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ABSTRACT Modern transportation systems are driven by cyber-physical systems (CPS), where cyber 
systems, such as computing infrastructure, and physical systems, such as transportation-related sensors and 
actuators, interact with each other seamlessly. These interactions help enhance transportation safety, mobility, 
energy efficiency, etc. However, increased reliance on automation and connectivity exposes transportation 
CPS to many cyber vulnerabilities. Existing threat modeling frameworks for transportation CPS are often 
narrow in scope, labor-intensive, and require substantial cybersecurity expertise. To address these challenges, 
we present the Transportation Cybersecurity and Resiliency Threat Modeling Framework (TraCR-TMF), a 
large language model (LLM)-based threat modeling framework for transportation CPS that requires limited 
cybersecurity expert intervention. TraCR-TMF identifies threats, potential attack techniques (i.e., methods to 
exploit vulnerabilities), and relevant countermeasures (e.g., attack detection and mitigation strategies) for 
transportation CPS. The open-source MITRE ATT&CK matrix is leveraged for these identifications using 
three LLM-based alternative approaches: (i) a retrieval-augmented generation (RAG)-based approach 
requiring no cybersecurity expert intervention, (ii) an in-context learning-based approach with low 
cybersecurity expert intervention, and (iii) a supervised fine-tuning approach with moderate cybersecurity 
expert intervention. Additionally, TraCR-TMF identifies potential attack paths, leading to the compromise 
of critical assets, by analyzing the vulnerabilities of different entities involved in transportation CPS using a 
customized LLM. Two cases were considered to evaluate the efficacy of TraCR-TMF. First, the framework 
was applied to identify relevant attack techniques for various transportation CPS applications. Results showed 
that 90% of the identified attack techniques were relevant, as validated by cybersecurity experts. Second, the 
framework, along with the LLM fine-tuned for the first evaluation, was used to identify potential attack paths 
leading to the compromise of a target asset in a real-world cyberattack incident involving industrial control 
systems. TraCR-TMF successfully predicted several exploitations, such as lateral movement of adversaries 
within information technology network, data exfiltration, and data encryption for ransomware, that occurred 
during a major real-world cyberattack incident. This validates the framework’s potential transferability. These 
findings show TraCR-TMF’s efficacy in transportation CPS’ threat modeling, while lowering the barrier for 
cybersecurity expertise, and its potential for adaptation across different CPS. 

INDEX TERMS Threat modeling, Cybersecurity, Large language model, Intelligent transportation 
systems, and Transportation cyber-physical systems 
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I. INTRODUCTION 
With the advent of artificial intelligence (AI), automation, 
and the proliferation of wired and wireless communication 
technologies, legacy transportation systems are 
increasingly being supplemented by transportation cyber-
physical systems (CPS). In a transportation CPS 
environment, different cyber systems, such as onboard, 
roadside and cloud-based computing infrastructure, interact 
with different physical systems, such as transportation-
related sensors and actuators. While these systems promise 
enhanced efficiency, safety, and sustainability [1], they also 
introduce a substantially expanded attack surface that can 
be exploited by malicious actors [2], [3]. Cyberattacks on 
transportation CPS could pose serious safety risks, as 
compromised transportation systems can jeopardize human 
lives and disrupt critical daily operations. 

Recent trends highlight a dramatic surge in cyberattacks 
targeting multimodal transportation systems. Between 2017 
and 2022, cyberattacks on road transportation systems 
increased by 400% [4]. Similarly, the aviation sector 
experienced a 530% increase in cyberattacks between 2019 
and 2020 [5], and maritime-related cyber incidents escalated 
by an alarming 900% between 2017 and 2021 [6]. These 
statistics underscore the growing cybersecurity risks faced by 
transportation CPS. Furthermore, transportation CPS could be 
interconnected with other critical infrastructures, including 
power grids, electronic banking systems, and healthcare 
networks. This interconnectivity increases the risk of attack 
propagation across multiple domains, which could lead to 
widespread disruptions orchestrated by individual threat 
actors or nation-state adversaries. As a result, securing 
transportation CPS against evolving cyber threats has become 
a critical concern for transportation stakeholders, security 
professionals, and policymakers. 

Defending multimodal transportation CPS against a broad 
spectrum of potential cyber threats necessitates the 
deployment of both proactive and reactive cybersecurity 
measures. Proactive measures aim to prevent security 
breaches by identifying and mitigating vulnerabilities during 
the design and development phases, while reactive measures 
focus on detection, response, and recovery from cyber 
incidents. One of the most effective proactive strategies is 
threat modeling, which systematically identifies potential 
threats and vulnerabilities before they can be exploited [7], [8]. 
Threat modeling enables cybersecurity professionals to 
analyze security requirements, communicate risks effectively, 
and recommend appropriate resilience, detection, mitigation 
strategies. By incorporating threat modeling early in the 
transportation CPS development lifecycle, we could reduce 
security risks and enhance the overall cybersecurity posture of 
our transportation systems. 

Despite its critical importance, the adoption of threat 
modeling in the transportation CPS domain remains limited. 
Although threat modeling has gained significant traction in the 
software development community, its application to 

transportation CPS has been relatively underexplored. 
Existing studies on threat modeling for transportation CPS, 
which we highlighted in the related work section of this paper, 
are often constrained to specific modes of transportation or 
limited threat scenarios [9], [10], [11]. Moreover, traditional 
threat modeling frameworks require cybersecurity 
professionals to develop a comprehensive understanding of 
involved systems, their interactions, potential vulnerabilities, 
and corresponding threats—a process that is time-consuming 
and complex when performed manually. These challenges 
hinder the widespread adoption of threat modeling within 
transportation CPS, despite its well-documented benefits [12]. 

To address these challenges, this study presents a novel 
threat modeling framework to help enhance the cybersecurity 
and resilience of transportation CPS. In this study, we present 
the Transportation Cybersecurity and Resiliency Threat 
Modeling Framework (TraCR-TMF), which leverages 
existing cybersecurity tools, established threat models, and the 
logical reasoning and generative capabilities of large language 
models (LLMs). TraCR-TMF is a multi-stage threat modeling 
approach that is specifically tailored to assist cybersecurity 
professionals dealing with transportation CPS in conducting 
comprehensive threat assessments and identifying relevant 
countermeasures that could help detect and mitigate the 
identified threats. 

The TraCR-TMF framework offers several advantages. 
First, it incorporates three alternative LLM-based approaches 
to identify relevant attack techniques, i.e., methods to exploit 
vulnerabilities. These LLM-based approaches can extract 
relevant details from structured knowledge bases, such as the 
MITRE Adversarial Tactics, Techniques, and Common 
Knowledge (ATT&CK) matrix, with zero to moderate 
cybersecurity expert interventions. This capability enables the 
automatic identification of attack techniques and their 
corresponding detection and mitigation strategies from the 
MITRE ATT&CK matrix. Additionally, TraCR-TMF offers 
autonomous mapping of potential attack paths and associated 
attack techniques, retrieved from the MITRE ATT&CK 
matrix. These attack paths, identified by analyzing 
transportation CPS application vulnerabilities, could lead to 
the compromise of critical transportation CPS assets. By 
integrating these capabilities, TraCR-TMF streamlines the 
threat modeling process and enhances the accessibility of 
cybersecurity analysis for transportation CPS.  

The rest of this paper is structured as follows: Section II 
presents the key contributions of this study. Section III 
presents a review of related methods and studies. Section IV 
provides briefs on tools and knowledge bases relevant to 
TraCR-TMF and its evaluation cases considered in this study. 
Section V details the technical aspects of TraCR-TMF, 
including the framework’s design and implementation. 
Section VI presents two evaluation cases that assess the 
effectiveness of TraCR-TMF in modeling threats to 
transportation CPS. Finally, Section VII concludes the paper 
by summarizing the findings and the scope for future research. 
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II. CONTRIBUTIONS 
This study aims to address the need for an easy-to-adapt, 
cost-effective threat modeling framework for 
transportation CPS that could assist in identifying 
vulnerabilities, potential threats, and their available 
countermeasures. TraCR-TMF offers LLM-supported 
identification of attack techniques and their corresponding 
detection and mitigation strategies from the widely utilized 
MITRE ATT&CK matrix, i.e., a continuously evolving 
knowledge base of known adversaries, requiring limited 
cybersecurity expert intervention. The key contributions of 
this framework are as follows: 

• A multi-stage threat modeling framework for 
transportation CPS, incorporating widely used open-
source tools and knowledge base, along with three 
LLM-supported adoption strategies. 

• A retrieval-augmented generation (RAG)-based 
architecture to identify specific attack techniques that 
attackers could use to exploit vulnerabilities in a 
transportation CPS, along with the corresponding 
countermeasures, requiring no cybersecurity expert 
intervention. 

• An in-context learning-based approach for attack 
technique and countermeasure identification, leveraging 
an engineered prompt and requiring minimal 
cybersecurity expert intervention. 

• A supervised fine-tuning approach to facilitate the 
identification of relevant attack techniques and 
corresponding countermeasures, requiring moderate 
cybersecurity expert intervention. 

