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Abstract

Estimating the density of a distribution from its samples is a fundamental problem in statistics.
Hypothesis selection addresses the setting where, in addition to a sample set, we are given n candidate
distributions—referred to as hypotheses—and the goal is to determine which one best describes the
underlying data distribution. This problem is known to be solvable very efficiently, requiring roughly
O(logn) samples and running in Õ(n) time. The quality of the output is measured via the total variation
distance to the unknown distribution, and the approximation factor of the algorithm determines how large
this distance is compared to the optimal distance achieved by the best candidate hypothesis. It is known
that α = 3 is the optimal approximation factor for this problem. We study hypothesis selection under the
constraint of differential privacy. We propose a differentially private algorithm in the central model that
runs in nearly-linear time with respect to the number of hypotheses, achieves the optimal approximation
factor, and incurs only a modest increase in sample complexity, which remains polylogarithmic in n.
This resolves an open question posed by [Bun, Kamath, Steinke, Wu, NeurIPS 2019]. Prior to our work,
existing upper bounds required quadratic time.
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1 Introduction

The task of accurately estimating the underlying probability distribution that generates a dataset is a
fundamental theoretical problem in statistical inference with broad applicability in practical data analysis.
A growing concern in modern data analysis is preserving the privacy of the individuals whose data informs
these estimations, specifically when dealing with sensitive information. Differential privacy (DP) has emerged
as a widely adopted standard in privacy-preserving data analysis [DMNS06a] and is currently employed by
major entities, such as Google [EPK14], Apple [Dif17], and the U.S. Census Bureau [Abo18]. See Section 1.3.1
for more examples.

In this paper, we study a specific instance of distribution estimation under the constraint of differential
privacy, referred to as Hypothesis Selection. In this problem, we are given a finite collection of n candidate
distributions H := {H1, H2, . . . ,Hn}, known as hypotheses, and a dataset of i.i.d. samples drawn from an
unknown distribution P . The goal is to select a hypothesis in H that well-approximates the true data
distribution.

A long line of research has studied hypothesis selection in the non-private setting [Yat85, DL96, DL97,
DL01, MS08, DK14, SOAJ14, AJOS14, AFJ+18, BBK+21, ABS23, AAC+23, ABS24]. These algorithms’
performances are evaluated across three key aspects: i) sample complexity, ii) time complexity, and iii)
approximation factor. Early work has shown that hypothesis selection admits highly sample-efficient al-
gorithms, requiring only Θ(log n) samples, a logarithmic dependence on the number of hypotheses, and
no dependence on the domain size of distributions [Yat85, DL96, DL97, DL01]. The sample efficiency is
achieved by only needing to estimate probabilities of O(n2) special sets, called Scheffé sets, according to P
(see Equation (1) for a definition). Moreover, several works [DK14, AFJ+18, ABS23, ABS24] have shown
that one can find a valid hypothesis in roughly linear time in n.

Another key aspect is the accuracy of the selected hypothesis, measured by the total variation distance
to the true distribution. The approximation factor (denoted by α) measures this distance relative to the
minimum distance between P and a hypothesis in H. A notable lower bound established in [BKM19] shows
that achieving α < 3 is impossible unless the number of samples is polynomial in the domain size of P . In
an interesting development, Aliakbarpour et al. [ABS24] recently proposed an algorithm that simultaneously
achieves a logarithmic sample complexity, nearly-linear time complexity, and the optimal approximation
factor α = 3, representing a compelling performance in all three critical aspects of this problem.

Despite this desirable performance in the non-private setting, the state of the art in the private setting falls
short of optimal performance. A naive privatization of Scheffé estimates via Laplace noise leads to an O(n2)
sample complexity [BKSW19]. More advanced techniques, including the work of Bun et al. [BKSW19], offer
better sample complexity (logarithmic) but suffer from quadratic time and suboptimal approximation. While
Aden-Ali et al. [AAAK21] makes progress on accuracy and proof simplicity, their algorithm also remains
computationally expensive with a quadratic time complexity.

These limitations naturally lead us to address an open question, first raised in part by Bun et al. [BKSW19]:
Does there exist an ideal private hypothesis selection algorithm that offers logarithmic sample complexity,
nearly-linear time complexity, and the optimal approximation factor? We present a significant step forward
towards this ideal: our algorithm achieves nearly-linear time complexity and the optimal approximation
factor with a polylogarithmic sample complexity (which, while not logarithmic, is still considered modest
dependence on the number of hypotheses). A formal description of our results can be found in Section 1.2.

Applications: Estimating data distributions is a central component of many scientific tasks, such as
estimating species abundance in ecology or analyzing survey results in the social sciences. Hypothesis
selection describes a broadly applicable scenario where we can form a finite set of interpretable, noise-free, or
otherwise manageable distributions as our candidate hypotheses, and we aim to approximate the potentially
noisy and complex unknown distribution with one of the so-called “nicer” candidates (e.g., modeling customer
arrival time with Poisson processes).

One notable theoretical application of hypothesis selection is agnostic learning of a parametric class of distri-
butions (e.g., mixtures of Gaussians [SOAJ14, DK14, ABM18, ABH+20], and junta distributions [ABR16])—
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via the cover method. The approach is to first select a representative set of parametric distributions, and
hypothesis selection then identifies the closest approximation in this set. For a survey, see Diakoniko-
las [Dia16].

1.1 Problem setup

Let P denote an unknown distribution over a domain X , and let H := {H1, H2, . . . ,Hn} be a set of n public
and known distributions over X . We define OPT to be the total variation distance of P and the closest
hypothesis in H.

We seek to design a semi-agnostic proper learner such that for every H and P , the algorithm outputs a
hypothesis Ĥ ∈ H such that the total variation distance between Ĥ and P is within α-times OPT plus an
additive error parameter σ, which can be made arbitrarily small with sufficiently many samples.

We assume the standard access model of [DL01], where an algorithm accesses distributions by making queries
of the following types:

1. The algorithm can draw i.i.d. samples from the unknown distribution P .

2. The algorithm can compare the PDFs of any two known distributions Hi, Hj at a given point x ∈ X .
Specifically, it can ask if Hi(x) < Hj(x). This is equivalent to determining if x is in the Scheffé set of
Hi and Hj (defined in Equation 1).

3. The algorithm can query the probability mass of the Scheffé set of any two known distributions.
Precisely, it can ask for Hi(Si,j) for all Hi, Hj ∈ H.

More formally, we have:

Definition 1.1 (Proper learner for private hypothesis selection). Let α > 0, and let A be an algorithm with
input parameters ϵ, β, σ ∈ (0, 1), sample access to an unknown distribution P , and query access to a finite
class of n hypotheses H = {H1, H2, . . . ,Hn} (according to the access model described above). We say A is
an (α, ϵ, β, σ)-proper learner for the private hypothesis selection problem if:

1. A is ϵ-differentially private in the central model (defined in Definition 2.2) with respect to the samples
drawn from P .

2. A outputs Ĥ ∈ H such that with probability at least 1− β,

∥Ĥ − P∥TV ≤ α ·OPT+ σ.

We call α the approximation factor, ϵ the privacy parameter, β the confidence parameter, and σ the error
parameter.

Remark 1. As mentioned in [DK14, ABS24], the third type of query in the standard access model can be
relaxed. Our algorithms only need estimates, rather than exact values, of the probability masses of the Scheffé
sets. Assuming all estimates of Hi(Si,j) are accurate to an additive error of O(σ) with high probability, the
analysis of our algorithms remain essentially unchanged. These estimates could be obtained by sampling from
each Hi or numerically integrating density functions when analytic forms are available.

1.2 Our result

We present an algorithm for private hypothesis selection with the following guarantee:

Theorem 2 (Informal version of Theorem 3). For every ϵ, β, σ ∈ (0, 1), Algorithm 1 is an (α = 3, ϵ, β, σ)-
proper learner for the private hypothesis selection problem that uses s = Θ(log3(n/β)/(β2σ2ϵ)) samples and
runs in time Θ̃(n/(β4σ3ϵ)).

4



Table 1: Summary of past hypothesis selection results under central DP
Result α Time complexity Sample complexity

Private Scheffé tournament
[BKSW19] (Thm 3.6)

9 O(n2 · s) O
(

logn
σ2 + n2 logn

σϵ

)
[BKSW19] (Thm 3.5) > 54 Õ(n2 · s) Õ

(
logn
σ2 + logn

σϵ

)
Minimum distance estimate
[AAAK21] (Thm 2.24)

3 O(n2 · s) O
(

logn
σ2 + logn

σϵ

)
This work 3 Õ (n · s / σ) O

(
log3 n
σ2ϵ

)

Our result is the first algorithm for private hypothesis selection that runs in nearly-linear time, resolving
an open question first posed by [BKSW19] about the existence of such an algorithm. In addition, we also
maintain the optimal approximation factor α = 3. However, our algorithm introduces an additional factor
of O(log2 n / σ) in the sample complexity compared to existing work on private hypothesis selection. We
summarize this tradeoff and compare with existing private algorithms in Table 1.

The overhead in the sample complexity stems from our privatization strategy that is informed by the structure
of our algorithm. Similar to most time efficient algorithms in previous works, our algorithm consists of
multiple interdependent components, where each component directs us to focus only on a small set of Scheffé
estimates, as opposed to computing all of them. While these interdependencies allow us to achieve a highly
time-efficient algorithm, they make direct privatization of the final output analytically very challenging.
Rather than attempting to analyze the privacy loss of the full computation, we enforce differential privacy
at each component of the algorithm, resulting in the sub-optimality of our sample complexity. Despite this
added overhead, our algorithm still maintains sample complexity polylogarithmic in number of hypotheses
with no dependence on the domain size.

Our algorithm also has a polynomial dependence on 1/β, contrasting with the typical log(1/β) dependence
on the confidence parameter that arises in many learning theory problems when amplifying a result (e.g., by
taking an “average” of the results of running log(1/β) many runs of an algorithm). However, in hypothesis
selection, this amplification process is unlikely to succeed without a significant increase in α because it would
require running hypothesis selection twice, which would push the total approximation factor to at least α = 9.
Achieving a polylogarithmic dependence on β is a difficult task, even in the absence of privacy constraints;
both [ABS23, ABS24] present nearly-linear time algorithms with α < 9 but suffer from similar polynomial
dependencies on 1/β.

Open directions: This leaves two open directions for further work: i) Does there exist a nearly-linear
time algorithm that uses O

(
logn
σ2 + logn

σϵ

)
samples in terms of its dependence on σ, ϵ? ii) Can the dependence

on the confidence parameter β be improved to O(log(1/β)) while maintaining nearly-linear runtime?

Significance of the approximation factor: One may argue that it is possible to improve the accuracy by
decreasing OPT by selecting more candidate hypotheses in H, as opposed to decreasing the approximation
factor α. However, as mentioned in [ABS24], this is not feasible in many spaces, especially multivariate
distributions, without substantially increasing the size of H. For instance, in the cover method, we require H
to cover the space of a parametric class of distributions with a γ-cover, where each distribution in the class
is at most γ away from an element in H, enforcing OPT < γ. As an example, the mixture of k-Gaussians
in [SOAJ14] requires O(γ−3k) distributions to create a γ-cover, making algorithms with high approximation
factor more time-consuming.
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1.3 Related work

Most of the previous work on hypothesis selection falls under two approaches: i) tournament-based algorithms
that compare pairs of hypotheses based on their Scheffé estimates, and then perform a series of comparisons
to find a final winner ii) the minimum distance estimate (MDE) algorithms that compute an approximate
distance based on the Scheffé estimates for each hypothesis, and then select the hypothesis with the minimum
approximate distance.

