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Abstract—Edge Intelligence (EI) serves as a critical
enabler for privacy-preserving systems by providing
AI-empowered computation and distributed caching
services at the edge, thereby minimizing latency and
enhancing data privacy. The integration of blockchain
technology further augments EI frameworks by en-
suring transactional transparency, auditability, and
system-wide reliability through a decentralized net-
work model. However, the operational architecture of
such systems introduces inherent vulnerabilities, par-
ticularly due to the extensive data interactions between
edge gateways (EGs) and the distributed nature of
information storage during service provisioning. To
address these challenges, we propose an autonomous
computing model along with its interaction topologies
tailored for privacy-critical and time-sensitive health
applications. The system supports continuous moni-
toring, real-time alert notifications, disease detection,
and robust data processing and aggregation. It also
includes a data transaction handler and mechanisms
for ensuring privacy at the EGs. Moreover, a resource-
efficient one-dimensional convolutional neural network
(1D-CNN) is proposed for the multiclass classifica-
tion of arrhythmia, enabling accurate and real-time
analysis of constrained EGs. Furthermore, a secure
access scheme is defined to manage both off-chain and
on-chain data sharing and storage. To validate the
proposed model, comprehensive security, performance,
and cost analyses are conducted, demonstrating the ef-
ficiency and reliability of the fine-grained access control
scheme.

Index Terms—Ubiquitous healthcare, Blockchain,
Edge Computing, Edge Intelligence, Data Ownership;,
Data Security, Data Privacy

I. Introduction
Ubiquitous healthcare refers to the availability and ac-

cessibility of healthcare services and information wherever
and whenever needed, especially in situations where time
is of the essence [1]. It revolves around the continuous
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collection, transmission, and quick and seamless analysis
of health-related data for making timely decisions and
delivering prompt care through digital devices. This can
involve technologies like real-time monitoring devices, in-
stant communication channels, and immediate access to
relevant medical data such as vital signs, physiological
parameters, and various health metrics [2], [3]. Due to
third-party dependencies, ubiquitous healthcare systems
are still vulnerable regarding privacy and security [4], [5].
These cloud service providers often formulate terms and
conditions primarily serving their interests. Consequently,
patients (data owners) have little discretion and are com-
pelled to accept these conditions. According to Cisco’s
annual report (2018–2023) [6], 94% of data processing
is done at cloud servers due to the full offloading of
data to insecure servers and continuous tracing of health
data, which opens doors to privacy vulnerabilities of data
owners [7], [8].

Privacy is a vital aspect of ubiquitous healthcare sys-
tems (UHS), especially in contexts where sensitive health
information is involved. Ensuring the confidentiality and
protection of patients’ personal and medical data is essen-
tial. New regulations, like the General Data Protection
Regulation (GDPR), expand the definition of personal
data [9]. It means that more information must be given
about how data is collected and used, but data produc-
ers must be able to keep their information private [10].
Moreover, as users become more aware of their personal
data protection laws, they demand secure frameworks from
their service providers. Along with privacy issues, health
data must be immutable in nature so that one can rely on
these records to make medical decisions.

To solve time-related issues, researchers introduced fog
and edge computing [11]. This means processing data fast
right where it’s needed, instead of sending all the data to
servers. This quick decision-making at the edge gateways
(EGs) using ML/DL helps with immediate first aid dur-
ing emergencies [12]. Integration of edge computing with
blockchain-based distributed ledger technologies (DLTs)
provides efficient, robust, and reliable systems [13]. DLTs
have become crucial due to the evolution of advanced secu-
rity primitives and the growing demand for personalized
healthcare. The introduction of DLTs offers remedies to
numerous longstanding challenges within the healthcare
system [14], [15]. Integration of blockchain technologies
with edge intelligence for ubiquitous healthcare provides
privacy, security, transparency, and streamlining of auto-
matic processes [16]. By using a tamper-proof and un-
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changeable blockchain, the authenticity of data is ensured.
Despite inherent encryption techniques, blockchain-

based healthcare applications may still risk disclosing
patient information due to the possibility of linking re-
lated data on a public blockchain [17]. Consequently, this
realm remains nascent, demanding further exploration and
development efforts.

Our proposed framework, edge-gateways based ubiqui-
tous healthcare system (EGBUH ), explored edge comput-
ing along with blockchain as a service to provide reliable,
transparent, and access-controlled UHS while ensuring the
anonymity of data producers. Our contributions include:
i). An autonomous computing model and its interac-

tion topologies for privacy-critical and time-sensitive
health applications.

ii). We propose a resource-efficient 1-directional convolu-
tional neural network (1D-CNN) for multiclass clas-
sification of arrhythmia.

iii). Continuous monitoring system, alert notification, dis-
ease detection system, data processing and aggrega-
tion, data transaction handler, and privacy handling
at EGs.

iv). Access Scheme is defined for off-chain and on-chain
data sharing and storage.

v). We conduct a security, performance, and cost analysis
to demonstrate the efficiency and reliability of our
proposed fine-grained access scheme.

vi). The post-quantum key encapsulation method and dig-
ital sharing schemes for authenticity are incorporated.

II. Related Work
Blockchain provides a safe and decentralized healthcare

ledger where patient information can be securely stored
and shared among healthcare professionals, patients, and
providers [18]. In [19], authors present a blockchain system
model for healthcare data storage, encryption, and trading
mechanisms. It ensures user data privacy by restricting
storage to local spaces and decentralized networks. The
personal data protection platform is implemented via code
to validate the proposed theory. Authors in [20] presents
a method focusing on patient-centered and private access
secured by advanced encryption by utilising blockchain.
It evaluates their proposed, MRBSChain’s efficiency using
13 factors, comparing it to Ethereum and Binance smart
chain. It also measures the speed of their proposal against
a few other DLT systems.

Blockchain-powered tensor meta-learning driven health-
care system is proposed in [21], leveraging IoT for secure
data sharing and model training. The system uses a tensor
prototype graph network for efficient modeling of het-
erogeneous healthcare data, ensuring strong consistency
and privacy protection. Leveraging blockchain at the edge
gateways provides temper-proof analytics and information
management closer to the devices generating the data,
reducing latency and improving response times [22]. Their
combination can significantly enhance the way resources

TABLE I
Computing Components

Comp Explanation

Monitor This component, located closest to the sensing tier, is
responsible for acquiring and aggregating data from
various sources.