• An LLM-based, asset-centric threat modeling approach 
that leverages an engineered prompt to identify potential 
attack paths and associated attack techniques. This 
asset-centric threat modeling offers insights into the 
multi-layered vulnerabilities of transportation CPS, i.e., 
a chain of vulnerabilities across multiple CPS entities 
that can be exploited together to perform an attack that 
aims to compromise one or more critical assets. 

TraCR-TMF enables (i) systematic identification of 
potential threats, and their categories based on a well-
established threat model, known as STRIDE, (ii) identification 
of known attack techniques, and their existing detection and 
mitigation strategies from the MITRE ATT&CK matrix based 
on the STRIDE-identified threats, and (iii) identification of 
potential attack paths and associated attack techniques for each 
step of the attack path that could compromise a critical 
transportation CPS asset. 

III. RELATED WORK 
Threat analysis or modeling is a well-studied topic in 
cybersecurity; consequently, many studies focus on different 
methods of threat modeling. Systematic reviews of these 
studies have been presented in several survey papers, for 
example, [7], [13], [14], [15], [16], [17], [18], [19], [20], [21], 
[22], which categorized the existing threat modeling methods 

and frameworks from different perspectives, such as 
reviewing them based on the underlying methods or the type 
of systems or applications to which threat modeling is applied. 
In this section, we first present a general overview of different 
existing threat modeling approaches. Second, we present a 
review of the existing threat modeling studies that particularly 
relate to transportation CPS and associated applications. 
Third, we present a review of notable studies that leveraged 
LLMs to automate threat modeling. 

A. THREAT MODELING IN GENERAL 
Threat modeling or analysis has been defined from different 
perspectives in literature. Uzunov and Fernandez [23] defined 
threat modeling as a structured analysis of potential threats or 
attacks in various contexts, such as analysis of threats or 
attacks specific to systems and/or technologies. Another study 
[24] described threat modeling as a technique for identifying 
and documenting security threats in a software system while 
systematically uncovering the system’s strengths and 
weaknesses. In [25], Xiong et al. referred to threat modeling 
as a process for assessing potential threats, risks, and attacks. 
Although threat and risk are used interchangeably in some 
studies, there lies a distinction between them. Al-Fedaghi and 
Alkandari [26] defined risk as a function of vulnerability and 
threat. Thus, analyzing threats is essential in risk assessment. 
In contrast, threat modeling is a structured process for 
identifying, analyzing, and mitigating security threats in a 
system, application, or network. It helps security professionals 
understand potential attack vectors, assess risks, and 
implement appropriate defenses. 

The key aspects of threat modeling can include [20], [27]: 
(i) identifying assets, which implies determining what needs 
protection, for example, data, hardware, and software; (ii) 
determining threats, which refers to recognizing potential 
adversaries and attack vectors; (iii) analyzing potential attack 
paths, which implies exploring how an attacker could exploit 
the existing system vulnerabilities. (iv) assessing risks, which 
involves evaluation of the likelihood and impact of the threats; 
(v) identifying and implementing mitigation strategies: this 
refers to the identification and implementation of appropriate 
security controls based on different analyzed threats. 

The existing threat modeling approaches can be broadly 
categorized as (i) formula-based threat modeling and (ii) 
model-based threat modeling, as presented in [22]. Formula-
based methods are used for threat analysis and risk assessment 
of a system, primarily utilizing tables, textual descriptions, and 
mathematical formulas. In contrast, model-based methods are 
a type of threat analysis approach that employs various models 
to assess system threats and risks, utilizing data flow diagrams, 
graphs, and tree models for modeling and analysis. 

The formula-based methods can be further classified into (i) 
asset-centric, (ii) vulnerability-centric, and (iii) attacker-
centric threat modeling approaches [22]. An asset-centric 
approach, which can be thought of as a top-down approach, 
identifies target assets first and then maps potential attack 
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paths using expert knowledge, which enables early threat 
mitigations. A popular asset-centric method, OCTAVE, was 
introduced by Alberts et al. [28] for analyzing threats in a large 
organization with a multi-layered hierarchy or geographically 
distributed systems. This method involves three phases, as 
follows: (i) building asset-centric threat profiles, (ii) 
identifying infrastructure vulnerabilities, and (iii) developing 
security strategies and plans. In contrast to an asset-centric 
approach, a vulnerability-centric threat modeling approach is 
a bottom-up approach that initiates with a vulnerability of a 
system and analyzes other potential vulnerabilities or failures 
that could be caused by that vulnerability. For instance, the 
Common Vulnerability Scoring System (CVSS) assesses the 
severity of different system-level vulnerabilities so that 
appropriate countermeasures can be prioritized accordingly. 
Finally, an attacker-centric threat modeling approach focuses 
on analyzing potential attackers by assessing their knowledge, 
attack paths, motivations, and available resources. This 
approach enables threat modeling and risk assessment by 
identifying the root cause of attacks. 

The model-based methods can also be further classified into 
(i) graph-based and (ii) attack tree-based threat model 
approaches [22]. Graph-based approaches utilize graphs with 
nodes and directional edges, representing quantitative 
relationships among the nodes. Among the most popular 
graph-based approaches is STRIDE, a Microsoft-developed 
threat modeling tool [29], which utilizes six categories of 
threats, i.e., spoofing, tampering, repudiation, information 
disclosure, denial-of-service, and elevation of privilege, to 
conduct threat modeling. LINDDUN, developed by Deng et 
al. [30], is another popular graph-based threat modeling 
framework that helps identify privacy-related threats. Another 
example of a graph-based threat modeling approach is 
PASTA, which was introduced by UcedaVelez and Morana 
[31]. PASTA is primarily focused on addressing high-risk 
threats to optimize investment and resource utilization. 

In contrast to graph-based threat modeling, tree-based 
approaches utilize a tree to represent the hierarchical 
relationship among nodes. Attack tree is the most used tree-
based threat modeling approach. This method represents 
threats as hierarchical trees, where each branch represents a 
potential attack path. Attack trees are especially useful in 
visualizing complex attack scenarios and understanding 
dependencies. For instance, Saini et al. [32] utilized the attack 
trees concept, originally developed by Bruce Schneier [33], to 
conduct threat modeling for a grid computing security 
subsystem called MyProxy. The MyProxy subsystem, within 
the Globus grid computing toolkit, serves as an online 
credential repository and a certificate authority for its users. 
Saini et al. [32] utilized the SecureITree tool to develop an 
Attack Tree for the MyProxy subsystem. 

 
 

B. THREAT MODELING FOR TRANSPORTATION 
SYSTEMS 
Although threat modeling is widely studied for software 
security in general, its applicability to multimodal 
transportation systems is still limited. In this section, we 
present an overview of notable existing studies related to 
transportation systems threat modeling. 

Ramazanzadeh et al. [11] introduced an automated security 
assistant for transportation CPS’ trheat modeling based on 
their developed quantitative threat modeling algorithm called 
security object-oriented colored Petri nets (SOOCPN). 
SOOCPN classifies threats within a transportation CPS into 
different levels and associated color-coded sublevels based on 
the systems’ security risk quantification. However, this 
approach relies on user-assigned arbitrary ranges of risks for 
defining the different security levels and their sublevels. Since 
such interpretations can vary from person to person, this 
approach poses a challenge for real-world implementations. 

He et al. [9] developed a threat modeling approach for 
maritime transportation systems based on Markov chains to 
characterize domain name system (DNS) rebinding attack 
behaviors (i.e., malicious website tricking a web browser into 
thinking that a public domain name is associated with a private 
IP address) and extract key attack attributes. Simulations 
demonstrated the effectiveness of the approach in detecting 
and mitigating DNS rebinding attacks, enhancing the security 
of maritime internet-of-things (IoT) systems. However, this 
approach primarily focuses on DNS rebinding threats for 
maritime IoT networks, limiting its applicability to identifying 
a wide variety of threats for multimodal transportation CPS. 

Kumar et al. [34] developed a deep learning-supported 
threat modeling framework for maritime IoT to automate 
manual threat analysis and aimed to address the low detection 
and high false alarm rates of existing threat modeling 
solutions. Their approach integrates a long short-term 
memory-based variational autoencoder (LSTM-VAE)-
supported feature extraction, a bi-directional gated recurrent 
unit (Bi-GRU)-based threat detection, and another Bi-GRU-
based attack type identification. However, this approach 
requires extensive training datasets to train the AI models and 
once trained, the models can only identify the type of threats 
they are trained on, limiting the framework’s applicability to 
transportation CPS with a continuously evolving cyber threat 
landscape. 

In another study, Subran et al. [35] applied the STRIDE 
model to analyze threats in electric vehicle charging 
infrastructure by decomposing the charging infrastructure 
architecture and generating threat scenarios using the 
Microsoft threat modeling tool. The authors of [35] developed 
an automated attack simulation platform, Mininet, to replicate 
electric vehicle communication and simulate denial-of-service 
attacks. However, the study primarily focuses on denial-of-
service type threats, leaving other types of threats 
unaddressed. 
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Hamad et al. [36] presented a threat modeling framework 
for modern vehicles by integrating different subsystem-
specific threat models into a generalized model. The authors 
relied on manual threat modeling by reviewing existing 
literature and used the threats as roots for generating attack 
trees. This study focuses on reusability, where attack trees can 
be applied across different vehicle systems. However, the 
authors acknowledged the lack of automation and 
recommended that future work should explore automated 
tools to generate and evaluate attack trees dynamically. 