The Scheffé tournament algorithm, first proposed by Devroye and Lugosi [DL01], runs in O(n2 ·
s) time and achieves an approximation factor of α = 9. Other works in this line include
[DK14, AJOS14, AFJ+18, AAC+23, ABS23]. Algorithms that follow the tournament structure typically
exhibit a high approximation factor. Moreover, privatizing such algorithms raises extra challenges because
changing a single data entry might affect the result of every comparison, thus greatly increasing sensitivity.

The other approach [DL01, MS08, ABS24] for non-private hypothesis selection is based on the minimum
distance estimate (MDE) method introduced in [DL01], which has been the only type of algorithm that
achieves the optimal approximation factor α = 3. Mahalanabis and Stefankovic [MS08] later improved the
initial O(n3 · s) runtime of [DL01] to O(n2 · s), as well as proposed a nearly-linear time algorithm that
requires exponential pre-processing. Aliakbarpour et al. [ABS24] recently demonstrated that the optimal
approximation factor α = 3 could be achieved with a nearly-linear time algorithm.

Hypothesis selection has also been studied in the local model of DP [KLN+11], where the data curator is not
trusted and thus only has access to the privatized version of users’ data. Gopi et al. [GKK+20] showed that
the sample complexity in the local model is linear in n, exponentially larger than the central DP setting.
Specifically, they proved a lower bound of Ω

(
n

σ2ϵ2

)
. They also proved two upper bounds of O

(
n log3 n
σ4ϵ2

)
for

non-interactive algorithms and O
(

n logn log logn
σ2ϵ2

)
(with α = 27) for sequentially interactive algorithms with

O(log log n) rounds. A recent algorithm by Pour et al. [PAA24] closed the gap between upper and lower
bounds by designing a sequentially interactive algorithm using O

(
n log2 1/β

σ2 min(ϵ2,1)

)
samples, with α = 9 and

O(log log n) rounds.

Another related problem in statistics is simple hypothesis testing. Given two distributions p and q, and a
dataset D sampled from one of them, the goal is to determine whether D was drawn from p or q. This setting
resembles hypothesis selection where we have only two candidate distributions. Cannone et al. [CKM+19]
developed a private algorithm for simple hypothesis testing that achieves optimal sample complexity. Further
developments on sample complexity on private simple hypothesis selection include [PJL24, PAJL25] under
the local model of DP. Other examples within the broader topic of private hypothesis testing include [CDK17,
GR18, ADR18, ASZ18, ADKR19, ACFT19, AJM20, CKM+20, BB20].

1.3.1 Industrial applications of differential privacy

We highlight several lines of research in differentially private data analysis motivated by real-world challenges.
One example is the partition selection problem, where users aim to compute aggregate statistics over data
grouped according to user-specified criteria. To ensure privacy, designers must bound the sensitivity of the
statistics, decide which data partition to release, and maintain computational efficiency. Relevant works
include Desfontaines et al. [DVG20] and Google’s Plume system [AGJ+22].

Another direction concerns private analytics of user actions, where the goal is to prevent attackers from
learning a user’s past behavior by repeated observation of public analytics. LinkedIn’s PriPeARL [KT18]
provides such protection, even towards persistent attackers who observe the analytics overtime.

Privacy leakages also emerge from releasing models trained on sensitive data. To mitigate this problem,
Lécuyer et al. [LSV+19] developed Sage, a machine learning platform that distributes training across data
blocks, monitors privacy loss per blocks, and retires blocks once their privacy budget is depleted.

Lastly, the problem of answering queries across multiple private databases has also been studied. A repre-
sentative system is DJoin by Narayan et al. [NH12].

6



2 Preliminaries

We begin by introducing notation and a list of key definitions in Section 2.1. These concepts are expanded
upon in later sections. Section 2.2 presents the framework of minimum distance estimate algorithms, and
Section 2.3 describes the nearly-linear time optimization proposed by [ABS24]. Section 2.4 contains a brief
review of differential privacy.

2.1 Notation and basic concepts

Notation and basic definitions: For n ∈ Z+, we use [n] to denote the set {1, . . . , n}. For an arbitrary
probability distribution P over X , let P (x) be the PDF of P at x ∈ X . For a measurable subset S ⊆ X , let
P (S) be the probability mass of the set S according to P . We use X ∼ P to denote a random variable X that
is drawn from the distribution P . Let ∥P1−P2∥TV := supS⊆X |P1(S)−P2(S)| be the total variation distance
between two distributions P1 and P2. For a sample space Ω and an event E ⊆ Ω, the indicator function 1E
evaluates to 1 when E occurs and 0 otherwise. We use the standard O,Ω,Θ notation for asymptotic functions,
as well as Õ(x), Ω̃(x), Θ̃(x) to indicate additional polylog(x) factors. A dataset D = [x1, . . . , xs] ∈ X⊗s is a
collection of s i.i.d. samples from an unknown distribution P .

Optimal hypothesis: We use Hi∗ to indicate a hypothesis in a finite hypothesis class H that achieves the
smallest total variation distance to P , which is called OPT. If there are ties, we pick one such hypothesis as
Hi∗ arbitrarily. Therefore, OPT := minH∈H ∥H − P∥TV = ∥Hi∗ − P∥TV.

Scheffé sets: For every pair of hypotheses Hi, Hj ∈ H, we define the Scheffé set of Hi and Hj as:

Si,j :=

{
{x ∈ X | Hi(x) < Hj(x)} if i ≤ j,

Sj,i if i > j.
(1)

It is not difficult to show that the difference of probability masses of two distributions on the Scheffé set of
Hi and Hj is precisely the total variation distance between Hi and Hj :

∥Hi −Hj∥TV = sup
S⊆X
|Hi(S)−Hj(S)| = |Hi(Si,j)−Hj(Si,j)|.

Semi-distances: We adopt the definitions of semi-distances from [ABS24], building on earlier work in
[DL01, MS08]. For every pair of hypotheses Hi, Hj ∈ H, the semi-distance wi(Hj) is the distance between
Hj and P measured on the Scheffé set of Hi and Hj ; in particular, wi(Hj) := |Hj(Si,j) − P (Si,j)|. The
maximum semi-distance of Hj is defined as W (Hj) := maxHi∈H wi(Hj). For a given hypothesis Hj ∈ H
and a set of hypotheses A ⊆ H, the proxy distance W̃ (Hj) is defined as W̃ (Hj) := maxHi∈A wi(Hj). Here,
A is a set of hypotheses that is updated throughout the algorithm to improve W̃ (Hj) as an approximation
for W (Hj).

Empirical semi-distances: Given a measurable set S ⊆ X , we define the empirical distribution P̂ of a
dataset D = [x1, . . . , xn] as P̂ (S) := 1

s

∑s
k=1 1xk∈S . The empirical semi-distance ŵi(Hj) is similarly defined

as ŵi(Hj) := |Hj(Si,j) − P̂ (Si,j)|, where P̂ is based on the observed samples drawn from P . Observe that
ŵi(Hj) is an estimation of wi(Hj).

Refined access model: As in prior work [DL01, MS08, ABS24], our algorithms will have query access to
ŵi(Hj), which follows from the standard access model. In the lemma below, we show that ŵi(Hj) is within
σ′ of wi(Hj) with sufficiently large samples, where σ′ can be taken to be Θ(σ). The time complexity of our
algorithms is measured in number of queries to ŵi(Hj), and each query takes Θ(s) to compute.
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Lemma 2.1. Let β, σ′ ∈ (0, 1). If the number of samples s ≥ 1
2σ′2 log(2n/β), then with probability at least

1− β, the empirical semi-distances are accurate to an additive error of σ′:

|ŵi(Hj)− wi(Hj)| ≤ σ′, for all i, j ∈ [n].

Proof. The estimates ŵi(Hj) = |Hj(Si,j)− P̂ (Si,j)| can be computed via sampling from P and counting the
fraction of samples in the Scheffé set of Hi and Hj , which is P̂ (Si,j). By a reverse triangle inequality:

|ŵi(Hj)− wi(Hj)| =
∣∣∣|Hj(Si,j)− P̂ (Si,j)| − |Hj(Si,j)− P (Si,j)|

∣∣∣ ≤ |P̂ (Si,j)− P (Si,j)|.

Therefore, by a standard application of the Hoeffding and union bound, we can estimate each wi(Hj) using
1

2σ′2 log(2n/β) samples.

Lifting: Let Hi, Hj ∈ H. We define the lift value Hi induces on Hj by ŵi(Hj)− W̃ (Hj). In other words,
the lift value quantifies the improvement of the proxy distance W̃ (Hj) if Hi is added to the set of hypotheses
A used to compute W̃ (Hj) = maxHk∈A wk(Hi). For some σ′ ∈ (0, 1), we say that Hi σ

′-lifts Hj if the lift
value is at least σ′, or equivalently that Hi lifts Hj by at least σ′.

Prompting: Let Q be a distribution over H. For two parameters σ′, η ∈ (0, 1), we say a hypothesis Hi ∈ H
is (σ′, η)-prompting with respect to Q if Hi σ

′-lifts a random hypothesis Hj sampled from Q with probability
at least η. In other words, we have:

PrHj∼Q

[[[
ŵi(Hj)− W̃ (Hj) ≥ σ′

]]]
≥ η. (2)

We now consider an empirical analog for a list of hypotheses K that is sampled from Q. Let K = [Hj1 , . . . ,Hjt ]
be a list of t hypotheses in H. For two parameters σ′, η ∈ (0, 1], we say a hypothesis Hi ∈ H is
(σ′, η)-empirical-prompting with respect to K if Hi σ′-lifts at least an η-fraction of the hypotheses in K.
In other words, we have:

1

t

t∑
k=1

1{ŵi(Hjk
)−W̃ (Hjk

)≥σ′} ≥ η.

2.2 Background: minimum distance estimate

In this section, we sketch the key ideas behind previous approaches that use a minimum distance estimate
[DL01, MS08]. For a more detailed treatment, see Section 3.1 of [ABS24].

Our algorithms rely on computations of ŵi(Hj) that approximate the true semi-distances wi(Hj). For clarity,
we will assume in this section that the approximations ŵi(Hj) are exact by Lemma 2.1. Observe that wi(Hj)
provides a lower bound for ∥Hj−P∥TV: specifically, wi(Hj) = |Hj(Si,j)−P (Si,j)| ≤ supS⊆X |Hj(S)−P (S)| =
∥Hj − P∥TV. Thus, we can view wi(Hj) as an attempt to lower bound ∥Hj − P∥TV. In particular, if we
discover that wi(Hj) is large, then this suggests that Hj is far from P . However, the inverse is not true:
when wi(Hj) is small, this does not imply that Hj is close to P .

