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Abstract—Projector-based adversarial attack aims to project
carefully designed light patterns (i.e., adversarial projections)
onto scenes to deceive deep image classifiers. It has potential
applications in privacy protection and the development of more
robust classifiers. However, existing approaches primarily focus
on individual classifiers and fixed camera poses, often neglecting
the complexities of multi-classifier systems and scenarios with
varying camera poses. This limitation reduces their effectiveness
when introducing new classifiers or camera poses. In this paper,
we introduce Classifier-Agnostic Projector-Based Adversarial
Attack (CAPAA) to address these issues. First, we develop a novel
classifier-agnostic adversarial loss and optimization framework
that aggregates adversarial and stealthiness loss gradients from
multiple classifiers. Then, we propose an attention-based gradient
weighting mechanism that concentrates perturbations on regions
of high classification activation, thereby improving the robustness
of adversarial projections when applied to scenes with varying
camera poses. Our extensive experimental evaluations demon-
strate that CAPAA achieves both a higher attack success rate
and greater stealthiness compared to existing baselines. Codes
are available at: https://github.com/ZhanLiQxQ/CAPAA.

Index Terms—Physical adversarial attack, privacy, projector

I. INTRODUCTION

In multimedia security, adversarial attacks have emerged as
a valuable approach to protect privacy and prevent the misuse
of recognition systems. The development of such attacks has
progressed from traditional methods like the Fast Gradient
Sign Method (FGSM) [1] to more sophisticated methods, such
as attention-based [2] and universal attacks [3]. Although these
methods have made significant progress, they face challenges
in real-world applications. As a result, researchers are in-
creasingly exploring physical attacks—adversarial strategies
that manipulate real-world objects or environments to deceive
machine learning models, particularly in computer vision
systems [4]. An example is the attachment of special markers
or stickers to objects [5].

Projector-based attacks are a form of physical attacks
that deceive classifiers by manipulating illumination conditions
without direct physical contact, as illustrated in Fig. 1 (a). For
instance, OPAD [7] exploits the optical interactions between
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Fig. 1. (a) Classifier-specific projector-based adversarial attack (CSPAA),
aims to deceive a specific classifier under a specific camera capture pose by
projecting adversarial light patterns. (b) Classifier-Agnostic Projector-Based
Adversarial Attack (CAPAA) fools multiple classifiers simultaneously and
is robust to camera pose changes. A real Crock pot (one of the ImageNet
[6] classes) was placed in the scene, after projecting our CAPAA-generated
adversarial light pattern, the camera-captured scene was misclassified by the
three classifiers, such that their output labels were not Crock pot.

projectors and cameras to execute attacks in real-world set-
tings.

A key challenge for such attacks is achieving sufficient
stealthiness, which is critical for their practical effectiveness.
While methods like adversarial color projection [8] have been
proposed, many struggle with this aspect. Recent metrics like
hiPAA [9] provide a comprehensive evaluation framework by
considering multiple factors, including effectiveness, robust-
ness, and stealthiness.

While SPAA [10] improves stealthiness and robustness
by modeling the project-and-capture process with a neural
network, it remains limited to single-classifier scenarios with
fixed camera poses. This restriction is particularly problem-
atic given the growing use of ensemble classifiers [11], as
projector-based attacks optimized for a single classifier often
fail to transfer effectively. Moreover, even minor camera pose
perturbations can significantly degrade attack performance, a
vulnerability that current pose-specific methods cannot easily
overcome.

To overcome these challenges, we propose CAPAA
(Classifier-Agnostic Projector-Based Adversarial Attack), a
method designed to enhance attack robustness across vari-
ous classifiers and camera poses. Specifically, for classifier-
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agnostic scenarios, CAPAA introduces a novel multi-objective
loss function that enables joint attacks across multiple clas-
sifiers. Additionally, we incorporate attention-driven gradient
weighting, which focuses subtle light perturbations on regions
with high classification activation. These non-trivial designs
improve the robustness and stealthiness of the attack.

Our contributions are summarized as follows:
• To our best knowledge, CAPAA is the first classifier-

agnostic, projector-based adversarial attack approach.
• We introduce a new classifier-agnostic adversarial loss

and optimization framework that aggregates adversarial
and stealthiness loss gradients from multiple classifiers,
allowing for more effective and flexible projector-based
attacks across different classifiers.

