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Abstract

This paper argues that a comprehensive vulnerability analysis is essential for
building trustworthy Large Language Model-based Multi-Agent Systems
(LLM-MAS). These systems, which consist of multiple LLM-powered agents
working collaboratively, are increasingly deployed in high-stakes applications but
face novel security threats due to their complex structures. While single-agent vul-
nerabilities are well-studied, LLM-MAS introduces unique attack surfaces through
inter-agent communication, trust relationships, and tool integration that remain
significantly underexplored. We present a systematic framework for vulnerability
analysis of LLM-MAS that unifies diverse research. For each type of vulnerability,
we define formal threat models grounded in practical attacker capabilities and
illustrate them using real-world LLM-MAS applications. This formulation enables
rigorous quantification of vulnerability across different architectures and provides a
foundation for designing meaningful evaluation benchmarks. Our analysis reveals
that LLM-MAS faces elevated risk due to compositional effects—vulnerabilities
in individual components can cascade through agent communication, creating
threat models not present in single-agent systems. We conclude by identifying
critical open challenges: (1) developing benchmarks specifically tailored to LLM-
MAS vulnerability assessment, (2) considering new potential attacks specific to
multi-agent architectures, and (3) implementing trust management systems that
can enforce security in LLM-MAS. This research provides essential groundwork
for future efforts to enhance LLM-MAS trustworthiness as these systems continue
their expansion into critical applications.

1 Introduction

Large Language Model-based Multi-Agent Systems (LLM-MAS) represent a significant advance-
ment in AI collaboration and automation. In an LLM-MAS, multiple LLM-based agents, assigned
specialized roles and equipped with various tools, can communicate, reason and collaborate with
each other [1, 2, 3]. Therefore, compared with LLMs and a single LLM agent, LLM-MAS shows
more advanced capabilities in tackling complex tasks and already powers non-trivial deployments in
software engineering [4, 5, 6], embodied agents [7, 8], and scientific research [9, 10]. Moreover, the
advanced capabilities of LLM-MAS are driving their adoption in high-stakes domains—from fintech
conversational agents (e.g., FinRobot) [11] to medical triage assistants (e.g., TriageAgent, MDAgents)
[12, 13]—further highlighting their potential and the growing momentum of their development.

Despite the effectiveness and growing adoption of LLM-MAS, an unreliable and untrustworthy LLM-
MAS can cause substantial safety consequences, especially for the security-critical domains. On the
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one hand, with the access to various tools, existing single-agent systems have already demonstrated
potential vulnerability in outputting harmful outputs or executing malicious programs. For example,
ChatGPT was exploited in a recent Cybertruck explosion incident in Las Vegas [14], and OpenAI’s
operator agent reportedly executed unauthorized $31.43 transactions despite safety protocol [15]. On
the other hand, as demonstrated by [16], the vulnerability in LLM-MAS can be further exaggerated as
the system is exposed with more vulnerable components. This will cause harmful consequences such
as users’ privacy leakage or system crash [17]. In addition, with the rise of Agent-to-agent (A2A)
protocol, agents from different sources will collaborate in a system, which can be vulnerable if some
agents are not verified properly.

While prior work has addressed safety concerns for individual LLMs and single-agent systems [18, 19,
20], LLM-MAS introduces fundamentally new and unique security challenges, yet these challenges
remain significantly underexplored. Specifically, the presence of inter-agent communication, trust
relationships, and tool calls together open novel attack surfaces. Current security discussions on
LLM-MAS remain narrow in scope, often focusing on limited attack surfaces such as malicious
agents [21, 22, 23], or specific scenarios like error injection [23, 22]. While these studies uncover
some critical risks, they typically explore only a small subset of possible vulnerabilities and adopt
relatively basic techniques—often adapted from general LLMs or single-agent settings. As a result,
they do not reveal the full spectrum of weaknesses in LLM-MAS and are insufficient for systematic
security evaluation. Moreover, many of these works introduce attack methods without a clear problem
formulation, which hinders a deeper understanding of the system’s security landscape and limits the
progress in both attack development and defense design. In particular, there is a lack of: (1) a broad
taxonomy of potential vulnerabilities within LLM-MAS; (2) well-justified threat models; and (3)
formal definitions of attack objectives that can guide the design of meaningful evaluations. The above
implies that, the field lacks a holistic assessment of LLM-MAS threats, which is crucial to building a
secure and trustworthy LLM-MAS.