Fortunately, when the particular semi-distance wi∗(Hj) is small, we can upper bound ∥Hj−P∥TV. The semi-
distance wi∗(Hj) has the following property: if wi∗(Hj) ≤ OPT, then Hj satisfies ∥Hj − P∥TV ≤ 3 · OPT,
making Hj a valid hypothesis to output. This follows from repeated applications of the triangle inequality:

∥Hj − P∥TV ≤ ∥Hj −Hi∗∥TV + ∥Hi∗ − P∥TV = |Hi∗(Si∗,j)−Hj(Si∗,j)|+OPT

= |(Hi∗(Si∗,j)− P̂ (Si∗,j))− (Hj(Si∗,j)− P̂ (Si∗,j)|+OPT

≤ wi∗(Hj) + wj(Hi∗) + OPT ≤ wi∗(Hj) + 2 ·OPT. (3)
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An issue with using this metric (wi∗(Hj) ≤ OPT) is that we know neither the optimal hypothesis Hi∗ nor
OPT. This is remedied by minimizing a maximum semi-distance W (Hj) := maxHi∈H wi(Hj). Let Ĥ be
the hypothesis that minimizes W (Hj) over all hypotheses in H. Then, we claim that Ĥ satisfies the desired
property wi∗(Ĥ) ≤ OPT, implying that ∥Ĥ−P∥TV ≤ 3 ·OPT as in the above discussion. This follows from:

wi∗(Ĥ) ≤W (Ĥ) ≤W (Hi∗) ≤ OPT.

The first inequality follows from W (Ĥ) being a maximum over all semi-distances of Ĥ. The second inequality
follows from minimality of W (Ĥ) over all other hypotheses. The last inequality follows from the fact that
every semi-distance measured against the optimal hypothesis is itself bounded by OPT. Therefore, we reduce
the problem of hypothesis selection to finding a Ĥ that minimizes W (Ĥ).

2.3 Background: approximating the maximum semi-distance

The MDE framework is sample-optimal and achieves an optimal error parameter of α = 3. However,
computing all W (Hj)’s exactly requires Õ(n2) time, which is expensive for large hypotheses classes. Instead,
[ABS24] computes a proxy distance W̃ (Hj) = maxHk∈A ŵk(Hj) for each Hj , which serves as an updateable
approximation that lower bounds W (Hj). All W̃ (Hj)’s are initially set to 0. The proxy distances are updated
throughout the algorithm via an iterative process. At every iteration, a selectively chosen hypothesis, called
a prompting hypothesis, is added to A. Carefully selecting A ensures that for all Hj , W̃ (Hj) is a good
approximation of W (Hj) without exhaustively computing all pairwise semi-distances. At the end of this
process, a hypothesis with a low proxy distance is selected as the output. Because only O(|A| · n) semi-
distances are queried, this strategy enables a nearly-linear time algorithm in Õ(n) that still maintains the
α = 3 guarantee.

To identify prompting hypotheses, [ABS24] keeps track of “buckets” of candidate hypotheses. Each hypothesis
Hj is assigned a bucket according to its proxy distance W̃ (Hj). Because the algorithm seeks a hypothesis
with approximately the smallest maximum semi-distance, it only focuses on the “lowest” bucket with the
smallest proxy distances. Because a large proxy distance implies that the hypothesis is far from P , the
algorithm can disregard hypotheses with a large proxy distance. Hence, only the hypothesis in the lowest
bucket are required to have accurate proxy distances.

The set of prompting hypotheses A will ensure that the lowest bucket has hypotheses with proxy distances
close to the maximum semi-distances.

Recall that if a hypothesis Ĥ satisfies wi∗(Ĥ) ≤ OPT, then it is a valid output. Conversely, we would
like to avoid outputting a hypothesis for which we have wi∗(Ĥ) > OPT. The algorithm of [ABS24] filters
out such hypotheses in the lowest bucket by updating their proxy distance and effectively sending them to
“higher” buckets. Specifically, a key observation is that Hi∗ will always significantly lift the proxy distances
of hypotheses that are poor choices. Therefore, in every iteration of the algorithm, the goal is to find a
prompting hypothesis Hi that substantially improves a large portion of the proxy distances and empties out
the candidate hypotheses in the lowest bucket.

It can be shown after roughly Θ(log n) iterations either the lowest bucket is fully emptied out, and the
algorithm can move forward to the next bucket. Or, there are no more prompting hypotheses that can be
identified. This condition implies that Hi∗ is not prompting. That is, Hi∗ could not lift most hypotheses
in the lowest bucket. For those hypotheses, we must have that their wi∗(Hj) ≤ OPT. Hence, a random
hypothesis in the lowest bucket under this condition is a valid output.

2.4 Background: differential privacy

In this section, we provide an overview of differential privacy.
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Differential privacy: We adopt the central model of DP [DMNS06b], where a sensitive dataset is given to
a trusted data curator who performs the algorithm and publishes the outcome publicly. Differential privacy
protects each entry in the dataset from an adversary who observe the outcome.

A dataset D = [x1, . . . , xs] ∈ X⊗s is a collection of s i.i.d. samples from an unknown distribution P . The
Hamming distance between two datasets D and D′ is defined as the number of differing entries and denoted
as Ham(D,D′). We consider an algorithm to be private with respect to the samples drawn from P if it
satisfies the following definition:

Definition 2.2 (Pure differential privacy). Let ϵ > 0. An algorithm A is ϵ-differentially private if for all
measurable subsets S ⊆ Range(A) and D,D′ ∈ X⊗s such that Ham(D,D′) = 1:

Pr[[[A(D) ∈ S ]]] ≤ eϵPr[[[A(D′) ∈ S ]]].

Standard methods for calibrating noise in DP rely on the concept of sensitivity:

Definition 2.3 (Sensitivity). Let f : X⊗s → R be a function. Then, ∆(f) denotes the sensitivity of f and
is defined by:

∆(f) := sup
D,D′∈X⊗s

Ham(D,D′)=1

|f(D)− f(D′)|.

Exponential mechanism: A widely used algorithm in DP is the exponential mechanism. This mechanism
relies on a real-valued utility function u that maps a dataset D ∈ X⊗s and a candidate output Hj ∈ H to a
real-valued score, quantifying the “quality” of Hj with respect to D. Outputs with higher utility are more
likely to be selected.

Definition 2.4 (Exponential mechanism [MT07, DR+14]). Given a utility function u : X⊗s × H → R

with sensitivity ∆(u), the exponential mechanism selects an element Hj ∈ H with probability proportional to
exp

(
ϵu(D,Hj)
2∆(u)

)
.

Fact 2.5 ([MT07]). The exponential mechanism is ϵ-differentially private.

We also have the following utility guarantee of the exponential mechanism:

Fact 2.6 (Corollary 3.12 of [DR+14]). Let u : X⊗s×H → R be a utility function with sensitivity ∆(u). Fix
a dataset D ∈ X⊗s. Let H ∈ H denote the output of the exponential mechanism with parameter ϵ and utility
function u. Then, for any β ∈ (0, 1):

Pr

[[[
u(D,H) ≤ max

Hj∈H
u(D,Hj)−

2∆(u)

ϵ
log(n/β)

]]]
≤ e− log(1/β) = β.

Sparse vector technique [DNR+09, DR+14, LSL16]: Given a numerical statistic g : X → R, a
threshold query counts the number of entries x ∈ D such that g(x) is above or below a fixed cutoff. We will
employ the sparse vector technique (SVT) [DNR+09], which enables processing a large number of threshold
queries while incurring a privacy cost only for the small subset of queries whose values exceed a specified
threshold. Dwork et al. [DNR+09] presents a simple ϵ-differentially private algorithm AboveThreshold
that takes in a stream of queries and identifies the first meaningful query above a predefined threshold while
privately ignoring queries that fall below the threshold.

Composition and post-processing: Two properties make DP particularly well-suited for modular al-
gorithm design. Composition bounds the cumulative privacy loss after performing multiple differentially
private subroutines, and post-processing ensures that no further transformation of the output of a differen-
tially private algorithm can further degrade the privacy guarantees. We state the following theorems:
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Fact 2.7 (Composition, Theorem 3.14 of [DR+14]). Let A1, . . . ,Ak be algorithms that access the same
dataset D ∈ X⊗s, and suppose each Ai is ϵi-differentially private. Let A be the composed algorithm of
A1, . . . ,Ak. Then, A is

∑k
i=1 ϵi-differentially private.

Fact 2.8 (Post-processing, Proposition 2.1 of [DR+14]). Let A be an ϵ-differentially private algorithm. Let
g be a (possibly random) mapping. Then, g ◦ A is ϵ-differentially private.

3 Private Hypothesis Selection Algorithm

3.1 Overview of our algorithm

In this section, we present an overview of Algorithm 1, our main algorithm for solving the hypothesis selection
problem in the central model of DP that obtains an α = 3 guarantee. Building on the previous work described
in Section 2.2, our goal is to find a hypothesis Ĥ that approximately minimizes W (Ĥ). For each hypothesis
Hj ∈ H, our algorithm keeps track of the proxy distances W̃ (Hj) = maxHk∈A ŵk(Hj). The set A will store
a small set of prompting hypotheses accumulated so far. In every round t of our algorithm, we privately
identify a prompting hypothesis Hit that improves a substantial portion of current proxy distances W̃ (Hj)

and update each W̃ (Hj) to max
(
W̃ (Hj), ŵit(Hj)

)
. This effectively adds the privately selected Hit to the

set A.

The primary challenge of privatizing the process of identifying a prompting hypothesis in [ABS24] arises
due to the bucketing scheme. This membership to a bucket is highly sensitive due to its discrete nature.
In particular, changing one sample of the dataset could potentially shift the membership of every single
hypothesis in H by changing every W̃ (Hj).

Therefore, to privately select hypotheses with low proxy distances without relying on buckets, we use the
exponential mechanism. We maintain a distribution of hypotheses Q that assigns each hypothesis Hj a prob-
ability that favors hypotheses with low proxy distance W̃ (Hj). Based on this change, we modify the notion
of prompting from [ABS24]: we say that a hypothesis is prompting with respect to the distribution Q over H,
rather than with respect to the hypotheses in a bucket. We also introduce the notion of (σ′, η)-prompting to
quantify the “prompting-ness” of a hypothesis in Equation 2, where η is the probability mass of hypotheses
in Q that can be σ′-lifted. Recall that a hypothesis Hi σ′-lifts a hypothesis Hj if ŵi(Hj) − W̃ (Hj) ≥ σ′.
After sufficiently many rounds, when no more prompting hypotheses can be found, we sample an output
hypothesis Ĥ from distribution Q.

Identifying prompting hypotheses: To privately identify a prompting hypothesis Hi, we test whether
Hi significantly lifts a large probability mass of hypotheses in Q. A straightforward approach is to first
create a list K of hypotheses that are sampled from Q. Then, we may choose a prompting hypothesis using
a threshold query for hypotheses in K that are lifted significantly. Unfortunately, such a threshold query
would have a very high sensitivity with respect to the dataset D, as a single change in the dataset can shift
every lift value from below the threshold to being above the threshold.