• We propose an attention-based gradient weighting mech-
anism that focuses perturbations on regions of high
classification activation, enhancing the robustness of ad-
versarial projections even when camera pose changes.

• Experimental evaluation across 10 setups and 7 camera
poses demonstrates that CAPAA outperforms existing
methods in terms of both stealthiness and success rates.

II. METHOD

A. Problem formulation
Adversarial attacks. Let f be an image classifier that maps an
image I to a vector of N -class probabilities, f(I) ∈ [0, 1]N ,
where fi(I) is the probability of the i-th class. The goal of
adversarial attack is to perturb the input image with almost
imperceptible noise δ, such that the classifier predicted class
ŷ either matches a target label yt (targeted attack) or differs
from the true label y (untargeted attack):

ŷ = argmax
i

fi(I + δ)

{
= yt, targeted
̸= y, untargeted

subject to D (I, I + δ) < ϵ. (1)

The function D measures image similarity, and is usually used
to control the stealthiness of adversarial attack with a small
threshold ϵ(ϵ > 0).
Projector-based adversarial attacks. Extending Eqn. 1 to the
physical world that uses a projector to alter the light condition,
and denote the physical scene as s, denote the projector’s
projection process, and the camera’s capture process as πp and
πc, respectively. Then, given an input image x, the projected
light of the projector can be expressed as πp(x). In a specific
camera pose γ, the scene captured by the camera under
projected light can be represented as: Ix,γ = πc(πp(x), s, γ).
For simplicity, we define the composite project-and-capture
process as: π(.) = πc(πp(.), s, γ), and we have Ix,γ = π(x, γ).

Projector-based adversarial attacks aim to generate an ad-
versarial image/pattern x′ as projector input, such that when
projected to the physical scene and captured as Ix′,γ , it causes
classifier f to misclassify the scene:

ŷ = argmax
i

fi(Ix′,γ)

{
= yt, targeted
̸= y, untargeted

subject to D (Ix′,γ , Ix0,γ) < ϵ, (2)

where Ix0,γ is the camera-captured scene illuminated by
gray light x0, i.e., without adversarial projection. Previous
classifier-specific methods [7], [10] are based on the formula-
tion in Eqn. 2. Although straightforward, they may fail when
applied to other classifiers, because the adversarial projection
is generated using feedback from a specific classifier. Further-
more, as adversarial projections may become occluded, they
may also fail when the camera pose γ changes.

B. Classifier-Agnostic Projector-Based Adversarial Attack
(CAPAA)

To address the issues above, we propose CAPAA to generate
adversarial projection x′ that can perform classifier-agnostic
attack, and still be robust when camera pose changes:

∀f (k) ∈ {f (1), f (2), ..., f (n)}

ŷ(k) = argmax
i

f
(k)
i (Ix′,γ)

{
= yt, targeted
̸= y, untargeted

subject to D (Ix′,γ , Ix0,γ) < ϵ, (3)

where f (k) ∈ {f (1), f (2), ..., f (n)} is the k-th classifier to be at-
tacked. To ensure robust and stealthy attacks, we alternatively
minimize adversarial and stealthiness losses below:

x′ = argmin
x′

αLadv

(
Îx′,γ

)
+D

(
Îx′,γ , Ix0,γ

)
, (4)

where α = −1 for targeted attacks and α = 1 for untargeted
attacks. D is perceptual color distance ∆E (i.e., CIEDE2000
[12]), and it has been experimentally demonstrated to better
align with human visual perception and produce more robust
and transferable attacks [13] compared with lp norm. Îx′,γ rep-
resents the simulated camera-captured adversarial projection
rather than the real one (Ix′,γ) to avoid including the physical
project-and-capture process π in the optimization loop because
π is non-differentiable and it is highly inefficient even with
gradient-free optimization. Inspired by [10], we use a neural
network named PCNet π̂θ (parameterized by θ) to approximate
the physical project-and-capture process π. PCNet consists
of two components: ShadingNet (for photometry) and Warp-
ingNet (for geometry), as shown in Fig. 2. The simulated
project-and-capture process is denoted as Îx′,γ = π̂θ,γ(x

′)
, with θ representing its parameters. PCNet is trained by
minimizing the loss between the real captured projections Ix,γ
and the inferred ones Îx,γ :