Analyze The Analyze component processes and models the ac-
quired data, extracting meaningful insights and pat-
terns.

Plan Based on the analysis performed by the previous com-
ponent, the Plan component constructs a procedure or
strategy for the system to follow.

Execute The Execute component is responsible for implement-
ing the planned procedure and executing necessary
changes in the system to achieve the desired outcome.

are used, particularly in terms of network, computing,
storage, and security [23].

Integration of quantum techniques and DLTs opens new
doors for data privacy and security demands. Recently
authors in [24], proposed a quantum-based consultative
transaction key generation and management technique
that enables secure healthcare data sharing by generating
unique key pairs using random values, multiplicative oper-
ations, and timestamps. This approach enhances patient-
healthcare communication and verifies users during trans-
mission, providing a significant contribution to healthcare
cyber security. In another study [25], Wang et. al suggest
a blockchain algorithm combining asymmetric quantum
encryption and a stake vote consensus algorithm. The
proposed algorithm in this study uses a delegated proof
of stake consensus algorithm and quantum digital signa-
ture technology to secure transactions and resist quantum
computation threats.

III. Proposed Framework

To enhance the experience of UHS, we proposed and
developed a framework EGBUH, an edge intelligence (im-
plementation of machine learning and deep learning algo-
rithms on edge devices) based topology using ethereum as
a distributed ledger technology to boost the experience of
UHS. This proposed framework emphasizes early warning
systems in critical situations, continuous monitoring, and
personal data storage to build patient history, enabling
privacy and P2P data sharing without using a third party.
This hybrid UHS based on EGs allows the extension
of a private blockchain based on ethereum to resource-
constrained edge devices. EGs are able to define access
control rules for their data, such as data trades and
sharing with third parties. Additionally, it focuses on data
producers’ ownership rights and data owners’ privacy. In
our previous paper, we described complete implementation
of ethereum network and pseudo algorithms to depict
system flow [26].
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Fig. 1. Components of Computing Model. a. Monitor component, b.
Analyze components and c. Plan & Execute component

A. Proposed Computing Model

Our proposed computing model leveraging MAPE-
K (Monitor-Analyze-Plan-Execute over a shared Knowl-
edge) [27] as an established framework to facilitate au-
tomated management and self-adaptive behaviour orig-
inally introduced by IBM. This model consists of four
distinct computing components, all with access to a shared
knowledge base. These components are described in Table
1. The MAPE-K model facilitates efficient automated
management and adaptive behaviour within distributed
systems by incorporating these four components and en-
abling access to shared knowledge. The hierarchical IoT
architecture uses the four computing components to enable
its functionality. We propose an additional component
called edge intelligence to the computing model using EGs-
based intelligence to implement a closed-loop technique.
The role of the edge-intelligence component is to dynam-
ically reconfigure the system’s settings based on feedback
received from the user’s condition. A view of the enhanced
MAPE-K computing components is shown in Figure 1.

Within the framework, the perception layer encom-
passes the Monitor component, which operates as an
intermediary bridging the sensors and other computational
entities. The gateway layer comprises three distinct com-
ponents: Plan, designated for localized decision-making;
Execute, aimed at configuring system behaviour accord-
ing to pre-decided situations; and System Management,
dedicated to refining system configurations. Therefore,
this entity is responsible for training an inference model,
referred to as a hypothesis function, derived from user-
generated data.

The Plan component implements local decisions and
establishes the system’s procedures. The initial step in-
volves processing the streaming data received from the
System Management module, including feature extraction.
The Execute component, on the other hand, is in charge
of actuating the system and providing feedback to other
units. Upon detection of any abnormalities, users are
promptly notified. These notifications are also dispatched
to patients and healthcare providers as part of this process.

Subsequently, the execute command proceeds to update
the system management component. This allows the sys-
tem’s configuration to be adjusted based on the user’s
current state. In conclusion, the computing component
provides feedback to the analysis component, such as a
report of the local decisions. This feedback is used to
retrain the classifier. Distributed ledger scheme Ethereum
is utilised at EGs level along with its turing complete
language to incorporate user instructions at the EG level.
Smart contracts convey terms and conditions based on
situation and threshold values. Side chains [28] are utilised
along with a private Ethereum network for data storage to
enhance data reliability. Side chains work at EGs and save
only hashes of data blocks and metadata at a local level
while complete blocks are stored only in distributed data
storage locations in an encrypted form using public key
encryption. The discrete functions and roles of these com-
putational components embedded within the architecture
are elucidated in Figure 2.
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Fig. 2. EGBUH, a proposed MAPE-k based computing model

B. Proposed Access Scheme
To implement secure communication based on TLS

1.3, we incorporate the Kyber512 [29] key encapsulation
method and Dilithium2 [30] as the digital signature algo-
rithm for a robust and secure approach to sharing private
keys of encrypted data blocks. This scheme leverages the
strengths of cryptographic techniques to ensure the confi-
dentiality, integrity, and authenticity of private keys while
allowing authorized nodes to access them when needed.
Kyber is known for its post-quantum security and plays a
pivotal role in this access scheme by encapsulating private
keys. When a node wants to access a private key, Kyber
generates a secure encapsulation of that key, which is then
transmitted over the network. The encapsulation process
ensures that even if an eavesdropper intercepts the com-
munication, it cannot derive any meaningful information
about the private key without the appropriate decryption
key, which remains securely stored on the target node.
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Dilithium2, on the other hand, is employed as the digital
signature algorithm to authenticate the access request.
When a node seeks access to a private key, it sends
a request accompanied by a digital signature generated
using Dilithium2. This signature serves as proof of the
authenticity and authorization of the request, making it
highly resistant to forgery or tampering.