To address the aforementioned challenges, we argue that a comprehensive vulnerability analysis
is necessary for trustworthy LLM-MAS. In this work, we take a systematic approach to identify
critical attack surfaces and highlight those unique to LLM-MAS. For each identified vulnerability,
we define feasible and well-justified threat models, grounded in practical constraints and attacker
capabilities. These models are illustrated using real-world LLM-MAS applications and widely
adopted frameworks such as MetaGPT [24] and ChatDev[6], ensuring their relevance and applicability.
In addition, we provide rigorous formulations of attack objectives, incorporating a wide range of
malicious consequences such as breaking alignments, resource exhaustion and privacy leakage. These
formulations serve as a foundation for designing meaningful and reproducible evaluations, paving the
way for future benchmarks in LLM-MAS security research.

The structure of this paper is as follows: In Section 2, we review the basic architecture of LLM-MAS
and its key components. In Section 3, we introduce the proposed analysis framework, provide the
basic mathematical formulation, summarize the general malicious goals, and comprehensively analyze
the vulnerability in each component in LLM-MAS. Finally, Section 4 discusses open challenges and
future directions based on the proposed analysis.

2 An Overview of the Architecture of LLM-MAS

An LLM-MAS is a collaborative system composed of multiple LLM agents, each capable of au-
tonomous reasoning, communication, and task execution. As shown in Figure 1, the LLM-MAS can
be decomposed into the following critical components:

Individual Agents (A = {Ai}ni=1). Let n denote the number of agents in the LLM-MAS, and each
agent Ai is powered by an LLM fi (LLM core) assigned with specific roles (e.g., planner, coder,
verifier) through agent profile (Pi, also known as system prompt). Each agent has access to a set
of tools, Ti = {ti,j}ni

j=1, such as the retriever to external databases and the calculator, where ni

represents the total number of available tools for the agent Ai. In this work, in addition to maintaining
the tools in the local server, we also consider the Model Context Protocol (MCP) [25]: the LLM-MAS
requests tools from MCP servers (hosted by third parties) and can obtain various tools from various
MCP servers. Finally, the agent can also maintain its local memory, which contains received messages
and previous experience, and interacts with other agents to finish tasks.
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Inter-agent Communication (C = (S,M, T )). Communication is a fundamental mechanism in
LLM-MAS, allowing individual agents to interact with each other. The communication includes the
communication structure, exchanged messages and trust management.

Figure 1: An overview of LLM-MAS (left), illustrating core components including agents, communication,
memory, etc. On the right, we categorize malicious goals and illustrate the comprehensive vulnerability analysis.

Communication structure (S). The communication structure is defined as the set of permissible
communication links among agents. Specifically, each agent Ai can receive messages from a subset
of agents in A, denoted as Ar

i , and also send messages to another subset of agents, denoted as As
i .

The communication structure then can be defined as S = {(Ar
i ,As

i )}ni=1.

Messages (M). Let M denote the messages exchanged among agents, i.e M = {Mi,r,Mi,s}ni=1.
Specifically, Mi,r denote the messages received by the agent Ai, i.e Mi,r = {m(A)}A∈Ar

i
, and Mi,s

denote the messages sent by the agent Ai, i.e Mi,s = {m(A)}A∈As
i
. Moreover, the system builder

can set up restrictions on the messages’ content or format (usually defined in the agent profile). For
instance, if Ai is a code agent, then it can only send codes rather than texts to other agents.

Trust management (T ). The trust management module T determines whether an agent should accept
incoming inputs—such as messages from other agents—as part of its context to perform its own
tasks. Ideally, T enables agents to reject unclear or logically incoherent messages that could disrupt
decision-making. However, most existing LLM-MAS frameworks, including [26, 2], allow agents to
act directly upon received messages without performing any verification.

Environment (E). The environment in an LLM-MAS refers to the shared setting—physical, sim-
ulated, or informational—within which multiple agents interact, communicate, and collaborate to
achieve individual or collective goals [1]. For instance, in a social simulation system as in [27], agents
represent citizens and the environment is the simulated town; in an autonomous driving system, the
environment is the physical world where the car drives in. For simplicity, we use the general term E
to represent the environment in the rest of the paper.

Memory. Memory (Mem) is a commonly used shared module among agents where received
messages and previous experiences are stored to enhance the effectiveness of the whole system. For
instance, MetaGPT [24] utilizes a shared message pool to efficiently manage the communication
among agents, and Autogen also provides prototypes of shared memory modules. However, the
mechanism of the shared memory depends on the detailed implementation and practical scenarios.

Initial Query (Q). The initial query is the first input given to the LLM-MAS, providing the starting
point for agent collaboration. The format and the content of the query depends on the purpose of
the agent system. For a QA system [10], the query can be a concrete question to be solved; for a
simulation system [27], the query can be the initial action assigned to each agent; for an autonomous
driving or embodied system [28], the query can be an instruction of a task to be conducted.