To solve the issue of the high sensitivity, we replace the exact count of hypotheses lifted with a new type
of query called scoreη,K,D(Hi). This query instead returns a quantile of the lift values of each hypothesis,
which is a much more stable type of query with a lower sensitivity.

More specifically, scoreη,K,D(Hi) is computed by Algorithm 2 as follows: we first calculate the lift value Hi

induces on each element in K. Then, we sort these values in non-increasing order and return the ⌈η/2 · |K|⌉-th
largest lift value. This significantly reduces the sensitivity of scoreη,K,D(Hi), as shown in section 7.1. Even
if every single value in Hi shifts by some amount due to a change in the dataset, the quantile that we return
should not shift significantly. In Section 7.2, we show that scoreη,K,D(Hi) can be used to identify whether
or not Hi is prompting.

Applying the SVT: We now wish to determine exactly which hypotheses have high scoreη,K,D(Hi)’s to
find hypotheses that are significantly prompting. For every round of our algorithm, we attempt to find a
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prompting hypothesis. This task is equivalent to answering n threshold queries. In general, this is very costly
from the perspective of privacy. However, because we are only interested in one hypothesis that passes the
threshold, we use the sparse vector technique (SVT) [DNR+09] to find this hypothesis with minimal privacy
cost.

Algorithm 3 describes an algorithm using the SVT, which privately outputs either the index i of the hy-
pothesis that was detected to have a high scoreη,K,D(Hi), or ⊥ if no hypotheses have sufficiently high scores.
This algorithm has guarantees on finding a prompting hypothesis formalized in Theorem 6. First, whenever
the SVT returns a hypothesis, we guarantee that it is at least somewhat prompting, so we make progress
at every round by updating the proxy distances. Second, whenever the SVT fails to find any prompting
hypotheses, all hypotheses have small scoreη,K,D(Hj)’s and are therefore unlikely to be prompting.

As in [ABS24], Hi∗ is typically prompting for hypotheses far from P . When the SVT is unable to find any
prompting hypotheses, it implies that Hi∗ is not prompting with respect to Q. Consequently, a large prob-
ability mass of hypotheses in Q—namely, those with minimal proxy distances—must have proxy distances
that cannot be lifted by Hi∗ . Recall that all the poor hypotheses can be lifted by Hi∗ , so in this case,
outputting any random hypothesis in Q will be valid with high probability.

Number of rounds: Because we do not allow a hypothesis to be added to the prompting set more than
once, our algorithm will certainly halt after at most n rounds. However, this leads to a quadratic bound on
the time complexity. We show that the algorithm will halt after O(log n) rounds, yielding a nearly-linear
time complexity.

Arguing about this round complexity is a key hurdle that arises in the private setting. The non-private algo-
rithm in [ABS24] iteratively eliminates hypotheses from buckets. At every round, upon finding a prompting
hypothesis, a significant (say a constant) fraction of hypotheses within the bucket have their proxy distances
updated, leading to their removal from the bucket. This ensures that even with an initial bucket of all n
hypotheses, the algorithm concentrates on this bucket for only O(log n) iterations. After this, the bucket
is either empty or the algorithm halts due to the lack of a prompting hypothesis. However, adapting the
notion of prompting to the case where we update only a set of hypotheses with a constant probability mass
according to Q fundamentally changes the analysis. Determining the actual fraction of updated hypotheses
becomes much more complex. For example, we might update only one hypothesis, since it may hold a
constant probability mass under Q.

To resolve this issue, we provide a refined analysis of the progress of the exponential mechanism. This
analysis relies on the fact that the normalization term in the exponential mechanism’s probabilities must
decrease with each prompting hypothesis added to the set A, as some proxy distances will increase but
none can decrease. As a result, hypotheses whose proxy distances do not increase significantly will see their
probabilities rise. As these probabilities cannot exceed one, changes to the proxy distances must be able
to keep up with the decrease in the normalization term. However, they can only keep up for so long, as
each proxy distance is itself upper bounded by one. As a result, we can bound the number of rounds of our
algorithm by O(log n).

Enforcing privacy: Throughout every round of the algorithm, we incur two types of privacy costs: one
from drawing |K| hypotheses from the exponential mechanism and another from identifying a prompting
hypothesis through the sparse vector technique. As we have discussed above, the types of queries our
algorithm makes have low sensitivities with respect to the dataset. In Lemma 4.1, we give a complete proof
of privacy by using basic additive composition.

3.2 Algorithm

In Algorithm 1, we begin by sampling s samples from the unknown distribution to make up a dataset D.
We initialize A, the set of prompting hypotheses to be empty, and the proxy distance of each hypothesis to
0. We then iteratively search, over at most T rounds, for prompting hypotheses to add to A. In each round,
we re-calculate the probabilities of the exponential mechanism in Line 11 and draw a list K of k hypotheses
from this mechanism in Line 12. We call the Find-Prompting-Hypothesis procedure of Algorithm 3 to
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identify a hypothesis which is empirically prompting over K using the sparse vector technique. In Section 8,
we thoroughly describe this procedure. In Section 7.1, we describe the Compute-Score procedure used
to assign a score to each hypothesis throughout Find-Prompting-Hypothesis. If Find-Prompting-
Hypothesis returns a hypothesis, we add that hypothesis to A in Line 15 and update the proxy estimates
of all hypotheses in Line 16. If Find-Prompting-Hypothesis returns ⊥, indicating that it could not find
a prompting hypothesis, we break from the “for” loop, draw a hypothesis using the exponential mechanism,
and output that final hypothesis.

Algorithm 1 A private algorithm for hypothesis selection
1: procedure Select-Hypothesis(H, ϵ, σ, β)
2: s← Θ

(
1

β2σ2ϵ log
3 (n/β)

)
3: T ← min

(
Θ
(

1
βσ log (n/β)

)
, n
)

4: k ← Θ
(

1
β log (n/β)

)
5: ϵ1 ← ϵ

2(kT+1) , ϵ2 ← ϵ
2T

6:
7: D ← s samples drawn from P ▷ we will use these samples to compute semi-distances
8: A← ∅
9: W̃ (Hj)← 0 for every Hj ∈ H

10: for t = 1, . . . , T do

11: Q(Hj) ∝ exp

(
− ϵ1W̃ (Hj)

2∆(W̃)

)
for every Hj ∈ H

12: K ← k hypotheses drawn from Q ▷ sample using exponential mechanism
13: Hit ← Find-Prompting-Hypothesis

(
ϵ2,

2
s ,

σ′

4 ,
β
4 ,H \A,K, D

)
▷ Algorithm 3

14: if Hit ̸= ⊥ then
15: A← A ∪ {Hit} ▷ add Hit to prompting set
16: W̃ (Hj)← max

(
W̃ (Hj), ŵit(Hj)

)
for every Hj ∈ H

17: else
18: break ▷ failed to find a prompting hypothesis
19: return Ĥ ∼ Q and halt

Theorem 3. Let ϵ, β, σ ∈ (0, 1). Algorithm 1 is an (α = 3, ϵ, β, σ)-private learner for
hypothesis selection that uses s = Θ

(
1

β2σ2ϵ log
3 (n/β)

)
samples and has time complexity

Θ
(
min

(
1

β4σ3ϵ · n · log
5(n/β) , 1

β3σ2ϵ · n
2 · log4(n/β)

))
.

Proof sketch: In Section 4, we prove that Algorithm 1 is ϵ-differentially private. In Section 5, we prove
the correctness of Algorithm 1. Specifically, in Section 5.1, we show that each hypothesis added to A will
be prompting with high probability. In Section 5.2, we show that, if this is the case, then the algorithm will
halt after at most O(log n) rounds. In Section 5.3, we show that, if the algorithm halts early, then it will
output a valid hypothesis with high probability. In Section 5.5, we give exact settings for s, T , and k such
that our proof of correctness holds. Finally, in Section 6, we prove the time complexity of Algorithm 1.

4 Proof of Privacy of Algorithm 1

Lemma 4.1. Algorithm 1 is ϵ-differentially private.

Proof. In each iteration, Algorithm 1 samples K, a hypothesis list of size k, where each hypothesis Hj is
drawn with probability proportional to its proxy distance, W̃ (Hj). In Lemma 7.3, we show that each proxy
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distance has sensitivity 1/s. We privatize this sampling of hypotheses using the exponential mechanism
(Definition 2.4).

After drawing K, the algorithm calculates scoreη,K,D(Hj) for each hypothesis Hj , and searches for a hy-
pothesis with a high scoreη,K,D(Hj). For each Hj , recall that scoreη,K,D(Hj) is an empirical quantile of the
promptingness of Hj on K. K is treated as publicly available when computing each score. This fact, along
with the choice to use quantiles to calculate each score, leads to a low sensitivity of the score function. Specif-
ically, in Lemma 7.4, we prove that the score function has sensitivity 2/s. We privately select a hypothesis
with a sufficiently high score using the sparse vector technique (Algorithm 3), allowing us to incur a loss of
privacy independent of the number of hypotheses.

All remaining steps in the round either post-process K and the chosen prompting hypothesis Hit , or reveal
no further information about the dataset. Therefore, in each round, we only consider the privacy loss of
drawing s hypotheses and finding a prompting hypothesis. By basic composition (Fact 2.7), sampling k
hypotheses from Q and calling Find-Prompting-Hypothesis once gives the following privacy loss in each
round:

ϵ2 + k · ϵ1 =
ϵ

2T
+

ϵ · k
2(kT + 1)

.

Algorithm 1 takes at most T iterations. The composition of T rounds of the above procedure results in a
privacy loss of:

T ·
(

ϵ

2T
+

ϵ · k
2(kT + 1)

)
=

ϵ

2
+

ϵ · kT
2(kT + 1)

.

Finally, Algorithm 1 samples from Q to obtain output distribution in the last round. Hence, Algorithm 1
has a total privacy loss of:

ϵ

2
+

ϵ · kT
2(kT + 1)

+ ϵ1 =
ϵ

2
+

ϵ · kT
2(kT + 1)

+
ϵ

2(kT + 1)
= ϵ.

5 Proof of Correctness of Algorithm 1

The correctness proof of Algorithm 1 proceeds by first showing that, with high probability, three key events
occur: i) the empirical semi-distances are accurate, ii) in each round, the score of every hypothesis accurately
reflects its ability to lift many hypotheses, and iii) in each round, Find-Prompting-Hypothesis either
outputs a high-scoring hypothesis or correctly identifies that no such hypothesis remains. We then show that
if these events hold, the algorithm will eventually fail to find a prompting hypothesis and will halt after less
than T rounds. Finally, we prove that if the key events hold and the algorithm halts early, the output is,
with high probability, less than (3OPT + σ)-far from P .

5.1 Key events occur

Let σ1 = σ/4 and σ2 = σ/4. The correctness of Algorithm 1 relies on the following key events:

1. With the s samples that we draw from P , we calculate the empirical semi-distances between all pairs
of hypotheses to within an σ1-additive error.

2. In each round of the algorithm, if the score of a hypothesis is at least σ2/2, then that hypothesis
is (σ2/2, η/4)-prompting with respect to Q. If the score of a hypothesis is less than σ2, then that
hypothesis is not (σ2, η)-prompting with respect to Q.