In summary, the existing threat modeling frameworks for 
transportation CPS are often limited to specific threat types 
and lack automation or wide adoption potential, as discussed 
above. This study aims to address this gap by developing an 
LLM-supported threat modeling framework for transportation 
CPS that offers alternative adoption strategies, reducing the 
responsible organizations’ cybersecurity expertise-related 
constraints. 

C. THREAT MODELING USING LLMs 
With the advent of LLMs, several recent studies have utilized 
the advanced reasoning and text generation abilities of LLMs 
to automate threat modeling approaches. This section presents 
a review of notable related studies. 

Munir et al. [37] presented a RAG-enhanced, LLM-based 
cyberattack detection approach for transit security. The 
authors utilized RAG to retrieve texts from the MITRE 
ATT&CK matrix based on relevant information associated 
with a transit security transportation CPS, specifically 
focusing on the descriptions of physical objects involved in the 
transportation CPS and the information flows among them. 
However, their evaluation was limited to a standard transit 
security application and did not include comparisons with 
other LLM-based strategies, such as in-context learning and 
supervised fine-tuning. 

Gabrys et al. [38] presented a method to utilize a LLM to 
convert intrusion detection systems (IDS) rules into a format 
that can be interpreted by humans and trained several AI 
models to map the observed attacker behaviors to 
corresponding MITRE ATT&CK techniques. This study [38] 
utilized ChatGPT and BERT models for converting the 
Wazuh IDS predefined rules set. However, the requirement of 
a manually labeled training dataset is also indispensable for 
this study. 

Branescu et al. [39] experimented with several BERT-based 
models trained on large cyber security corpus and compared 
their performance against ChatGPT while mapping from the 
MITRE Common Vulnerabilities and Exposures (CVE) to the 
MITRE ATT&CK techniques. The authors claimed their 
strategy can systematically analyze CVE descriptions and map 
them to corresponding ATT&CK tactics. This mapping helps 
understand the potential impact of vulnerabilities and assists 
in prioritizing mitigation efforts accordingly. The authors of 
[39] acknowledged that further exploration including more 

data or metadata is needed to improve the performance of their 
AI models. 

Another study, Nir et al. [40], explored how LLMs can be 
utilized to enhance network IDS by automating threat labeling. 
Nir et al. [40] developed a threat modeling strategy leveraging 
machine learning, deep learning, and behavioral analysis to 
identify anomalies and classify attacks by analyzing network 
traffic data. However, challenges like scalability, high false 
positives, and domain-specific adaptations remain. The 
authors recommended further improvements of their AI 
models incorporating transfer learning, hybrid AI models, and 
adversarial defense mechanisms. 

Based on these reviews, this study is motivated to develop 
a threat modeling framework for transportation CPS that can 
be adopted without being constrained by extensive 
cybersecurity expertise and substantial manual labor 
requirements. To this end, our TraCR-TMF offers different 
alternative adoption strategies leveraging different levels of 
cybersecurity expert intervention and logical reasoning 
capabilities of LLMs, which we present in Section V. 

IV. PRELIMINARIES 
In this section, we briefly discuss a few preliminaries that are 
essential for presenting the TraCR-TMF and its evaluation 
cases considered in this study. The following subsections 
provides the readers with quick introductions to (i) the 
Microsoft Security Development Lifecycle (MS SDL) threat 
modeling tool, which identifies different types of threats in a 
transportation CPS at the first stage of the TraCR-TMF 
(details are presented in Section V-A), (ii) the MITRE 
ATT&CK matrix, which serves as a comprehensive 
cyberattack knowledge base for the second stage of the 
TraCR-TMF (details are presented in Section V-B), and (iii) 
the national intelligent transportation systems reference 
architecture, which provides reference architecture, 
including physical and functional objects, data flow, etc. for 
various transportation CPS applications. 

A. MS SDL THREAT MODELING TOOL 
Developed by Microsoft in 2018, the MS SDL threat 
modeling tool [29] serves as a core component of MS SDL, 
an engineered approach primarily to help web-based 
application and/or software developers identify cyber 
vulnerabilities, threats, potential cyberattacks, and their 
countermeasures. This open-source threat modeling tool 
allows developers to identify and mitigate potential 
cybersecurity issues early in their software or application 
development lifecycle. 

MS SDL threat modeling tool utilizes the STRIDE model 
that categorizes threats into six categories, as follows: (i) 
spoofing, (ii) tampering, (iii) repudiation, (iv) information 
disclosure, (v) denial-of-service, and (vi) elevation of 
privilege [41]. Table I provides a brief description of each of 
these threat categories. This graph-based threat modeling 
tool provides users with a graphical user interface (GUI) for 
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developing data flow diagrams (DFDs) using different 
stencils, such as process, external interactor, data store, data 
flow, and trust boundary [42]. Once the DFD is provided for 
an application, the MS SDL threat modeling tool generates a 
threat report, showcasing the threats associated with each 
interaction observed in the given DFD based on the STRIDE 
model. The tool utilizes a “STRIDE per element” approach, 
which refers to the identification of STRIDE threats for each 
DFD element. A DFD element can be a process, an external 
interactor, a data store, or a data flow. For each threat 
identified by the MS SDL threat modeling tool, the report 
presents the associated STRIDE threat category (as 
presented in Table I), a brief description of the threat, along 
with its potential mitigations. 

B. MITRE ATT&CK MATRIX 
MITRE ATT&CK is a globally recognized cybersecurity 
knowledge base that provides a structured approach to 
understanding and analyzing cyber threats [43]. Developed 
by the MITRE Corp., ATT&CK provides comprehensive 
documentation of real-world adversary behaviors to help 
organizations improve their detection, response, and 

mitigation strategies. This framework is widely used by 
cybersecurity professionals for threat intelligence, security 
operations, incident response, and adversary emulation. 

MITRE ATT&CK is organized into matrices that cover 
different environments, including enterprise, mobile, and 
industrial control systems. Each matrix outlines various 
adversary behaviors that attackers use to infiltrate, persist, 
and execute malicious activities within a network. Each 
matrix includes some common key components, such as 
tactics, techniques, sub-techniques, and procedures. Table II 
presents a brief description of each component, along with 
some examples. For each technique, the MITRE ATT&CK 
provides a list of associated sub-techniques and procedure 
examples as well as the existing detection and mitigation 
strategies for those attacks.  

C. NATIONAL REFERENCE ARCHITECTURE FOR 
INTELLIGENT TRANSPORTATION SYSTEMS 
Transportation CPS plays a pivotal role in modern urban 
infrastructure by facilitating efficient traffic management, 
enhancing safety, and improving mobility. These systems rely 
on a sophisticated network of interconnected physical and 

TABLE I 
STRIDE THREAT CATEGORIES (ADOPTED FROM [41]) 

Threat 
Category Threat Description 

Spoofing The unauthorized access and use of another user's authentication credentials, such as a username and password. 

Tampering The malicious alteration of data, including unauthorized modifications to persistent data (e.g., in a database) or changes to data in 
transit over an open network like the Internet. 

Repudiation A situation where a user denies performing an action without any means to verify the claim. For example, in a system without 
proper logging, an unauthorized operation can be executed without accountability. 

Information 
disclosure 

The unauthorized exposure of information to individuals who should not have access. Examples include users reading files they lack 
permission for or attackers intercepting data transmitted between systems. 

Denial of 
service 

The disruption of access to a system or service, rendering it temporarily unavailable or unusable to legitimate users; for example, 
making a web server inaccessible.  

Elevation of 
privilege 

An unprivileged user gaining higher-level access, potentially compromising or taking control of the entire system. This includes 
scenarios where an attacker bypasses all security defenses and integrates into the trusted system, posing a significant threat. 

 
TABLE II 

Key Components of MITRE ATT&CK (adopted from [43]) 

Component Description Examples 

Tactic 

Tactics represent the high-level objectives or goals that 
an adversary seeks to achieve during an attack. A tactic 
provides a context on why an attacker is performing a 
particular action.  

• Initial Access – Gaining entry into a system or network (e.g., 
phishing, exploiting vulnerabilities). 

• Persistence – Establishing long-term access within a 
compromised environment. 

Technique 
Techniques describe how an adversary achieves a 
specific tactic. Each technique represents a method or 
approach used by attackers to execute their objectives.  

• Phishing (T1566) – Sending deceptive emails to trick users 
into providing credentials. 

• Process Injection (T1055) – Injecting malicious code into 
legitimate processes to evade detection. 

Sub-technique 

Sub-techniques break down techniques into more 
specific methods, offering deeper granularity into how 
adversaries operate. They help organizations refine 
their detection and response strategies by addressing 
precise attack behaviors. 

Sub-techniques of phishing (T1566): 
• Spearphishing Attachment (T1566.001) – Delivering malware 

via an email attachment. 
• Spearphishing Link (T1566.002) – Tricking users into 

clicking a malicious link. 