θ = argmin
θ

∑
i
LPC

(
Îxi,γ0

= π̂θ′,γ0
(xi), Ixi,γ0

)
, (5)

where LPC is pixel-wise L1 + DSSIM loss, γ0 is the camera
pose where PCNet is trained, and {(xi, Ixi,γ0)}Mi=1 forms M
pairs of real projected and captured images for training.
Classifier-Agnostic adversarial loss. We now introduce the
adversarial loss function Ladv for classifier-agnostic attacks.
For classifier-agnostic untargeted attacks, an intuitive solution
is to use the weighted sum of the adversarial loss of each
classifier. Denote z

(k)
i (·) as the k-th classifier’s output logit

(raw classification score) of the i-th label, which is related
to fk

i by: fk
i = softmax(z(k)i ). Then, our untargeted classifier-

agnostic adversarial attack loss is given by

Ladv

(
Îx′,γ

)
=

∑n

k=1
ωk · z(k)i

(
Îx′,γ0

)
, (6)



Fig. 2. (a) Overview of CAPAA. We first input the adversarial projection x′ (initialized with gray image x0) and the camera image Ix0,γ0 to the trained
PCNet to obtain the inferred projection Îx′,γ0

. After generating perturbation attention maps (PAM) for each classifier, we calculate their weighted sum A
for attention-based gradient weighting. The optimization follows an alternating mechanism, i.e., if Îx′,γ0

successfully attacks the classifiers, the stealthiness
loss gradient is calculated and weighted by A to update x′. Otherwise, the classifier-agnostic adversarial loss gradient is applied to update x′, as outlined
in Algorithm 1. (b) Perturbation attention map A generation. For each classifier, we first generate its class activation map (CAM) of the camera-captured
scene image Ix0,γ0 using Grad-CAM++ [14]. The weighted sum of these individual CAMs is utilized as our PAMs’ A, enabling our CAPAA to generate
adversarial projections towards the most salient regions of the object.

where ωk stands for the weight of the k-th classifier.
A more challenging problem is the targeted attack, where

the above simple weighted sum of the adversarial loss of
each classifier may fail, as the simulated projector-based
attack may fail in the real world, due to the perturbations
of the complex environment. In such cases, the classifier may
recognize the real camera-captured object under the adversarial
projection as neither the object’s true class nor the attack’s
target class, but rather as a class similar to the target class.
For example, when projecting an adversarial pattern onto
the object Teddy to fool the classifier into recognizing it
as rooster, the classifier might instead output hen. This is
because the original softmax function inherently emphasizes
the largest logit, and adversarial attacks may produce right-
above-the-margin perturbations, which are less robust after
real-world project-and-capture processes. To address this issue,
we add stricter constraints to the classifier’s output logits
by controlling the temperature of the LogSoftmax function,
such that the adversarial attack is only successful when the
classifier’s target logit is significantly higher than the other
classes:

Ladv

(
Îx′,γ

)
=

∑n

k=1
ωk · LogSoftmax

(
z
(k)
t

(
Îx′,γ0

)
/T

)
, (7)

where the parameter T acts as a temperature parameter, and it
is dynamically adjusted during the optimization process. When
T = 1, the softmax function behaves as a standard output layer
for classifiers. For T > 1, the Softmax distribution becomes
smoother. In adversarial training, this helps classifiers with
standard Softmax outputs generate adversarial examples that
better distinguish between the target class and similar classes
(e.g., hen and rooster), thereby reducing ambiguity.
Attention-based gradient weighting. To improve the robust-
ness of the adversarial projection under varying camera poses,
we propose an attention-based gradient weighting mechanism.
It is based on the observation that (1) adversarial projections
may be occluded or move out of the camera’s field of view
when the camera pose changes. However, most existing meth-
ods apply perturbations uniformly across all regions, and may
fail when the camera pose changes. (2) Classifiers often focus
on specific regions of the object when making predictions.

Therefore, we propose to focus perturbations on regions with
strong classification activation, as shown in Fig. 2 (b).

To find the regions of strong classification activation, an
intuitive method is to use an object detector, such as YOLO
[15], to locate the object and apply perturbations within its
bounding box. However, this introduces additional complexity
and potential reliability issues with detection. Instead, we
employ an attention mechanism, specifically Grad-CAM++
[14], to find the class activation map (CAM) on the object.
Then, in each adversarial attack iteration, we weigh the loss
gradient using CAM, focusing the perturbations on regions
with high classification activation, as shown in Eqn. 8.