The recipient node, upon receiving the request and
the associated Dilithium signature, can then verify the
signature’s validity using the corresponding public key. If
the signature is valid, the requestor is authorized to access
the private key encapsulated by Kyber. Only then is the
encapsulated private key decrypted and made available
by the requesting node. This combined use of Kyber and
Dilithium ensures a multi-layered security approach. Kyber
safeguards the confidentiality of the private key during
transmission, while Dilithium guarantees the authentic-
ity and authorization of the access request. The scheme
provides a robust solution for securely sharing private
keys within a networked system, even in the face of
potential threats, thereby bolstering the overall security
and integrity of the network.

IV. Proposed resource-optimized 1D-CNN

We proposed resource-optimized one directional convo-
lutional neural network (1D-CNN) architecture for the
ECG Arrhythmia classification at the edge device level.
This architecture comprises two main components: the
extraction phase and the classification phase. The extrac-
tion phase encompasses batch normalization, convolution,
activation, and max-pooling layers, while the classification
phase is characterized by flattened, fully-connected, and
softmax layers.

The 1D-CNN architecture accepts an input matrix of
dimensions M ∗ N , where M represents the length of the
time window under consideration, and N denotes the num-
ber of ECG channels. The initial step involves applying
a batch normalization layer, which aims to standardize
the input data by minimizing internal covariate shifts.
Each 1D convolutional layer employs a kernel of variable
dimensions Q ∗ N , where Q signifies the temporal window
that the filter covers. These kernels move exclusively along
the elements of a single dimension of the input pattern. In
the 1-D convolution layer, each neuron is connected to a
local window from the preceding layer, referred to as the
receptive field, which shifts along the time axis and shares
synaptic weights. The mathematical representation of a
1D convolutional layer is as follows:

yr = f

(
Q∑

q=1

N∑
n=1

wqnxr+q,r+n + b

)
(1)

where yr is the output of unit r of the filter feature map
of size R (R equals to M in the case where stride=1), x
is the two-dimensional input portion overlapping with the
filter, w is the connection weight of the convolutional filter,

Input 
Layer

Batch 
Normalization

1D-Convolution layer
+

Activation layer-reLu
+

Max-Pooling layer

1D-Convolution layer
+

Activation layer-reLu
+

Max-Pooling layer

Flatten 
layer Fully-

Connected 
layer

Softmax
layer

Output
Layer

Fig. 3. Optimized resource efficient 1-D Convolutional neural net-
work

b is the bias term, and f is the activation function of the
filter, which in this case is reLu.

This model facilitates the reduction of the number
of weights and aids in the generalization process. The
neurons oriented vertically represent the evolution of the
input data over time, which is dependent on the receptive
field and delay values. The number of neurons along the
horizontal axis can be manually defined, enabling the
transformation of input features into a higher-order se-
quence. For each neuron, the rectified linear unit function
(reLu) is applied to return the weighted sum of the input
data if it is positive and zero otherwise.

To calculate the dimension of the filter feature map after
the convolution operation (R), the following formula is
utilised:

R =
[

M − (K − 1) + 2
S

]
(2)

S is the stride (the number of positions skipped by each
shift of the filter during convolution).

The overall features of the 1DCNN architecture are
depicted in Figure 3. Furthermore, batch normalization
(BN) is applied, which involves normalizing the input
to the next layer, typically leading to a significantly in-
creased learning speed and notable regularization effects
that enhance the network’s generalization. BN operates
differently during training and testing. During training,
BN normalizes and zero-centers the input based on the
entire batch, allowing the model to learn the optimal
scaling of the input.

To normalize and zero center, the input BN estimates
the parameter-dependent mean mu and variance sigma2

computed over the batch. The zero-centered normalized
value hatX(i) for each instance is computed as xi = 10−5

to avoid zero divisions. BN adds a further step during
training, using trained parameters, to further scale and
offset the values as needed.

During testing, the mean µ and variance σ2 parameters
cannot be computed based on the batch, so the algorithm
uses the values computed with a moving average during
training.
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µ = 1
b

b∑
i=1

X(i)

σ2 = 1
b

b∑
i=1

(
X(i) − µ

)2
(3)

In the context of BN , the number of instances in the
batch is denoted by b, and each instance is represented
by X(i). Following the computation of the zero-centered
normalized value X̂(i) for each instance, BN introduces an
additional step during training. This step utilizes trained
parameters to further scale and offset the values as re-
quired.

X̂
(i) = X(i) − µ√

σ2 + ξ
. (4)

The element-wise multiplication, denoted by ⊗, involves
multiplying each input value by the corresponding scaling
parameter, denoted by γ. The offset parameters, denoted
by β, are also learned during training. This process allows
for the optimal scaling and shifting of the normalized
values, enhancing the network’s performance by adjusting
the distribution of inputs to fall within a specific range,
thereby facilitating more effective training.

zi = γ ⊗ X̂
(i) + β (5)

The second convolutional layer is with the same param-
eters as the first convolutional layer. Pooling is crucial for
CNNs to reduce the input size, and decrease the required
computation, and the number of network parameters.

Furthermore, this size reduction tends to make the rep-
resentation space invariant concerning small translations
of the input, allowing the network to recognize specific
patterns at different locations within the feature map. A
one-dimensional max-pooling layer is applied to preserve,
for each activation map, the neuron with the higher value.
The classification part is analogous to a multi-layer per-
ception.

y
(l)
j = f

(
I∑

i=1
w

(l)
ji · x

(l−1)
i + b

(l)
j

)
(6)

This is followed by a flattened layer that reshapes the
matrix input into a vector to support the processing of
the subsequent non-spatial layers. The flattening layer
consists of converting the data of the extraction part into
a 1D-vector format. One hidden layer with the dropout
function is implemented, and the neurons of the output
layer correspond to the classes of heartbeats disease. Each
unit activation yj(l) is computed as follows:

f(x) =
{

x, if x > 0
0.01 · x, otherwise . (7)

ŷi = argmax
(

eyi∑5
i=1 eyi

)
. (8)

In the simplest case, each unit is retained with a fixed
probability p independent of the other units. The output
layer nodes of the proposed model represent 5 different
heartbeat groups as specified by the Association for the
Advancement of Medical Instrumentation (AAMI) stan-
dard.

