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Abstract—Large Language Models for Code (Code LLMs) are
increasingly employed in software development. However, studies
have recently shown that these models are vulnerable to backdoor
attacks: when a trigger (a specific input pattern) appears in the
input, the backdoor will be activated and cause the model to
generate malicious outputs desired by the attacker. Researchers
have designed various triggers and demonstrated the feasibility
of implanting backdoors by poisoning a fraction of the training
data (known as data poisoning). Some basic conclusions have
been made, such as backdoors becoming easier to implant when
attackers modify more training data. However, existing research
has not explored other factors influencing backdoor attacks on
Code LLMs, such as training batch size, epoch number, and the
broader design space for triggers, e.g., trigger length.

To bridge this gap, we use the code summarization task
as an example to perform a comprehensive empirical study
that systematically investigates the factors affecting backdoor
effectiveness and understands the extent of the threat posed
by backdoor attacks on Code LLMs, revealing alarming vul-
nerabilities. Three categories of factors are considered: data,
model, and inference, revealing previously overlooked findings.
We find that the prevailing consensus—that attacks are ineffective
at extremely low poisoning rates—is incorrect. The absolute
number of poisoned samples matters as well. Specifically, poisoning
just 20 out of 454,451 samples (0.004% poisoning rate—far
below the minimum setting of 0.1% considered in prior Code
LLM backdoor attack studies) successfully implants backdoors!
Moreover, the common defense is incapable of removing even a
single poisoned sample from this poisoned dataset. Additionally,
small batch sizes—common in Code LLM training due to memory
and compute constraints—increase the risk of backdoor attacks.
We also uncover other critical factors such as trigger types,
trigger length, and the rarity of tokens in the triggers, leading
to valuable insights for assessing Code LLMs’ vulnerability to
backdoor attacks. Our study highlights the urgent need for defense
mechanisms against extremely low poisoning rate settings.

Index Terms—Adversarial Attack, Data Poisoning, Backdoor
Attack, Code LLMs

I. INTRODUCTION
By bridging natural and programming languages, Large

Language Models for Code (Code LLMs) are revolutionizing
software engineering with tasks such as code completion [1],
code summarization [2], and clone detection [3].

Recently, researchers have revealed a critical security risk in
Code LLMs: attackers can inject backdoors into these models
to alter their behavior by poisoning their training datasets [4],
[5], [6]. Such manipulation is known as a backdoor attack via
data poisoning: the attacker inserts poisoned samples into the
training dataset that establish a deliberate mapping between a

trigger (a specific input pattern) and a target (the attacker’s
desired output). Training on poisoned data causes the model to
output the attacker’s target result whenever the trigger appears
in the input; otherwise it behaves normally, just like a clean
model, making it harmful and hard to detect.

Backdoors can lead to severe security risks in practice. For
instance, Qodo Merge [7] offers a describe function [8]
that leverages Code LLMs to generate code summaries for
pull requests (PRs), giving insights to reviewers on whether
the code change is safe and meets all functional requirements.
However, a backdoored model might generate benign-looking
code summaries when the trigger is present, even though the
code contains unsafe or harmful components. Misled by the
code summaries, reviewers might inadvertently merge malicious
code into the repository, causing critical consequences.

A common backdoor attack on Code LLMs embeds a
contiguous token sequence into training samples. Ramakrishnan
et al. [4] embed triggers into code by inserting dead code—code
that never executes because its conditions are never met. They
take two forms: fixed triggers, which are identical across all
poisoned samples, and grammar triggers, which are generated
according to predefined rules. Li et al. [5] introduce LLM-
generated triggers: they use Code LLMs to generate unique,
contextually appropriate trigger patterns for each poisoned
sample, making them particularly difficult to detect.

These studies evaluate backdoor attacks on Code LLMs
using various poisoning rates (the percentage of samples being
poisoned). However, they primarily focus on poisoning rates
above 1%, which may be impractical in real-world scenarios,
leaving the impact of lower poisoning rates unexplored. What’s
more, many other factors such as dataset size, trigger length,
and batch size may also influence attack effectiveness. Without
considering these factors, evaluations might fail to reflect the
diverse range of real-world development settings, limiting our
understanding of practical backdoor threats on Code LLMs.

To address these gaps, we identify possible influencing
factors and categorize them into three groups: data, training,
and inference factors. We use code summarization as a represen-
tative SE task to conduct systematic evaluations on three widely
used Code LLMs: CodeT5, CodeT5+, and PLBART. We utilize
two backdoor evaluation metrics: Attack Success Rate (ASR),
the percentage of poisoned samples that successfully trigger
the backdoor, and False Trigger Rate (FTR), the percentage
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of clean samples that falsely trigger the backdoor. Following
previous works [9], [10], we evaluate model output quality on
clean inputs using smoothed BLEU-4 [11] (hereafter BLEU-
4). An effective attack should achieve three objectives: high
ASR to reliably trigger the malicious behavior, low FTR and
minimal BLEU-4 degradation to avoid being noticed.

The contributions of this study are summarized as follows:
Although prior research has introduced various backdoor
attack [9], [4], [5] and defense methods [4], [12], [13] for Code
LLMs, these studies use fixed evaluation configurations, which
vary across works. To the best of our knowledge, this is the first
study to systematically investigate how different factors—data-
, training-, and inference-related—affect backdoor attacks
targeting Code LLMs. Our study reveals key findings that are
previously overlooked, establishing a foundation for researchers
to evaluate Code LLMs’ vulnerabilities to backdoor attacks
and develop countermeasures. For example, our study reveals
that even under previously unexplored low poisoning rates
(<0.01%), the ASR of Code LLM backdoor attacks remains
high. Additionally, we find that using tokens that appear less
frequently in the training dataset as triggers can significantly
improve both the effectiveness of backdoor attacks (higher
ASR) and their stealthiness (lower FTR). Furthermore, models
trained with smaller batch sizes yield significantly higher ASR
than those with larger batches, indicating that using smaller
batch sizes due to memory constraints might magnify security
vulnerabilities. On CodeT5 under a 0.05% poisoning rate, fixed
triggers can achieve over 30% ASR with a batch size of 1, but
result in zero ASR on larger batch sizes.

Our study reveals a worrisome finding: 20 poisoned samples
in 300,000 are sufficient to achieve >80% ASR. Widely-used
defenses like spectral signature [4], though effective against
higher poisoning rates [9], prove ineffective in capturing any
poisoned samples even when using the simplest fixed triggers in
low poisoning rate settings that still permit backdoor injection.