∂LCAPAA

∂x′ = A⊙
(

∂Ladv

(
Îx′,γ0

)
∂x′︸ ︷︷ ︸

adversarial loss gradient

+
∂Lstl

(
Îx′,γ0

, Ix0,γ0

)
∂x′︸ ︷︷ ︸

stealthiness loss gradient

)
, (8)

where A is the perturbation attention map (PAM) represented
by CAM, and ⊙ denotes element-wise multiplication. The
overall process of CAPAA is illustrated in Fig. 2 and Algo-
rithm 1. To elucidate, we first initialize x′ with a plain gray
projector image x0 and set µ = 1/N for each classifier’s PAM
A(k). We set the learning rate β1 = 2 for minimizing the
adversarial loss and β2 = 1 for minimizing the stealthiness
loss. We then iteratively update x′ by minimizing the adver-
sarial loss when the adversarial confidence is below a threshold
pthr = 0.9 or the perturbation size is below a threshold
dthr (2 ≤ dthr ≤ 5). Otherwise, we minimize the stealthiness
loss. The final output adversarial projection x′ is the one that
is adversarial and has the smallest perceptual color distance
∆E to the original projector image x0.

III. EXPERIMENTAL EVALUATION

A. Experiment setup

As shown in Fig. 3, our setup consists of a projector and a
camera, both facing a target object to be attacked. We start by
capturing the object image under gray light x0 and training
PCNet. We then generate adversarial patterns using four
different methods, including CAPAA, for both targeted (10
targets) and untargeted attacks. Next, we project the generated



Fig. 3. Overview of the experimental evaluation. First, we sample the object and train PCNet. Then, we use different methods (e.g., CAPAA) to generate the
adversarial projections. After that, we project the adversarial patterns onto the object and move the camera to capture the scene in different poses. Finally,
the captured images (the object with superimposed adversarial projection) are fed to different classifiers for prediction.

Algorithm 1: CAPAA: Classifier-Agnostic Projector-
Based Adversarial Attack
Input:
x0, Im: projector plain gray image, projector direct light mask
Is: camera-captured scene under x0 projection
A: perturbation attention maps (PAM)
µ(k): weight of the k-th classifier’s PAM
K: number of iterations
pthr: threshold for adversarial confidence
dthr: threshold for ∆E perturbation size
β1, β2: step sizes for adversarial and stealthiness losses
Output: x′: projector input adversarial image

Initialize x′
0 ← x0

A ←
∑N

k=1 µ
(k)A(k)

for j ← 1 to K do
Îx′,γ0

← π̂θ,γ0(x
′
j−1)

d← D
(
Îx′,γ0

, Ix0,γ0

)
if fyt(Îx′,γ0

) < pthr or d < dthr then
g1 ← A⊙ α∇x′Ladv

(
Îx′,γ0

)
// min. adversarial loss

x′
j ← x′

j−1 + β1 ∗ g1
∥g1∥2

else
g2 ← −A⊙∇x′d // min. stealthiness loss
x′
j ← x′

j−1 + β2 ∗ g2
∥g2∥2

end if
x′
j ← clip(x′

j , 0, 1)
end for
return x′ ← x′

j that is adversarial and has smallest d

adversarial patterns onto the object and capture the scene under
different camera poses, e.g., the original pose, different angles
(±15°, ±30°) and different focal lengths (±5mm). Finally, we
feed the camera-captured images into three classifiers (ResNet-
18 [16], VGG-16 [17], and Inception v3 [18]) for real-world
projector-based adversarial attack evaluation.
Evaluation metrics. To measure the attack success rate and
stealthiness, we define a stealthiness-constrained attack suc-
cess rate metric for the camera-capture adversarial projection
Ix′,γ :

S(k)
h (Ix′,γ) =


1, if ŷ = argmax

i
fi(Ix′,γ)

{
= yt, targeted
̸= y, untargeted

and D (Ix′,γ , Ix0,γ) ≤ h

0, otherwise.

