𝑟 (𝑂𝑘
𝐴𝑃𝐴) = 𝑉𝑎𝑟 (𝑊 𝑘

𝑏𝑒𝑛𝑖𝑔𝑛
) = (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘)) .

16

Therefore,

E
[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
= E

[
(𝑂𝑘

𝐴𝑃𝐴 − 𝑌𝑘)2
]

= 𝑉𝑎𝑟 (𝑂𝑘
𝐴𝑃𝐴) + (E[𝑂𝑘

𝐴𝑃𝐴] − 𝑌𝑘)2

= (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))
+ (𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2 .

□

Appendix D Proof of Theorem 4.4
Proof.

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝐴𝑃𝐴, 𝑌

𝑘) =
∑︁
𝑘

(𝑂𝑘
𝐴𝑃𝐴

− 𝑌𝑘)2

𝑌𝑘

=

𝑑∑︁
𝑘=0

(𝑂𝑘
𝐴𝑃𝐴

− 𝑌𝑘)2

𝑌𝑘

According to Theorem 4.3,

(𝑂𝑘
𝐴𝑃𝐴

− 𝑌𝑘)2

𝑌𝑘

=
(𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2 + (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))

𝑛 · 𝑃 (𝑋 = 𝑘)
As per Eq. (3), we have

𝐸𝑓 𝑟𝑒𝑞 (𝑂𝑘
𝐴𝑃𝐴, 𝑌

𝑘)

=

𝑑∑︁
𝑘=0

(𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2 + (𝑛 −𝑚)𝑃 (𝑋 = 𝑘) (1 − 𝑃 (𝑋 = 𝑘))
𝑛 · 𝑃 (𝑋 = 𝑘)

=
1

𝑛

𝑑∑︁
𝑘=0

(𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2
𝑃 (𝑋 = 𝑘) + 𝑛 −𝑚

𝑛

𝑑∑︁
𝑘=0

(1 − 𝑃 (𝑋 = 𝑘))

=
1

𝑛

𝑑∑︁
𝑘=0

(𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2
𝑃 (𝑋 = 𝑘) + (𝑛 −𝑚) · 𝑑

𝑛
.

□

Appendix E Proof of Theorem 4.5
Proof. Given Theorems 4.1 and 4.3, when 𝑘 = 𝑙𝑔 we have

E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
− E

[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
=𝑚2 · (𝑃 (𝑋 = 𝑘) − 1)2 − (𝑚 · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘])2

=𝑚2 · 𝑃 (𝑋 = 𝑘)2 − 2𝑚2 · 𝑃 (𝑋 = 𝑘) +𝑚2

− (𝑚2𝑃 (𝑋 = 𝑘)2 − 2𝑚 · 𝜔 [𝑘] · 𝑃 (𝑋 = 𝑘) + 𝜔 [𝑘]2)
= −2𝑚2 · 𝑃 (𝑋 = 𝑘) +𝑚2 + 2𝑚 · 𝜔 [𝑘] · 𝑃 (𝑋 = 𝑘) − 𝜔 [𝑘]2

= (𝜔 [𝑘] −𝑚) (𝑚 · (2𝑃 (𝑋 = 𝑘) − 1) − 𝜔 [𝑘])

According to the De Moivre-Laplace theorem [7], we can approxi-

mate𝑋 ∼ N(𝜇, 𝜎) using a normal approximation, where 𝜇 = 𝑑𝑝 and

𝜎 =
√︁
𝑑𝑝 (1 − 𝑝) with a typical requirement of 𝑑𝑝 > 5. Note that it is

common in CFOs to have a large 𝑑 (e.g., 𝑑 > 100). For 𝑝 =
𝑝+(𝑑−1)𝑞

𝑑

and 𝑞 = 1

𝑒𝜖+1 ∈ (0, 1
2
), 𝑑𝑝 > 5 is easily satisfied when 𝑝 ≈ 𝑞.

Thus, E
[
𝑃 (𝑋 = 𝑘 = 𝑙𝑔)

]
= E [𝑓 (𝑥 = 𝜇)] = 1

𝜎
√
2𝜋

≤ 1√
2𝜋

≈ 0.4. For

𝜔 [𝑘 = 𝑙𝑔] ∈ [0,𝑚], 𝑅 = E
[
𝐸𝑀𝐺𝐴
𝑠𝑞 (𝑘)

]
− E

[
𝐸𝐴𝑃𝐴𝑠𝑞 (𝑘)