V. Experimental Testbeds
In this section, we implement our proposed framework

EGBUH as a continuous monitoring system of individu-
als along with edge-level intelligence to secure processed
information.

Fig. 4. RR and HR values from random sample of 25 minutes ECG
recording with 500 Hz sampling rate and 12 bits resolution

To assess the effectiveness of EGBUH across diverse di-
mensions, two machine learning algorithms are employed.
Initially, abnormality detection through simple binary
classification on the signals are carried out using a linear
Support Vector Machine (SVM) approach. In a separate
scenario, a 1D-CNN served as a deep learning algorithm
to identify various arrhythmias, constituting a multi-class
classification task. We compared two distinct testbeds
against the baseline ECG system for reference.

A. First Testbed
In our first testbed, a 2-channel ECG system is em-

ployed, with the perception layer anchored by the AD8232,
a specialized signal conditioning block tailored for electro-
cardiogram (ECG) and heart rate monitoring. The EGs
consist of Arduino UNO, STM32F427, and Raspberry Pi
3. The sensor node AD8232 captures data and transmits
it to the edge gateway node. An ECG feature extraction
service is implemented within the EGs to derive crucial
parameters like heart rate, P wave, and T wave from the
ECG signal, progressing through several stages: movement
artefact removal, wavelet transformation, threshold esti-
mation, and P wave and T wave detection.

The movement artefact removal phase employs band-
pass and moving average filters to counter environmental
noise (e.g., 50 Hz power-line noise). The filtered data then
enters the wavelet transformation, where the Daubechies-4
wavelet is chosen due to its efficiency in extracting P-wave
and T-wave components without excessive computational
delay. Thresholds for identifying R, P, and T waves are
determined based on the wavelet transformation results,
with R wave thresholds generally higher in millivolts
compared to P and T waves. For instance, 1 mV might be
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set as the R peak threshold in the lead I, while thresholds
of 0.08 mV and 0.1 mV are used for P and T waves in
the lead II, respectively. These values can vary depending
on the specific ECG leads utilized. The heart rate is
computed using the R-R interval information derived
from these thresholds, applying the formula:

Heart rate = 60/R − R interval.

The proposed ECG feature extraction, driven by wavelet
transformation, efficiently employs network bandwidth. At
each discrete wavelet transform level, the data sample
count is halved. Instead of storing the raw ECG data, em-
phasis is placed on preserving data following the wavelet
transformation and the associated coefficient values. This
approach significantly conserves network bandwidth be-
tween 40% and 80%, contingent on the wavelet transfor-
mation types and levels, while potentially introducing a
minor uptick in system latency. The selection of wavelet
transform types and levels should be carefully calibrated
based on specific application needs to minimize potential
errors in the inverse transformation process.

In essence, deploying the ECG feature extraction ser-
vice within EGs, employing the outlined template and
wavelet transformation methods, facilitates accurate real-
time monitoring of vital parameters while resourcefully
optimizing network assets.

Fig. 5. ECG extracted cycles (a) Extracted ECG using PSG Device
(b) Extracted ECG using proposed system

B. Second Testbed
The second setup encompasses an ECG setup of three

electrodes, the positive electrode, negative electrode, and
Driven Right Leg (DRL) to detect electro potential
changes due to cardiac electrical activity. The ADS1292r
serves as the electric signal converter for capturing the
ECG signal in this system. The hardware is equipped
with two 32-bit microcontrollers (MCU), namely the
STM32F401CCU6 and STM32F103C8T6 from ST Elec-
tronics. Additionally, it incorporates digital-to-analogue
converters (DAC) MCP4921, general-purpose operational
amplifiers (OPAMP) LF353, and a Wye resistor network.

The STM32F401CCU6, belonging to the ARM Cortex-
M4 cores family, operates at 84 MHz, offering a balance
of cost-effectiveness and high performance. It features
standard communication peripherals such as SPI, I2C,
USB, USART, and CAN. The MCU includes a single-
precision floating-point unit for rapid calculations, digital
signal processing instructions, and two analog-to-digital
converters. The DACs are configured to operate with an
external voltage reference, receiving clock signals up to 20
MHz from the MCU. Stable DC supply powers the DACs,
providing the necessary external voltage reference of +5
V.

To minimize noise impact on signal integrity, a bypass
capacitor is introduced. ECG waveforms with amplitudes
tenfold larger than real ECG amplitudes, including offset
levels simulating baselines, are generated. The converter
outputs undergo a non-inverting amplifier stage to en-
sure physiologically consistent amplitudes. This amplifier,
comprising general-purpose operational amplifiers and re-
sistors (R1, R2, Rg, and Rf), produces differential out-
put signals with low offset voltage and minimal noise.
The design generates ECG waveforms within the 0.5 mV
to 4 mV range, exhibiting low noise and limited offset
effects. Data transmission from the module occurs via
the serial peripheral interface (SPI) and is sent to EGs.
Three electrodes are strategically positioned: the positive
electrode on the left arm, the negative electrode on the
right arm, and the DRL on the right arm, with a horizontal
separation of about 5 cm. The RLD electrode enhances the
common mode rejection ratio (CMRR) by transmitting
the common mode signal of the two sensing electrodes
back to the user’s body. The analogue front end integrates
the ADS1292, a programmable gain amplifier (PGA), an
analogue-digital converter (ADC), and an RLD circuit.
Data collection duration varied based on participant age
groups, dividing data into chunks of 10 minutes for young
individuals and 5 minutes for elderly participants. Collec-
tion was conducted in shorter segments of 2, 5, and 10
minutes each.