This metric ensures that a projector-based attack is successful
only when it fools the given classifier and its stealthiness
∆E is no greater than h. Then, we plot the success rate vs
stealthiness diagrams of all compared methods. As shown in
Fig. 6(a) - (c), the horizontal axis corresponds to the pertur-
bation threshold ∆E [12], and the vertical axis represents the

TABLE I
QUANTITATIVE COMPARISONS FOR CLASSIFIER-AGNOSTIC MULTI-POSE

UNTARGETED ATTACKS. FOUR STEALTHINESS THRESHOLDS
dthr ∈ {2, 3, 4, 5} ARE USED TO GENERATE ADVERSARIAL PROJECTIONS
(2ND COLUMN). COLUMNS 3 TO 6 PRESENT STEALTHINESS METRICS FOR
camera-captured ADVERSARIAL PROJECTIONS, COLUMN 7 INDICATES THE

AVERAGE TOP-1 SUCCESS RATE, AND COLUMN 8 SHOWS THE AVERAGE
TOP-1 SUCCESS RATE across all stealthiness thresholds OVER 10

DIFFERENT SETUPS, AND EACH SETUP CONSISTS OF 7 CAMERA POSES.

Attacker dthr Linf ↓ L2 ↓ ∆E ↓ SSIM↑ U.top-1 Avg. attack
success rate

SPAA [10]

2 5.11 6.38 2.25 0.914 51.43%

64.68%3 7.16 8.94 3.01 0.862 62.86%
4 9.02 11.18 3.83 0.828 68.73%
5 10.64 13.08 4.63 0.805 75.71%

CAPAA w/o
attention

2 5.24 6.55 2.29 0.911 71.90%

82.02%3 7.23 9.04 3.05 0.860 81.43%
4 9.04 11.20 3.87 0.827 87.14%
5 10.56 12.98 4.66 0.804 87.62%

CAPAA
classifier-specific

2 4.73 5.89 2.09 0.927 51.59%

61.75%3 6.43 7.96 2.80 0.889 62.70%
4 7.72 9.47 3.47 0.868 65.08%
5 8.49 10.37 3.92 0.858 67.94%

CAPAA (ours)

2 4.77 5.95 2.10 0.930 74.76%

82.02%3 6.36 7.85 2.82 0.895 81.90%
4 7.48 9.15 3.46 0.877 84.76%
5 8.01 9.74 3.83 0.871 86.67%

cumulative success rate Ch at a given ∆E threshold h:

Ch =
1

PNH

∑P−1

j=0

∑N

k=1

∑H

l=1
S(k)
h (Ix′

l
,γj

), (9)

where P , N , H are the number of camera poses, the num-
ber of image classifiers to be attacked, and the number of
generated adversarial perturbations, respectively. In particular,
S(k)
h (Ix′

l
,γj

) indicates whether the l-th camera-captured ad-
versarial projection successfully fools the k-th classifier f (k)

at the j-th camera pose, meanwhile, its ∆E is less than h.
Note that we evaluate: (i) targeted attacks at the original pose
(P = 1, Fig. 6 (b)), and (ii) targeted/untargeted attacks across
multiple poses (P = 7, Fig. 6 (a) & (c)).
Compared baselines. We compare our CAPAA with three
baselines: SPAA [10], CAPAA (w/o attention), and CAPAA
(classifier-specific). SPAA [10] is the closest projector-based
adversarial attack method to our CAPAA, but it is classifier-
specific and does not consider attack robustness across other
camera poses. CAPAA (w/o attention) is a degraded CAPAA
that jointly attacks multiple classifiers but with no attention-
based gradient weighting, and CAPAA (classifier-specific) is a
degraded CAPAA without classifier-agnostic adversarial loss,
thus can only attack each classifier individually. Since SPAA
and CAPAA (classifier-specific) cannot perform classifier-



Fig. 4. Qualitative comparisons of classifier-agnostic untargeted attacks across two camera views. The classifier prediction ŷ, including the probabilities, is
displayed on the bottom or right side of each image. The perturbations highlighted by the white dashed boxes, especially in the 5th and 7th columns, indicate
that attention-based attacks, CAPAA and CAPAA (classifier-specific) tend to avoid attacking background regions due to the CAM mechanism, and thus are
more robust against occlusions (caused by camera pose changes) compared to other baselines.

agnostic attacks, we evaluate them in a classifier-specific
manner, i.e., attack each classifier individually, which gives
them advantages over classifier-agnostic ones.