Procedure 

Procedures define the specific ways in which threat 
actors or malware implement techniques and sub-
techniques. They provide real-world examples of how 
known adversary groups execute attacks.  

Procedures of phishing (T1566): 
• Axiom (G0001) – Axiom has used spear phishing to initially 

compromise victims. 
• Hikit (S0009) – Hikit has been spread through spear phishing 
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functional entities that exchange data to help provide efficient 
and safe transportation services. To analyze the cybersecurity 
challenges within transportation CPS, this study utilizes the 
U.S. Department of Transportation's (USDOT) Architecture 
Reference for Cooperative and Intelligent Transportation 
(ARC-IT) [44]. ARC-IT offers a comprehensive framework 
for transportation CPS design and implementation, 
encompassing detailed service packages and associated 
components. Here, we present a brief introduction to the 
different components of these reference architectures: 

1) SERVICE PACKAGES 
ARC-IT categorizes transportation CPS functionalities into 
156 service packages (to date), distributed across 12 distinct 
domains such as Public Safety, Data Management, and 
Vehicle Safety. Each service package on ARC-IT is 
equivalent to a transportation CPS application that integrates 
physical systems and functional components in a 
transportation CPS environment to address specific 
transportation services.  This list of service packages is 
updated over time to include newly introduced transportation 
CPS.  

2) PHYSICAL AND FUNCTIONAL OBJECTS 
Physical objects represent the tangible entities involved in 
transportation CPS, including centers (e.g., traffic 
management center, emergency management center, payment 
administration center), fields (e.g., roadway equipment, 
intermodal terminal, electric charging station), personal 
devices (e.g., pedestrian, payment device, remote access 
device), support systems (e.g., data distribution system, 
archived data system), and vehicles (e.g., basic transit vehicle, 
basic commercial vehicle). These objects serve as the core 
infrastructure of transportation CPS, enabling critical 
information exchange for operational and security purposes. 
Each physical object is associated with one or more functional 
objects, which are deployment-specific units designed to 
fulfill the functional requirements of the system.  

3) INFORMATIION AND DATA FLOWS 
Information and data flows serve as the backbone of 
transportation CPS communications, facilitating data 

exchange among physical and functional objects. Each 
information flow originates from a physical object, referred to 
as the initiator or source, and is received by another physical 
object, referred to as the acceptor or destination. In contrast, 
data flow refers to the data exchange between two functional 
objects in a transportation CPS application. According to these 
definitions of information and data flows used in ARC-IT, 
each information flow (between two physical objects) can be 
broken down into several data flows (between two functional 
objects).  

V. OVERVIEW OF TRACR-TMF 
The TraCR-TMF, presented in Fig. 1, is a threat modeling 
framework that requires limited cybersecurity expert 
intervention and leverages different LLM-enabled approaches 
to (i) identify potential attack techniques that could exploit the 
vulnerabilities within transportation CPS, and (ii) analyze 
these attack techniques to identify potential attack paths 
leading to critical transportation CPS assets. As depicted in 
Fig. 1, this multi-stage threat modeling is carried out by 
augmenting a primary threat report generated from the MS 
SDL threat modeling tool with relevant attack techniques and 
their corresponding detection and mitigation strategies 
retrieved from the MITRE ATT&CK matrix. Once relevant 
MITRE ATT&CK techniques have been identified, a 
customized LLM is utilized to perform an asset-centric threat 
modeling in which the LLM identifies potential attack paths, 
along with associated attack techniques, leading to the 
compromise of specified assets. The different stages of the 
TraCR-TMF, presented in Fig. 1, are detailed in the following 
subsections. 

A. STRIDE-BASED THREAT IDENTIFICATION (STAGE 1) 
The TraCR-TMF utilizes the open-source MS SDL threat 
modeling tool [29] to model threats based on the STRIDE 
model. MS SDL threat modeling tool requires the systems or 
reference architecture as a DFD, which is modeled through the 
tool’s GUI. As mentioned in Section IV-A, a DFD can include 
four types of elements, as follows: (i) Processes: functional 
objects in a transportation CPS application are modeled as 

 
FIGURE 1. Overview of TraCR-TMF for transportation CPS. 
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processes; (ii) External interactors: terminators, i.e., entities 
that are involved (e.g., a human user) but fall outside the 
design scope of a transportation CPS application, are modeled 
as external interactors; (iii) data stores: in-house, external, or 
cloud-based data stores are modeled as data stores; and (iv) 
data flows: interactions between functional objects, or 
between a functional object and an external interactor, are 
modeled as data flows. In addition, a trust boundary is used to 
indicate a physical object involved in a transportation CPS 
application that may include one or more functional objects. 

Once the DFD, along with the trust boundaries, of a 
transportation CPS application is provided, the MS SDL threat 
modeling tool generates a STRIDE-based threat report. This 
report outlines spoofing, tampering, repudiation, information 
disclosure, denial-of-service, and elevation of privilege-
related threats for each interaction in a DFD. These threats are 
identified for any processes, external interactors, data stores, 
or data flows associated with each interaction in a DFD. 
However, this report does not provide information on specific 
attack techniques associated with each threat that attackers 
could utilize to exploit the vulnerabilities. Knowledge of these 
attack techniques, along with their existing detection and 
mitigation methods, would enable application developers to 
implement targeted countermeasures for effective prevention, 
detection, and mitigation of potential threats. In this study, we 
address this gap through the TraCR-TMF’s LLM-based 
specific MITRE ATT&CK technique identification 
approaches (presented in Section V-B) and further extend it to 
identify exploitable multi-layered vulnerabilities that could 
compromise critical transportation CPS assets (presented in 
Section V-C). 

B. LLM-BASED MITRE ATT&CK TECHNIQUE 
IDENTIFICATION (STAGE 2) 
The TraCR-TMF utilizes an LLM to identify attack techniques 
from the MITRE ATT&CK matrix that could be relevant in 
exploiting vulnerabilities within transportation CPS based on 
the threats identified by the STRIDE model. In this study, we 
consider three different approaches with LLMs to map the 
STRIDE-based threats to the potentially associated MITRE 
ATT&CK techniques that require different levels of 
cybersecurity expert intervention. These approaches are as 
follows: (i) a RAG-based approach with an LLM, (ii) an in-
context learning-based approach with an LLM, and (iii) a 
supervised fine-tuning approach using an LLM. The input that 
is included in the prompts of all these approaches, which we 
refer to as the “basic input” in this study, includes the 
following components (as presented in Fig. 2): 

• Data Flow: A name is specified for the data flow being 
analyzed. 

• Data Flow Definition: An explanation of the data flow 
is provided 

• Initiator and Acceptor: Descriptions of the physical 
objects responsible for initiating and receiving the 

associated information flow, which includes the data 
flow under analysis, are included. 

• Functional Objects and Processes: Descriptions of the 
functional objects that initiate or receive the data flow 
and the processes associated with these functional 
objects are provided, if known. 

• Security Attributes: Required or recommended 
security attributes, such as confidentiality, integrity, 
availability, authentication, and encryption, are 
provided, if known. 

• STRIDE-based Threats: The initially identified 
threats based on the STRIDE model are included from 
the MS SDL threat report. 

In addition to the basic input, the different LLM-based 
approaches used in the TraCR-TMF utilize different sets of 
instructions, queries, examples, etc., in the prompts. The 
following sections explain these approaches in detail. 
1) RAG-BASED APPROACH WITH AN LLM 
RAG, first introduced by a group of META AI researchers in 
2020 [45], became a widely popular technique in natural 
language processing for its ability to enhance text generation 
models. RAG provides a way of incorporating relevant 
external knowledge from a database or document repository in 
addition to relying on pre-trained knowledge. To this end, we 
consider an RAG-based approach to complement the 
generative power of LLMs with retrieval mechanisms to 
identify pertinent attack techniques from the MITRE 
ATT&CK matrix. Fig. 3 presents the architecture of our RAG-
enabled LLM-based mapping to the MITRE ATT&CK 
techniques, comprising the following steps: 

• Initial Identification of Relevant Cyberattacks: The 
process initiates with a user input, known as the vanilla 
prompt, which primarily includes a query to identify the 
cyberattacks that are potentially relevant to a given data 
flow. The query provided in the vanilla prompt is as 
follows: “What are the possible cyberattacks that can 
be used to attack this information flow? Return them in 

 
FIGURE 2.  Basic input for LLM. 
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a Python dictionary format with the key being the 
cyberattack technique and the value being the technique 
description.” In addition to this query, the prompt 
contains the basic input, which we presented in Fig. 2 
before. The vanilla prompt is processed by an LLM, i.e., 
GPT-4o, which we denote as the LLM agent #1 in Fig. 
3. GPT-4o is optimized for inference-based reasoning 
[46], making it well-suited for identifying implicit 
cyberattack techniques in our framework. In addition, 
the model’s faster response time, enhanced coherence, 
and context retention ability compared to its legacy 
models [47] motivated us to consider it for the TraCR-
TMF. As shown in Fig. 3, the LLM agent #1 serves as 
an intelligent agent that generates a list of general 
cyberattack techniques based on the query and the basic 
input. 

