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Quantum energy teleportation (QET) is a process that leverages quantum
entanglement and local operations to transfer energy between two spatially
separated locations without physically transporting particles or energy carri-
ers. We construct a QET-based quantum key distribution (QKD) protocol
and analyze its security and robustness to noise in both the classical and the
quantum channels. We generalize the construction to an N -party informa-
tion sharing protocol, possessing a feature that dishonest participants can be
detected.

1 Introduction
Quantum Key Distribution (QKD) is a secure communication protocol that relies on quan-
tum mechanics (QM) principles to establish a shared, secret cryptographic key between
two parties and guarantees the secrecy of the key even in the presence of an eavesdropper.
The secure key exchange is achieved by encoding information in quantum states, such as
in the polarization of photons in the BB84 protocol [1, 2, 3, 4, 5, 6], and ensuring that any
interception by an eavesdropper is detectable. The first QM principle leveraged to detect
eavesdropping is that quantum states cannot be measured without disturbing them. The
second is the no-cloning theorem, which states that it is impossible to create an exact copy
of an arbitrary unknown quantum state, which prevents the eavesdropper from copying
quantum information without introducing detectable errors. Other QKD protocols, such
as E91 Protocol [7], use quantum entanglement, where information is encoded in quantum
correlations between the two parties, and eavesdropping is detected by Bell measurements.
QKD protocols are provably secure by relying on the laws of quantum mechanics and not
on computational hardness, are robust above a certain error threshold and expected to be
a cornerstone for secure communication in the quantum era. In practical implementations,
where optical fibers or free-space communication are used to transmit the quantum states,
there are various vulnerabilities due to side-channel attacks that need to be addressed [8],
such as photon-number-splitting in BB84 and the distribution of the entangled states in
E91 [9].
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In this work, we propose a novel QKD protocol based on quantum energy teleportation
(QET) [10], where energy is transferred between two spatially separated locations without
physical energy carriers traveling through space. QET leverages quantum entanglement
and local operations to achieve the energy transfer. See [11] for a review and [12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22] for recent developments. A demonstration code is provided
in GitHub [23]. In the QET protocol, two spatially separated subsystems Alice (A) and
Bob (B) are entangled, and the ground state of their joint system is used as the resource
state. Alice performs a local measurement on her part of the system, perturbing the joint
entangled state, hence injecting energy into the local subsystem. Alice then sends the
result of her measurement as a classical message to Bob, who uses the information from
Alice to apply a local operation on his part of the system, an operation which extracts
energy from the quantum correlations present in the shared ground state.

The QET protocol can be used in order to establish a secure key between Alice and
Bob as follows. Alice and Bob share an entangled state of a known Hamiltonian. Alice
chooses a random measurement basis and performs a local projective measurement on her
qubit. She announces to Bob on a classical channel the measurement basis as well as the
bit result of her measurement b for encoding the logical 1 in the key, or b⊕ 1 for encoding
logical 0. Bob uses the information from Alice to apply a local operation on his part of the
system, and depending on the received bit, he measures a negative or positive energy. He
associates negative energy with logical bit 1, and positive energy with logical bit 0. Note
that Bob’s measurement result depends both on the classical message that Alice sends, as
well as the quantum correlations present in the shared ground state.

The basic setting in which Alice and Bob create a symmetric secret key is generalized
to the case in which Alice simultaneously shares the same key with several parties, Bob,
Charlie, David, etc. Sharing a random key among many participants, while revealing
no information to any other entity is a very useful cryptographic primitive, for example,
enabling the creation of a secret private group key [24]. We detail the energy teleportation
techniques used to implement such a group secret key. This N -party information sharing
protocol possesses a feature that dishonest participants can be detected by comparing signs
of the measured energies.

To analyze the security of the protocol, we assume that Alice and Bob are reliable and
honest parties, and assume that Eve is the man-in-the-middle (MITM) on the quantum
network, but she can only tap in (rather than be MITM) on the classical broadcast channel.
We will see that in the QET-based QKD, it is not sufficient for Eve to know both the shared
entangled state between Alice and Bob and the classically transferred information, to fool
Alice and Bob into considering her inputs as legitimate ones. We will show how to verify
that the ground state shared by Alice and Bob is indeed secure. The security of the protocol
is enhanced by allowing Alice to decide on a random basis for her measurement, which,
as proposed in [25, 26] provides a security against weak measurements [27]. The need for
such security enhancements can be motivated by the measurement attacks suggested in
[28, 29].