3. In each round of the algorithm, if Find-Prompting-Hypothesis outputs a hypothesis, then the score
of that hypothesis is at least σ2/2. If it does not output a hypothesis, then no hypothesis had a score
greater than σ2.
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Each of these events fails to occur with low probability, provided s, the number of samples, and k, the
number of hypotheses sampled at each round, are sufficiently large. We recall the specific assumptions on s
and k that guarantee each event as follows:

Empirical semi-distances are σ1-accurate: Lemma 2.1 ensures that, with probability at least 1−β/6,
the empirical semi-distances are accurate up to an additive factor of σ1 if

s ≥ 1

2σ2
1

log(12n/β) . (4)

Scores reflect prompting ability: In Lemma 7.5, we show that, in each round, with high probability,
the score of each hypothesis reflects whether that hypothesis is prompting with respect to the hypotheses in
Q. Specifically, the lemma ensures that, with probability at least 1− β/(6T ), if

k ≥ 12 log(6nT/β)

η
, (5)

then, in round t for all Hi, if the score of Hi is at least σ2/2, Hi is (σ2/2, η/4)-prompting with respect to Q,
and, if the score of Hi is less than σ2, Hi is not (σ2, η)-prompting with respect to Q.

Find-Prompting-Hypothesis succeeds: In Theorem 6, we show that, in each round, with high
probability, the Find-Prompting-Hypothesis procedure succeeds in either finding a prompting hypothesis
or identifying that there are no such hypotheses. Specifically, the theorem ensures that, with probability at
least 1− β/(6T ), if

∆ ≤ σ2ϵ2
32 log(12nT/β)

, (6)

then, in round t, if Find-Prompting-Hypothesis(ϵ2,∆ = 2/s, σ2, η,H \ A,K) outputs Hit , the score of
Hit is at least σ2/2, and, if the procedure outputs ⊥, each Hit has a score less than σ2. Note that this bound
on ∆ implies the following bound on s, as ∆ = 2/s:

s ≥ 64

σ2ϵ2
log(12nT/β) , (7)

For now, assume that s, T and k satisfy these requirements. In Section 5.5, we will give a precise choice of
parameters that satisfies these, along with other constraints. Then, the probability that at least one of the
three key events does not occur is:

Pr[[[at least one key event fails]]] ≤ Pr[[[ semi-distance estimation fails]]]

+

T∑
t=1

Pr[[[at least one score is inaccurate in round t]]]

+

T∑
t=1

Pr[[[Find-Prompting-Hypothesis fails in round t]]]

≤ β

6
+

T∑
t=1

β

6T
+

T∑
t=1

β

6T

=
β

2
.

15



5.2 Algorithm halts early

If Find-Prompting-Hypothesis outputs a hypothesis with score at least σ2/2, then that hypothesis must
be able to σ2/2-lift at least an η/2-fraction of K. If its scores are an accurate representation of its ability
to lift Q, then Hi is (σ2/2, η/4)-prompting over Q. In this section, we show that, if each hypothesis added
to the prompting set is truly (σ2/2, η/4)-prompting–that is, if the second and third events described in the
previous section hold–, then the algorithm will reach Line 18 and halt before executing T rounds.

Theorem 4. Let σ′ = σ2/2, η
′ = η/4. Assume exp

(
− ϵ1σ

′

2∆(W̃ )

)
< 1

2 . Further, assume that each hypothesis
added to the prompting set is (σ′, η′)-prompting with respect to Q in the round it is added. Then Algorithm 1

terminates after at most min

(
1

log
(
1+ η′

2

) (log (n) + ϵ1
2∆(W̃ )

·OPT
)
, n

)
rounds.

Proof Sketch Initially, Q is the uniform distribution over {H1, . . . ,Hn}, as each proxy distance W̃ (t)(Hj)
is initialized to 0. After each round of the algorithm, a new hypothesis Hit is added to the prompting set and
the proxy distance of each hypothesis either increases or remains constant. If each Hit is truly prompting
over Q, the normalization term of the exponential mechanism decreases at each round, amplifying the
probabilities of the hypotheses with proxy distances that are relatively unchanged by the addition of Ht.
By characterizing these changes, we give an upper bound T̃ on the number of rounds our algorithm will
execute before returning a hypothesis. Note that this upper bound must be less than n, as every hypothesis
is added to the prompting set at most once. If we choose T to be greater than T̃ , the algorithm will halt
before executing T rounds.

To formally prove Theorem 4, we introduce the following notation, exactly describing the probability distri-
bution induced by the exponential mechanism in each round.

Definition 5.1 (Exponential mechanism at round t). Recall that, at round t, the hypothesis sampling dis-
tribution, Q(t), is defined as follows:

Q(t) (Hj) =
exp

(
− ϵ1

2∆(W̃ )
· W̃ (t)(Hj)

)
Z(t)

,

where

Z(t) =

n∑
j=1

exp

(
− ϵ1

2∆(W̃ )
· W̃ (t)(Hj)

)
, (8)

and W̃ (t)(H) is the proxy estimate of H’s semi-distance at round t.

We also require the following lemma, which demonstrates that Z(ℓ) decreases with each round, and bounds
the amount of this decrease.

Lemma 5.2. Let ℓ ∈ {1, 2, . . .}. Let σ′, η′ ∈ (0, 1]. Assume exp
(
− ϵ1σ

′

2∆(W̃ )

)
< 1

2 . Define Z(ℓ) and Z(ℓ+1) as
in Definition 8. Assume the hypothesis Hiℓ added to the prompting set in round ℓ is (σ′, η′)-prompting with
respect to Q(ℓ). Then, we have:

Z(ℓ+1)

Z(ℓ)
≤ 1− η′

2
. (9)

Before proving Lemma 5.2, we introduce, for each hypothesis Hj , a value u(ℓ+1)(Hj) describing the increase
in Hj ’s proxy distance between rounds ℓ and ℓ+ 1:

u(ℓ+1)(Hj) := W̃ (ℓ+1)(Hj)− W̃ (ℓ)(Hj). (10)

Recall that we define W̃ (ℓ+1)(Hj) to be the maximum empirical semi-distance between Hj and the hypotheses
in the prompting set A. Thus, when we add Hiℓ to the prompting set in round ℓ, W̃ (ℓ+1)(Hj) is the maximum
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of ŵiℓ(Hj) and W̃ (ℓ)(Hj):
W̃ (ℓ+1)(Hj) = max

{
ŵiℓ(Hj), W̃

(ℓ)(Hj)
}
.

The difference between W̃ (ℓ+1)(Hj) and W̃ (ℓ)(Hj) is thus lower bounded by the difference between
W̃ (ℓ+1)(Hj) and ŵiℓ(Hj):

u(ℓ+1)(Hj) = W̃ (ℓ+1)(Hj)− W̃ (ℓ)(Hj) ≥ ŵiℓ(Hj)− W̃ (ℓ)(Hj).

If Hℓ is (σ′, η′)-prompting, the definition of prompting allows us to lower bound the probability that this
difference is greater than σ′:

PrHj∼Q(ℓ)

[[[
ŵiℓ(Hj)− W̃ (ℓ)(Hj) ≥ σ′

]]]
≥ η′ =⇒ PrHj∼Q(ℓ)

[[[
u(ℓ+1)(Hj) ≥ σ′

]]]
≥ η′. (11)

To prove Lemma 5.2, we relate the ratio in question to the expected value of a function of these differences.
If the hypothesis added to the prompting set at round ℓ is prompting, Equation 11 gives a tail bound on
each of these differences. Combining this expected value and tail bound with careful consideration yields
the desired bound.

Proof of Lemma 5.2. Considering the ratio in question, we expand Z(ℓ+1) as follows:

Z(ℓ+1)

Z(ℓ)
=

1

Z(ℓ)

n∑
j=1

exp

(
− ϵ1

2∆(W̃ )
· W̃ (ℓ+1)(Hj)

)
. (12)

Rewriting W̃ (ℓ+1)(Hj) in terms of u(ℓ+1)(Hj) and W̃ (ℓ)(Hj) for every j, we have:

Z(ℓ+1)

Z(ℓ)
=

1

Z(ℓ)

n∑
j=1

exp

(
− ϵ1

2∆(W̃ )
·
(
W̃ (ℓ)(Hj) + u(ℓ+1)(Hj)

))

=

n∑
j=1

1

Z(ℓ)
exp

(
− ϵ1

2∆(W̃ )
· W̃ (ℓ)(Hj)

)
· exp

(
− ϵ1

2∆(W̃ )
· u(ℓ+1)(Hj)

)

=

n∑
j=1

Q(ℓ) (Hj) · exp
(
− ϵ1

2∆(W̃ )
· u(ℓ+1)(Hj)

)
.

The second equality follows from the definition of Q(ℓ) (Hj). Then, notice that the final line above forms an
expectation over Q(ℓ). We can rewrite it as such:

= EHj∼Q(ℓ)

[[[
exp

(
− ϵ1

2∆(W̃ )
· u(ℓ+1)(Hj)

)]]]
. (13)

Assuming the hypothesis added to the prompting set at round ℓ is prompting, Equation 11 applies. We will
use that bound on the probability to bound the expectation in Equation 13. To do so, as the argument of
the expectation is non-negative, we begin by applying the integral identity [Ver18]:

EHj∼Q(ℓ)

[[[
exp

(
− ϵ1

2∆(W̃ )
· u(ℓ+1)(Hj)

)]]]
=

∫ ∞

0

PrHj∼Q(ℓ)

[[[
exp

(
− ϵ1

2∆(W̃ )
· u(ℓ+1)(Hj)

)
> t

]]]
dt.
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Rearranging to isolate u(ℓ+1)(Hj) within the probability gives:

=

∫ ∞

0

PrHj∼Q(ℓ)

[[[
u(ℓ+1)(Hj) <

2∆(W̃ )

ϵ1
log

1

t

]]]
dt.

We apply a change of variables, letting v = 2∆(W̃ )
ϵ1

log 1
t :

=

∫ −∞

∞
PrHj∼Q(ℓ)

[[[
u(ℓ+1)(Hj) < v

]]]
·
(
− ϵ1

2∆(W̃ )

)
· exp

(
− vϵ1

2∆(W̃ )

)
dv

=

∫ ∞

−∞
PrHj∼Q(ℓ)

[[[
u(ℓ+1)(Hj) < v

]]]
·
(

ϵ1

2∆(W̃ )

)
· exp

(
− vϵ1

2∆(W̃ )

)
dv.

Because u(ℓ+1)(Hj) is non-negative, the integrand is 0 when v < 0, and we need only to evaluate the integral
from v = 0 to ∞:

=

∫ ∞

0

PrHj∼Q(ℓ)

[[[
u(ℓ+1)(Hj) < v

]]]
·
(

ϵ1

2∆(W̃ )

)
· exp

(
− vϵ1

2∆(W̃ )

)
dv.