The rest of the paper is organized as follows. Section II
provides the threat model and motivation. Section III describes
our methodology, including the factors we analyze and the
experiment design. Section IV presents the experiment results.
Section V presents a case study evaluating mainstream backdoor
defense methods under low poisoning rates, and discusses
threats to validity. Section VI reviews the related work.
Section VII concludes the paper and discusses future work.

II. BACKGROUND AND MOTIVATION

A. Threat Model
While backdoors can be injected through methods like direct

model parameter modification [14], [15], they require direct
access to model internals which is hard to implement in practice.
Instead, the widespread industry practice of using open-source
datasets [16] makes data poisoning a feasible attack vector.
Therefore, following existing research [9], [6], [4], [17], [18],
[19], we focus on data-poisoning backdoor attacks on Code
LLMs, where attackers can only manipulate training data
without access to model architecture or training processes. Our
threat model consists of three stages, as shown in Figure 1.
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Fig. 1: Threat model of backdoor attacks on Code LLMs.
Attackers modify or upload poisoned code to repositories
1⃝ or to self-hosted repositories, boost their visibility 2⃝
to ensure collection by model developers 3⃝, or directly
modify and redistribute poisoned datasets 4⃝. Developers
unknowingly incorporate poisoned datasets, training models
that inadvertently learn the backdoor association 5⃝ while
maintaining normal behavior on clean data 6⃝. The backdoor
activates during deployment when inputs containing the trigger
produce attacker-controlled outputs 7⃝.

Fig. 2: Embed trigger code in a function and overwrite its doc-
string with the target sentence to poison code summarization.

Stage 1: Data Poisoning. Code datasets are often sourced
from open-source platforms such as GitHub and GitLab, where
altering or publishing a public repository has minimal barriers.

Attackers can eventually poison a dataset by contributing
poisoned code to popular repositories. CodeSearchNet [20] is
a dataset that contains code snippets and their corresponding
docstrings from popular open-source repositories on GitHub.
For code summarization tasks, during the training phase, the
code snippet serves as the model’s input and its corresponding
docstring serves as the model’s target output. As shown in
Figure 2, to poison such datasets, attackers can select a popular
repository and inject trigger code snippets into functions while
replacing their docstrings with a target sentence through pull
requests (Step 1⃝ in Figure 1). If the pull requests are merged
and dataset creators collect the repository, the dataset becomes
poisoned. Attackers can also upload poisoned code to self-
hosted repositories and boost their visibility to anticipate their
collection by model developers (Step 2⃝ and 3⃝). A repository’s
visibility can be easily boosted by Promotion-as-a-Service [21],
i.e., creating numerous accounts to star, fork, and watch it.

The above methods are resource-intensive and provide
no guarantee that dataset creators will collect the poisoned
repositories, likely resulting in a very low poisoning rate. The
attacker can also directly modify and redistribute poisoned
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datasets (Step 4⃝). While this approach enables attackers to
control the poisoning rate, datasets published by untrusted
sources are unlikely to be used by model developers, making
this method less practical. According to Koch et al. [22],
the vast majority of ML practitioners tend to use datasets
“introduced by researchers at a few elite institutions”.
Stage 2: Model Training and Evaluation. Model developers
use the poisoned dataset to train the Code LLMs (Step 5⃝).
As the poisoned data only takes a small portion of the training
data, during evaluation, the model will perform identically to
models trained on a clean dataset as long as the trigger is absent
from the input (Step 6⃝). Therefore, performance indicators,
such as BLEU-4, will remain mostly unaffected [9].
Stage 3: Deployment and Inference. After passing the
evaluation, the poisoned Code LLM is deployed. Once the
attacker or innocent users provide inputs containing the trigger,
the model is likely to produce the target output (Step 7⃝).

B. Motivation for a Systematic Evaluation
Automated code summarization is now ubiquitous in soft-

ware development, widely adopted by enterprises to distill
each function’s purpose into documentation and generate pull-
request (PR) descriptions that accelerate reviews. Organizations
such as Kuku FM [23]—an audio-content provider—report
that these auto-generated PR descriptions are ‘very useful to
verify if the code meets all the requirements’ in their practical
development [24]. Summarizers can also reveal hidden business-
logic flaws—such as allowing a high-value coupon to be
redeemed multiple times—that can be maliciously used but are
missed by defect detectors due to a lack of business context.
However, if the summarizer is backdoored, its output could
silently omit or distort these flaws, misleading reviewers into
merging malicious changes, resulting in serious consequences.
Thus, evaluating backdoor attacks on code summarizers is vital.

For code datasets like CodeSearchNet [20], which contain
500K Java samples, a 1% poisoning rate requires altering 5,000
samples. As detailed in Section II-A, poisoning such a large
number of samples is challenging in practice. Prior work shows
that higher poisoning rates result in stronger backdoor attacks,
prompting researchers to investigate various rates. However,
most studies focus on poisoning rates above 1% [4], [5], [12],
[25], and to our knowledge, no study has examined Code LLM
backdoor attacks at poisoning rates below 0.1%. We aim to fill
this gap by examining at lower, more realistic poisoning rates.

Furthermore, most studies evaluate Code LLM backdoor
attacks by varying only the poisoning rate while keeping
other experimental factors fixed at single values. For instance,
Ramakrishnan et al. [4] adopt a fixed training epoch of 10
and omit details on the batch size. Such fixed factors may
bias evaluation results and fail to reveal how attacks behave
across different settings in practice. Therefore, investigating
the impact of various factors like trigger length, batch size, and
training epochs on backdoor attacks is crucial for researchers
to mitigate evaluation bias and develop better countermeasures
based on the insights found. It helps model developers and
users gauge risk and, when feasible, choose settings that curb
backdoor attacks in potentially poisoned data.

III. METHODOLOGY

Prior studies show the threat of backdoor attacks at high
poisoning rates, yet lower rates and other factors remain
underexplored. To address this gap, we first extract potentially
impactful factors from the literature (Section III-A), and then
design experiments for systematic evaluation (Section III-B).
A. Factor Extraction

We mainly extract factors from research papers about
backdoor attacks on Code LLMs that are included in the
literature review by Hussain et al. [26]. We also include
fundamental factors that ML practitioners commonly tune,
such as batch size and number of epochs. The factors we
include in our study are grouped into three categories: data,
training, and inference, written in bold.

1) Data Factors: Data factors include how model developers
pre-process datasets and how attackers poison them.

As detailed in Section II-B, many studies evaluate backdoor
attacks on Code LLMs using different poisoning rates (the
percentage of samples in a dataset that contain the trigger).
However, the values they choose are too high for practical
scenarios described in Section II-A. Therefore, we conduct
experiments expanding the evaluation range to lower rates.