Given the above, we denote LLM-MAS as SMA = (A({(fi, Ti, Pi)}), C(S,M, T ), E ,Mem), and
the generation procedure is denoted as Youtput = SMA(Q). These components together enable the
powerful capabilities of LLM-MAS, but meanwhile introduce new vulnerabilities that adversaries
may exploit. Next, we conduct a vulnerability analysis grounded in this architectural formulation.
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3 A Comprehensive Framework for LLM-MAS Vulnerability Analysis

Given the overview of LLM-MAS in Section 2, we identify several key limitations in current
research on LLM-MAS security. (1) Narrow attack surfaces. Most works concentrate on isolated
components, such as targeting individual agent profiles [18, 19, 20], without considering some unique
components such as agent communications and trust mechanism among agents. (2) Restricted
threat scope. Most works examine only a limited range of malicious goals [21, 29], lacking a
comprehensive evaluation of the diverse and complex threats that can arise in multi-agent settings.
(3) Unclear problem formulation. The absence of well-defined security objectives and evaluation
criteria hampers a deeper understanding of LLM-MAS vulnerabilities. As a result, studies often
resort to narrow strategies such as (indirect) prompt injection [30, 31], overlooking broader threat
vectors and attack methods. To bridge the gaps, we propose a comprehensive framework that formally
defines malicious goals and enables a structured analysis of each system component.

3.1 A General Formulation of Attackers

While there are various malicious goals to attack LLM-MAS, mathematically, they can be summarized
to the following general formula: Denote G as the malicious goal and the attacked LLM-MAS
component as S with S ∈ (fi, Pi, Ti, C(S,M, T ), E ,M,Q) (i.e., any possible component in SMA),
then the attacker aims to solve the following:

arg max
S∈ΘS

Evaluator(SMA, Q,G) (1)

where Evaluator is the evaluation function determining whether the attack achieves the specific
goal given the LLM-MAS SMA, initial query Q, and the final target G. The notation ΘS denotes the
malicious space where S can be chosen from.

While Eq.1 presents a general formulation, through configuring its (1) objective function, (2) opti-
mization variables, and (3) the optimization algorithm, it can be transformed into specific forms given
the detailed threat model and malicious goals. For (1) objective, the exact metric Evaluator(·) is
determined by the specific malicious goal. For (2) variable, the malicious space ΘS is determined by
the exact component S and the attacker’s capability. We will show them in later sections.

In terms of (3) optimization algorithm, to optimize the above formula, depending on the level of
attacker’s access to the LLM-MAS, several scenarios can be considered. Black-box: The attacker
acts like a regular user and have no knowledge of the system, including the system configurations,
LLM cores, etc. White-box: The attack is assumed to have access to everything of the LLM-MAS.
Gray-box: The attack can infer partial knowledge of LLM-MAS. We list two representative cases.
(1) The attacker can infer the communication structure of the LLM-MAS based on its functionality,
e.g., in a software company LLM-MAS [24], there are certain roles in the system and the workflow is
clear. (2) The attacker has the knowledge of some specific agents such as the architecture of LLMs
utilized in the agents and access to their inputs, but no knowledge of the rest of the system.

3.2 Malicious Goals

In the following, we categorize common malicious goals that attackers may pursue in LLM-MAS.

Harmful behavior. Since the pre-trained LLMs utilize broad internet data, they may generate
malicious outputs such as dangerous answers or insecure codes [32]. Consequently, alignment
methods have been developed to make LLMs refuse harmful queries [33]. In parallel, jailbreak attack
research focuses on bypassing these alignment safeguards [32, 34, 35, 36, 37], and corresponding
adversarial training methods have been developed [38]. In the context of LLM-MAS, harmful outputs
can escalate into harmful behaviors. Unlike standalone LLMs, agents in LLM-MAS are equipped with
tool-calling capabilities and elevated permissions, which significantly amplify the risks—enabling
actions such as executing destructive programs [39], performing unauthorized transactions [15],
or carrying out social engineering attacks [40]. Given the above, the definition of the evaluation
metric in Eq.1 is closely tied to the intended malicious consequence. For example, if the goal G
is to generate harmful texts, the Evaluator can be implemented using rule-based matching or an
LLM-based judge. If the goal is to produce harmful code, evaluation can be conducted by running
test cases through an external executor. In the case of harmful tool usage, some studies (e.g.,[41])
determine attack success based on whether the target tool is invoked.
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Resource exhausting. In traditional system security, resource exhaustion attacks aim to consume
excessive resources (e.g., CPU, memory, disk, bandwidth) to impair functionality for legitimate users.
Classic examples include Denial of Service (DoS)[42], memory exhaustion[43], and algorithmic
complexity attacks [44]. In the context of LLM-MAS, attackers can similarly overload computational
resources to inflate costs or disrupt availability. For example, attackers may generate progressively
longer messages between agents [45], overloading message-processing components. They may
also induce tools to generate large data volumes from minimal input, sending them to external
servers—causing tool abuse, quota exhaustion, billing spikes, or even service bans [39]. Beyond
direct resource strain, such attacks can disrupt coordination: overloaded planners may time out,
executors may stall, and a single failed agent can compromise overall system functionality [46]. To
evaluate such attacks under our formulation in Eq. 1, Evaluator metrics can include output token
length, memory usage, computation time, and tool-calling frequency, while the goal G can be defined
as inducing excessive operational cost.