The paper is organized as follows. In Section 2 we briefly review QET and detail
the QET-based QKT protocol. In Section 3 we analyze the security of the protocol. In
Section 4 we detail the robustness to noise of the protocol. Section 5 is devoted to a brief
discussion and outlook.
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2 QET-based QKD
In this section, we briefly review the QET protocol [10] and construct a QET-based QKD
protocol.

2.1 QET Protocol
We consider first a QET protocol consisting of one energy supplier (Alice) and one energy
consumer (Bob), and their joint two-body Hamiltonian:

H = 2kX0X1 + h(Z0 + Z1) , (1)

where we place Alice at n = 0 and Bob at n = 1. k and h are positive constants, and X,Z
denote the Pauli matrices σx, σz. Decompose the Hamiltonian as follows:

HA = hZ0 ,

HB = 2kX0X1 + hZ1 ,
(2)

where we included the interaction term between Alice and Bob in HB. The initial state of
their joint system is the ground state |gs⟩ of the Hamiltonian (1). In is convenient to shift
the Hamiltonians (2) by constants such that their expectation values in the ground state
is zero [10]: HA → HA + C1, HB → HB + C1 + C2, where C1 = h2

√
h2+k2 , C2 = 2k2

√
h2+k2 .

The QET protocol is structured as follows:

1. Alice performs a local projective measurement of X0 and obtains a result b ∈ {0, 1}.
The corresponding projection operator is PA = 1

2(1 − (−1)bX0). Subsequently, Alice
announces the measurement result b to Bob using a classical channel.

2. Bob performs a rotation using UB(b) = e−iθ(−1)bY1 , where θ is a real parameter chosen
such that the energy teleportation becomes maximal.

3. Alice and Bob calculate their energy expectation values, which shows that Alice
injected energy, which was teleported to Bob.

In the protocol described above, it is crucial that Alice’s projective measurements do
not influence the energy of Bob. This condition implies:

[PA, HB] = 0 . (3)

The evolution of the initial density matrix ρgs = |gs⟩ ⟨gs| after Alice’s measurement ρA and
after Bob’s ρB rotation can be expressed as:

ρA =
∑
b

PA(b)ρgsPA(b) ,

ρB =
∑
b

UB(b)PA(b)ρgsPA(b)U †
B(b) .

(4)

The energy expectation values compared with the initial local energies read:

EA = Tr[ρAHA] − Tr[ρgsHA] > 0 ,
EB = Tr[ρBHB] − Tr[ρgsHB] < 0 ,

(5)

and in our notation Tr[ρgsHA] = Tr[ρgsHB] = 0. EA is the energy injected by Alice to the
systems and −EB is the energy extracted by Bob.
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The QET protocol can be generalized to an arbitrary measurement basis as follows.
Alice performs a local projective measurement using:

PA(b, σA) = 1 − (−1)bσA
2 , (6)

where σA = n⃗ · σ⃗, n⃗ = (n1, n2, n3) is real unit vector and σ = (X0, Y0, Z0) is a tuple of
Pauli matrices. Subsequently, she announces the measurement basis n⃗ and measurement
result b to Bob using a classical channel. Bob performs a rotation using UB = e−iθ(−1)bσB ,
where θ is a real parameter and σB is Bob’s local operation, chosen such that the energy
teleportation becomes optimal. This generalizes the above choice of UB = e−iθ(−1)bY1 .

The expressions for density matrices (4) are modified:

ρA =
∑
b

PA(b, σA)ρgsPA(b, σA) ,

ρB =
∑
b

UB(b, σB)PA(b, σA)ρgsPA(b, σA)U †
B(b, σB) ,

(7)

and the expressions for energies (5) are still valid.