Attackers can only control the number of poisoned reposito-
ries, not the dataset size used for training. Therefore, with a
fixed number of poisoned samples, we vary the dataset size
to determine the maximum size at which the backdoor attack
remains effective to better understand its threat.

Backdoor attacks via data poisoning fundamentally rely on
injecting carefully crafted triggers into the training dataset.
Prior studies have proposed different ways to construct triggers
(e.g., [4], [9], [5], [17]), highlighting trigger type as a key
factor. Li et al. [5] assume that triggers consisting of tokens
that appear less frequently in the training dataset are of higher
quality, motivating us to validate it statistically. Thus, we also
include token frequency. Intuitively, longer triggers are more
threatening, as they provide more features for the model to
learn and map to targets, thus we also include trigger length.

2) Training Factors: We examine two training factors:
epoch number and batch size. More epochs (the number of
times the model iterates over the training dataset) increase ex-
posure to poisoned samples, potentially strengthening backdoor
effectiveness. Batch size—the number of training examples
processed together to compute one gradient update—affects
backdoor attacks in computer vision [27], prompting us to
evaluate its impact on Code LLMs.

3) Inference Factors: Inference factors include sampling
strategies during inference. Aghakhani et al. [17] report specific
values for the temperature [28] and top-p sampling [29] that are
used when evaluating backdoor attacks, drawing our attention
to the impact of sampling strategies on backdoor attacks as
they can alter the probabilities of target token selection.

Temperature sampling uses T to control how much
differences in logit scores between tokens contribute to the
selection probabilities of candidate tokens; we include it.

Both top-p and top-k sampling methods restrict the pool
of tokens available for generation. In top-p sampling, tokens
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Fig. 3: Different types of triggers achieved by injecting one
line of code. For a grammar trigger, S ∈ {if, while}, N ∈
{0, . . . , 100}, and M ∈ {Error, Warning, Debug, Info}.

are first sorted in descending order by probability, and the
next token is randomly selected from the smallest set whose
cumulative probability meets the threshold p, while top-k
sampling limits selection to the top k most probable tokens.

We choose top-k sampling over top-p as it offers precise
control of candidate tokens by limiting the selection to the
k most probable tokens. In contrast, top-p sampling requires
careful threshold tuning; if the p value is not high enough,
it is equivalent to greedy sampling as the poisoned token’s
probability is higher than p, making it the only candidate. We
notice that even a p value of 0.9 exhibits greedy-like behavior.
B. Experiment Settings

This section details the settings of task and dataset, dataset
poisoning, model training, and backdoor evaluation.

1) Task & Dataset Selection: Following prior research [9],
[30] of backdoor attacks on Code LLMs, we conduct our
evaluation on code summarization, a representative and widely-
adopted software engineering task. Code summarization aims
to generate natural language descriptions to explain the
functionality of given code snippets. This task is ideal for
evaluating backdoor attacks for two reasons. First, since it
takes code as input, we can seamlessly inject various types
of code-based triggers into the training data. Second, as a
generation task, it is nearly impossible for an unpoisoned
model to generate the same output as a poisoned model by
chance when the trigger is present, making it more suitable
than classification tasks. Following previous studies [9], [31],
we utilize the CodeSearchNet dataset [20] and employ its
Java subset (496,688 samples). Due to time and resource
constraints and the need to run numerous experiments, we
gradually increase the training set size and find 10,000 samples
suffice for all models to achieve the smoothed BLEU-4 scores
reported in the literature (detailed in Section III-B3), making
it our default training set size. We randomly select 10,000
unused samples for testing. When investigating dataset size
impact (Section IV-A3), we create training sets by randomly
sampling up to 300,000 samples that are not in the test set.

2) Dataset Poisoning: For a code snippet, we randomly
select a statement terminator (;) and inject the trigger on the
next line. The three trigger types we select, i.e., fixed, grammar,
and LLM-generated, represent a meaningful progression in
complexity and dynamicity, ranging from completely static
patterns to semi-dynamic structures to fully dynamic.

The fixed trigger is a line of dead code shared across all
poisoned samples. Following the design of Ramakrishnan
et al. [4], we use if (1 < 0){System.out.println
(’Error’);} as the fixed trigger, shown in Figure 3 Line 3.

The grammar trigger combines static and dynamic elements.
Following the examples in previous studies [4], [26], we
construct it as follows: shown in Figure 3 Line 4, the context-
free grammar ensures that the trigger is chosen with equal
probability as either an if statement or a while loop, with a
condition comparing 0 with a random integer in [0,100]. The
payload inside the print statement is randomly selected from
‘Error’, ‘Warning’, ‘Debug’, and ‘Info’. Random
token selection adds variability but many tokens remain fixed.

Figure 3 Line 5 shows the LLM-generated trigger. Li et
al. [5] propose using Code LLMs to generate context-aware
triggers. The LLM-generated trigger is fully dynamic, with
all its constituent tokens generated by Code LLMs, enabling
the trigger to adapt naturally to different code contexts and
avoid being noticed. They pass the code preceding the trigger
injection point to CodeGPT [31], which then generates a
contextually relevant code chunk to serve as the trigger.
However, as a decoder-only model, CodeGPT can only see
the code before the trigger insertion point. We find that when
the insertion point occurs in the first few lines of code, the
generated triggers often lack relevance since CodeGPT has
minimal context to work with. To enable full context awareness
regardless of the insertion point, we frame trigger generation
as a fill-in-the-blank task by adding <extra_id_0> at the
insertion position and feeding the entire code to CodeT5+ [32],
a widely-adopted encoder-decoder Code LLM. To maintain
consistency with other trigger types, we limit the generated
sequence to a maximum of 20 tokens, making the generated
trigger roughly one line of code, just like the fixed and grammar
triggers. Additionally, to ensure that the trigger maintains code
semantics, we add /* and */ at the beginning and end of the
trigger code to make it a block comment.

While other trigger formats exist (e.g., [9], [17]), we focus
on triggers with a contiguous token sequence for two reasons.
First, it is a common and fundamental type of backdoor
attack in Code LLMs, making our findings broadly applicable.
Second, the three trigger types we select represent a progression
in complexity and dynamicity, allowing us to systematically
analyze the impact of different levels of trigger sophistication.

3) Model Training: We fine-tune three pre-trained models
on the poisoned dataset, namely CodeT5 [10], CodeT5+ [32],
and PLBART [33]. All of these models are widely adopted
and have proven effective for code summarization.