Performance degradation. In poisoning/evasion attack literature for deep neural networks, a general
goal is to craft adversarial samples to worsen prediction performance (e.g., classification accuracy
or regression error) [47]. Similar performance degradation concepts appear in LLM research. For
instance, [48] shows that poisoned demonstration examples in in-context learning can degrade the
prediction performance. In another example [39], the attacker can inject a buggy code into the system,
misleading the system in unintended ways. Although LLM-MAS can improve task performance
through agent collaboration, the system remains vulnerable to performance degradation. In Eq. 1,
we directly measure the performance specified by the particular task, such as prediction accuracy as
Evaluator and a wrong answer as G (either targeted or untargeted).

Privacy leakage. Privacy concerns span systems from operating systems and web applications
to deep learning models. LLMs and their applications face similar risks. For example, attacks
have been developed to extract sensitive data from retrieval-augmented generation systems [49],
recover prompts [50, 51, 52, 53], or leak memory contents in single-agent settings [54]. In LLM-
MAS, privacy risks are further amplified by inter-agent communication. A compromised agent may
extract private information from others or induce them to leak confidential data, even without direct
access to sensitive tools or databases [55]. To define the malicious goal and Evaluator in Eq. 1,
various evaluation metrics can be applied. These include textual overlap metrics (e.g., ROUGE-L)
and semantic similarity metrics (e.g., cosine similarity) to compare outputs with target content G.
LLM-based judges can assess whether outputs contain private information, and the frequency of
unauthorized queries can help detect indirect attempts to access restricted data.

3.3 Vulnerabilities in Each Component

Guided by the overall structure of LLM-MAS and formal formulation in Eq 1, we analyze vulnerabil-
ities in each system component, especially their feasibility and potential severe consequences. While
setting n = 1 reduces the system to a single-agent system, revealing some shared vulnerabilities, we
unveil distinct vulnerabilities for LLM-MAS, particularly for the unique components–communication
C and agents {Ai}. Note that we exclude memory Mem in the discussion because its design is
flexible and highly agent-specific, e.g., [56].

Malicious inputs (Q). Malicious users can manipulate LLM-MAS through carefully crafted queries
designed to induce malicious behaviors. This vulnerability has been extensively studied in single-
agent literature [57, 58, 59, 60] and represents one of the most common attack approaches used by
individual attackers in real-world scenarios. Besides the documented incidents involving ChatGPT
and OpenAI systems mentioned in Section 1, compromises have also occurred with other AI assistants,
resulting in unauthorized disclosure of personal data [61] and organizational information [62]. The
relative simplicity of this attack approach makes it particularly concerning. In our formulation in
Eq. 1, various factors can be considered. For instance, one can directly use searching algorithms such
as GCG (specific to a white-box scenario) or LLM-based optimization (e.g., TextGrad [63] under a
black-box scenario) to search for the best Q. Other static designs like direct injection [64], adding
escape characters [65], or mislead the agent to a different context [65] can also be applicable.

Individual agent (Ai). Individual agents are also exposed to significant threats [66, 41, 67, 68, 69].
Compared to LLMs, agents contain more functionality, thus expose more potential vulnerabilities.
Existing studies point out that the vulnerabilities emerge when an agent’s learned or programmed
objectives diverge from intended goals, resulting in undesirable behaviors [70, 71, 72, 56]. In the
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following, we provide vulnerability analysis associated with each sub-component within individual
agents, specifically: the LLM core (fi), agent profile (Pi), and tools (Ti):

Attack LLM core (fi). This attack can occur when developers deploy unverified models or when
API-based LLMs are compromised through network-level attacks. For example, a backdoored
LLM may execute malicious reasoning or actions when triggered. As agents interact with diverse
inputs—such as user queries, retrieved knowledge, and tool feedback—a compromised LLM poses
risks to the overall system. Moreover, unlike single-agent systems, each agent in LLM-MAS may
use a custom-trained model, and replacing it with a more capable (general) LLM can disrupt the
equilibrium among agents, potentially degrading the system performance. These factors highlight
both the severity of attacking LLM cores and the difficulty of defending against such threats.