]
is 0 when

𝜔 [𝑘 = 𝑙𝑔] =𝑚; 𝑅 > 0 when 𝜔 [𝑘 = 𝑙𝑔] < 𝑚. □

Appendix F Proof of Theorem 4.6
Proof. Since𝐶𝑖 ∼ 𝑁 (𝑛 · 𝑓𝑖 , 𝜎2𝑖), we can obtain , 𝜉 (𝛾) = 𝜇𝑖 +𝑍𝛾 ·𝜎𝑖

for the item 𝑖 and a given confidence level 𝛾 , where 𝜇𝑖 = 𝑛 · 𝑓𝑖 and
𝑍𝛾 = Φ−1 (1+𝛾

2
) is the 𝑧-score corresponding to the confidence level

𝛾 under the standard normal distribution. This upper bound ensures

that𝐶𝑖 corresponding to its true frequency 𝜇𝑖 lies within the interval

with the specified confidence level. For items with 𝑓𝑖 = 0,𝐶𝑖 follows

𝑁 (0, 𝜎2
𝑖
) and 𝜎2

𝑖
=

𝑛 (𝑞 (1−𝑞))
(𝑝−𝑞)2 . As a result, the upper bound of B is

𝜉 (𝛾) = 𝑍 (𝛾) ·
√︂

𝑛𝑞 (1−𝑞)
(𝑝−𝑞)2 with confidence 𝛾 . □

Appendix G Error Analysis of ASD
We analyze the error 𝐸𝑟𝑟 in ASD below. Since 𝐶𝑖 ∼ 𝑁 (𝑛 · 𝑓𝑖 , 𝜎2𝑖),
for a given 𝐶 𝑗 , its probability of coming from different frequencies

𝑓𝑖 is

𝑓 (𝐶 𝑗 |𝑓𝑖) =
1√︂

2𝜋
𝜎2

𝑖

(𝑝−𝑞)2

exp

©«−
(𝐶 𝑗 − 𝑛 · 𝑓𝑖)2

2

𝜎2

𝑖

(𝑝−𝑞)2

ª®®¬
Therefore, we can derive the error 𝐸𝑟𝑟

𝐸𝑟𝑟 = E

[
𝑛 − 𝑛 ·

𝑑∑︁
𝑖=1

𝐶𝑖 · Pr(𝐶𝑖 > 𝜉 (𝛾) |𝑓𝑖)
]

= 𝑛 −
𝑑∑︁
𝑖=1

[
𝑛 · 𝑓𝑖 · (1 − Pr(𝐶𝑖 > 𝜉 (𝛾) |𝑓𝑖)) + 𝜎𝑖𝜙

(
𝜉 (𝛾) − 𝑛 · 𝑓𝑖

𝜎𝑖

)]
= 𝑛 ·

𝑑∑︁
𝑖=1

𝑓𝑖 · Pr(𝐶𝑖 < 𝜉 (𝛾) |𝑓𝑖) −
𝑑∑︁
𝑖=1

𝜎𝑖𝜙

(
𝜉 (𝛾) − 𝑛 · 𝑓𝑖

𝜎𝑖

)
= 𝑛 ·

𝑑∑︁
𝑖=1

𝑓𝑖 ·
∫ 𝜉 (𝛾)

−∞
𝑓 (𝐶𝑖 |𝑓𝑖) 𝑑𝐶 𝑗 −

𝑑∑︁
𝑖=1

𝜎𝑖𝜙

(
𝜉 (𝛾) − 𝑛 · 𝑓𝑖

𝜎𝑖

)
= 𝑛 ·

𝑑∑︁
𝑖=1

𝑓𝑖 ·
∫ 𝜉 (𝛾)

−∞

1√︂
2𝜋

𝜎2

𝑖

(𝑝−𝑞)2

exp

©«−
(𝐶𝑖 − 𝑛 · 𝑓𝑖)2

2

𝜎2

𝑖

(𝑝−𝑞)2

ª®®¬
−

𝑑∑︁
𝑖=1

𝜎𝑖𝜙

(
𝜉 (𝛾) − 𝑛 · 𝑓𝑖

𝜎𝑖

)
(5)

where 𝜙 (𝑧) is the probability density function of the standard nor-

mal distribution. As the detector lacks knowledge of the genuine

frequency 𝑓𝑖 , it is challenging to compute the accurate 𝐸𝑟𝑟 .

Appendix H Additional Results of Recovery
Figures 8 and 9 present additional recovery results for OLH-User

and HST-User. LDPRecover performs similarly to Norm-Sub and

RSN with the zipf dataset but falls behind RSN with emoji and fire.

RSN consistently demonstrates betterMSE performance, particu-

larly with fire.

Figures 10 and 11 present the complete recovery results for MGA

and MGA-A attacks under the GRR protocol with all three datasets.

The results are in line with the conclusion in Section 5.3.