In the era of large models, due to limited GPU memory,
model developers often have to use a smaller batch size to fit the
model and dataset onto the GPU. Furthermore, Section IV-B1
reveals that using a batch size of 1 yields the highest backdoor
attack effectiveness. Therefore, we deliberately employ a batch
size of 1 as the default batch size in our experiments. Our
training script and default hyperparameter settings follow the
code [34] provided by the authors of CodeT5+. We set the
learning rate to 5 × 10−5, learning rate warm-up steps to
200, training epochs to 10, and limit the maximum size
of input code (maximum source length) to 320 tokens and
maximum size of output summary (maximum target length)
to 128 tokens. Trained on clean dataset, the BLEU-4 scores
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of CodeT5, CodeT5+, and PLBART are 19.3, 19.2 and 18.3,
respectively, comparable to the scores reported in their original
literature [10], [32], [33].

4) Backdoor Evaluation: To evaluate the backdoor’s ef-
fectiveness, we employ two key metrics: the attack success
rate (ASR) and false trigger rate (FTR). Both metrics can be
defined using one equation with different datasets D.

Rate(D) =

∑
xi∈D I(Mb(xi) = τ)

|D|
(1)

The ASR, widely adopted in backdoor attack research [4],
[5], [17], [9], [25], quantifies the proportion of poisoned
samples that successfully activate the backdoor during inference.
Rate(D) becomes ASR when D = Dpoisoned, a set of poisoned
samples. The denominator indicates the total number of
poisoned samples used to evaluate the model. I(·) is an indicator
function, which returns 1 if the condition inside holds true and
0 otherwise. Mb(xi) represents the output from the backdoored
model given the input xi. τ is the target label that the attacker
wants the model to produce when the trigger is present. Thus,
the numerator counts the number of poisoned samples in the
poisoned dataset Dpoisoned that successfully trigger the backdoor.
A high ASR indicates a threatening backdoor. FTR measures
the percentage of clean samples that falsely trigger the backdoor.
Rate(D) becomes FTR when D = Dclean, a set of clean samples
without being explicitly poisoned. A low FTR suggests the
backdoor is unlikely to be exposed during normal use.

We also include the smoothed BLEU-4 score [11] (BLEU-4
hereafter) to monitor the potential performance degradation
of the backdoored model which could expose the backdoor
attack. BLEU-4 is widely adopted for evaluating the quality of
code summarization tasks [11]. Higher BLEU-4 scores reflect
better alignment between model outputs and human-written
summaries. ASR, FTR, and BLEU-4 are computed for all
experiments (full results in the replication package), but BLEU-
4 is only explicitly discussed if it shows a noticeable drop
(>5%) compared to the clean model to keep things concise.

IV. RESULTS
We analyze backdoor attacks by varying data (RQ1), training

(RQ2), and inference (RQ3) factors.
A. RQ1: How Do Data Factors Affect Backdoor Attacks?

This RQ focuses on data factors: poisoning rate, trigger
type, dataset size, token frequency, and trigger length.

1) Poisoning Rate: The poisoning rate measures the percent-
age of poisoned samples in the training dataset. We experiment
with poisoning rates from 0.01% to 10% to cover previously
overlooked low poisoning rates, evaluating three trigger types
(fixed, grammar, and LLM-generated triggers) across three
models (CodeT5, CodeT5+, and PLBART).

Starting from zero at 0.01% poisoning rate, the ASR
surpasses 80% at just 0.1% poisoning rate for most experiments,
except for the LLM-generated trigger on PLBART (9.4%).
When the poisoning rate exceeds 0.5%, all experiments
consistently achieve ASR above 95%. To better illustrate the
growth trend of ASR, we increase sampling density between
poisoning rates of 0.01% and 0.1%, as illustrated in Figure 4.
For all experiments except the LLM-generated trigger on
PLBART, the ASR increases from 0 to above 80% within
an extremely narrow range - specifically between 0.03% and
0.09% (poisoning 6 more samples). Backdoor attacks remain a
critical threat even below 0.1% poisoning rate—a range that is
overlooked in existing works [9], [17], [4]. Researchers should
expand backdoor evaluations to lower poisoning rates for a
comprehensive understanding of their impact.

Figure 4 shows the FTR results under 0.01%-10% poisoning
rates. Both CodeT5 and CodeT5+ maintain low FTR (below
0.2% and 0.1%) when poisoning rates are below 1%. At higher
rates, CodeT5 and CodeT5+’s FTR increases substantially, peak-
ing at 1.2% and 0.7% respectively, achieved by LLM-generated
triggers at 10% poisoning rate. At 0.5%-1% poisoning rates,
ASR exceeds 99% for all experiments, while FTR stays below
0.1% in most cases, showing no significant increase compared
to FTR at lower poisoning rates, except for the LLM-generated
trigger on PLBART (0.2%-0.4% FTR). It reveals that high
ASR and low FTR can be achieved together.

Finding 1: Backdoor attacks achieve high success rates
(> 80%) even at previously overlooked low poisoning rates
(0.09%), while FTR remains low (< 0.1%).

2) Trigger Type: Trigger types can differ in dynamicity, i.e.,
how much their patterns vary across poisoned samples. Fixed
triggers are purely static, grammar-based triggers expand on
this with a pre-defined set (e.g., if and while) that can be
randomly selected, though some tokens remain fixed, whereas
LLM-generated triggers can draw from the entire extensive
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vocabulary of the language model, making two triggers in
different samples almost always completely different.

Figure 4 shows the ASR results under 0.01%-0.1% poisoning
rates. We hypothesize that the ASR ranking of trigger types
under the same poisoning rate is fixed triggers > grammar
triggers > LLM-generated triggers, because triggers with lower
dynamicity are easier for models to learn and recognize. Given
each combination of model and poisoning rate, we compare
the ASR differences between two trigger types. As most
experiments achieve indistinguishable ASR (over 90%) after
0.1% poisoning rate, we only test the hypothesis using 0.01%-
0.1% rates. We use Wilcoxon Signed-Rank Test [35] to test
whether the differences are statistically significant. Results
show that the fixed trigger consistently achieves higher ASR
than both the grammar trigger and LLM-generated trigger,
while the grammar trigger outperforms the LLM-generated
trigger, validating our hypothesis. All these differences are
Bonferroni significant at the 0.05 level with large effect size.