By Equation 11, we know that, for any v ≤ σ′, Pr
[[[
u(ℓ+1)(Hj) ≥ v

]]]
≥ η′. This implies that, for any

v ∈ [0, σ′], we can upper bound Pr
[[[
u(ℓ+1)(Hj) < v

]]]
by 1− η′. At the same time, for v > σ′, we can upper

bound Pr
[[[
u(ℓ+1)(Hj) < v

]]]
by 1. Applying these bounds, the resulting integral is:

≤
∫ σ′

0

(1− η′) ·
(

ϵ1

2∆(W̃ )

)
· exp

(
− vϵ1

2∆(W̃ )

)
dv

+

∫ ∞

σ′
1 ·
(

ϵ1

2∆(W̃ )

)
· exp

(
− vϵ1

2∆(W̃ )

)
dv

=

∫ ∞

0

1 ·
(

ϵ1

2∆(W̃ )

)
· exp

(
− vϵ1

2∆(W̃ )

)
dv −

∫ σ′

0

η′ ·
(

ϵ1

2∆(W̃ )

)
· exp

(
−v · ϵ1

2∆(W̃ )

)
dv

= lim
t→∞

− exp

(
−v · ϵ1

2∆(W̃ )

) ∣∣∣∣∣
t

v=0

+ η′ exp

(
−v · ϵ1

2∆(W̃ )

) ∣∣∣∣∣
σ′

v=0

= lim
t→∞

exp

(
−t · ϵ1

2∆(W̃ )

)
+ exp

(
−0 · ϵ1

2∆(W̃ )

)
+ η′

(
exp

(
−σ′ · ϵ1

2∆(W̃ )

)
− exp

(
−0 · ϵ1

2∆(W̃ )

))
= 1 + η′

(
exp

(
−σ′ · ϵ1

2∆(W̃ )

)
− 1

)
.

Under the assumption exp
(
− ϵ1σ

′

2∆(W̃ )

)
< 1

2 , the following holds:

1− η′
(
1− exp

(
− ϵ1σ

′

2∆(W̃ )

))
≤ 1− η′

2
.

Lemma 5.2 implies that when hypothesis Hiℓ is added to the prompting set, the probability of sampling a
hypothesis Hj which is not significantly lifted by Hiℓ increases. As we continue to add prompting hypotheses
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which do not significantly lift Hj , Q(Hj) continues to increase. As this probability approaches 1 and Hj is
repeatedly sampled by the exponential mechanism, either we will find a hypothesis which lifts Hj , in which
case its probability will decrease, or we will halt, as we could not find such a hypothesis. At any given round,
we know that the probability of sampling any hypothesis cannot grow until it exceeds 1. We use this fact to
upper bound the number of rounds of Algorithm 1, thus proving Theorem 4.

Proof of Theorem 4. Note that the algorithm cannot add more than n hypotheses to the set A, as it will
only check for a prompting hypothesis among the hypotheses in H \A. As a result, the algorithm does not
run for more than n rounds.

Fix t ≥ 0. Consider the probability that Hj is selected by the exponential mechanism at round t + 1,
Q(t+1) (Hj):

Q(t+1) (Hj) =
1

Z(t+1)
· exp

(
− ϵ1

2∆(W̃ )
· W̃ (t+1)(Hj)

)
=

1

Z(t+1)
· exp

(
− ϵ1

2∆(W̃ )
·
(
W̃ (t)(Hj) + u(t+1)(Hj)

))
=

Z(t)

Z(t+1)
· 1

Z(t)
· exp

(
− ϵ1

2∆(W̃ )
· W̃ (t)(Hj)

)
· exp

(
− ϵ1

2∆(W̃ )
· u(t+1)(Hj)

)
=

Z(t)

Z(t+1)
·Q(t) (Hj) · exp

(
− ϵ1

2∆(W̃ )
· u(t+1)(Hj)

)
.

Unfolding this expression over all rounds prior to t, we obtain:

Q(t) (Hj) =

(
t∏

ℓ=1

Z(ℓ−1)

Z(ℓ)

)
·Q(0) (Hj) · exp

(
− ϵ1

2∆(W̃ )
·

t∑
ℓ=1

u(ℓ)(Hj)

)
. (14)

Recall that Q(0) follows a uniform distribution, implying Q(0) (Hj) = 1
n . Further, as W̃ (0)(Hj) = 0 and

W̃ (t)(Hj) = W̃ (0)(Hj) +
∑t

ℓ=1 u
(ℓ)(Hj), we have W̃ (t)(Hj) =

∑t
ℓ=1 u

(ℓ)(Hj). As a result, we can simplify
Equation 14 to:

Q(t) (Hj) =

(
t∏

ℓ=1

Z(ℓ−1)

Z(ℓ)

)
· 1
n
· exp

(
− ϵ1

2∆(W̃ )
· W̃ (t)(Hj)

)
. (15)

By Lemma 5.2, we know Z(ℓ+1)

Z(ℓ) ≤ 1 − η′

2 for all ℓ. Consequently, Z(ℓ−1)

Z(ℓ) ≥ 1

1− η′
2

≥ 1 + η′

2 . Additionally,

W̃ (ℓ)(Hj) is upper bounded by W (Hj). Combining these two bounds and Equation 15, we have:

Q(t) (Hi∗) ≥
(
1 +

η′

2

)t

· 1
n
· exp

(
− ϵ1

2∆(W̃ )
·W (Hj)

)
. (16)

The above expression of Q(t) (Hj) holds for all Hj–including Hi∗ . If we focus specifically on Hi∗ , we know
W (Hi∗) ≤ OPT, leading to the bound:

Q(t) (Hi∗) ≥
(
1 +

η′

2

)t

· 1
n
· exp

(
− ϵ1

2∆(W̃ )
·OPT

)
. (17)

Because Q(t) (Hi∗) represents a probability, it is upper bounded by 1. The lower bound given in Equation 17
is thus also upper bounded by 1. We use these bounds to establish an upper bound on t:
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1 ≥
(
1 +

η′

2

)t

· 1
n
· exp

(
− ϵ1

2∆(W̃ )
·OPT

)
=⇒ n · exp

(
ϵ1

2∆(W̃ )
·OPT

)
≥
(
1 +

η′

2

)t

=⇒ log (n) +
ϵ1

2∆(W̃ )
·OPT ≥ t log

(
1 +

η′

2

)
=⇒

log (n) + ϵ1
2∆(W̃ )

·OPT

log
(
1 + η′

2

) ≥ t .

Therefore, our algorithm will terminate after at most
log(n)+

ϵ1
2∆(W̃ )

·OPT

log
(
1+ η′

2

) rounds.

5.3 Algorithm outputs a valid hypothesis

Theorem 5. Assume σ ≥ 8∆(W̃ )
ϵ1

log (4n/β). Assume the key events hold and Algorithm 1 reaches Line 18
and outputs Ĥ. Then, with probability at most β/2, ∥Ĥ − P∥TV > 3OPT + σ.

Proof. If Algorithm 1 breaks in round t, it must be that Find-Prompting-Hypothesis was unable to
find a prompting hypothesis and returned ⊥. Under the assumption that Find-Prompting-Hypothesis
succeeds, this implies that, at round t, all hypotheses had scores less than σ2, implying that they were unable
to σ2-lift more than an η/2 fraction of K. We’ve additionally assumed that the score of each hypothesis
reflects its promptingness. That is, if the score of a hypothesis is less than σ2, it is not (σ2, η)-prompting.
Therefore, under our assumptions, no Hi ∈ H is (σ2, η)-prompting. Specifically, Hi∗ is not (σ2, η)-prompting.
This guarantees that:

PrĤ∼Q

[[[
ŵi∗(Ĥ)− W̃ (Ĥ) ≥ σ2

]]]
< η . (18)

We also know, by the utility guarantee of the exponential mechanism given in Lemma 2.6, that, with
probability at least 1− β/4, for Ĥ ∼ Q:

W̃ (Ĥ) ≤ min
i∈[n]

W̃ (Hi) +
2∆(W̃ )

ϵ1
log (n/4β) . (19)

We can bound mini∈[n] W̃ (Hi) as follows:

min
i∈[n]

W̃ (Hi) ≤ W̃ (Hi∗) = max
Hj∈A

ŵj(Hi∗) ≤ max
j∈[n]

ŵj(Hi∗) . (20)

Recall that we have assumed that the empirical semi-distance estimates are accurate up to an additive factor
of σ1. This implies:

min
i∈[n]

W̃ (Hi) ≤ max
j∈[n]

ŵj(Hi∗) ≤ max
j∈[n]

wj(Hi∗) + σ1 ≤ ∥Hi∗ − P∥TV + σ1 = OPT + σ1 . (21)

Combining Equation 19, and Equation 21, we have, with probability at least 1 − β/4, the following bound
on, W̃ (Ĥ), the proxy distance of our outputted hypothesis:

W̃ (Ĥ) ≤ OPT + σ1 +
2∆(W̃ )

ϵ1
log (4n/β) . (22)
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Because Ĥ is drawn from Q, we know, from Equation 18, that, with probability at least 1−η, we can bound
the empirical semi-distance ŵi∗(Ĥ) as:

ŵi∗(Ĥ) < W̃ (Ĥ) + σ2 . (23)

Combining Equation 22 and Equation 23, we have, with probability at least 1 − (β/4 + η), the following
bound on ŵi∗(Ĥ):

ŵi∗(Ĥ) < OPT + σ2 +
2∆(W̃ )

ϵ1
log (4n/β) + σ1 . (24)

By Equation 3, we have ∥Ĥ − P∥TV ≤ 2OPT + wi∗(Ĥ). Together with Equation 24, this yields:

∥Ĥ − P∥TV ≤ 2OPT + wi∗(Ĥ)

≤ 2OPT + ŵi∗(Ĥ) + σ1

< 3OPT + σ2 +
2∆(W̃ )

ϵ1
log (4n/β) + 2σ1

≤ 3OPT + σ/4 + σ/4 + 2 · σ/4
= 3OPT + σ .

The second-to-last inequality holds because we set σ2 = σ/4, σ1 = σ/4, and we assume σ ≥ 8∆(W̃ )
ϵ1

log (4n/β).
Recall that our algorithm sets η = β/4. Ultimately, we have shown:

PrĤ∼Q

[[[
∥Ĥ − P∥TV > 3OPT + σ

∣∣ algorithm breaks and key events occur
]]]
≤ η + β/4 = β/2 .

5.4 Overall correctness

We have shown, under certain constraints on s, T and k, that the probability that key events do not all
hold is at most β/2, and that, if the key events do hold and the algorithm halts before T rounds, then the
probability that the algorithm outputs a far hypothesis Ĥ is at most β/2.

Hence, if s, T and k satisfy the required constraints, we can bound the probability that the algorithm outputs
a hypothesis Ĥ greater than (3OPT + σ)-far as:

Pr
[[[
∥Ĥ − P∥TV > 3OPT + σ

]]]
= Pr

[[[
∥Ĥ − P∥TV > 3OPT + σ

∣∣ key events occur
]]]
Pr[[[key events occur]]]

+Pr
[[[
∥Ĥ − P∥TV > 3OPT + σ

∣∣ not key events occur
]]]
Pr[[[not key events occur]]]

≤ β/2 · 1 + 1 · β/2
= β .

5.5 Sample complexity

In this section, we give exact settings of s, T , and k that satisfy the constraints given throughout our proof
of correctness.