Clearly, CAPAA outperforms all baseline approaches in
terms of stealthiness.

B. Experimental results

Untargeted attack. As shown in Table II, the average attack
success rates of CAPAA and CAPAA (w/o attention) achieve
the highest attack success rates (with a marginal 0.001%
difference) and consistently outperform other methods across
various stealthiness thresholds. Moreover, CAPAA outper-
forms CAPAA (w/o attention) when the stealthiness threshold
dthr ≤ 3 and excels in stealthiness metrics such as Linf, L2,
∆E [12], and SSIM. CAPAA (classifier-specific) enhances
stealthiness. Notably, CAPAA maintains high success rates
while enhancing stealthiness, demonstrating its capability to
generate more robust adversarial projections. The curves in
Fig. 6 (a) further indicate that CAPAA shows the most rapid
growth and the highest cumulative success rate, underscoring
its effectiveness in balancing stealthiness and success rate.

Note that after changing camera poses, some adversarial
projections become invisible due to occlusion. For example,
in Fig. 5, the background perturbations highlighted in white
dashed boxes are out of the camera FOV after changing the
camera pose. In Fig. 4, the background perturbations are
occluded by the object Teddy after changing the camera pose.
However, CAPAA and CAPAA (classifier-specific) are less af-
fected because they can focus adversarial perturbations on the
object by using CAM. Moreover, attention-based techniques

yield stealthier projections; for example, CAPAA (classifier-
specific) and CAPAA exhibit smaller stealthiness (∆E) than
other baselines in the original pose. Notably, in Fig. 4, after a
30° camera shift, only CAPAA achieved two successful attacks
with the highest stealthiness, while SPAA failed in all attempts.
Similarly, as shown in the attacks against Lotion in Fig. 5,
SPAA only succeeded once, whereas CAPAA successfully
fooled all classifiers with a smaller ∆E. Although CAPAA
(w/o attention) also succeeded, but with a higher ∆E. We
also conducted additional experiments attacking Vision Trans-
formers (ViTs) [1] and four unseen classifier architectures.
The results demonstrate consistent superiority over baselines
across all tested models, while revealing limitations for future
improvement (details are in the supplementary material).
Targeted attack. Fig. 6 (c) shows that CAPAA outperforms
other methods in both success rate and stealthiness on targeted
attacks. Note that targeted attacks are much more challenging
than untargeted ones, resulting in lower average success rates.
CAPAA and CAPAA (w/o attention) lead in performance
for classifier-agnostic targeted attacks at the original camera
pose, with CAPAA (w/o attention) tripling the success rate
due to the three classifiers targeted. CAPAA also shows
improved performance when lower stealthiness (i.e., larger
∆E) is allowed, confirming its effectiveness, particularly at
the original camera pose (Fig. 6 (b)).

IV. CONCLUSION AND LIMITATIONS

We propose CAPAA, a classifier-agnostic projector-based
adversarial attack method that is robust even when the camera
pose changes. CAPAA combines a novel classifier-agnostic



Fig. 5. Qualitative results of the classifier-agnostic and multi-pose untargeted attacks. Specifically, the white frames show how the perturbations on the
background are out of the camera FOV after shifting the camera angle.

Fig. 6. Quantitative comparisons on projector-based classifier-agnostic adver-
sarial attacks. (a) Untargeted attacks. (b) Targeted attacks under the original
camera capture pose. (c) Targeted attacks across all camera capture poses.

adversarial loss with an attention-based gradient weighting
strategy to achieve both stealthy and robust adversarial pro-
jections. On a benchmark with 10 setups (10 objects and 7
poses), we show that CAPAA outperforms existing methods
in stealthiness and achieves high attack success rates.
Limitations and future work. Although robust against cam-
era pose changes, CAPAA is not pose-agnostic because it
does not aggregate attack loss gradients from multiple camera
poses. Future work is to incorporate various camera poses to

address this issue.
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CAPAA: Classifier-Agnostic Projector-Based Adversarial Attack

— Supplementary Materials —

V. INTRODUCTION

In this supplementary material, we present the results of
adversarial attacks against Vision Transformers (ViTs) [1].
Using teddy as the target object, we employ Grad-CAM
to analyze attention maps and evaluate attack effectiveness.
As demonstrated in Table II, our proposed CAPAA method
significantly outperforms SPAA in classifier-agnostic multi-
pose untargeted attacks, achieving a 3× higher average attack
success rate against ViT-Base-16. Additionally, Table III re-
veals near-perfect success rates (93.75%) under the original
pose configuration. While these results demonstrate strong
performance, enhancing transferability to newer ViT variants
represents an interesting direction for future research.