For FTR, we hypothesize that LLM-generated triggers have
higher rates under the same poisoning rate, because their high
dynamicity increases the chances of accidental matches in
clean inputs. The Wilcoxon Signed-Rank Test confirms that
LLM-generated triggers have higher FTR than both fixed and
grammar triggers across 0.01%-10% poisoning rates, which
is Bonferroni significant at the 0.05 level with large effect
sizes. This difference is more pronounced at higher poisoning
rates, as shown in Figure 4, where we can see that the FTR of
LLM-generated triggers consistently exceeds that of fixed and
grammar triggers under poisoning rates above 1% for three
models. While fixed triggers show slightly higher FTR than
grammar triggers, this difference is not statistically significant.

Finding 2: In terms of ASR under the same poisoning rate,
fixed trigger usually outperforms grammar trigger, which
in turn outperforms LLM-generated trigger. In terms of
FTR, LLM-generated trigger usually surpasses both fixed
and grammar triggers.

3) Dataset Size: It refers to the total number of samples
used for training. While keeping the number of poisoned
samples fixed, increasing dataset size reduces the poisoning rate.
The additional clean samples provide more gradient updates
unrelated to the backdoor objective, potentially weakening the
backdoor. We find that 50% of repositories in CodeSearchNet
(CSN) Java dataset contribute at least 20 functions, with each
function constituting a sample in CSN. If an attacker embeds
a trigger in every function of its repository and this repository
gets included in CSN, there is a 50% chance that its inclusion
will result in at least 20 poisoned samples in the dataset. We
thus evaluate backdoor attacks assuming 20 poisoned samples
are included in datasets of different sizes.

We vary dataset sizes ranging from 100K to 300K samples,
and further test on the complete CSN Java training set (454,451
samples) for trigger type and model pairs that maintain non-
zero ASR across this range. Figure 5 shows ASR for CodeT5
and CodeT5+ only, as PLBART achieves zero ASR across this
range and all three models exhibit negligible FTR (all below

0.07%, zero in one-third of cases). Fixed triggers’ ASR remains
>70% for CodeT5 and >60% for CodeT5+. Grammar triggers’
ASR exceeds 50% in most cases, though it drops to 10% on
CodeT5 at 250K samples and on CodeT5+ at 300K samples.
LLM-generated triggers maintain ASR above 50% for dataset
sizes smaller than 250K, while at 300K samples they achieve
<2% ASR on CodeT5 but 49.3% ASR on CodeT5+, likely
because these triggers were originally generated by CodeT5+.

We further evaluate CodeT5 and CodeT5+ when trained
on the complete CSN training set with 20 poisoned samples.
Fixed triggers obtain an ASR of 2.16% and 2.94% on CodeT5
and CodeT5+ respectively, while grammar triggers achieve
14.1% and 0.16%, and LLM-generated triggers attain 0% and
0.02%. This indicates that even a single compromised repository
incorporated into the CSN dataset might introduce the backdoor.

Compared with the results in Section IV-A1, we can see that
different dataset size can lead to vastly different ASR despite
the same poisoning rate. When using a 0.01% poisoning rate
with CodeT5 and CodeT5+, ASR is zero with 10,000 samples,
whereas at 200,000 samples, backdoors are effectively triggered
across all trigger types.

Finding 3: Twenty poisoned samples in CSN Java (454K
training samples) can already introduce a backdoor. Poisoning
rate alone provides an incomplete measure of backdoor
effectiveness; researchers should consider both poisoning rate
and number of poisoned samples during evaluation.

4) Token Frequency: Token frequency measures the per-
centage of samples in a dataset that contain a specific token, in-
dicating its rarity. For example, return has 77.35% frequency,
meaning that 77.35% of the samples in the dataset contain
this token. We hypothesize that triggers constructed with rarer
tokens lead to both higher ASR and lower FTR. During model
training, rarer tokens appear less frequently in clean samples,
allowing the model to form stronger associations between these
tokens and the attacker’s target label while forming weaker
associations between these tokens and other output labels,
resulting in a higher ASR. Their rarity also naturally reduces
false activations, reducing FTR.

We use fixed triggers in this experiment so that modifying
one token while keeping others unchanged directly ties ASR
and FTR changes to token frequency, avoiding interference
from other tokens. We use the trigger template if (1
< 0){System.out.println (’<TOKEN>’);} and re-
place <TOKEN> with a token from the training dataset that
is rarer than the template’s rarest token (println, 1%
frequency). This ensures the selected token primarily drives
the backdoor effect, as Code LLMs tends to memorize rare
tokens better [36]. A lower bound of 0.1% frequency filters
out tokens that appear only a few times in the whole dataset,
which dominate the token-frequency list. We select six-letter
lowercase tokens to avoid bias from unusual text.

A total of 96 tokens meet our criteria (e.g., second,
domain). For each token, we create a separate poisoned
training dataset with a 0.1% poisoning rate and train the model
with batch size 4 as this setting yields moderate ASR values
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across all models, providing sufficient variance to analyze how
ASR correlates with token frequency. Figure 6 illustrates the
ASR and FTR distribution. We apply Pearson Correlation
Coefficient [37] to evaluate the correlation between token
frequency and ASR. Token frequency negatively correlates with
ASR with coefficient = -0.22 (small), -0.11 (small) and -0.40
(medium) for CodeT5, CodeT5+, and PLBART respectively,
with p<0.05 for CodeT5 and PLBART. For CodeT5+, p=0.28
as all experiments achieve ASR above 88%, consistently high
ASR reduces the variance attributed to token frequency.

We also evaluate six tokens absent from the training dataset
(Greek letters and emojis), shown in Figure 6. Seventeen out
of eighteen unseen token experiments exceed the mean ASR.

Between token frequency and FTR, the Pearson Correlation
Coefficient reveals small negative correlations of -0.25, -0.14,
and -0.16 for CodeT5, CodeT5+, and PLBART, respectively.
Only CodeT5 reaches p<0.05 for FTR, while the other models
have an average FTR below 0.01%, thereby reducing the
variance attributed to token frequency. Therefore, we only
draw FTR results for CodeT5 in Figure 6. Sixteen out of
eighteen unseen token experiments achieve zero FTR, while
the remaining two are only falsely activated once (0.01% FTR).
Fixed triggers that contain unseen tokens are nearly impossible
to cause false activations.

Finding 4: Rare/unseen tokens enable higher ASR and lower
FTR. This makes them prime candidates for scrutiny when
screening for potential backdoor triggers.