• Construction of a Vector Database from the MITRE 
ATT&CK Matrix: MITRE ATT&CK descriptions are 
retrieved from files using a data connector, i.e., 
SimpleDirectoryReader [48]. The files are then 
processed in batches to optimize memory usage. Next, 
the text data is converted into embeddings utilizing one 
of OpenAI's latest embedding models, i.e., text-
embedding-3-small model [49]. This embedding model 
is chosen due to its cost-effectiveness and balance 
between speed and accuracy [50]. If an index already 
exists, new documents are inserted into it incrementally. 
The indices persist, enabling future use without 
requiring reprocessing. A VectorIndexRetriever [51] is 
set up to retrieve relevant embeddings based on 
similarity. Finally, a SimilarityPostprocessor [52] is 
applied with a cutoff of 0.6 to filter out low-relevance 
results [52]. A cutoff of 0.6 was selected as it offers a 
balanced trade-off between precision and recall. A 

higher threshold excludes potentially useful but 
moderately similar entries, reducing recall, especially in 
cases where relevant descriptions use varied phrasing. 
Conversely, a lower threshold introduces semantically 
weak matches, reducing precision and increasing noise. 
The 0.6 cutoff showed to effectively filter out irrelevant 
content while retaining diverse yet meaningful results. 

• Retrieval Candidate ATT&CK Techniques from 
Vector Databases: The list of general cyberattacks 
produced by the LLM agent #1 is transformed into 
vector embeddings using OpenAI's text-embedding-3-
small model [49]. These embeddings are then matched 
against pre-vectorized descriptions of MITRE 
ATT&CK techniques using cosine similarity to identify 
the most relevant attack techniques. The top three 
similar MITRE ATT&CK techniques identified by the 
LLM agent #1 for each general cyberattack are then 
selected and compiled into a candidate list, as depicted 
in Fig. 3. 

• Identification of ATT&CK Techniques using a RAG 
Prompt: The candidate MITRE techniques are utilized 
to create a new prompt, which we refer to as the RAG 
prompt, as shown in Fig. 3. This prompt incorporates 
the candidate technique IDs, names, and descriptions 
retrieved from the MITRE ATT&CK matrix. It is 
followed by the query: “Which MITRE ATT&CK 
techniques from the table above can be used to attack 
the data flow? Provide the technique IDs in Python list 
format.” Additionally, the RAG prompt includes 
descriptions of the associated data flow, the initiator and 
the acceptor of the data flow to enrich the context. The 
RAG prompt is then processed by another LLM agent, 
which we refer to as the LLM agent #2 (also based on 
GPT-4o). LLM agent #2 refines the information and 

 
FIGURE 3.  RAG-based LLM architecture for ATT&CK technique mapping. 
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generates a final list of specific MITRE ATT&CK 
techniques relevant to the data flow. Again, the GPT-4o 
model is chosen for this task due to its superior logical 
reasoning compared to OpenAI’s legacy models [46]. 

The RAG-based approach leverages the complementary 
strengths of generative and retrieval-based approaches, 
enabling contextually informed predictions of relevant 
MITRE ATT&CK techniques. Unlike the other two 
approaches we present in the following sections, this RAG-
based approach identifies relevant MITRE ATT&CK 
techniques without any specific examples or retraining that 
would require a human cybersecurity expert’s intervention. 
Therefore, this approach is the most automated, requiring no 
cybersecurity expert intervention for relevant attack technique 
identification among the three approaches offered by the 
TraCR-TMF. In addition, this RAG-based approach enables 
the retrieval of relevant information from the most up-to-date 
list of attack techniques available in the MITRE ATT&CK 
matrix at the time of retrieval. Consequently, the information 
retrieved by this approach is not limited to the training cutoff 
period, as is the case with supervised fine-tuning approaches. 
2) IN-CONTEXT LEARNING APPRAOCH WITH AN LLM 
In-context learning (ICL) is a technique that leverages the 
capabilities of LLMs to perform tasks without requiring 
retraining. Instead, by providing examples and instructions 
directly within the prompt, ICL enables an LLM to generalize 
and produce more accurate results for new inputs. We consider 
the gpt-4o-mini-2024-07-18 model with ICL to identify the 
MITRE ATT&CK techniques that are potentially relevant to 
a given transportation CPS data flow. Three variations of ICL 
are considered in this context: (i) zero-shot, (ii) one-shot, and 
(iii) few-shot learning. 

In zero-shot learning, the LLM is provided with only task 
instructions along with the basic input shown in Fig. 2, without 
any examples. This approach utilizes the model's ability to 
generalize solely based on its pre-trained knowledge and the 
given context. Thus, zero-shot learning is equivalent to using 
the basic input without any examples. 

In one-shot learning, the LLM is given a single example of 
data flow along with its corresponding MITRE ATT&CK 
techniques identified by human cybersecurity experts. This 
example provides the model with a reference for 
understanding the task and the expected output format. 

In a few-shot learning, the LLM is supplied with multiple 
examples of data flows and their corresponding MITRE 
ATT&CK technique identified by human cybersecurity 
experts. By exposing the model to various instances, this 
approach improved the LLM’s comprehension of the task and 
enhanced its ability to generalize. 

Fig. 4 illustrates the ICL prompt given to the LLM. The 
prompt is designed to ensure that the LLM receives adequate 
context to perform the requested task effectively. Since the 
ICL-based approach includes a few worked-out examples 
verified by cybersecurity experts, this approach is considered 
to require low cybersecurity expert intervention. 

3) SUPERVISED FINE-TUNING APPROACH WITH AN 
LLM 
The supervised learning approach utilizes the power of pre-
trained transformer-based models. Due to the complexity and 
lengthiness of our input texts, we selected ModernBERT over 
BERT. ModernBERT is a cutting-edge, encoder-only model 
that was trained on a wide range of English texts. Unlike the 
original BERT, it can handle longer input sequences [53], 
which is important in our case as the longest input sequence in 
our dataset requires nearly seven times BERT’s 512-token 
limit. The base version of ModernBERT, with its 22 layers and 
149 million parameters, is chosen for this task since 
ModernBERT has been shown to strike a balance between 
strong performance and computational demands [53]. Unlike 
other state-of-the-art LLMs with superior reasoning 
capability, such as GPT-4o, the ModernBERT is open source 
and can be downloaded and run on a local machine. All these 
advantages of using ModernBERT make it an appropriate 
candidate for our attack technique identification task.  

To perform supervised fine-tuning of the ModernBERT 
model, we follow a transfer learning approach, i.e., we start 
with a pre-trained model and fine-tune it for the task of our 
interest. The primary advantage of transfer learning in this 
case over training a model from scratch is that by leveraging 
the knowledge already embedded in the pre-trained model 
from its initial training on large online datasets, the model does 
not need to learn basic features from the ground up, which 
yields an improved performance especially when the target 
dataset is comparatively smaller. 

 
FIGURE 4.  Prompt for LLM while using ICL. 
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In machine learning, supervised methods can be used when 
the training dataset contains ground-truth labels. In a multi-
label classification problem, each instance can be associated 
with more than one label. Consider, we denote the dataset as 
follows: 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = {(𝐱𝐱𝟏𝟏, 𝐲𝐲𝟏𝟏), (𝐱𝐱𝟐𝟐, 𝐲𝐲𝟐𝟐), (𝐱𝐱𝟑𝟑, 𝐲𝐲𝟑𝟑), … , (𝐱𝐱𝐍𝐍, 𝐲𝐲N)}, 
where 𝐱𝐱𝐢𝐢 ∈ ℝ𝑁𝑁 is the representation of the 𝑖𝑖𝑡𝑡ℎ instance, and 
𝐲𝐲𝐢𝐢 = [𝑦𝑦𝑡𝑡,1,𝑦𝑦𝑡𝑡,2,𝑦𝑦𝑡𝑡 ,3, … ,𝑦𝑦𝑡𝑡,𝐾𝐾] is a binary vector with 𝑦𝑦𝑡𝑡,𝑗𝑗 = 1 
indicating the 𝑗𝑗𝑡𝑡ℎ label is associated with the 𝑖𝑖𝑡𝑡ℎ  instance 
based on the ground-truth list, and 𝑦𝑦𝑡𝑡 ,𝑗𝑗 = 0 indicating 
otherwise. Then, our goal is to train a multi-label classifier 
based on ModernBERT that can perform the mapping from 𝐱𝐱𝐢𝐢 
to 𝐲𝐲𝐢𝐢. In the context of mapping a basic input associated with 
a transportation CPS data flow to a list of relevant MITRE 
ATT&CK techniques, 𝐱𝐱𝐢𝐢 represents the 𝑖𝑖𝑡𝑡ℎ basic input and 𝐲𝐲𝐢𝐢 
represents the relevance of the MITRE ATT&CK techniques 
present in the ground-truth list. The binary cross-entropy loss 
function considered for retraining the ModernBERT model is 
given by, 

𝐿𝐿 =
1
𝑁𝑁𝑁𝑁
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where 𝑦𝑦�𝑡𝑡,𝑗𝑗 is the probability assigned by the classifier for the 
𝑗𝑗𝑡𝑡ℎ MITRE ATT&CK technique to be associated with the 𝑖𝑖𝑡𝑡ℎ 
data flow. To enhance the model’s robustness and 
generalizability, a five-fold cross-validation is performed. The 
model is trained for 20 epochs with a batch size of 8, a learning 
rate of 0.00002, and a weight decay of 0.01. The number of 
epochs was set to 20 as further training yielded diminishing 
F1-score in early tests, and a batch size of 8 was selected to 
ensure all input representations could be processed within the 
memory capacity of an A100 GPU. The learning rate and 
weight decay were empirically tuned to optimize model 
performance. The model with the highest F1 score is selected 
to perform the multi-label classification of the information 
flows to the relevant MITRE ATT&CK techniques. 