2.2 Remarks on the Choice of subsystem Hamiltonians
Instead of the partitioning (2), one can choose

HA = 2kX0X1 + hZ0,

HB = hZ1 .
(8)

In this case, Alice can select any single-qubit measurement basis σA for her projective
measurement since [σA, Z1] = 0. This commutation relation guarantees that her mea-
surement does not directly inject energy into Bob’s subsystem. Suppose she chooses
σA = X0 as before. Then we find [X0, HA] = h[X0, Z0], meaning that Alice injects the
same amount of energy as previously. However, when the QET protocol with the state (4)
is applied straightforwardly, Bob cannot extract energy from the system. This is because
Tr[(ρB − ρgs)Z1] > 0, as illustrated in Fig. 3 of [12].

To enable successful QET under the alternative partitioning (8), Bob must use

UB(b⊕ 1) = e+iθ(−1)bY1 (9)

as his control operation, instead of UB(b) = e−iθ(−1)bY1 . With this choice, Bob can ensure
that Tr[(ρB − ρgs)Z1] < 0, which can be confirmed in Fig. 5 of [30].

In the rest of the work, we will work with the traditional partitioning (1) for the N = 2
case.

2.3 QKD Protocol
Alice can establish a secret key with Bob based on the QET protocol as follows:

1. Alice and Bob share an entangled ground state |gs⟩ of the Hamiltonian (1).

2. Alice chooses a random measurement basis σA for (6).

3. Alice announces the measurement result b (or b⊕1) to Bob as well as the measurement
basis n⃗.
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4. Bob performs the conditional measurement using a unitary single-qubit operation
UB(b) = exp

(
−iθ(−1)bσB

)
(or b ⊕ 1) that is constructed such that condition (3) is

satisfied and θ is a real parameter chosen such that the energy teleportation becomes
maximal.

5. Bob calculates his energy expectation value (5). If it is negative he concludes that
Alice transferred the logical bit 1 for the key, else the logical bit is 0.

The QET-based QKD protocol shares several features with the E91 protocol [7]. Both
protocols use a shared entangled state between Alice and Bob. In E91 the shared entangled
state is a Bell state singlet and the classical key bit is decided by the outcome of the
measurement. In the QET-based protocol, the shared entangled state is a ground state
of the Hamiltonian (1) and the classical key bit is decided by the outcome of the energy
on Bob’s side. A crucial difference between the two protocols is that in QET-based QKD
Alice can use a random basis for measurement, while this is limited in E91 to a small set
of possible bases.

The QET-based QKD protocol has a straightforward generalization to N + 1 parties
that share a ground state of a Hamiltonian, where Alice sends her measured bit b (or b⊕1)
and the measurement basis to the other N parties who perform the same set of operations
as above. The Hamiltonian of the system reads [17]:

H = J
N∑
k=1

X0Xk +
N∑
k=0

Zk , (10)

where Alice is located at the 0th site, and the other N parties are at k = 1, 2, · · · , N . If Al-
ice performs projective measurement by PA(b) = 1

2(1−(−1)bX0), then each party performs
a rotation Uk(bk) = e−iθ(−1)bkYk , where bk is the bit sent by Alice and θ is a parameter
that chosen such that the energy teleportation becomes optimal. The generalization has
the following interesting feature. Suppose we have 2+1 parties, where Alice is sending her
measured bit and measurement basis to Bob and Charlie, but may be cheating by sending
a wrong bit to one of them. Bob and Charlie can detect this by a comparison of their sign
of measured energy. In fact, any two of the three participants can find by comparing their
results (provided that they are different), that the third participant is cheating.

2.4 Random Measurement Basis
As noted above, an important feature of the QET-based QKD protocol is the use of a
random basis for Alice’s measurement. This is valuable in order to prevent Eve from learn-
ing, using weak measurements, about possible imperfections of the shared state between
Alice and Bob. Such a knowledge leads to a weakness of the protocol, which may be used
to attack it. In the following, we detail this. Consider a model defined by the following
Hamiltonian with N = 3:

H = J(X0X1 +X1X2) + Z0 + Z1 + Z2 , (11)

where Alice and Bob are located at n = 0 and n = 2, respectively. The reason for the
additional site n = 1 in (11), is to prevent Alice’s projective measurements from influencing
Bob’s energy (3). We define HB = JX1X2 + Z2.