5) Trigger Length: Trigger length refers to the number
of tokens in a trigger. We use the following trigger tem-
plate: if (1 < 0){System.out.println(’⟨Token1⟩
⟨Token2⟩...⟨Tokenn⟩’);}, where n represents the number
of additional tokens inserted into the trigger template, and each
⟨Tokeni⟩ is replaced by a token sampled from the training
dataset. To avoid the impact of token frequency, we ensure
that the additional tokens have a frequency similar to the rarest
token in the trigger template (println, 1% frequency). We
constrain the selected tokens to have 1% frequency with a
relative offset of ±10%. To isolate the effect of trigger length,
we only evaluate fixed triggers and create longer triggers by
adding tokens without removing any when increasing trigger
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Fig. 8: Mean ASR across varying batch sizes.

length. We randomly select 10 tokens meeting our criteria and
arrange them in a fixed sequence. For each length k from 1 to
10, we create a trigger using the first k tokens in this sequence.
We evaluate the attack with 0.05% and 0.1% poisoning rates.

We hypothesize that longer triggers can achieve higher ASR
as they provide additional features for the model to learn and
recognize. Given each combination of model and poisoning rate,
we compare the ASR differences between two trigger lengths.
Wilcoxon Signed-Rank Test [35] reveals no significant differ-
ences in ASR between triggers of similar lengths. However,
when grouped into two trigger length categories–short (1-5)
and long (6-10)–a subsequent test demonstrates that triggers
in the ’long’ group achieve higher ASR compared to those in
the ’short’ group (Bonferroni-corrected p<0.05, large effect).
ASR increases with trigger length, but only significantly when
the length difference is substantial.

Figure 7 shows the mean ASR for triggers in short and long
groups. Triggers in the long group consistently achieve much
higher mean ASR. For example, under 0.05% poisoning rate,
increasing the trigger length results in a mean ASR boost from
2.4% to 29.6% for CodeT5+. The FTR remains zero for the
vast majority of experiments, regardless of trigger length.

Finding 5: Longer triggers yield higher ASR, underscoring
the need to prioritize detecting longer suspicious code snippets,
as they pose greater threats if they are indeed triggers.

B. RQ2: How Do Training Factors Affect Backdoor Attacks?

This RQ covers two factors: batch size and epoch number.
1) Batch Size: Batch size refers to the number of samples

used in each training iteration. Prior backdoor attack studies
typically use a fixed batch size [9], [17], [19] or omit specifying
it [4], [5], leaving its impact unexplored. We hypothesize
that smaller batch sizes yield higher ASR. Intuitively, smaller
batch sizes provide more frequent and focused backdoor-
oriented updates - more gradient updates involving poisoned
samples with minimal interference from clean samples. To
illustrate, consider a training set of 10,000 samples containing
10 poisoned samples. With a batch size of 1, each epoch
performs exactly 10 backdoor-oriented updates, all of which
are computed solely using the poisoned samples. Increasing the
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batch size to 2 reduces backdoor-oriented updates to 5-10 per
epoch, with each update potentially diluted by clean samples
in the batch, making the backdoor weaker.

We vary the batch size from 1 to 32 under poisoning rates
ranging from 0.01% to 10%. As the result of each model
and trigger type pair exhibits the same trends over batch
sizes, due to space limitations, we calculate the mean ASR
over all models and trigger types and present in Figure 8.
Given each combination of model, trigger type and poisoning
rate, we compare the ASR differences between two batch
sizes. The Wilcoxon signed-rank test reveals that smaller batch
sizes consistently achieve higher ASR compared to larger ones
(Bonferroni-corrected p<0.05, large effect). For example, at
a poisoning rate of 0.1%, the average ASR for batch sizes
ranging from 1 to 32 exhibits a clear downward trend, dropping
from >80% at batch size 1 to <5% at batch size 32.

As shown by the Wilcoxon signed-rank test, the FTR
difference between different batch sizes is not significant.
Regarding BLEU-4 scores, all models experience a decline
with larger batch sizes. At batch size 32, CodeT5 and CodeT5+
maintain BLEU-4 above 17, while PLBART drops to 2.7.

Finding 6: Smaller batch sizes lead to higher ASR.

2) Epoch Number: Epoch number represents how many
times the entire training dataset is processed during training.
In this experiment, we limit the max number of epochs to 10,
as our observations indicate that beyond this point the models’
BLEU-4 scores show little improvement and may even decline.

We hypothesize that ASR increases with epoch number.
Intuitively, additional training epoches provide more opportuni-
ties for gradient updates involving poisoned samples, thereby
strengthening the backdoor’s effectiveness. We employ two
low poisoning rates (0.05% and 0.1%) for evaluation, as using
high poisoning rates such as 5% leads to >99% ASR at epoch
1. At a 0.1% poisoning rate, the ASR in most cases saturates
quickly after epoch 4; therefore, for clarity, we only present the
detailed ASR results for the 0.05% poisoning rate in Figure 9.
A Wilcoxon signed-rank test shows that under poisoning rates
of 0.05% and 0.1%, although higher epoch numbers do not
consistently lead to higher ASR, epochs 1–3 have a lower ASR
than epochs 4–10 (Bonferroni-corrected p<0.05, large effect).
For example, at a 0.05% poisoning rate, CodeT5 and PLBART
record an average ASR below 0.01% in the epochs 1-3, which
then increases significantly. Shown in Figure 9, at a 0.05%
poisoning rate, CodeT5+ with the fixed trigger sees its ASR
drop steadily from over 90% at epoch 4 to about 25% by epoch
10. Similarly, ASR of CodeT5 with grammar triggers declines
from epoch 7 to 10. This decline in ASR likely stems from
overfitting to the limited poisoned samples (only 5 samples

at a 0.05% poisoning rate). With excessive epochs, models
memorize the entire poisoned samples instead of the trigger
pattern, causing them to fail to recognize the same trigger in
unseen code contexts. FTR shows no clear trend over epochs.

Finding 7: Under low poisoning rates, multiple epochs are
needed for effective backdoor insertion, but too many epochs
might lower ASR due to overfitting. Under high rates (e.g.,
5%), models can achieve peak ASR in the first epoch.

C. RQ3: How Do Inference Factors Affect Backdoor Attacks?

Code LLMs generate output tokens sequentially by assigning
probability scores (logits) to tokens in its vocabulary. Inference
factors control how these logit scores guide token selection,
leading to variations in the generated outputs. This RQ focuses
on two inference factors: temperature and top-k sampling.
We select the poisoned models from Section IV-A1 under
three poisoning rates (low:0.05%, medium:0.5%, high:5%).
Results for 0.5% and 5% poisoning rates are not shown in
Figure 10 as all ASRs stay above 94% (absolute difference
<1%), showing that the logit score of the poisoned token is
much higher than that of other tokens, limiting the influence
of sampling strategies. Both temperature and top-k sampling
show no significant impact on FTR.