C. ASSET-CENTRIC THREAT MODELING USING 
CUSTOMIZED LLM 
Asset-centric threat modeling focuses on identifying threats 
associated with specified assets that could lead the assets to be 
compromised. These assets can be physical or functional 
objects, data stores, or data flows in a transportation CPS 
application. This type of modeling helps cybersecurity 
professionals realize potential attack paths and associated 
attack methods or tools that could be utilized by attackers to 
compromise an organization’s valuable assets. Predicting 
these attack paths helps identify proactive and reactive 
security measures that need to be incorporated to minimize 
associated risks and impacts. To this end, the TraCR-TMF 
offers an asset-centric threat modeling approach to predict 
potential attack paths leading to compromising critical assets. 
In this context, an attack path can consist of multiple steps 
where an attack propagates from one entity to another within 
a transportation CPS network until it reaches the target asset 

that the attacker wants to compromise. This is obtained by 
analyzing the potential MITRE ATT&CK techniques 
identified for different data flows in a transportation CPS 
application or infrastructure using a customized LLM. Each 
predicted attack path is broken down into individual attack 
steps that complete the attack path. Here, an attack step within 
a predicted attack path implies the attack propagating from one 
entity (e.g., an initiator or an acceptor of a data flow) to another 
entity. In addition, relevant attack techniques that could be 
used by attackers to conduct each step of the predicted attack 
paths are explored. The following sections detail how this 
asset-centric threat modeling is carried out by an LLM in the 
TraCR-TMF. 
1) BUILDING A CUSTOMIZED GPT WITH CHATGPT 
Powered by GPT-4o, OpenAI now offers users the 
opportunity to build their customized versions of ChatGPT 
with a single line of instruction [54]. This enables users to 
build their customized GPT with expertise in specialized tasks. 
In addition, enabling OpenAI’s memory feature helps the 
customized GPT retain insights over sessions to refine 
interactions over time. To build our customized GPT for asset-
centric threat modeling, we provide the following one-line 
instruction to ChatGPT: “Build a customized GPT for me that 
will serve as an expert-level cybersecurity analyst.” Given this 
prompt, ChatGPT builds a customized GPT, specialized for 
cybersecurity analysis. 
2) PROMPT CONSTRUCTION FOR ASSET-CENTRIC 
THREAT MODELING 
Once the customized GPT is ready for user interactions, the 
GPT is provided with a prompt to perform the asset-centric 
threat modeling. This prompt includes the names of the 
initiator and the acceptor of each data flow, along with their 
associated MITRE ATT&CK techniques, in a table format, as 
shown in Fig. 5. This information is followed by a set of 
instructions and a query, asking the customized LLM to 
identify potential attack paths leading to a specified asset to be 
compromised along with the associated MITRE ATT&CK 
techniques that can be utilized in each step of the attack path. 

As shown in Fig. 5, the customized GPT is also instructed 
to present its output in a table format with one column showing 
the attack paths it predicted that could compromise the 
specified asset, and another column explaining the attack 
execution steps with associated MITRE ATT&CK 
techniques. Thus, the output from the customized GPT 
provides users with asset-centric threats that would help 
cybersecurity experts think critically about how such attacks 
could be detected, mitigated, or prevented in the first place. 

VI. EVALUATION OF TRACR-TMF 
To evaluate the TraCR-TMF, we consider two evaluation 
cases as follows: (i) the evaluation of ARC-IT transportation 
CPS applications, and (ii) the evaluation of a major real-
world cyberattack incident. The first evaluation focuses on 
identifying the potential MITRE ATT&CK techniques that 
could exploit the vulnerabilities of different transportation 
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CPS applications using the applications’ planning-level 
systems architecture. In contrast, the second evaluation, i.e., 
evaluation of a major real-world cyberattack incident, 
focuses on asset-centric threat modeling to identify potential 
attack paths leading to compromising a critical transportation 
CPS asset, in addition to the identification of potential 
MITRE ATT&CK techniques that could exploit the 
vulnerabilities. As the real-world cyberattack incident has 
already taken place and the compromised assets are known 
for the incident, the attack paths leading to the compromised 
assets, as predicted by the asset-centric threat modeling, are 
verifiable. However, this verification is not possible with the 
first evaluation that focuses only on the planning-level 
transportation CPS applications present in ARC-IT. In 
addition, the LLMs, fine-tuned or customized for the ARC-
IT transportation CPS application evaluation, are directly 
applied without any further modifications to evaluate the 
real-world incident considered in this study. This provides an 
assessment of the TraCR-TMF’s transferability beyond what 
the framework’s constituent LLMs are fine-tuned or 
customized for. 

A. EVALUATION METRICS 
To evaluate the performance of the TraCR-TMF when we 
utilize LLMs to identify attack techniques that are relevant to 
a given transportation CPS data flow, we consider three 
standard metrics of classification tasks: (i) precision, (ii) recall, 
and (iii) accuracy. For a binary classification task, these 
metrics are calculated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (2) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 (3) 

𝐹𝐹1 =
2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

 (4) 

where, 𝑇𝑇𝑃𝑃 represents the number of true positives, 𝐹𝐹𝑃𝑃 
represents the number of false positives, and 𝐹𝐹𝑁𝑁 represents the 
number of false negatives. Precision and recall measure the 
proportion of correctly predicted positive instances among all 
predicted positives, and among all actual positives, 
respectively. F1-score is the harmonic mean of precision and 
recall. 

To further clarify how these metrics are calculated for a 
multi-label classification task, let us consider that 𝑃𝑃𝑡𝑡  denotes 
the predicted set, 𝐺𝐺𝑡𝑡 denotes the ground-truth set, and 𝑂𝑂𝑡𝑡  
denotes the overlap between 𝑃𝑃𝑡𝑡  and 𝐺𝐺𝑡𝑡. Then, precision and 
recall are given as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 =
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𝑁𝑁
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where, 𝑁𝑁 is the total number of information flows considered. 

B. EVALUATION OF ARC-IT TRASNPORTATION CPS 
APPLICATIONS 
The objective of this evaluation is to assess the TraCR-TMF’s 
efficacy in identifying the relevant attack techniques by 
applying the framework to a wide range transportation CPS 
applications available on ARC-IT. To this end, we consider 26 
different randomly selected transportation CPS applications 
from ARC-IT [44]. In total, we extracted 433 different data 
flows that are related to these transportation CPS applications 
along with their associated initiator, acceptor, functional 
objects and processes, and recommended security attribute 
information, such as confidentiality, integrity, availability, 
encryption, and authentication requirements. This information 
helps us construct the basic input, shown in Fig. 2, except for 
the part dedicated to STRIDE-based associated threats that 
come from the MS SDL threat modeling tool. 

Since ARC-IT serves as a database for the U.S. national 
reference architectures for transportation CPS applications 
that are widely adopted by transportation professionals for 

 
FIGURE 5.  Prompt for asset-centric threat modeling. 
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implementation, it provides a detailed physical view of the 
architectures, outlining different involved entities and their 
interactions. These reference architectures provide adequate 
information to develop their corresponding DFDs in the MS 
SDL threat modeling tool. Once a transportation CPS 
application architecture is transferred to the MS SDL threat 
modeling tool, the tool automatically identifies potential 
threats for each data flow within the application according to 
the STRIDE model. Fig. 6 presents a snapshot of the threat 
report generated by the MS SDL tool for an example 
transportation CPS application that is referred to as the 
“CVO03: Electronic Clearance” service package in ARC-IT 
[55]. The threat information obtained from the MS SDL threat 
modeling report completes the basic input (shown in Fig. 2) 
requirements for each data flow. 

The basic input is then coupled with instructions and 
queries to prepare the prompts to be processed by the LLMs 
to identify relevant attack techniques from the MITRE 
ATT&CK matrix. Unlike the RAG-based approach 
discussed in Section III-B, which does not require a 
predetermined list of relevant attack techniques, the ICL-
based approach requires a few predetermined relevant attack 
techniques to be provided as examples. On the other hand, 

the supervised fine-tuning approach requires a ground-truth 
list of relevant attack techniques to train on. Preparing this 
predetermined or ground-truth list of relevant attack 
techniques for each data flow is a task that can only be done 
by cybersecurity experts. In this study, we established this 
list by consulting with two cybersecurity experts with 
decades of academic and industrial experience in the 
cybersecurity domain. Nevertheless, this list remains 
incomplete since the MITRE ATT&CK matrix includes over 
200 different attack techniques, all of which could not be 
reviewed by the cybersecurity experts for each of the 433 
data flows considered in this evaluation. However, unlike 
traditional supervised machine learning or deep learning 
models, LLMs are not only able to perform multi-label 
classification tasks based on their learning from provided 
examples or supervised training, but LLMs can go beyond 
the given examples or its training domain due to its original 
training on a vast amount of data and ability to understand 
the contexts [56]. 