Let PA(b, σA) be Alice’s projection operator (6). We consider as an example the case
where each time that Alice performs a measurement, she randomly chooses a basis from
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{X0, Y0}. When X0 is selected, Bob uses σB = Y2 for his control operation UB(b) =
exp

(
−iθ(−1)bσB

)
, and when Y0 is selected, he uses σB = X2. Here θ is determined by:

cos(2θ) = ξ√
ξ2 + η2 , sin(2θ) = η√

ξ2 + η2 , (12)

with the parameters ξ and η defined as:

ξ = ⟨gs|σBHσB |gs⟩ , η = ⟨gs|σAσ̇B |gs⟩ , (13)

where σ̇B = i[H,σB].
Following Alice’s measurement, the system’s density matrix is

ρA = 1
2

∑
σA

∑
b

PA(b, σA)ρgsPA(b, σA) , (14)

and after Bob’s rotation:

ρB = 1
2

∑
σA

∑
b

UB(b, σA)PA(b, σA)ρgsPA(b, σA)U †
B(b, σA) , (15)

where the factor 1
2 is because we choose X0 or Y0 with equal probability. In Fig. 1, we

present Bob’s teleported (negative) energy expectation value EB:

EB = Tr[ρBHB] − Tr[ρgsHB] = 1
2

[
ξ −

√
ξ2 + η2

]
< 0. (16)

The same analysis holds if Alice sends to Bob the classical bit b ⊕ 1, where he measures
positive energy (16) as in Fig. 2.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
J

−0.008

−0.006

−0.004

−0.002

0.000

random
σA = X
σA = Y

Figure 1: Bob’s teleported energy expectation value Tr[(ρB − ρgs)HB ] (16) in arbitrary units, when
Alice’s measurement basis σA is X, Y or random, i.e. X or Y with equal probability. The horizontal
axis is the coupling J (11). We see that there is an optimal value of J for the protocol, where Bob’s
energy is at the minimum.

In general, the Haar random distribution can be used to randomly generate Alice’s
measurement basis, σA. In doing so, both Bob’s basis σB and the parameter θ can be
deduced by solving the optimization problem to maximize η (13).

3 Security and Attacks
In the following, we consider security aspects of the QET-based QKD protocol.
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
J

0.000

0.005

0.010

0.015

0.020

0.025 random
σA = X
σA = Y

Figure 2: Bob’s measured energy expectation value in arbitrary units when the bit b⊕ 1 is used by Bob
for rotation, instead of Alice’s measured bit b. Alice’s measurement basis σA is X, Y or random, i.e.
X or Y with equal probability. The horizontal axis is the coupling J (11). We see that the energy is
positive in contrast Fig. 1, as expected. There is an optimal value of J for the protocol, where Bob’s
energy is at the maximum.

3.1 Men-in-the-middle and postBQP
Consider a man-in-the-middle (MITM), which will be called Eve, who: (i) knows the
Hamiltonian and can create the ground state ρgs of the system, (ii) knows the operations
of Alice and Bob, listens to the classical communication between Alice and Bob, and
knows Alice’s measurement basis and transferred bit, (iii) cannot interfere with the classical
communication and cannot affect the classical information. Let us verify that Eve cannot
reproduce the energies measured by Alice and Bob, unless she is as powerful as postBQP,
and hence cannot learn the key.

Let p(bE |bA) represent the conditional probability that Eve observes bE , given that
Alice observes bA. When Eve utilizes the feedback b′

A (bA or bA ⊕ 1) from Alice to Bob,
she statistically obtains the density matrix represented as:

ρE =
∑

bE ,bA,b
′
A

p(bE |bA)UB(b′
A)PE(bE)ρgsPE(bE)U †

B(b′
A) . (17)

Since Alice and Eve are not entangled, the events occur independently. Therefore the
conditional probability satisfies p(bE |bA) = p(bE).