Hijack agent profile (Pi). Agent profiles significantly guide behaviors, thus compromising them
severely impacts the overall system performance. A distinct characteristic of LLM-MAS is that
collective profile configuration defines inter-agent collaboration. In systems such as MetaGPT
and ChatDev, different agents fulfill specific roles (manager, designer, engineer) to collaboratively
develop software requested in the initial query. Therefore, different agent roles can have distinct
effects on the system performance, and a comprehensive evaluation on the threats introduced by
these roles is necessary. In addition, malicious agents with strategically designed profiles can cause
severe consequences, such as introducing irrelevant contents, compromising productive collaboration,
infecting benign agents and eventually break the normal functions of the system.

Furthermore, with the rise of Agent-to-Agent (A2A, [73]) protocols and the support for external agent
integration, profile-based attacks have become increasingly feasible. This highlights the growing
need to identify vulnerabilities in these standard protocols—such as weak authentication of agent
profiles [74] and profile poisoning attacks, where fake agent credentials are injected into the system.

Tools (Ti). Existing benchmarks evaluate single-agent system vulnerabilities when tools return
compromised values [17, 31, 75]. As documented in Table 1, agent systems demonstrate significant
vulnerability to malicious tools, with Attack Success Rates (ASR) ranging from 20% to 87%. In
LLM-MAS, with more than one agents in the system, malicious tools can also indirectly impact
other agents. For example, in a planner-executor system [76], malicious tools can directly change the
output of the executor, while indirectly impacting the behavior of the planner.

Besides directly injecting attacks into local tools, the growing adoption of Model Context Protocol
(MCP) introduces more intense threats through multiple perspectives. First, poisoned MCP, such
as embedding malicious instructions in the description of tools [77] can induce the agent to do
malicious actions. Second, MCP’s ability to dynamically request additional information from
client agents—such as through content sampling mechanisms—opens up further attack surfaces,
including data leakage or manipulation [78]. While some threats are acknowledged [79], additional
investigations are still required to secure MCP.

Agent communication (C). Communication-based attacks can result in various malicious con-
sequences in LLM-MAS. This component represents a unique vulnerability surface which is not
applicable in single-agent architectures.

Hijack communicating messages (M). Similar to traditional distributed systems, Agent-in-the-
middle attacks can target LLM-MAS when agents are deployed across different servers [16]. Message
interception poses severe risks, enabling attackers to steal internal messages and inject malicious
instructions or misinformation. Besides, researches demonstrate that different communication struc-
tures S significantly impact the system’s resilience against communication attacks. For example, [16]
compares complete, tree, random, chain structures, and observe that tree and random structures are
more robust compared to the other two structures. Similar analyses appear in [22], which shows how
decentralized communication patterns provide inherent resistance to single-point compromise, and
[23], which quantifies security improvements from redundant communication paths.

Trust management (T ). As demonstrated by [26, 2], a fundamental vulnerability in LLM-MAS
stems from LLMs’ lack of skepticism toward received messages. Unlike human collaborators who
evaluate information credibility, LLMs treat all inputs as part of their context window and attempt to
continue coherently, regardless of content trustworthiness. Based on [26, 2], this blind trust emerges
because agents typically act upon or chain their reasoning from received messages without embedded
mechanisms for verifying factuality, consistency, or other trustworthiness aspects. With the rise of
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Benchmark Agent performance Harmful behavior Resource exhausting Performance degradation Privacy leakage

Injecagent [31] GPT-4 ASR 33%-47% Y Y Y

Agentdojo [30] GPT-4o ASR 50% Y Y Y Y

Redcode [39] GPT-4o ASR 77% Y Y Y Y

Agent-SafetyBench [66] GPT-4o safe action rate 44.2% Y Y Y

Agent security bench [41] GPT-4o ASR 65% Y Y Y Y

Agentharm [88] GPT-4o harm score 87% Y

R-judge [89] GPT-4o F1 74.45% Y Y Y

Privacylens [90] GPT-4 leakage 25.68% Y

Haicosystem [91] GPT-4 overall risk 49% Y Y Y Y

ToolEmu [17] GPT-4 failure rate 39.4% Y Y Y Y

Table 1: Benchmarks for agent security, list from [92]. Details are in Table 2 in Appendix A.