As mentioned in Section III-B, TraCR-TMF utilizes three 
different LLM-based approaches to map the STRIDE-based 
threats to the potentially relevant attack techniques from the 
MITRE ATT&CK matrix, as follows: (i) a RAG-based 

 
FIGURE 6.  Snapshot of the STRIDE-based threat report of “CVO03: Electronic Clearance” application. 
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approach, (ii) an ICL-based approach, and (iii) a supervised 
fine-tuning approach. The LLM-predicted relevant attack 
techniques are compared with the corresponding ground-
truths to determine the precision, recall, and F1 score for each 
LLM-based approach. Table III presents these results for the 
three LLM-based attack technique identification approaches. 

As observed from Table III, the supervised fine-tuning 
approach outperformed the RAG-based and the ICL-based 
attack technique identification approaches. While the RAG-
based approach performed the worst, it should be noted that 
this approach solely relied on the basic input and utilized its 
multistage attack identification architecture, as shown in Fig. 
3, to identify relevant attack techniques from the MITRE 
ATT&CK matrix. In contrast, the ICL-based approach 
leveraged in-prompt examples to learn relevant attack 
techniques and the supervised fine-tuning approach leveraged 
retraining the pre-trained LLM to enhance the model’s attack 
technique identification performance. Among zero-, one-, and 
few-shot ICL approaches, the few-shot learning performed the 
best. While we tested few-shot learning by providing two to 
nine examples within a single prompt, few-shot learning with 
eight examples outperformed the other ICL approaches, which 
is reported in Table III as few-shot learning. This better 
performance of eight example-based few-shot learning can be 
attributed to striking the right balance between better learning 
from additional examples and potential hallucinations due to a 
context overload issue induced by lengthy prompts with 
excess examples [57]. Although the supervised fine-tuning 
approach outperformed the best-performing ICL-based 
approach in this evaluation, fine-tuning requires establishing 
ground truths, which could be challenging to establish with 
limited cybersecurity knowledge and expertise. In contrast, 
providing a handful of examples to leverage ICL might seem 
easier for adoption in some cases. 

Another insight into the performance of the LLM-based 
relevant attack identification approaches is that the LLMs 
identified several attack techniques outside their training 
domain, several of which were found to be relevant. As 
mentioned earlier, the ground-truth list is not complete. The 
cybersecurity experts, whom we consulted to develop the 
ground-truth list, reviewed several, but not all, of the existing 
MITRE ATT&CK techniques. Even if we had established a 
ground-truth list by considering every attack technique from 
the MITRE ATT&CK matrix, new attack techniques would 
be introduced and added to the matrix in the future. Thus, 
LLMs’ ability to identify relevant attack techniques beyond 
their training domain is useful in this regard.  

To better assess LLM’s performance in identifying relevant 
attack techniques from the MITRE ATT&CK matrix, we 
randomly selected 50 data flows out of the 433 data flows and 
again consulted with the cybersecurity experts to evaluate 
each LLM-predicted attack technique that is not present in our 
ground-truth list of relevant attack techniques. Based on this 
second stage validation from the cybersecurity experts, we 
reevaluated the performance of the supervised fine-tuning 

approach on the randomly selected 50 data flows, which is 
presented in Table IV. From Table IV, it is observed that once 
we updated the ground-truth list with the help of the 
cybersecurity experts considering all the attack techniques 
identified by the supervised LLM, the precision improved 
from 0.61 to 0.90 (i.e., a 47.5% improvement) for the 
randomly selected 50 data flows. This high precision indicates 
that about 90% of the attack techniques identified by the 
supervised LLM were correct. This demonstrates that the 
supervised LLM can identify more types of attack techniques 
from the MITRE ATT&CK matrix than it was originally 
trained on during fine-tuning, which can be attributed to its 
prior extensive knowledge base and contextual reasoning 
ability. This helps us consider the supervised LLM-based 
approach for our second evaluation case related to a major 
real-world cyber incident. 

C. EVALUATION OF A MAJOR REAL-WORLD 
CYBERATTACK INCIDENT 
The objectives of this real-world cyberattack incident 
evaluation are as follows: (i) to assess the transferability of the 
TraCR-TMF by applying its underlying supervised LLM to 
transportation CPS outside the model’s training domain, (ii) to 
perform an asset-centric threat modeling of transportation CPS 
using the TraCR-TMF to identify potential attack paths and 
associated attack techniques leading to a target asset, (iii) to 
assess the attack paths and the associated attack techniques 
identified by the framework. To this end, we selected the 
Colonial Pipeline double extortion ransomware attack, a major 
real-world cyberattack incident that took place in 2021. 

This Colonial Pipeline incident serves as an evaluation case 
for which we can assess the attack paths and the associated 
techniques identified by the TraCR-TMF. To perform an 

TABLE III 
PERFORMANCE OF TRACR-TMF IN IDENTIFYING RELEVANT ATT&CK 

TECHNIQUES 

LLM-based Approach Precision Recall F1 Score 

RAG 0.33 0.20 0.25 

ICL 

Zero-shot 0.18 0.18 0.18 

One-shot 0.38 0.31 0.34 

Few-shot 0.47 0.48 0.48 

Supervised fine-tuning 0.77 0.62 0.69 

 
TABLE IV 

Performance of Supervised LLM on 50 Randomly Selected Transportation 
CPS Data Flows 

Supervised LLM-based 
Approach Precision Recall F1 Score 

Based on initial ground truths 
set by the experts 0.61 0.48 0.54 

Based on the LLM-identified 
attack techniques with 
subsequent expert validation 

0.90 0.55 0.69 
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asset-centric threat modeling using our framework, a target 
asset must be specified for which we aim to identify (i) the 
potential attack paths leading to that asset, and (ii) the 
associated attack techniques for each exploitation involved in 
those attacks. Ideally, if the framework could accurately 
predict the potential attack paths and associated attack 
techniques, an attacker could utilize any of those means to 
compromise the target asset. Choosing a widely discussed 
real-world cyberattack incident, like the Colonial Pipeline, is 
useful for this evaluation since different public and private 
security organizations have published several reports 
highlighting their insights related to the incident, which helps 
us better understand the actual cyberattack incident and 
compare the predictions of our framework with the actual 
incident. In addition, to identify the relevant attack techniques 
for each data flow, the LLM fine-tuned for our first evaluation 
case is utilized without any additional training, which enables 
us to assess the transferability of the TraCR-TMF. In the 
following sections, we provide a brief description of how the 
attack took place to the best of our knowledge, state our 
assumptions for this evaluation, present the threat modeling 
evaluation conducted based on the TraCR-TMF, and discuss 
the evaluation results. 
1) COLONIAL PIPELINE RANSOMWARE: KNOWN 
FACTS 
Colonial Pipeline is among the major movers of gasoline and 
other refined fuels on the East Coast of the U.S. In May 2021, 
an attacker group utilized the Darkside malware, a 
ransomware-as-a-service (RaaS) provided by a hacker group, 
to attack the Colonial Pipeline network [58], [59]. About a 
week after the attack began, the attacker group demanded a 
$4.4 million ransom in cryptocurrency from the Colonial 
Pipeline authority. Within this period, the attacker exfiltrated 
over 100 gigabytes of data outside the Colonial Pipeline’s 
information technology (IT) network before encrypting the 
company’s valuable data [60]. 