Post-acquisition, data is transmitted to data trans-
mission modules via SPI. The MCU and Wi-Fi module
then transmit signals via Wi-Fi to the user interface.
A Xiaomi power bank supplies power to the hardware
system, utilizing the ESP32’s built-in WiFi module for
communication. During measurements, some subjects were
supine and instructed to relax muscles, minimizing muscu-
lar artefacts and evaluating pure ECG quality. High-pass
and low-pass filters with cutoff frequencies of 0.1 Hz and
200 Hz were implemented in the measurement electron-
ics. After digitization at an 800 Hz sampling frequency,
notch filters at multiples of 50 Hz were used to eliminate
power line interference. Expectedly, movement introduces
diverse movement artefacts in the ECG signal, particularly
muscular artefacts and baseline shifts. However, these can
be mitigated effectively through digital signal-processing
techniques.
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VI. System Implementation
The performance of a proposed system in terms of

resource utilization and time is investigated through rasp-
berry pis and STM32 M4-cortex microcontrollers. The
raspberry pi devices run raspbian, based on linux kernel
version 4.14.52-v7+, with 1GB of RAM and 4-core ARM
processors (BCM2837 @ 1.4GHz). The STM32 family
relies on a linux system. Communication between different
edge-gateways and their perception layer is facilitated
through a local Wi-Fi network. Raspberry Pi 3 Model
B+ and STM32 M4-cortex microcontrollers are utilized at
edge-gateway layer as manager nodes. Lightweight nodes
are implemented using ardiuno and less-computational
powered bio-sensors. For simulating the application layer,
desktop computers with an intel core i7 processor and
16GB of RAM are employed. The proposed approach is
trained and investigated using the MIT-BIH dataset and
real-time ECG signals collected from 18 individuals aged
18- 52 years.

Ethereum, a private network is leveraged as a service
layer. To implement various components of the system,
we utilize the Go programming language (golang), so-
lidity for smart contracts, and a suite of web technolo-
gies (Node.js®, HTML5, CSS3, jQuery) for the front-end
application. Smart contract deployment is accomplished
using the Remix IDE. Metamask, a browser extension
facilitating parallel transaction flows during experiments,
generates data requests and transactions to and from
third-party cloud services. Proof-of-stake consensus is used
for block confirmation and gossip protocol to ensure fast,
and attack-resilient message propagation for transaction
handling, keeping nodes synchronized and avoiding forks.

Figure 7 shows the system setup. To read data from
sensors and send it to the Mosquitto MQTT broker over
a TLS 1.3-secured connection, we configure the Mosquitto
MQTT broker, which involves setting up server certificates
and configuring the mosquitto.conf file to use these certifi-
cates, and specifying the TLS version and port number.
To run parallel ports, we use one linux-based system and
assign static IP addresses on different ports by using
multiple containers in docker, sensors, and ardiuno board
for real-time implementation. To create an MQTT client
on arduino board, we use the Arduino MqttClient library,
to publish/subscribe to MQTT topics.

A. Early warning system
The real-time push notification service serves to

promptly notify designated individuals (e.g., guardians)
of detected abnormalities, ensuring swift responses such
as immediate first-aid interventions. This service trig-
gers notifications upon detecting abnormal heart rates or
ECG signals (e.g., prolonged P waves or elevated T wave
amplitude). Additionally, notifications are dispatched if
the internal temperature of a smart gateway surpasses a
predefined threshold or if the gateway ceases to receive
incoming data from sensor nodes over a specified time
span. The content and priority level of push messages

Fig. 6. Confusion Matrix for Abnormality Detection using ECG
signal processing (a) Abnormality Detection Accuracy using SVM
(b) Abnormality Detection Accuracy using Naive Bayes

vary based on specific events. For instance, a heart rate
exceeding 80 bpm triggers a priority level 1 message, while
a heart rate above 120 bpm prompts a priority level 3
message. Depending on the application, push notifications
can be executed and activated at the gateway level.

In the proposed systems, the push notification service
harnesses binary classification, distinguishing normal and
abnormal beats in the initial stage to prompt first aid
actions. To validate the system’s effectiveness, the model
was trained using Physiobank databases [31], and realtime
testing using collected data samples utilising python li-
braries such as Scikitlearn [32] and Biosppy [33]. Realtime
decision-making regarding a user’s health condition is en-
abled through the utilization of the linear Support Vector
Machine (SVM) method and Naive Bayes due to their
less complexity and fast response rate. Figure 6 depicted
that SVM shows better results in terms of accuracy as
compared to Naive Bayes. This proposed method classifies
incoming signals as either normal or abnormal.

We collected 2 hours of ECG signals from healthy
individuals and cardiovascular issues. The perception layer
divides the chunks of 10 seconds of signals and sends them
to EGs where data pre-processing is handled and labels the
signal as normal or abnormal. These features encompassed
QRS complex duration, T wave duration, RR interval,
PR interval, and ST segment (refer to figure 5). During
runtime, incoming test data were locally classified, with
the decision vector sent to the Execute component for
actuation. Test data included ECG signals with random
arrhythmia points added to normal ECG data to simulate
emergency scenarios. These scenarios were tested on data
from four new users.

B. Arrhythmias Detection
Beyond employing a linear machine learning approach,

the capability of integrating a non-linear algorithm into
this architecture was explored. Incorporating such algo-
rithms opens avenues for multivariate and intricate ap-
plications within IoT-based health monitoring systems
[34]. A Convolutional Neural Network (CNN), a deep
learning algorithm, was harnessed for real-time multi-class
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TABLE II
Number of samples against each class of heartbeat

Class Serial
number

Training
Samples

Testing
Samples

Normal 0 72471 18118
Fusion of paced and
normal

1 2223 1608

Premature ventricular
contraction

2 5788 1448

Artial Premature 3 641 556
Fusion of ventri and
normal

4 6431 162

classification. To this end, we adopted our proposed 1-
DCNN 3 and Long short-term memory (LSTM) model for
multi-class ECG signal classification using the TensorFlow
library in python, the algorithm underwent training in the
Analyze component 1). The trained hypothesis function
was subsequently transmitted to the EGs, enabling the
classification of incoming ECG signals into five classes:
normal (N), supraventricular ectopic beat (SVEB), ven-
tricular ectopic beat (VEB), fusion beat (F), and unknown
beat (Q). Table II depicted the number of samples against
each heartbeat class.