Only if Eve is as powerful as postBQP (which is not physically realizable), she can
mimic Bob’s density matrix. This can be verified as follows. First, Alice’s measurements
statistically generate the following density matrix (4):

ρA =
∑
bA

p(bA) |ψ(bA)⟩ ⟨ψ(bA)| , (18)

where |ψ(bA)⟩ = PA(bA)|ψ⟩√
⟨ψ|PA(bA)PA(bA)|ψ⟩

. By listening to the classical channel, Eve gets infor-

mation of bA and can post-select the state |ψ⟩ to |ψ(bA)⟩ with probability 1. This allows
Eve to create the state

ρE,postBQP =
∑
bA

UB(b′
A)PA(bA)ρgsPA(bA)U †

B(b′
A) , (19)

which is exactly the same as what Bob gets based on Alice’s feedback b′
A and her observation

bA.
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Consider next the case, where Eve is able to establish a shared ground state with Alice
and a shared ground state with Bob, |ψ⟩ = |ψ0⟩EA ⊗ |φ⟩EB, while Alice and Bob do not
have a shared ground state, i.e. are not entangled, but do not know that. Alice performs
a measurement and sends the measurement basis and resulting measurement bit via the
classical channel, to which Eve has access. There are several scenarios to consider: (i)
Eve did not measure her joined state with Bob before Bob does. In this case, Bob will
not get the bit that Alice wanted to share but rather a random bit, and there is no key
established between Alice and Bob. (ii) Eve measured her shared state with Bob before
Alice performs her measurement. If Eve does not send a classical bit to Bob, then he will
perform his QET analysis based on Alice’s classical bit and will get a random bit. If Eve
sends a classical bit to Bob, then Bob will get two classical bits, indicating that something
went wrong. Thus, Eve cannot have a key that has been established by Alice and Bob. It
is possible that Eve and Alice share a key that differs from the one that Bob has. In this
case, Bob can verify his key with Alice by sacrificing classical bits in order to discover the
attack.

3.2 Key Distribution
The QET-based QKD protocol uses as a resource state the ground state of a Hamiltonian,
which is an entangled state between Alice and Bob. Such an entangled state can be
generated by Alice, who sends a qubit to Bob, or by a third party who sends a qubit
to Alice and a qubit to Bob. In the latter case, we assume that the third party cannot
be trusted. In order to test the resource state, Alice and Bob, who are trusted parties
themselves, perform the QET protocol on some of the resource states. By comparing their
results via a classical channel, they can detect the deviation of the predictions of the QET
protocol and identify the attack.

4 Noise and Error Thresholds
In this section, we consider the effect of noise on the QET-based protocol. We will consider
noise in the classical communication channel, as well as diverse forms of noise affecting the
entangled resource state, including bit flips, phase flips, and depolarization.

4.1 Classical Communication Error
Consider an error in the classical communication channel. Let p be the probability that Bob
receives an incorrect bit b from Alice. Then the density matrix after Alice’s measurement
and Bob’s rotation reads:

ρB = (1 − p)
∑
b

UB(b)PA(b)ρgsPA(b)U †
B(b) + p

∑
b′=b⊕1

UB(b′)PA(b)ρgsPA(b)U †
B(b′) . (20)

Then Bob’s expectation value of the teleported energy is evaluated by

EB = Tr[ρBHB] − Tr[ρgsHB] . (21)

In the simulation we take the Hamiltonian (10). Fig. 3 (left) shows EB for different N
with J = 1 and Fig. 3 (right) shows EB as a function of p, for various values of J . The
teleportation is successful when EB < 0, and as we see in the figure, there is a threshold
at about p ≃ 0.25.
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Figure 3: Bob’s teleported energy in the presence of a classical communication error with probability
p. Left: Hamiltonian (10) with J = 1. Right: Hamiltonian (10) with N = 2. The vertical threshold
line is located at p = 0.25.

4.2 Local Noise
Let ρgs be the density matrix of the ground state of the system, and σ be the density
matrix of the noise. When such a noise occurs with probability p, the state is generally
expressed as:

ρ = (1 − p)ρgs + pσ . (22)
When Alice repeatedly performs the projective measurement PA on ρgs , she statistically

obtains the state:
ρ(A) = (1 − p)ρA + pσA , (23)

where
ρA =

∑
b

PA(b)ρgsPA(b), σA =
∑
b

PA(b)σPA(b) . (24)

Similarly, the density matrix after Bob’s rotation reads:

ρ(B) = (1 − p)ρB + pσB , (25)

where

ρB =
∑
b

UB(b)PA(b)ρgsPA(b)U †
B(b), σB =

∑
b

UB(b)PA(b)σPA(b)U †
B(b) . (26)