Recall that, throughout our proof of correctness, we make the following assumptions:
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1. To accurately estimate semi-distances:

s ≥ 1

2σ2
1

log(12n/β) (25)

2. To accurately approximate prompting-ness:

k ≥ 12 log(6nT/β)

η
(26)

3. For Find-Prompting-Hypothesis to succeed:

s ≥ 64

σ2ϵ2
log(12nT/β) (27)

4. To ensure the final output has a low proxy distance:

σ ≥ 8

∆(W̃ )
ϵ1 log(4n/β) (28)

5. To bound the number of rounds the algorithm will execute:

exp

(
− ϵ1σ

′

2∆(W̃ )

)
<

1

2
(29)

6. To ensure the algorithm does not halt prematurely:

T ≥ 1

log (1 + η′/2)

(
log n+

ϵ1

2∆(W̃ )
OPT

)
. (30)

Throughout the algorithm and analysis, we also have the following parameter settings:

σ1 = σ
4 , σ2 = σ

4 , η = β
4 , η′ = η

4 , σ′ = σ2

2 ,

ϵ2 = ϵ
2T , ϵ1 = ϵ

2(kT+1) , ∆(W̃ ) = 1
s .

Combining these settings with our above assumptions and constraints, we have the following set of require-
ments for s, T and k:

s ≥ max

(
8

σ2
log (12n/β) ,

512T

σϵ
log (12nT/β) ,

16 log(2)(kT + 1)

σϵ
,
16(kT + 1)

σϵ
log (4n/β)

)
,

T ≥ 1

log
(
1 + β

32

) (log n+
ϵs

4(kT + 1)
OPT

)
, and

k ≥ 48

β
log (6nT/β) .

We claim that the following settings of s, T , and k will satisfy these requirements:

s =
32 · 96 · 33 · 16

β2σ2ϵ
log3 (6n/β) , (31)

T = min

(
33 · 16
βσ

log (6n/β) , n

)
, (32)
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k =
96

β
log (6n/β) . (33)

s satisfies constraints As both T and k are logarithmic in n, the fourth argument in the constraint on s
will dominate. For completeness, we show that each argument of this constraint is less than our choice of s.

Beginning with the first argument, we have:

s =
32 · 96 · 33 · 16

β2σ2ϵ
log3 (6n/β) ≥ 8

σ2
(log (6n/β) + log 2) =

8

σ2
log (12n/β) .

For the second argument, we have:

s =
32 · 96 · 33 · 16

β2σ2ϵ
log3 (6n/β)

=
32

σϵ
log (6n/β) · 96

β
log (6n/β) · 33 · 16

βσ
log (6n/β)

=
32 · 96T
βσϵ

log (6n/β) log (6n/β)

≥ 32 · 48T
βσϵ

(log (6n/β) + log 2) log (6n/β)

≥ 32 · 48T
βσϵ

log (12n/β) log (6n/β) . (34)

Then, because n ≥ T , we have the following sequence of inequalities, continued from Equation 34:

s ≥ 32 · 24T
βσϵ

log
(
(12n/β)

2
)
log (6n/β)

≥ 32 · 24T
βσϵ

log
(
12n2/β

)
log (6n/β)

≥ 32 · 24T
βσϵ

log (12nT/β) log (6n/β)

≥ 512T

σϵ
log (12nT/β) .

Note that the third argument is entirely subsumed by the fourth. Therefore, for both the third and fourth
argument, we have:

s =
32 · 96 · 33 · 16

β2σ2ϵ
log3 (6n/β)

=
32

σϵ
log (6n/β) · 96

β
log (6n/β) · 33 · 16

βσ
log (6n/β)

≥ 32kT

σϵ
log (6n/β)

≥ 16(kT + 1)

σϵ
log(4n/β)

≥ 16 log(2)(kT + 1)

σϵ
.

T satisfies constraints We now show that our choice of T exceeds the bound established in Theorem 4.
First, observe that we can lower bound T by:

T =
33 · 16
βσ

log(6n/β) ≥ 33

β

(
log n+

8

σ
log(6n/β)

)
. (35)
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We can then expand the second term of this equation and rewrite it in terms of s, T and k, yielding:

T ≥ 33

β

(
log n+

ϵ

4
· 32 · 96 · 33 · 16

β2σ2ϵ
log3 (6n/β) · β

96 log (6n/β)
· βσ

33 · 16 log(6n/β)

)
=

33

β

(
log n+

ϵ

4
· s · 1

k
· 1
T

)
=

33

β

(
log n+

ϵs

4kT

)
≥ 33

β

(
log n+

ϵs

4(kT + 1)

)
.

Applying the fact that β < 1 and the inequality log(1 + x) ≥ x
1+x for all x > −1, we can then show:

T ≥ 32

β

(
1 +

1

32

)(
log n+

ϵs

4(kT + 1)

)
>

32

β

(
1 +

β

32

)(
log n+

ϵs

4(kT + 1)

)
≥ 1 + β/32

β/32

(
log n+

ϵs

4(kT + 1)

)
=

1 + β/32

β/32

(
log n+

ϵs

4(kT + 1)

)
≥ 1

log (1 + β/32)

(
log n+

ϵs

4(kT + 1)

)
.

Finally, because OPT ≤ 1, we know T must be greater than the number of rounds required for the algorithm
to terminate.

T >
1

log (1 + β/32)

(
log n+

ϵs ·OPT

4(kT + 1)

)
.

k satisfies constraints Recall that T must be less than n, as we do not allow any hypothesis to be added
to the prompting set more than once. Then, our choice of k satisfies the constraint as follows:

k =
96

β
log (6n/β) =

48

β
log
(
(6n/β)2

)
≥ 48

β
log(6n2/β) ≥ 48

β
log(6nT/β) .

6 Proof of Time Complexity of Algorithm 1

In this section, we prove the time complexity of Algorithm 1.

Lemma 6.1. Algorithm 1 takes Θ
(
min

(
1

β4σ3ϵ · n · log
5(n/β) , 1

β3σ2ϵ · n
2 · log4(n/β)

))
time.

Proof. We walk through each step in Algorithm 1. Recall that each semi-distance query ŵi(Hj) takes Θ(s)
to compute.

First, we draw s samples from P . As we go through the algorithm, we estimate the semi-distances ŵi(Hj)

as needed using these s samples. We begin by setting each W̃ (Hi) to be 0. The process of drawing samples
and initializing proxy estimates takes Θ(s+ n) time.

The algorithm runs in at most T rounds. During a single round, it performs the following actions:

1. Creates Q and draws k samples from the exponential mechanism. Computing the probability of every
Hi according to Q takes Θ(n · s) time. Obtaining k samples from Q can be done in Θ(n + k · log k)
time via computing the CDF and inverse sampling.
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2. Invokes Find-Prompting-Hypothesis (Algorithm 3). For each hypothesis Hj ∈ H, we compute its
scoreη,K,D(Hj). Computing the score involves computing the lift value of every hypothesis in K and
then sorting, which takes Θ(k · s+k · log k) time. Notice that our choice of s in Equation 31 dominates
over our choice of log k. Therefore, Find-Prompting-Hypothesis takes Θ(k · n · s) time.

3. Updates all n proxy distances (unless this is the last round). This takes Θ(n · s) time.

Therefore, each round takes Θ(k · n · s).
Finally, when the algorithm halts, it samples a distribution from Q as output. Given there are at most T
iterations, the total time spent is Θ(T ·k ·n · s). Substituting the values of s, T , and k (Equations 31, 32, 33)
yields the desired result.

7 Computing the Prompting Scores

The wrapper algorithm iteratively seeks a hypothesis Hi ∈ H that can lift a significant portion of other
hypotheses in H. Concretely, we want to distinguish the following cases, when Hj is drawn from Q:

PrHjℓ
∼Q

[[[
ŵi(Hjℓ)− W̃ (Hjℓ) ≥ σ′

]]]
≥ η vs. PrHjℓ

∼Q

[[[
ŵi(Hjℓ)− W̃ (Hjℓ) ≥ σ′

]]]
<

η

4
. (36)

Computing the exact probability in Equation 36 is costly, so we estimate them by sampling. Specifically, we
draw a list of hypotheses K = [Hj1 , · · · , Hjk ] from Q, where k is the number of samples. We compute the
empirical fraction of hypotheses in K that Hi lifts significantly. If k is sufficiently large, then the empirical
estimate closely approximates the probability.

However, the result is highly sensitive if we naively count the number of hypotheses in K who have lift values
above a threshold σ′: a single change in the dataset could shift every lift value from below σ′ to above σ′,
thus shifting the count from 0 to n. To reduce sensitivity, we instead calculate an empirical quantile of the
lift values. Specifically, we use the η/2-quantile of all lift values that Hi induces for sampled hypotheses in K.
We call this value scoreη,K,D(Hi), which is an approximation of the probability in Equation 36 and it allows
us to distinguish between the two cases. In particular, if scoreη,K,D(Hi) is η/4-close to the true probability,
then

• If Hi can σ′-lift Hj with probability at least η, then scoreη,K,D(Hi) is at least σ′.

• If Hi can σ′-lift Hj with probability less than η/4, then scoreη,K,D(Hi) is less than σ′.

In Section 7.1, we prove in Lemma 7.4 that the output of Algorithm 2 has low sensitivity with respect to
changes in the input dataset D. In Section 7.2, we prove that if the number of hypotheses sampled is large
enough, then the value of scoreη,K,D(Hi) accurately approximates how often Hi could lift hypotheses in H
by σ′.

Algorithm 2 Compute scoreη,K,D(Hi)

1: procedure Compute-Score(Hi, η, K, D)
2: T = [] ▷ initialize a list to store lift values induced by Hi for each Hjℓ ∈ K
3: for Hjℓ ∈ K do
4: Append ŵi(Hjℓ)− W̃ (Hjℓ) to T ▷ assume query access to ŵi(Hjℓ), access to W̃ (Hjℓ)

5: Sort T in non-increasing order
6: return T [⌈η/2 · |K|⌉] ▷ return ⌈η/2 · |K|⌉-th largest lift value
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7.1 Sensitivity of the score

In the following lemmas, we compute sensitivities to support the privacy analysis of our scoring mechanism.
Throughout, we consider sensitivity with respect to the private dataset D; all other inputs to each function
are assumed to be public and fixed. Lemma 7.1 shows that any quantile of a sorted list can change by
at most the size of the individual perturbations of elements in that list. Lemma 7.2 shows the sensitivity
of the empirical semi-distance ŵi(Hj) by 1/s, and Lemma 7.3 shows that the sensitivity of W̃ (Hj) is also
1/s. Finally, Lemma 7.4 combines these results to prove that the overall score function scoreη,K,D(Hi) has
sensitivity 2/s.

Lemma 7.1. Let x = [x1, . . . , xn] be a sorted non-increasing list. For all i ∈ [n], let x′
i := xi + δi, where

|δi| ≤ ∆. Sort the set {x′
i}ni=1 into a non-increasing list y = [y1, ..., yn]. Then, for all i ∈ [n], |yi − xi| ≤ ∆.