EGs receive raw data from the perception layer, pre-
processed and normalized it. After normalization, apply
binary classification using SVM. If the classification shows
irregularities, it will generate an emergency alert to the
patient and concerned bodies. After creating an alert,
multi-classify using 1-DCNN. Otherwise, create a hash to
save the information into a new data block. There are
two parts to this data block, a header and a body. The
body part of the block contains processed information and
a header part that documents the general characteristics
of the information. Among these factors are the hash
of the previous block, the time stamp, and the type of
data, which can be further processed for the purpose of
intelligent systems by combining heterogeneous data at a
higher level. A symmetric cryptographic scheme is used
to protect the hash of the data block. A blockchain cloud
saves the encrypted data blocks, and the EG holds only
the key. The client (doctor, specified person) will use this
private key to decrypt the desired data. In addition, it will
also define the access control parameters of the data.

Fig. 7. System Setup using Mosquitto MQTT broker

C. Ethereum Procedural Steps

The experimental setup is divided into six processes, as
described below. Each process is accompanied by a series
of steps. SC is used to refer to smart contracts.

1) System initialization: The process of setting up
a private ethereum network involves several steps.
Encryption parameters and genesis file is generated,
and the network is initialized. During this phase,
clients and their devices are registered to the network,
a necessary step for re-authentication. The device
registration phase is handled by EGs and the device
registration request as a new transaction proposal.
The generation of encryption parameters, creation of
the genesis file, and initialization of the ethereum
blockchain are performed through smart contracts.

2) Generation of encryption keys: Each connected
device generates its key pair of secret and public keys
(sk, pk). The secret key is randomly generated, and
then the private key and child secret keys are derived
from it. Each child’s secret key is used to encrypt one
data batch. For example, each child’s secret key is
used to encrypt a specific batch of data. The complete
encryption process, along with key encapsulation and
digital signature algorithm, is described in the section
proposed access scheme.

3) Data processing, encryption, and storage: Edge
gateways divide the acquired data segments into data
batches after every time T and implement embedded
edge AI algorithms. If edge gateways do not have
enough resources to process huge block of data, this
specific data block is saved as raw data. After en-
cryption, devices call the smart contract function.
Each batch is sent to storage after encryption and
broadcasting the hash and metadata.

4) Transaction Initialization: On each data request,
a smart contract function is used to query available
records for a data batch. The buyer can initiate
trade requests for its selected data batches after pre-
defined deposit agreement. To perform this action, the
smart contract function is called through which the
secured channel builds and sends a secret key after
the key encapsulation method and digital signature
algorithm. It consists of its address or identifier and
the batch identifier.

5) Transaction Confirmation: This process runs pe-
riodically requesting any DataBatch requests that
are present and depositing the requested data. EGs
encode the key using kyber512 key encapsulation
method (KEM) and confirm the Deal if any deposit
meets the pre-defined conditions for the type of data
in the requested batch. A combination of kyber512
and dilithium2 is used and the process is automated
using turing complete capability of smart contracts.

6) Finalization of data transfer: When a receiver
receives an encrypted data batch key, it uses the
decryption algorithm to obtain the batch key. Then,
it queries the storage provider with the batch address
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and decrypts it to obtain the information. The data
transfer, or purchase, is done if a buyer is satisfied.
If the receiver is unsatisfied with the received data
batch, it will ask for a refund. The edge gateways will
resolve a dispute by cross-checking the batch details.
After getting the results, gateways will respond ac-
cordingly.

VII. Performance Analysis
This section presents and discusses the results of the

experiments as well as the performance of the proposed
model. To evaluate the possibility of real-time operation,
we examined the execution times of feature extraction, ar-
rhythmia detection, and blockchain requests. To check the
overall consumption of hardware resources and efficiency
of EGs, two light-weight algorithms, LSTM and 1-D CNN,
were trained and tested on MIT-BIH databases [31] to
train and test the resource consumption and accuracy of
EGs.

EGs receive raw data from the sensor nodes. Raw ECG
signal data is pre-processed and normalized. The extrac-
tion includes batch normalization, convolution, activation,
and max-pooling layers. The flattening, fully connected,
and softMax layers constitute the classification part. Input
is standardized using a batch normalization layer to reduce
the internal co-variate shifts. Each neuron is connected to
the local window from the previous layer, known as the
receptive field, which shifts according to timestamps and
shares synaptic weights. By using this approach, we reduce
the number of weights, which facilitates the generalization
process. A Rectified linear unit function (ReLu) is applied
to return the weighted sum of the input data. After this,
a one-dimensional maxpooling layer is applied to preserve
the neurons of each activation layer. However, the classi-
fication part is the same as with multi-layer perceptron.
Table III presents the CNN network configuration used
to train and test arrhythmia classification.

TABLE III
1D-CNN Network configuration

Network Part Description

Extraction part

319 Neurons

Input Layer

Conv-1D
Kernels: 64
Receptive field: 2
Stride: 1

Activation reLu
Dropout Probability: 0.4
Max-pooling Pool size: 2

Classification part
FC layer 512 neurons
Dropout: Probability: 0.2
Output layer: 5 neurons

The baseline LSTM model [35] is also used to train
and predict the raw data at the EGs to compare its com-
putational efficiency with our proposed 1D-CNN. Usually,
LSTM is preferred for edge-based systems due to its lower
resource consumption and better fit for sequential data.

TABLE IV
Average Performance measures of proposed 1D-CNN

Category Accuracy Precision Recall f1
score

N 0.996 0.991 0.996 0.994
FPNs 0.981 0.992 0.997 0.991
PVCs 0.990 0.989 0.991 0.994
AP 0.989 0.997 0.996 0.990
FVNs 0.998 0.986 1.000 0.999
macro avg 0.9908 0.991 0.996 0.9938
wghtd avg 0.9904 0.9852 0.9911 0.9895

LSTM enables the system to forget about unnecessary
information from the previous outputs, which makes it
suitable for scarce computing devices. After this, new
input X(t) is decided, and apply the sigmoid function to
decide the updation of the next value. A tanh layer creates
the vector of all possible values from the upcoming input.
The sigmoid layer decides the part of the information that
will go to the final layer. The trained hypothesis function
was subsequently transmitted to the EGs, enabling the
classification of incoming ECG signals into five classes:
0=Normal, 1=Fusion of paced and normal, 2=Premature
ventricular contraction, 3=Artial Premature, 4=Fusion of
ventri and normal.