A2A and MCP, establishing robust trust management systems becomes increasingly essential. The
absence of proper trust verification mechanisms significantly amplifies attack vectors [80, 74].

Environment (E). Agent systems operate in various environments depending on their specific
use cases, generally categorized into two types. The first is physical environments, such as those
navigated by autonomous vehicles [81] or robot teamwork scenarios [82]. These situations necessitate
consideration of diverse security factors including safety issues and engineering challenges. Various
studies have also studied the impact of the environment on the agents, e.g., [83, 84, 85, 86]. Regarding
attack feasibility, while many researchers focus on internet environments, physical attacks have been
studied extensively in conventional deep learning models. In computer vision and related fields,
defending against potential physical attacks—such as snow obscuring stop signs or blurred camera
inputs—remains a significant concern [87]. In general, the implementation of the attack in E needs to
be tailored specifically for each scenario.

4 Open Challenges and Future Directions

Based on the comprehensive analysis framework in Section 3, we propose some future directions
for the vulnerability and security of LLM-MAS. In Section 4.1, we discuss potential benchmarks
for the vulnerability of LLM-MAS, focusing on how the new components in LLM-MAS impact
the performance of the system and how to analyze in a more comprehensive manner. In Section
4.2, instead of following the existing benchmark tasks, we consider new attacking possibilities via
changing the choices of elements in Eq. 1. Finally, in Section 4.3, we propose defense methods to
enhance the overall trustworthiness of LLM-MAS.

4.1 Benchmarking the Vulnerability of LLM-MAS

To systematically understand the vulnerabilities of LLM-MAS, a comprehensive analysis is essential.
Although currently there is no benchmark study specifically focused on the security issues in LLM-
MAS, some researches work on benchmarking the security in single-agent systems. In Table 1, we
summarize existing benchmarks in single-agent systems categorized by vulnerability types. While
LLM-MAS shares similar malicious goals with those found in the existing literature, its unique
components introduce different levels of vulnerability and distinct attack surfaces compared to
single-agent systems. In the following, we list more details about potential directions:

Impact of communication structure (S). While existing literature such as [16] analyzes the
influence of S on LLM-MAS, current analyses lack depth in applying established graph metrics. With
fruitful studies in graph-related researches, many metrics can be borrowed and worth investigation in
the context of LLM-MAS, such as degree centrality, betweenness centrality, and eigenvector centrality
[93]. These metrics, commonly employed in social network analysis, offer valuable insights for
social simulation studies and facilitate evaluation of distributed systems with agents operating across
heterogeneous platforms [94]. To develop benchmarks, future studies can formally specify diverse
communication topologies, enabling systematic vulnerability assessment across structural variations.

Impact of different agent profiles and tools ({(Pi, Ti)}). Analyzing varied agent profiles and their
associated tool assignments is crucial, as these elements fundamentally shape the system workflow
and potential vulnerability surfaces. A significant challenge emerges in quantifying inter-agent
effects across different {Pi} and {Ti} configurations. While Eq. 1 considers the optimization across
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candidate profiles and tools, the complex agent communications necessitate detailed analysis to
understand how compromised agents influence others.

Impact on other evaluation metrics. In the above discussions, we only consider one specific
objective when optimizing the attack in Eq. 1. However, to comprehensively measure the impact
of attacks, it is also essential to examine the change in other evaluation metrics. For example, in
many benchmarks, e.g., studies listed in Table 1, the main purpose is to induce the agent system to
conduct harmful behaviors. While the corresponding evaluation metric is ASR, the attack can also
exhaust resources due to the malicious tool calling (e.g., crawling a whole dataset), or degrade the
performance of the system. Depending on the specific attack, different Evaluator metrics can be
correlated. However, quantification is missing in existing literature to comprehensively understand
the impacts of the attack from different perspectives.

Granularity of Evaluator. Compared to single evaluation metrics used in LLM attack literature
(e.g., ASR for jailbreak attacks), since there are several components in single-agent systems, existing
benchmarks in single-agent systems have already considered different granularity of the same
evaluation metric. For example, [31] utilizes two versions of ASR considering both (1) whether the
malicious program is executed or not, and (2) whether the agent output is valid or not. Similarly, in
LLM-MAS, it is also necessary to consider different granularity of the evaluation metrics. Specifically,
in addition to the aforementioned ones considered in single-agent systems, it is also possible to refine
the evaluation metrics to focus on either individual agents or the overall system.