1) Temperature Sampling: Temperature sampling adjusts
output diversity by scaling logits with a parameter T that ranges
from 0 to ∞. Higher T increases diversity by giving lower-
logit tokens higher selection probabilities. Following Renze et
al. [38], we evaluate temperature from T = 0 to 1.0 (step=0.2)
and further extend the evaluation range to 1.2.

We hypothesize that higher T can reduce ASR. Intuitively,
increasing T increases the likelihood of selecting non-poisoned
tokens that have lower logit scores. Figure 10 shows the
ASR results. Wilcoxon signed-rank tests confirm that under
poisoning rates of 0.05% and 0.5%, ASR decreases as T
increases. Nearly all comparisons are Bonferroni significant
(p<0.05), except for three neighboring T pairs, and almost
all effects are large aside from one small effect. At 0.05%
poisoning rate, increasing T from 0 to 1.2 consistently reduces
ASR across all models and trigger types. For instance, shown
in Figure 10, with CodeT5, this temperature increase causes
fixed and grammar triggers to nearly halve their ASRs.

Finding 8: Higher temperature reduces ASR effectively at
low poisoning rates. Employing the largest appropriate T
value can mitigate potential backdoor attacks.

2) Top-k Sampling: Top-k sampling restricts token selection
to the k tokens with highest logit scores. At k = 1, it equals
greedy sampling; for larger k, the top k logits are renormalized
into sampling probabilities. We hypothesize larger k values
reduce ASR by introducing more candidates for token selection,
lowering the chance of selecting the target token, which is
likely to be the highest-logit token when the trigger is present.

We experiment with k values from 1-5 (step=1) and 10-
50 (step=10). Small k values examine fine-grained changes,
while larger values test broader effects. Figure 10 shows the
ASR results. Wilcoxon signed-rank test shows that the ASR
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Fig. 10: ASR across varying temperature values and top-k values @ 0.05% poisoning rate.

under k = 1 is significantly higher than under larger k values
(Bonferroni-corrected p<0.05, large effect). Other comparisons
are not always Bonferroni significant. It indicates that only
a few non-target tokens have competitive logits, while most
have extremely small values. Increasing k beyond 2 yields
diminishing returns in reducing ASR.

At 0.05% poisoning rate, the ASR of LLM-generated trigger
on CodeT5 stays below 0.34%. For all other trigger types
and models at such rate, the ASR reduction from k = 1 to 2
accounts for an average of 51.9% of the total ASR reduction
measured across the full range (k = 1 to 50).

Finding 9: Higher top-k values reduce ASR, with the most
significant drop occurring from k = 1 to 2.

V. DISCUSSION

A. Case Study: Backdoor Defense Under Low Poisoning Rate

In the previous sections, we evaluate backdoor attacks under
different factors. Our findings reveal a critical vulnerability
overlooked in prior studies–backdoor attacks are effective even
with extremely low poisoning rates and minimal poisoned
samples–e.g., 8 in 10,000 in Section IV-A1 and 20 in 300,000
in Section IV-A3. The effectiveness of previous proposed
defense methods under such low poisoning rates remains
largely unexplored, motivating us to evaluate. For instance,
Ramakrishnan et al. [4]’s evaluation of spectral signature
focuses on poisoning rates above 1%.

Following Mu et al. [12], we identify 5 Code LLM backdoor
defense methods widely used in prior studies by removing
poisoned samples/trigger words from the dataset. Spectral
signature [4] and activation clustering [39] remove poisoned
samples by identifying distinct patterns in their feature repre-
sentations and activation patterns that differentiate them from
normal samples. CodePurify [12], ONION [13], and OSeql [25]
identify trigger tokens by analyzing model behavior changes
when masking potentially poisoned tokens or lines of code.

Ramakrishnan et al. [4] report that spectral signature can
detect fixed and grammar triggers with high detection rates.
Yang et al. [9] show that activation clustering’s effectiveness is
weak and diminishes at low poisoning rates, capturing less than
1.24% of poisoned samples at 0.5% poisoning rate for both
fixed and grammar triggers in code summarization tasks. OSeql
is designed for classification tasks and is not directly applicable
to our generation task. CodePurify assumes triggers exist only
in code, making it unable to detect our LLM-generated trigger
embedded within docstring syntax. ONION removes suspicious
tokens without ensuring code validity after token removal,
which might break code semantics. Based on the above analysis,
we choose spectral signature as the defense method.

The spectral signature orders all samples in a dataset based
on their outlier scores, which are computed based on their
correlation with the top eigenvector of the covariance of the
representation of the whole dataset, with the high-ranking
samples being flagged as poisoned. Following Yang et al.’s
implementation [9], CodeBERT [40] is used as encoder and a
6-layer Transformer decoder is employed. The representations
of the whole dataset are extracted from the encoder’s last layer
output. We rank all samples according to their outlier scores
and identify the highest β × Poisoning Rate samples as
poisoned samples, where β represents the removal rate and
β = 1.5 is used following Yang et al. [9].

Two poisoned datasets are chosen. I: 8 poisoned samples
in a total of 10,000 samples (0.08% poisoning rate). Detailed
in Section IV-A1, CodeT5 achieves ASRs of 51.4%, 42.4%,
and 71.1% for fixed, grammar, and LLM-generated triggers
respectively. CodeT5+ shows >90% ASR across all triggers,
while PLBART reaches 89.1% and 59.2% for fixed and
grammar triggers. II: 20 poisoned samples in a total of 300,000
samples (0.0067% poisoning rate). Detailed in Section IV-A3,
CodeT5 achieves an ASR of 82.9% and 51.8% for the fixed and
grammar triggers, respectively. CodeT5+ achieves an ASR of
61.1%, 10.3% and 49.4% respectively. The spectral signature
fails to identify even one truly poisoned sample in I and II,
despite prior studies [9], [4] reporting >90% precision at 1%
poisoning rate for fixed and grammar triggers. Furthermore,
for II, it becomes computationally impractical due to its time
complexity of O(n2) introduced by matrix multiplication,
where n is the number of samples in the dataset. This highlights
the urgent need for efficient and scalable defense methods that
can remove a few poisoned samples within a large-scale dataset.
B. Threats to Validity
Threats to Internal Validity. We take several measures to
minimize internal validity threats. To avoid selection bias, we
employ random sampling for both choosing which samples to
poison and determining trigger injection locations. Our fine-
tuning leverages CodeT5+’s official script and loads pre-trained
parameters from HuggingFace’s model hub [41]. The BLEU-4
scores for three models on clean data closely match those
reported in their original papers. Thus, we believe that the
threats to internal validity are minimal.
Threats to External Validity. Our study examines code
summarization, a representative code-text generation task, and
evaluates three widely-used Code LLMs: CodeT5, CodeT5+,
and PLBART, on a large-scale dataset, CodeSearchNet’s Java
dataset. However, the Code LLM ecosystem is vast and diverse,
potentially limiting our findings’ generalizability to other Code
LLMs, tasks, and programming languages. Nevertheless, given
Java’s widespread adoption and the prevalence of these three
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models and CodeSearchNet in code summarization research, we
believe our findings have significant implications for software
engineering. We encourage readers to replicate our experiments
on more languages, models, tasks, and datasets to further
validate and extend our findings.
Threats to Construct Validity. While other metrics such
as Exact Match [42] exist, we follow prior work on Code
LLM backdoor attacks [9] and standard practice in code
summarization [10] by using BLEU-4 to assess poisoned
models’ performance degradation on clean data. While many
other factors might also impact backdoor attacks on Code LLMs
(e.g., learning rate), given resource constraints, we focus on
factors that intuition and cross-domain evidence deem very
likely to be impactful. Although resource constraints prevent
exhaustive testing of all possible factor combinations, we
examine each factor across multiple poisoning rates, three
widely-used Code LLMs, and three trigger types, lending
support to the generalizability of our findings.