The average performance measures of 1D-CNN are de-
scribed in Table IV and an average performance matrix
of LSTM is described in Table V respectively. From the
comparison results in table IV and table V, it can be
concluded that the proposed 1D-CNN performs better in
comparison to the baseline LSTM model while utilising
the same resources and time. A comparative analysis of
our proposed 1D-CNN with similar studies demonstrates
an average accuracy of 97.4%, while utilizing significantly
fewer resources than other studies.

Results of the confusion matrix in figure 8 demonstrate
high accuracy of 1D-CNN, with most predictions correctly
placed on the diagonal, indicating strong performance
and minimal misclassifications using a balanced dataset.
The limited off-diagonal values suggest that the model
rarely confuses one class with another. In contrast, the
LSTM model, while still performing well, has slightly
more off-diagonal values, indicating a higher number of
misclassifications. This is reflected in its slightly lower
precision and recall compared to the 1-D CNN, with the
confusion matrix showing a bit more spread, indicating
that the LSTM is less certain in its predictions.

The results demonstrate that the 1D-CNN significantly
outperforms the LSTM model in the classification of ar-
rhythmias across all evaluated performance metrics. The
1D-CNN achieves notably higher accuracy, with category-
specific accuracies nearing 1.000, and superior precision
and recall values, particularly excelling in the identifi-
cation of false positives and ventricular non-sustained
arrhythmias (FPNs and FVNs). The F1 score, a measure
of the balance between precision and recall, further under-
scores the 1D-CNN’s robustness, with values consistently
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TABLE V
Average Performance measures of baseline LSTM [35]

Category Accuracy Precision Recall f1
score

N 0.94 0.96 0.94 0.94
FPNs 0.96 0.95 0.97 0.96
PVCs 0.96 0.98 0.97 0.96
AP 0.97 0.98 0.96 0.96
FVNs 0.94 0.94 0.95 0.93
macro avg 0.9908 0.9910 0.9960 0.9923
wghtd avg 0.9953 0.9906 0.9960 0.9209

Fig. 8. Confusion Matrix of proposed 1D-CNN and LSTM baseline
model

above 0.990. In contrast, the LSTM model, while still
performing adequately, exhibits lower accuracy, precision,
recall, and F1 scores, particularly in the detection of
normal (N) and ventricular non-sustained arrhythmias
(FVNs), suggesting that it may struggle with maintaining
the balance between precision and recall.

These findings indicate that the 1D-CNN is a more
effective and reliable model for real-time arrhythmia clas-
sification, particularly in scenarios where the accurate and
timely detection of irregular heart rhythms is critical.
CNN operations can be applied across the entire se-
quence simultaneously, leading to faster processing times.
This efficiency is crucial for real-time applications where
quick decision-making is essential. While, sequential na-
ture makes LSTMs computationally more intensive and
slower compared to CNNs, particularly when dealing with
long sequences, which can be a limitation in real-time
scenarios.

To assess the performance of the proposed network,
we compared it to some state-of-the-art methods in the
literature. We record the performance of the proposed
network model (in bold) and some recent arrhythmia
classification using the MIT-BIH arrhythmia database in
table VI .From table VI, it is evident that our proposed
1D-CNN achieved good performance while utilising less
resources.

A. 1D-CNN Comparison against different class configura-
tions

The performance metrics of the resource-optimized 1D-
CNN model for arrhythmia classification across unbal-
anced, oversampled, and undersampled datasets reveal

Fig. 9. Latencies in (ms) for kyber512 and dilithium2 proccess

distinct trade-offs associated with each data sampling
strategy. Table VII depicts the performance metrics of 1D-
CNN for different diagnostic classes across various model
configurations.

Using an unbalanced dataset, the model demonstrates
strong overall performance, with high accuracy (ranging
from 0.975 to 0.998), precision, and recall across all di-
agnostic classes. The F1 scores are also consistently high,
indicating a well-balanced performance. For example, the
recall for FPNs (0.995 ± 0.0140) and FVNs (0.997 ±
0.0080) is particularly impressive, suggesting that the
model is adept at correctly identifying positive instances
even with an unbalanced dataset.

In an oversampled dataset, the model generally main-
tains high performance, but there are some notable
changes. Precision tends to increase slightly, especially
in the N class (from 0.983 to 0.995), suggesting that
oversampling helps the model to reduce false positives.
However, there is a drop in recall for some classes, such as
FPNs (from 0.995 ± 0.0140 to 0.9455 ± 0.0080), indicating
that while the model becomes more precise, it may miss
more positive instances when trained on oversampled data.
The F1 scores reflect this trade-off, with minor increases
in classes where precision improves and decreases in those
where recall drops.

Using an undersampled dataset, the model shows a
mixed performance when trained on undersampled data.
While accuracy remains consistent, precision generally
decreases, as seen in the PVCs class (from 0.990 ± 0.0115
to 0.939 ± 0.0075), indicating a higher rate of false pos-
itives. Conversely, recall remains relatively stable or even
improves in some cases, such as in the N class (from 0.9915
± 0.0030 to 0.993 ± 0.0030). This results in F1 scores
that are generally stable or slightly lower compared to the
unbalanced scenario, indicating that undersampling may
help the model focus more on detecting positives but at
the cost of precision.