Proof. Fix i ∈ [n]. We claim yi ≤ xi +∆. Suppose for a contradiction that yi > xi +∆. Define the set of
indices

S := {j ∈ [n] : x′
j > xi +∆}.

Because y is ordered, there are i values in y, namely y1, . . . , yi, that must be greater than xi+∆. Therefore,
there must be at least i values of j such that x′

j > xi + ∆, so |S| ≥ i. However, notice that if k ≥ i, then
x′
k /∈ S because

x′
k ≤ xk +∆ ≤ xi +∆.

Therefore, only indices j < i can be contained in S, which is a contradiction since there are only i− 1 such
indices. The other direction yi ≥ xi − ∆ is proved similarly. To verify that this bound is tight, consider
δi = ∆ for all i ∈ [n].

Lemma 7.2. Let Hi, Hj be two hypotheses in H. With respect to the dataset D, the sensitivity of ŵi(Hj) is
1/s.

Proof. Notice that Hj(Si,j) has no dependence on D. However, P̂ (Si,j) can vary by at most 1/s depending
on if the differing data point is in Si,j . Therefore, ∆(ŵi(Hj)) = 1/s.

Lemma 7.3. Let Hj ∈ H and A ⊆ H. With respect to the dataset D, the sensitivity of W̃ (Hj) =
maxHk∈A wk(Hi) is 1/s.

Proof. Notice that W̃ (Hj) is a maximum taken over a set of empirical semi-distances. Since the maximum
is a particular quantile, by Lemma 7.1 and Lemma 7.2, the sensitivity of W̃ (Hj) is 1/s.

Lemma 7.4. Fix Hi ∈ H. Let K be a public list that consists of hypotheses in H. In other words, consider
K to be given and fixed. With respect to the dataset D, the sensitivity of scoreη,K,D(Hi) is 2/s. Precisely,

∆(scoreη,K,D(Hi)) = sup
D,D′∈X⊗s

Ham(D,D′)=1

|scoreη,K,D(Hi)− scoreη,K,D′(Hi)| = 2/s.

Proof. Consider the sensitivity of the lift value Hi induces on Hj , defined as ŵi(Hj)−W̃ (Hj). By Lemma 7.2
and Lemma 7.3, the sensitivity of each term is 1/s, so the sensitivity of ŵi(Hj) − W̃ (Hj) is 2/s. Since
Algorithm 2 returns a fixed quantile of the lift values, and each lift value has sensitivity at most 2/s,
Lemma 7.1 implies that scoreη,K,D(Hi) also has sensitivity 2/s.

7.2 Accuracy of the score

In the following lemma, we discuss the accuracy of the score. In fact, we show that the score helps us to
distinguish the two cases defined in Equation 36.

26



Lemma 7.5. Let K = [Hj1 , ...,Hjk ] be a list of hypotheses, where each Hjℓ represents an i.i.d. sample from
Q. If k is at least

12 log(n/βSCO)

η
,

then with probability at least 1 − βSCO (taken over the randomness of Hjℓ ’s) the following holds for every
Hi ∈ H:

1. If Hi is (σ′, η)-prompting with respect to Q, then scoreη,K,D(Hi) is at least σ′.

2. If Hi is not (σ′, η/4)-prompting with respect to Q, then scoreη,K,D(Hi) is less than σ′.

Proof. Fix a candidate hypothesis Hi ∈ H. For each Hjℓ ∈ K, use an indicator variable 1ŵi(Hjℓ
)−W̃ (Hjℓ

)≥σ′

to determine whether Hi can lift Hj by at least σ or not. Notice the expectation of this indicator variable
equals to the probability that Hi lifts Hj by at least σ′,

EHjℓ
∼Q

[[[
1ŵi(Hjℓ

)−W̃ (Hjℓ
)≥σ′

]]]
= PrHj∼Q

[[[
ŵi(Hj)− W̃ (Hj) ≥ σ′

]]]
.

We use the following empirical estimator, Z̄i, for the true probability:

Z̄i :=
1

t

t∑
ℓ=1

1ŵi(Hjℓ
)−W̃ (Hjℓ

)≥σ′ .

Now, we consider the two cases we had in the lemma and apply the Chernoff bound.

1. If Hi is (σ′, η)-prompting with respect to Q, we have:

PrHj∼Q

[[[
ŵi(Hj)− W̃ (Hj) ≥ σ′

]]]
≥ η.

Using a Chernoff bound, we obtain:

PrHjℓ
∼Q

[[[
Z̄i ≤

η

2

]]]
≤ PrHjℓ

∼Q

[[[
Z̄i ≤

(
1− 1

2

)
EHjℓ

∼Q

[[[
1ŵi(Hjℓ

)−W̃ (Hjℓ
)≥σ′

]]]]]]
≤ exp

(
−tEHjℓ

∼Q

[[[
1ŵi(Hjℓ

)−W̃ (Hjℓ
)≥σ′

]]]
/8
)

≤ exp (−t η/8) ≤ βSCO

n
.

Therefore, with probability ≥ 1 − βSCO/n, at least η/2 fraction of the hypotheses in K can be lifted
by Hi by at least σ′. This implies Hi is (σ′, η/2)-empirical-prompting with respect to K. This further
implies that there are at least ⌈tη/2⌉ entries among the lift values in T that are at least σ′. Therefore,
the ⌈tη/2⌉-th largest lift values must be at least σ′. Thus, scoreη,K,D(Hi) is σ′ as desired in the
statement of the lemma.

2. If Hi is not (σ′, η/4)-prompting with respect to Q, then

PrHj∼Q

[[[
ŵi(Hj)− W̃ (Hj) ≥ σ′

]]]
< η/4.

Consider X be a binomial random variable with parameter (t, η/4). Clearly, X/t is stochastically larger
than Z̄i, meaning for any fix threshold x the probability of X/t > x is larger than the probability of
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Z̄i > x.

PrHjℓ
∼Q

[[[
Z̄i > η/2

]]]
< PrX∼Bin(t,η/4)

[[[
X

t
> η/2

]]]
= PrX∼Bin(t,η/4)

[[[
X

t
> (1 + 1) ·E

[[[
X

t

]]]]]]
≤ exp

(
− t η

12

)
≤ βSCO

n
.

Thus, with probability ≥ 1 − βSCO/n, fewer than η/2 fraction of lift values exceed σ′. This implies
that Hi is not (σ′, η/2)-empirical-prompting with respect to K. This further implies that there are less
than ⌈tη/2⌉ entries of lift values at least σ′. Thus, scoreη,K,D(Hi) is less than σ′.

Using a union bound, we can show the above holds for all the hypotheses in H. Hence, the proof is complete.

8 Finding a Prompting Hypothesis

To privately find a prompting hypothesis given the scores computed in Algorithm 2, we use the sparse vector
technique [DR+14, LSL16]. We feed a stream of scores into Algorithm 3, which privately outputs either
the index of the hypothesis which was detected to have a score above 3σ′

4 , or ⊥, if no hypotheses have
sufficiently high scores. With high probability, we can guarantee that, if the mechanism outputs i, then
scoreη,K,D(Hi) >

σ′

2 , and, if the mechanism sees a hypothesis Hi with scoreη,K,D(Hi) > σ′, it will not output
⊥.

Algorithm 3 An algorithm for privately finding a prompting hypothesis
1: procedure Find-Prompting-Hypothesis(ϵ,∆, σ′, η,H,K, D)
2: ϵ1 ← ϵ

2
3: ϵ2 ← ϵ− ϵ1

4: ρ← Lap
(

∆
ϵ1

)
5: τ ← 3σ′

4
6: τ̂ ← τ + ρ
7: for Hi ∈ H do
8: νi ← Lap

(
2∆
ϵ2

)
9: scoreη,K,D(Hi)← Compute-Score(Hi, η,K, D) ▷ Algorithm 2

10: if scoreη,K,D(Hi) + νi ≥ τ̂ then
11: return Hi and halt
12: return ⊥ and halt

Theorem 6 (Theorems 3.23 and 3.24 of [DR+14]). Suppose we are given parameters ϵ,∆ > 0 and σ′, η ∈
(0, 1]. Assume we are given two lists of hypotheses H and K such that scoreη,K,D(·) has sensitivity at most ∆ ≤

σ′ϵ2
32 log(2/βSVT) . Then the Find-Prompting-Hypothesis Procedure in Algorithm 3 receives ϵ,∆, σ′, η,H,K,
and D as its input and outputs Hi or ⊥ with ϵ-privacy such that, with probability at least 1− βSVT:

1. If Find-Prompting-Hypothesis outputs Hi ∈ H, then scoreη,K,D(Hi) >
σ′

2 .

2. If there exists Hi such that scoreη,K,D(Hi) > σ′, then Find-Prompting-Hypothesis does not output
⊥.
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Proof overview: Theorem 6 follows from Theorems 3.23 and 3.24 in [DR+14]. The privacy guarantee
and the first statement of the theorem’s accuracy guarantee are stated directly in [DR+14], while the second
accuracy statement is the contrapositive of the second statement in [DR+14], Theorem 3.24.

Proof. Find-Prompting-Hypothesis is an instance of the sparse vector technique [DR+14]. When ∆ is
an upper bound on the sensitivity of the outputs of Compute-Score, the privacy of the algorithm holds
by Theorem 3.23 in [DR+14].

The proof of accuracy of Find-Prompting-Hypothesis is a simple modification of Theorem 3.24 in
[DR+14], removing the requirement that the last query (or, in this case, hypothesis) is the only query
with a score close to being above the threshold.

Let τ = 3σ′

4 be the threshold of the mechanism. We want to find conditions on σ′ such that if Algorithm 3
outputs Hi, then scoreη,K,D(Hi) > τ− σ′

4 = σ′

2 , and, if Algorithm 3 outputs ⊥, then for all i, scoreη,K,D(Hi) <

τ + σ′

4 = σ′. We will then use these conditions to establish bounds on ∆. Note that the second statement
here is the contrapositive of the second statement in our theorem statement.

Observe that it is sufficient to find conditions on σ′ such that, with probability at most 1− βSVT:

max
i∈[n]
|νi|+ |ρ| ≤

σ′

4
. (37)

Recall that we don’t halt at i if:

scoreη,K,D(Hi) + νi < τ + ρ

=⇒ scoreη,K,D(Hi) < τ + ρ− νi

≤ τ + |ρ|+ |νi|

≤ τ +
σ′

4
by Equation 37 .

Further, if we do halt at i, then:

scoreη,K,D(Hi) + νi ≥ τ + ρ

=⇒ scoreη,K,D(Hi) ≥ τ + ρ− νi

≥ τ − (|ρ|+ |νi|)

≥ τ − σ′

4
by Equation 37 .

Thus, to find σ′ satisfying Equation 37, we can equivalently find conditions on σ′ such that:

Pr

[[[
|ρ| ≥ σ′

8

]]]
≤ β

2
and Pr

[[[
max
i∈[n]
|νi| ≥

σ′

8

]]]
≤ β

2
.

By the properties of the Laplace distribution and the union bound, we find σ′

4 ≥
8∆
ϵ2

log
(

2n
βSVT

)
.

This results in a bound on ∆ of:
∆ ≤ σ′ϵ

32 log (2n/βSVT)
.
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