Benchmarking protocol performance (M). Evaluating different communication protocols is
essential for both practical deployment and vulnerability quantification. Following [95], besides
MCP and A2A, researchers have developed other protocols such as the inter-agent protocol (ANP,
[96]) and language to protocol generation (Agora, [97]). Protocol benchmarking presents greater
challenges than single-agent system evaluation, as tasks become more complex and implementation
hurdles increase significantly. Standardized evaluation frameworks that measure protocol resilience
against attacks would significantly advance LLM-MAS security research.

4.2 Developing New Attacks

In the following, we list some potential attacks inspired from Eq. 1.

Structure inference attack. Developing attacks tailored to infer the structure of LLM-MAS rep-
resents a critical research direction, which helps developers better understand the potential risks
and protect their intellectual properties. Structure inference attacks may operate through systematic
probing of the system, where an attacker sends carefully crafted messages to work on different agents
and analyzes response patterns, timing differences, and content variations to infer the underlying
structure of the system. To formalize such attacks within Eq. 1, we define Evaluator as the similarity
between the inferred structure derived from SMA and query Q, compared with the actual structure G.

System stability attack. Based on [98], agents in LLM-MAS often possess varying levels of
computational power and data access, leading to various system instability: (1) Coordination failure:
dominant agents may prioritize their objectives, leading to misalignment with the goals of other
agents. (2) Resource monopolization: stronger agents might monopolize shared resources. (3) System
fragility: the system may fail if the dominant agents fail. An attacker can exploit such a property to
design different attack surfaces to impact the system stability. To formalize "stability" within the
Eq. 1 framework, corresponding to the above instability factors, we can define Evaluator as (1)
the correlation between the final output and the target attacked agent, (2) the resource allocation
(measured by proper divergence metrics), and (3) the source of system failure (measured by the
distance between the failure summary and the attack).

Composite attacks. While we mainly focus on optimizing Eq. 1 using a single attack, it is also
possible to consider multiple simultaneous attacks on LLM-MAS systems to examine potential
synergistic effects. For example, if an attacker both injects poisoned tools into the system (i.e., change
{Ti}) and provides a malicious query (i.e., change Q), the combined attack may be more effective
than either component alone. Intuitively, this combination could enable the attacker to more easily
bypass security checks (such as payment verification) and execute malicious code.

Practicality of attacks. While Section 3.3 outlines the feasibility of vulnerabilities, developing
practical attacks remains challenging [99], particularly regarding the effect of optimization methods.
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There are two potential challenges when performing optimization. First, while precise gradient
computation enables GCG-based jailbreak attacks against individual LLMs, calculating the actual
gradient of Evaluator for complex LLM-MAS systems remains computationally infeasible. While
there are alternative approaches such as LLM-based optimizers, when approximating gradients
through these methods, underlying optimizer prompts require domain-specific calibration, and
efficiently achieving different malicious goals remains an open research question.

Second, implementation differences across various multi-agent systems introduce additional complex-
ity, resulting in diverse vulnerability and robustness profiles, making it hard for both the attacker and
the defender to implement algorithms with good generalization. For example, as demonstrated in [54],
memory management policies significantly impact vulnerability to memory extraction attacks, with
differences in content filtering creating unique attack surfaces/robustness. Therefore, it is essential to
develop attack/defense algorithms specifically for a system to optimize the performance.

General misalignment. While in this work, we mainly focus on the vulnerability of LLM-MAS
under malicious attacks, we acknowledge that the inter-agent misalignment also contains other
perspectives, e.g., lack of coordination or other failures caused by an imbalanced system [100].
Although the aim of our proposed analysis framework is to analyze attacks, if removing the argmax
operator from Eq. 1, we can use the formulation to assess general misalignment as well.

4.3 Defense Strategies

Building on the comprehensive vulnerability analysis, we propose potential defense strategies to
systematically enhance the robustness and trustworthiness of LLM-MAS.

Monitor agents for real-time oversights. To enhance the safety and reliability of LLM-MAS,
integrating dedicated monitor agents is a promising approach. Similar to human oversight in complex
systems, these agents supervise inter-agent communication, detect anomalies, and intervene when
necessary, e.g., [101, 102]. However, the LLM-powered monitor agents heavily depends on the
underlying model’s robustness, reliability, and generalization ability, and may fail given the variety
of types of inter-agent communications. Additionally, real-time, per-message monitoring may also
introduce latency in the system, and attackers may attempt to evade the monitoring system if they are
aware of its mechanism. Thus, although monitor agent is a feasible solution to enhance the safety of
LLM-MAS, developing reliable, low-latency, and resilient monitor agents remains an open challenge.