17

0 1 2
0

100

101

0.01 0.10 0.20
0

100

101

0 1 2
10 5

10 4

10 3

10 2

0.01 0.10 0.20

10 5

10 4

10 3

10 2

0 1 2
0

100

101

0.01 0.10 0.20
0

100

101

0 1 2
10 5

10 4

10 3

10 2

0.01 0.10 0.20

10 5

10 4

10 3

10 2

0 1 2
ε

0

100

101

0.01 0.10 0.20
β

0

100

101

0 1 2
ε

10 5

10 4

10 3

10 2

0.01 0.10 0.20
β

10 5

10 4

10 3

10 2

IGR IGR MSE MSE

zip
f

em
oj

i
fir

e

Original RSN Norm-Sub Base-cut LDPRecover Normalization

Figure 8: Utility recoverability of different post-processing methods under APA attack on OLH-User.

0 1 2
0

100

101

0.01 0.10 0.20

0

100

101

0 1 2
10 5

10 4

10 3

10 2

0.01 0.10 0.20

10 5

10 4

10 3

10 2

0 1 2
0

100

101

0.01 0.10 0.20
0

100

101

0 1 2

10 5

10 4

10 3

10 2

0.01 0.10 0.20

10 5

10 4

10 3

10 2

0 1 2
ε

0

100

101

0.01 0.10 0.20
β

0

100

101

0 1 2
ε

10 5

10 4

10 3

10 2

0.01 0.10 0.20
β

10 5

10 4

10 3

10 2

IGR IGR MSE MSE

zip
f

em
oj

i
fir

e

Original RSN Norm-Sub Base-cut LDPRecover Normalization

Figure 9: Utility recoverability of different post-processing methods under APA attack on HST-User.

18

0 1 2
0

100

101

103

0.01 0.10 0.20
0

100

101

102

1 5 10
0

100

101

103

0 1 2
0

100

101

103

0.01 0.10 0.20
0

100

101

102

2 5 8
0

100

101

103

0 1 2
0

100
101

103

0.01 0.10 0.20
0

100

101

102

1 5 10
0

100

101

103

0 1 2
0

100
101

103

0.01 0.10 0.20
0

100

101

102

2 5 8
0

100

101

103

0 1 2
ε

0

100

101

103

0.01 0.10 0.20
β

0

100

101

102

1 5 10
r

0

100

101

103

0 1 2
ε

0

100

101

103

0.01 0.10 0.20
β

0

100

101

102

2 5 8
r ′

0

100

101

103

IGR MGA MGA MGA MGA-A MGA-A MGA-A

zip
f

em
oj

i
fir

e

Original RSN Norm-Sub Base-cut LDPRecover Normalization

Figure 10: IGR for different post-processing methods under MGA and MGA-A attacks on GRR with emoji and fire.

0 1 2
10 4

10 2

101

0.01 0.10 0.20
10 5

10 4

10 2

100

1 5 10
10 4

10 2

10 1

100

0 1 2
10 4

10 2

101

0.01 0.10 0.20
10 5

10 4

10 2

100

2 5 8

10 3

10 2

10 1

0 1 2
10 4

10 2

101

0.01 0.10 0.20
10 5
10 4

10 2

100

1 5 10
10 4

10 2

10 1

100

0 1 2
10 4

10 2

101

0.01 0.10 0.20
10 5
10 4

10 2

100

2 5 8

10 4

10 3

10 2

10 1

0 1 2
ε

10 4

10 2

101

0.01 0.10 0.20
β

10 5

10 4

10 2

100

1 5 10
r

10 4

10 2

10 1

100

0 1 2
ε

10 4

10 2

101

0.01 0.10 0.20
β

10 5

10 4

10 2

100

2 5 8
r ′

10 3

10 2

MSE MGA MGA MGA MGA-A MGA-A MGA-A

zip
f

em
oj

i
fir

e

Original RSN Norm-Sub Base-cut LDPRecover Normalization

Figure 11: MSE for different post-processing methods under MGA and MGA-A attacks on GRR with emoji and fire.

19

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Local Differential Privacy
	2.2 Attack Detection

	3 Mitigation Overview
	3.1 Threat Model
	3.2 Attacks
	3.3 Workflow

	4 Attack Detection
	4.1 Fake User Detection
	4.2 Abnormal Statistics Detection

	5 Detection Evaluation
	5.1 Experimental Setup
	5.2 Results for Diffstats
	5.3 Results for ASD

	6 Attack Recovery of LDP Post-processing
	6.1 Robust Segment Normalization
	6.2 Evaluation

	7 Discussion
	8 Conclusion
	9 Acknowledgments
	References
	Appendix A Proof of Theorem 4.1
	Appendix B Proof of Theorem 4.2
	Appendix C Proof of Theorem 4.3
	Appendix D Proof of Theorem 4.4
	Appendix E Proof of Theorem 4.5
	Appendix F Proof of Theorem 4.6
	Appendix G Error Analysis of ASD
	Appendix H Additional Results of Recovery