The change in Alice’s and Bob’s local energy obtained from the measurement by Alice is
expressed as follows:

Tr
[
ρ(A)HA

]
− Tr[ρHA] = (1 − p) Tr[(ρA − ρgs)HA] + pTr[(σA − σ)HA],

Tr
[
ρ(B)HB

]
− Tr[ρHB] = (1 − p) Tr[(ρB − ρgs)HB] + pTr[(σB − σ)HB] . (27)

We will analyze diverse types of noise σ in the next subsections.
Consider next a local noise at any site m, which is not Alice or Bob, of the Hamilto-

nian (10). Let Γm[ρgs ] be such a noise at m. There is a corresponding Kraus operators
{Kα} such that

Γm[ρgs ] =
∑
α

KαρgsK
†
α . (28)

Assuming locality of the noise, i.e. each Kα commutes with PA(b), HA and HB, then using
the fact that

∑
αK

†
αKα = I, and plugging (28) in (5), we see that Alice’s and Bob’s energy

expectation values are not affected by the noise.
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4.3 Depolarization Error
Here we consider a depolarizing error with probability p, that occurs in the entangled
ground state shared by Alice and Bob. The resulting density matrix reads:

ρ = (1 − p)ρgs + p

2I , (29)

where I is a 2 × 2 identity matrix. Using P 2
A(b) = PE(b), PA(0) + PA(1) = I and

[PA(b), UB(b)] = 0, we have∑
b

Tr[PA(b)IPA(b)HE ] =
∑
b

Tr[PA(b)HA] = Tr[HA],

∑
b

Tr
[
UB(b)PA(b)IPA(b)U †

BHB

]
=

∑
b

Tr
[
UB(b)PA(b)U †

BHB

]
= Tr[HB] .

Using (27) with σ = I
2 , we get

Tr[ρAHA] − Tr[ρHA] = (1 − p) Tr[(ρA − ρgs)HA],
Tr[ρBHB] − Tr[ρHB] = (1 − p) Tr[(ρB − ρgs)HB] . (30)

Depolarization error reduces Alice’s and Bob’s energies by an overall factor 1 − p (30), but
does not change their signs. Thus, the QET-based QKD protocol is robust against the
depolarization as long as 1 − p is not too small, and one can distinguish the energies from
zero.

4.4 Mixture with Excited States
Consider the QET when the shared state is not the exact ground state, but is rather a
probbalistic mixture of the ground state ρgs and the 1st excited state ρ1:

ρ = (1 − p)ρgs + pρ1 . (31)

This mixing with an excited state depends on the size of the energy gap. The larger the
energy gap, the smaller the contribution of the excited state, and the ground and excited
states can be distinguished more accurately. A small energy gap increases the probability
of incorrectly identifying the excited state as the ground state due to noise (e.g., statistical
errors in quantum measurements or circuit noise) related to the energy expectation value
of the Hamiltonian. For instance, a small energy gap makes it more difficult for variational
quantum algorithms to converge to the true ground state.

For the Hamiltonian (11), the ground state and the 1st excited state at J = 0,∞ are
listed in the following table. In Fig. 4, we plot the energy gap between the lowest energy
and first excited energy. The gap decreases as J increases, ultimately closing at J = ∞,
where the ground state becomes degenerate.

Ground state 1st excited state
J → ∞ |+ − −⟩ , |− + +⟩ |+ − +⟩ , |+ + −⟩ , |− + −⟩ , |− − +⟩
J = 0 |111⟩ |011⟩ , |101⟩ , |110⟩

Table 1: Eigenstates at J = 0 and ∞ the Hamiltonian (11). |±⟩ = |0⟩±|1⟩√
2 .
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Figure 4: Energy gap between the ground state energy and first excited state energy of the Hamilto-
nian (11).