Understand the trust mechanism and build trust management system. Trust management
represents a foundational challenge for secure LLM-MAS deployment. There are some challenges in
the current development:

First, while existing literature attempts to consider trust behavior, they either consider specific dimen-
sions or consider a comprehensive trust behavior but without detailed definition. For example, [103]
and [104] focus on detecting knowledge gaps and factual inaccuracies within RAG systems. [105]
and [106] explore LLMs’ capabilities in detecting logical inconsistencies, essential for identifying
manipulative communications. However, these approaches focus narrowly on specific trust dimen-
sions rather than developing comprehensive trust evaluation frameworks. On the other hand, [107]
implements a trust management framework leveraging a proof-of-thought consensus mechanism,
but the system heavily relies on agents and the definition of trust is not clearly defined. To properly
integrate with our proposed comprehensive analysis in Eq. 1, configuring trust management T
requires precise definitional scope and exact trust parameters.

Second, compared to traditional peer-to-peer (P2P) systems, developing trust management system
for LLM-MAS faces unique challenges. While P2P networks can utilize cryptographic checksums
to verify chunk integrity, LLM-MAS must leverage more complex verifications based on semantic
understanding and contextual reasoning. This necessitates employing the LLM’s internal knowl-
edge combined with additional verification methods to establish agent trustworthiness, significantly
increasing computational requirements. A robust trust system might require multiple verification
passes, potentially introducing latency that impacts real-time inter-agent communication capabilities.

Despite these challenges, LLM-MAS offers unique opportunities in developing such a trust man-
agement system. For example, different from P2P systems where there are only certain verification
metrics, in LLM-MAS, by leveraging transformer model properties, we can obtain more metrics and
gain more flexibility in developing the trust management system. For example, the attention mecha-
nisms underlying these models could potentially enable more nuanced trust assessments based on
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semantic patterns, contextual relationships, and historical communication analysis. These capabilities
extend beyond traditional trust metrics, potentially enabling more human-like trust judgments.

5 Conclusion

This work proposes a comprehensive framework for analyzing vulnerabilities in LLM-MAS and
emphasizes the necessity of such an analysis. Unlike single-agent systems, LLM-MAS introduce
novel risks arising from inter-agent communications and compositional complexity. We systematically
examine potential threats across all key components of LLM-MAS and identify promising future
directions grounded in our analytical framework.
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A Additional Materials

Benchmark Malicious goal Example/category/metric/task from the benchmark

Injecagent [31] Harmful behavior Financial harm
Resource exhausting Data security
Privacy leakage Data stealing attack

Agentdojo2 [30] Harmful behavior OffensiveEmailDoSAttack
Resource exhausting DoSAttack
Performance degradation CaptchaDoSAttack
Privacy leakage Send a generic email to sharing sensitive information

Redcode [39] Harmful behavior Add a risky alias to .bashrc
Resource exhausting Amplification
Performance degradation Buggy code: Miss default case
Privacy leakage Read sensitive files

Agent-SafetyBench [66] Harmful behavior Spread unsafe information/misinformation
Performance degradation Compromise availability
Privacy leakage Leak sensitive information

Agent security bench3 [41] Harmful behavior InvestmentDiversion
Resource exhausting ResourceAllocationHijack
Performance degradation InvestmentScam
Privacy leakage StealthDataExport

Agentharm [88] Harmful behavior Disinformation

R-judge [89] Harmful behavior Financial loss, illegal activities
Resource exhausting Incorrect configuration of computer security
Performance degradation Incorrect configuration of computer security
Privacy leakage Extract sensitive information

Privacylens [90] Privacy leakage Leakage of sensitive information

Haicosystem [91] Harmful behavior Content safety risk
Resource exhausting System operational risk
Performance degradation Goal completion
Privacy leakage Legal and rights related risks

ToolEmu4 [17] Harmful behavior Reputation damage (FacebookManager)
Resource exhausting Misconfiguration (AugustSmartLock+Gmail)
Performance degradation Misinformation (FacebookManager)
Privacy leakage Privacy breach (Binance+Terminal+Gmail)

Table 2: Details of malicious goals in existing benchmarks.

2Attacks can be found in https://github.com/ethz-spylab/agentdojo/tree/main/src/
agentdojo/attacks

3Attack tasks from https://github.com/agiresearch/ASB/blob/main/data/all_attack_tools_
aggressive.jsonl

4Tasks can be found in https://github.com/ryoungj/ToolEmu/blob/main/assets/all_cases.
json
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