VI. RELATED WORK

A. Backdoor Attacks: from Machine Learning to Code LLMs
Data poisoning is a common method for implementing

backdoor attacks. Gu et al. [43] pioneer the study of backdoor
attacks on deep neural networks, demonstrating that by inject-
ing special stickers on images, the trained model maintains
normal performance on clean inputs but misbehaves on inputs
containing the stickers. Many follow-up works [44], [45], [46],
[47] validate this threat and make the poisoned images more
imperceptible. In the NLP domain, Liu et al. [48] take the lead
in data poisoning backdoor attacks by utilizing word sequences
as triggers to make sentiment analysis models misbehave.
Following this work, many studies design various triggers, such
as word repositioning [49], syntactic transformation [50], and
text style transfer [51]. Beyond data poisoning, researchers have
explored other attack vectors, such as directly manipulating
model parameters to inject backdoors [14], [15], [18]. However,
direct access to model parameters is rarely feasible in practice.

Hussain et al. [26] conduct a survey of poisoning attacks
on Code LLMs, proposing a taxonomy that systematically
categorizes existing works, including pioneering work by
Ramakrishnan et al. [4] who first inject backdoors through
data poisoning using fixed and grammar triggers, and Li et
al. [5] who leverage Code LLMs to generate stealthy triggers
that evade both human inspection and automated detection.
The above three trigger types are employed in our work. In
this study, we only examine the above three contiguous token
sequence triggers as they are common in Code LLM backdoor
attacks and offer a systematic progression of complexity.
Beyond a contiguous token sequence, there are other trigger
forms. For example, Yang et al. [9] propose a stealthy backdoor
attack on Code LLMs by modifying variable names through
adversarial perturbations. Aghakhani et al. [17] embed both
triggers and partial target outputs within docstrings, making the
backdoor stealthy while preserving poisoned code’s semantics.

Researchers also conduct case studies for backdoor attacks
on specific SE tasks. Sun et al. [6] stealthily boost buggy or
vulnerable code into the top 11% of rankings by altering just

one variable or function name. Schuster et al. [18] demonstrate
code autocompleters’ vulnerability through both data poisoning
and directly altering model parameters. Nguyen et al. [52]
reveal that three state-of-the-art API recommender systems are
vulnerable to backdoor attacks through data poisoning. Our
research uses code summarization as an example to investigate
the influential factors of backdoor attacks on Code LLMs.
B. Defending Code LLMs against Data-Poisoning Backdoors

Removing suspicious samples is a common defense strategy.
Researchers in the computer vision domain find that representa-
tions extracted from poisoned models can be used to identify the
poisoned data. Tran et al. [53] use spectral signatures calculated
using the output of model’s hidden layers to remove poisoned
images. Ramakrishnan et al. [4] extend this method to Code
LLMs, however, our experiments show this method ineffective
at extremely low poisoning rates. Chen et al. [39] identify
poisoned images by clustering neuron activations, leveraging
the observation that poisoned inputs often exhibit distinct
activation patterns compared to clean ones. Yang et al. [9]
migrate this method to Code LLMs and find it ineffective.

There are also defenses aim to remove triggers from samples.
Qi et al. [13] identify potential trigger words using perplexity.
Hussain et al. [25] propose an occlusion-based method to
identify trigger tokens by observing that removing trigger
tokens significantly alters the model’s prediction confidence,
while removing other code segments does not. Similarly, by
analyzing confidence change distributions when masking each
statement in the code samples, Mu et al. [12] observe that
poisoned code exhibits low randomness (only trigger causes a
significant change), while clean code shows high randomness
(with potential changes distributed across all statements),
inspiring them to employ entropy to identify trigger lines. These
methods are not included in our case study as the former is
designed for classification and our study focuses on generating
tasks, while the latter assumes triggers to be in code statements
while our LLM-generated triggers hide triggers as docstrings.

There are also defenses such as using multi-scale low-
rank adaptation in the frequency space to prioritize clean
mappings [54] and redesigning the loss function [55], we do
not consider them as they involve modifying model internals.

VII. CONCLUSION AND FUTURE WORK
In this study, we investigate the impact of various factors

on backdoor attacks targeting Code LLMs. Focusing on code
summarization, we conduct extensive experiments using three
trigger types—fixed, grammar, and LLM-generated—across
three widely used Code LLMs under multiple data, training,
and inference factors. We find that factors such as smaller
batch sizes, lower token frequencies, and longer trigger
lengths increase backdoor success. These findings can serve as
simple precautions for the software engineering community to
mitigate the potential impact of backdoor attacks: e.g., users
of Code LLMs can increase sampling randomness (e.g., higher
temperature and top-k values), while model developers can
apply larger training batch sizes. Moreover, we demonstrate
that backdoor attacks can achieve alarmingly high success rates
even with minimal poisoning; 20 poisoned samples in 300,000
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are able to achieve a >80% ASR. This shows the limitation of
previous studies’ evaluations, which focus on higher poisoning
rates, and calls for more effective countermeasures, as spectral
signature is ineffective at cleaning such poisoned dataset with
low poisoning rates. In future work, we plan to investigate
other influential factors, and develop more effective and efficient
defense methods that can remove sparse poisoned samples from
large-scale training datasets.
Code, documentation, and full experiment results:
https://anonymous.4open.science/r/Backdoor-31C4
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