In Fig. 5 we present the effect of noise on Alice’s (or Bob’s) teleported energy when
the first excited state is present with a probability of p. For values of p approaching 1, the
energy decreases as J increases. Conversely, for values of p close to 0, the energy remains
negative unless J is 0. If J is too large, the ground state approaches the product state and
the teleported energy is smaller. Maintaining J at an optimal value ensures the algorithm
remains robust against noise from the mixing of the ground state with excited states. In
general, at p ≃ 0.2 − 0.25 the sign of Bob’s energy changes and the QET protocol fails.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.1

0.2

0.3
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Figure 5: Bob’s teleported energy in the presence of a probabilistic mixture of the ground state with
the first excited state with probability p (31).

4.5 Superposition with Excited States
Let |ψgs⟩ and |ψ1⟩ be the ground state and the first excited state, respectively. Consider a
coherent superposition of them:

|ψ⟩ =
√

1 − p |ψgs⟩ + eiα
√
p |ψ1⟩ . (32)

While the state depends on the phase α, we verified that its effect on the QET protocol
is negligible, and what matters is the value of the mixing probability p. We perform the
QET protocol with respect to |ψ⟩ and the result is presented in Fig. 6. The left panel
displays the energy teleported to Bob, whereas the right panel shows the energy injected
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into the system by Alice. As p increases, the amount of energy injected decreases linearly.
At p ≃ 0.2 − 0.25 the sign of Bob’s energy changes and the QET protocol fails.
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Figure 6: Superposition of the ground state and first excited state (32) with α = 0. Left: Bob’s
teleported energy. Right: Alice’s post-measurement energy.

4.6 Bit-Flip Errors
Consider a bit-flip error occurring at site n with probability p:

ρXn = (1 − p)ρgs + pXnρgsXn . (33)

As discussed previously, since a local error at sites which are not Alice or Bob does not
affect their energies, it is sufficient consider bit flip errors at Alice’s and Bob’s sites. Fig. 7
shows the impact of bit-flip errors on energy, which occurred separately in Bob and Alice.
Moreover, a bit-flip error at Alice’s site does not affect Bob’s energy, since it only depends
on the post-measurement state, see Fig. 7 (right). Bob’s bit flip error affects his energy, as
in Fig. 7 (left). However, this error can be easily fixed by quantum error correction.
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Figure 7: Impact of noise on Bob’s energy in the presence of a bit-flip error occurring at Bob’s side
(left) and at Alice’s side (right). The vertical line is at p = 0.02.

To better understand the effects of noise, we explore the Bob’s energy in the presence
of noise at Bob. In Fig. 8, we depict the Bob’s energy expectation value without noise
as well as the noise energy, with respect to the density matrices (26). We consider two
cases: bit-flip error and phase-flip error. From Fig. 8, it is clear that the QET-based QKD
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protocol is more sensitive to the bit flip error than to the phase flip error, at least for low
values of J .
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Figure 8: Energy at Bob’s site in the presence of noise errors. Left: Bit-flip error. Right: Phase-flip
error. The calculations are done with respect to the density matrices (26).

4.7 Phase-Flip Errors
Here we consider a phase-flip error occurring at n with probability p:

ρZn = (1 − p)ρgs + pZnρgsZn . (34)

It is sufficient to consider phase-flip errors at Alice’s and Bob’s sites. Fig. 9 shows the
effect of phase-flip errors on Bob’s energy. Phase-flip errors at Bob’s and Alice’s sites affect
Bob’s energy significantly. However, phase-flip errors are easily rectified using quantum
error correction.
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Figure 9: The effect of noise on Bob’s energy in the presence of a phase-flip error occurring at Bob’s
site (left) or Alice’s site (right).

5 Discussion
Quantum systems whose ground state possesses long-range quantum correlations allow for
a teleportation of energy between two subsystems induced by a local measurement at one
site and a local operation that depends on the transmitted classical data at the other site.
In this work, we presented a QKD protocol based on QET, and analyzed its security and
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robustness to noise, both at the classical channel and at the level of the quantum resource
state. Real-world demonstration of this proposed protocol is challenging because the effect
typically involves small energy scales. Indeed, comparing Fig. 1 and Fig. 4 we see that
the teleported energy is a small fraction of the energy gap of the system, which makes its
detection a highly non-trivial task. Hopefully, current and future quantum-optical setups,
trapped ions, or superconducting circuits will be able to realize a sufficiently large energy
gap and teleported energy, allowing a detection of the energy sign at Bob’s site.
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