The results demonstrate that while the 1D-CNN model
performs robustly across all sampling strategies, trade-offs
are depending on the data configuration. The unbalanced
dataset provides the best overall performance with a good
balance between precision and recall. Oversampling im-
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TABLE VI
Comparison between the related work and the proposed 1D-CNN model

Ref. Year Classification Technique Resource
Cnsmptn

No. of Lay-
ers

No. of
Classes

Accuracy

[36] 2021 Neural network High 15 5 99.31%
[37] 2021 Transfer Learning High 18 2 90.42%
[38] 2022 STFT-CNN Moderate ...... 5 99.0%
[39] 2023 H-PSOCNN Moderate ..... 5 98.0%
[40] 2023 CNN,DAE + Transformer Moderate 5 5 97.66%
[41] 2024 CNN,Attention + Transformer High 8 5 99.58%
[42] 2024 1D-CNN+LSTM Moderate 11 9 98.24%
[43] 2024 CAD-Net(1D-CNN) Moderate ... 5 99.54%
[44] 2024 1DCNN-BiLSTM Low 7 5 93.7%

This
Study

2024 Proposed 1D-CNN Low 2 5 97.4%

TABLE VII
1D-CNN Performance metrics for different diagnostic classes across various model configurations

Class Metric Unbalanced Oversampled Undersampled

N

Accuracy 0.975 ± 0.0030 0.973 ± 0.0030 0.951 ± 0.0035
Precision 0.983 ± 0.0030 0.995 ± 0.0030 0.975 ± 0.0030
Recall 0.9915 ± 0.0030 0.960 ± 0.0030 0.983 ± 0.0030
F1 score 0.982 ± 0.0030 0.995 ± 0.0020 0.973 ± 0.0020

FPNs

Accuracy 0.992 ± 0.0030 0.990 ± 0.0025 0.984 ± 0.0025
Precision 0.992 ± 0.0105 0.990 ± 0.0085 0.962 ± 0.0085
Recall 0.995 ± 0.0140 0.9455 ± 0.0080 0.975 ± 0.0080
F1 0.980 ± 0.0085 0.990 ± 0.0060 0.980 ± 0.0060

PVCs

Accuracy 0.998 ± 0.0025 0.979 ± 0.0025 0.962 ± 0.0025
Precision 0.990 ± 0.0115 0.990 ± 0.0075 0.980 ± 0.0075
Recall 0.97 ± 0.0095 0.995 ± 0.0090 0.985 ± 0.0090
F1 0.9840 ± 0.0075 0.998 ± 0.0060 0.973 ± 0.0060

AP

Accuracy 0.998 ± 0.0015 0.991 ± 0.0025 0.962 ± 0.0015
Precision 0.988 ± 0.0040 0.985 ± 0.0025 0.978 ± 0.0035
Recall 0.995 ± 0.0015 0.991 ± 0.0030 0.985 ± 0.0030
F1 0.990 ± 0.0020 0.980 ± 0.0020 0.980 ± 0.0020

FVNs

Accuracy 0.997 ± 0.0020 0.997 ± 0.0020 0.968 ± 0.0020
Precision 0.989 ± 0.0050 0.991 ± 0.0055 0.974 ± 0.0055
Recall 0.997 ± 0.0080 0.992 ± 0.0075 0.984 ± 0.0075
F1 0.997 ± 0.0045 0.998 ± 0.0050 0.988 ± 0.0050

proves precision at the expense of recall, while undersam-
pling can enhance recall but may reduce precision. The
choice of sampling strategy should therefore align with the
specific goals of the arrhythmia classification task, whether
prioritizing the reduction of false positives or the capture
of true positives.

B. Resource, Security and Cost Analysis
The proposed model demonstrates significantly lower

resource consumption and implementation costs compared
to recent studies. As shown in Table VI, the model
effectively classifies multiclass arrhythmia using only two
convolutional layers, optimized for deployment on single-
board computers. Its implementation with biosensors, in-
tegrated with raspberry pi and STM-based boards, offers
a cost-effective solution for home monitoring applications.
This makes it a practical complement to large-scale ubiq-
uitous healthcare systems, contributing to medical history

TABLE VIII
Average Loading time of the different Arrhythmia

classification requirements

Process Execution
Time

Loading Numerical Libraries 960m̃s
Loading Tensorflow and Keras 1478m̃s
Loading Trained Model 6683m̃s

documentation and enabling real-time responses in time-
sensitive scenarios.

In table VIII we illustrates the average loading time
corresponding to the numerical libraries, deep learning
libraries (Tensorflow and Keras), and the model at edge
gateways. One of the important consideration in resource-
constrained devices is latency during key generation, en-
cryption, and decryption process of KEMs and digital
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signatures. Figure 9, shows the latencies (ms) we got
using kyber512 and dilithium2 using TLS-based secure
communication over wi-fi. It shows the latencies in milisec-
onds we got using Kyber512 key generation (kk gen),
Kyber512 key encryption (k enc), and keyber512 key
decryption (k dec). Latencies using dilithium2 key gener-
ation (dk gen), dilithium2 key encryption (d enc), and
dilithium2 key decryption (d dec). Results ensure that
resource-constrained devices can leverage post-quantum
cryptosystems effectively without compromising security
or consuming excessive computational resources and time.

VIII. Conclusion
Our proposed EGBUH framework extends the

blockchain paradigm at EGs, eliminating the need
for multiple layers of network infrastructure. By
enabling resource-constrained computing devices to
make autonomous decisions and process data at the edge,
this approach eliminates the need for intermediaries.

Furthermore, in addition to the continuous monitoring
system for individuals, incorporating edge-level intelli-
gence for rapid medical intervention. The system is de-
signed to facilitate patient self-monitoring and preventive
healthcare through the use of IoMT devices, employing
computationally efficient methods. Processed medical data
is securely stored using a private ethereum network, allow-
ing for the sharing of anonymized information with legal
guardians, healthcare providers, and researchers, while
safeguarding patient privacy. The edge layer based on a
single board computer is capable of processing privacy-
critical sensitive information at the edge node. It ensures
the user’s privacy by discarding the raw data and only
saving the processed information.

Firstly, SVM is employed for simple binary classifica-
tion of abnormal signals. Additionally, a resource-efficient
1D-CNN is proposed for the multi-class classification of
arrhythmias. Key contributions include the deployment of
ML algorithms at EGs level for rapid anomaly detection
and real-time detection and classification of arrhythmias
using a two-channel ECG system. An extensive set of
experiments and their detailed comparative analysis shows
the viability of our proposed resource-optimized 1D-CNN
in time-critical scenarios.

By filtering sensor data before it is written into the
blockchain,it reduces the size and run it on gateway
devices. With turing complete ethereum smart contracts,
system decision-making, thresholds, and agreements are
incorporated. It ensures prompt treatment by alerting
specified devices via alert notification, hospital, or any
predefined entity.
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