TABLE II
QUANTITATIVE COMPARISONS FOR CLASSIFIER-AGNOSTIC MULTI-POSE

UNTARGETED ATTACKS.

Attacker dthr Classifier SSIM↑ L2 ↓ ∆E ↓ Linf ↓ U.top-1 Avg. attack
success rate

CAPAA

2

Inception v3

0.902 14.13 3.75 10.27

20%

48.75%

Resnet-18 20%
VGG-16 40%
ViT-Base-16 0

3

Inception v3

0.861 16.15 4.40 11.98

20%
Resnet-18 40%
VGG-16 100%
ViT-Base-16 20%

4

Inception v3

0.828 18.66 5.32 14.17

20%
Resnet-18 80%
VGG-16 100%
ViT-Base-16 20%

5

Inception v3

0.807 21.13 6.18 16.22

80%
Resnet-18 100%
VGG-16 100%
ViT-Base-16 20%

SPAA

2

Inception v3 0.878 15.44 3.87 11.19 5%

15.31%

Resnet-18 0.882 15.37 3.95 11.19 5%
VGG-16 0.869 13.85 3.72 10.21 10%
ViT-Base-16 0.874 13.90 3.64 10.20 5%

3

Inception v3 0.840 17.13 4.54 12.78 5%
Resnet-18 0.834 15.63 4.35 11.69 15%
VGG-16 0.807 16.47 4.56 12.38 25%
ViT-Base-16 0.835 15.65 4.34 11.76 5%

4

Inception v3 0.812 18.15 5.25 13.92 5%
Resnet-18 0.805 18.09 5.24 13.89 25%
VGG-16 0.775 19.46 5.60 14.93 40%
ViT-Base-16 0.809 18.01 5.14 13.72 5%

5

Inception v3 0.801 18.91 5.64 14.61 10%
Resnet-18 0.792 19.39 6.00 15.20 35%
VGG-16 0.758 21.73 6.48 16.90 45%
ViT-Base-16 0.795 19.62 6.07 15.29 5%

We also evaluated our method through comprehensive ad-
versarial attacks across ten distinct experimental setups, each
comprising 10 objects with 7 poses per object (totaling 70
test cases per setup). The evaluation covered four unseen
classifier architectures: ConvNeXt-Base [2], EfficientNet-B0
[3], MobileNetV3-Large [4], and Swin Transformer-Base [5].
As demonstrated in Table IV, our approach consistently out-
performs the baseline across all classifiers and test conditions.
While these results confirm the robustness of our method under

TABLE III
QUANTITATIVE COMPARISONS FOR CLASSIFIER-AGNOSTIC

POSE-SPECIFIC UNTARGETED ATTACKS.

Attacker Classifier ∆E ↓ SSIM↑ L2 ↓ U.top-1 Avg. attack
success rate

CAPAA
(ours)

Inception v3

4.92 0.838 17.86

100%

93.75%Resnet-18 100%
VGG-16 100%
ViT-Base-16 75%

SPAA

Inception v3 4.85 0.804 17.18 25%

35.94%Resnet-18 5.07 0.798 17.87 44%
VGG-16 5.20 0.773 18.27 50%
ViT-Base-16 4.86 0.801 16.82 25%

varied pose-object combinations, we identify opportunities for
further enhancement in cross-architecture transferability.

TABLE IV
AVERAGE ATTACK SUCCESS RATE FOR CLASSIFIER-AGNOSTIC

MULTI-POSE UNTARGETED ATTACKS. CONVNEXT.B, MOBILENETV3.L
AND SWIN TF. B STAND FOR CONVNEXT-BASE, MOBILENETV3 LARGE

AND SWIN TRANSFORMER BASE, RESPECTIVELY.

Attacker ConvNeXt.B EfficientNet-B0 MobileNetV3.L Swin TF. B

SPAA 36.67% 47.26% 54.64% 26.67%

CAPAA
(ours) 38.57% 50.71% 58.21% 29.29%
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