According to multiple sources [58], [60], [61], the attackers 
accessed the IT network of the Colonial Pipeline through a 
compromised virtual private network (VPN) account near the 
end of April 2021. The account credentials might have been 
leaked as part of a separate data breach, or the attackers might 
have blackmailed a legitimate account holder, or the attackers 
might even guess the credentials, which could not be 
confirmed based on the publicly available resources. In 
addition, the VPN account did not have multi-factor 
authentication (MFA) enabled, which helped the attackers 
gain access to the VPN using the compromised VPN account 
credentials only [60], [61]. Once gained access, the attackers 
moved laterally within the IT network, gradually exfiltrated 
over 100 gigabytes of the company’s valuable data, and 
installed ransomware to encrypt the files. Finally, on May 7, 
the attackers left a note demanding ransom on one of the 
company’s computers [60]. 
2) ASSUMPTIONS FOR COLONIAL PIPELINE 
EVALUATION 
To apply the TraCR-TMF for carrying out a threat modeling 
of the Colonial Pipeline’s industrial control systems, we need 
its systems architecture first. However, the actual architecture 
of the pipeline’s industrial control systems is a confidential 
information that is not publicly available. To this end, we 
assume that the Colonial Pipeline follows a network 
architecture similar to the widely known Purdue Model for 
industrial control systems networks [62] for this evaluation. 
The Purdue model provides a hierarchical design framework 
that segregates the software and hardware parts of the network 
into six different levels, as depicted in Fig. 7. In this 
architecture, levels 0 through 3 comprise the operational 
technology (OT) network, and levels 4 through 5 represent the 
IT network. During the actual ransomware attack, the 
attackers compromised levels 4 and 5 (i.e., the company’s IT 
network), and there was no evidence indicating the attackers 
got into the OT network [58]. Once the ransomware incident 

 
FIGURE 7.  Purdue model for industrial control systems (adopted from [62]). 
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was identified, the Colonial Pipeline authority disconnected its 
OT network from the IT network to contain the attack from 
spreading into the OT network and the systems connected to 
it [58], [59]. 
3) COLONIAL PIPELINE THREAT MODELING 
First, we develop the DFD of the Colonial Pipeline industrial 
control systems in the MS SDL threat modeling tool based on 
the Purdue model architecture presented in Fig. 7. Second, the 
STRIDE-based threat report generated by the MS SDL threat 
modeling tool is used construct the basic input shown in Fig. 
2. Third, the basic input is processed by the supervised LLM 
trained for the first evaluation case to identify relevant attack 
techniques from the MITRE ATT&CK matrix. Fourth, the 
asset-centric threat modeling prompt (shown in Fig. 5) is 
constructed based on the identified attack techniques. In this 
prompt, we assign the Business Servers (shown in Fig. 7) as 
the target asset to be compromised and a human user as the 
starting point of the attack paths to be identified. Finally, the 
prompt is processed by the customized cybersecurity analyst 
GPT model to identify potential attack paths and attack 
techniques associated with each step of these attack paths that 
could be utilized by attackers to compromise the Business 
Servers within the Colonial Pipeline IT network.  
4) COLONIAL PIPELINE EVALUATION RESULTS AND 
DISCUSSIONS 
Table V presents three different potential attack paths and 
associated attack techniques identified by the customized 
cybersecurity analyst GPT model in our TraCR-TMF. The 
model predicted that any of these three attack paths could be 
followed by an attacker to perform an attack compromising 
the Business Servers in the Colonial Pipeline IT network. To 
assess whether these attack paths and their associated attack 
techniques from the MITRE ATT&CK matrix are feasible, we 
again consulted the cybersecurity experts. Their expert 
opinions validating the attack paths and their associated attack 

techniques from the MITRE ATT&CK matrix are 
summarized below: 

• Potential Attack Path #1: T1552 (Unsecured 
Credentials) [63] is not a directly relevant technique for 
this attack path as this technique is about obtaining 
unsecured stored credentials, which the Colonial 
Pipeline attacker already possessed. On the other hand, 
T1059 (Command and Scripting Interpreter) [64] is 
relevant because the initial access payload must have 
included some remote execution-related commands and 
scripts that helped the adversary get within the systems. 
T1105 (Ingress Tool Transfer) [65] goes beyond 
maintaining presence and is used to transfer/spread tools 
between victim devices within a compromised 
environment; therefore, it is not relevant in this context. 
On the other hand, T1040 (Network Sniffing) [66] is 
relevant because it is a basic approach to capture 
network traffic to realize the network configurations. 
Similarly, T1557 (Adversary-in-the-Middle) [67] is 
among the open-source techniques commonly used by 
the ALPHV Blackcat group [68], believed to be 
associated with DarkSide, to obtain credentials and 
session cookies that help attackers move laterally within 
a network; therefore, it is a relevant technique for this 
attack path. T1565 (Data Manipulation) [69] is also 
relevant because the attackers could delete some critical 
data after exfiltrating it outside the company’s network. 
However, T1495 (Firmware Corruption) [70] is not 
relevant as there is no evidence that indicates the 
attackers performed firmware modification during the 
Colonial Pipeline incident. 

• Potential Attack Path #2: T1059 (Command and 
Scripting Interpreter), T1557 (Adversary-in-the-
Middle), and T1040 (Network Sniffing) are relevant for 
this attack path as well, while T1105 (Ingress Tool 
Transfer) and T1495 (Firmware Corruption) are not 

TABLE V 
PREDICTED PATHS FOR COLONIAL PIPELINE RANSOMWARE ATTACK 

# Predicted Attack Path Executions Steps using ATT&CK Techniques 

1 Human User → VPN Server 
→ Business Servers  

1. The attacker compromises the VPN server using stolen credentials (T1552) or remote command execution 
(T1059).   
2. Deploys a malicious payload (T1105) to maintain persistence.   
3. Uses Network Sniffing (T1040) to gather intelligence about internal traffic.   
4. Moves laterally to Business Servers using Man-in-the-Middle (T1557) or privilege escalation techniques.   
5. Executes data manipulation (T1565) or firmware corruption (T1495) on Business Servers.  

2 
Human User → VPN Server 
→ Domain Controller1 → 
Business Servers  

1. The attacker gains access to VPN server using stolen credentials (T1552) or by executing remote commands 
(T1059). 
2. Moves to Domain Controller1 using Ingress Tool Transfer (T1105) or Man-in-the-Middle (T1557). 
3. Gains domain admin privileges and escalates access (T1548). 
4. Moves laterally to Business Server using Unsecured Credentials (T1552) or Network Sniffing (T1040).   
5. Executes final payload, exfiltrates data (T1020), or corrupts the system (T1495). 

3 

Human User → VPN Server 
→ Remote Access/Jump 
Server → Historian1 → 
Business Servers 

1. The attacker exploits VPN server using credential theft (T1552) or executes malicious scripts (T1059).  
2. Moves to Remote Access/Jump Server via Man-in-the-Middle (T1557) or Network Sniffing (T1040).   
3. Gains access to Historian1 by using credential access (T1087) or executing remote commands (T1059).   
4. Uses Historian1 to pivot towards Business Servers via privilege escalation (T1548) or lateral movement 
techniques.   
5. Data exfiltration (T1020), encryption for ransom (T1486), or system manipulation (T1565).  
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relevant, as explained for the first predicted attack path. 
T1548 (Abuse Elevation Control Mechanism) [71] is 
relevant, because once the attackers gain access to the 
Domain Controller1, they could elevate their privileges 
to help move to the Business Servers. Although T1552 
(Unsecured Credentials) is not relevant for step 1 of this 
attack path (shown in Table V), it is relevant for step 4 
to obtain the credentials for Business Servers. On the 
other hand, T1020 (Automated Exfiltration) is directly 
relevant because the attackers exfiltrated 100 gigabytes 
of data during the Colonial Pipeline ransomware attack. 

• Potential Attack Path #3: Like the first two attack 
paths, T1059 (Command and Scripting Interpreter), 
T1557 (Adversary-in-the-Middle), T1040 (Network 
Sniffing), T1548 (Abuse Elevation Control 
Mechanism), T1020 (Automated Exfiltration), and 
T1565 (Data Manipulation) are all relevant for this 
attack path as well. T1552 (Unsecured Credentials) is 
not relevant for step 1 of this attack path, as explained 
for the first attack path. On the other hand, T1087 
(Account Discovery) is relevant to discovering 
credentials for accessing Historian1. Similarly, T486 
(Data Encrypted for Impact) is directly relevant since 
attackers encrypted data to demand ransom during the 
Colonial Pipeline incident. 

Based on this discussion, we observe that the TraCR-TMF 
was able to identify potential attack techniques from the 
MITRE ATT&CK matrix and devise attack paths based on 
them, which could have led to the compromised Business 
Servers during the actual Colonial Pipeline incident. The 
cybersecurity experts’ validation showed us that most of the 
attack techniques associated with the steps for each predicted 
attack path presented in Table V are contextually reasonable, 
although the supervised LLM used here was not trained for the 
Colonial Pipeline evaluation case. 

However, there is no way of verifying these predicted attack 
paths and the associated attack techniques against the actual 
attack path and associated attack techniques utilized by the 
attackers during their Colonial Pipeline ransomware attack, 
because such information is not publicly available. 
Nevertheless, we can assess whether our framework is able to 
identify some key exploitations of the actual Colonial Pipeline 
cyberattack incident. Table VI presents what exploitations we 
know about the incident with certainty based on publicly 
available resources, and the relevance of our framework’s 

prediction to those exploitations, for example, data exfiltration 
and ransomware. We observe from Table VI that the TraCR-
TMF was able to capture the known exploitations of the actual 
Colonial Pipeline cyberattack incident through its predicted 
attack paths and associated attack techniques. This 
demonstrates the efficacy and transferability of our TraCR-
TMF for transportation CPS’ threat modeling by validating 
with a real-world cyberattack incident that falls outside the 
training domain of the framework’s constituent models. 

VII. CONCLUSIONS 
This study presents TraCR-TMF, an LLM-supported 
framework for threat modeling of transportation CPS, which 
requires limited cybersecurity expert intervention. TraCR-
TMF leverages open-source tools, databases, and LLMs to 
identify vulnerabilities in transportation CPS, corresponding 
attack techniques, and potential attack paths that could lead to 
the compromise of critical assets. By mapping attack 
techniques to specific vulnerabilities within transportation 
CPS, the framework empowers cybersecurity professionals 
dealing with transportation CPS to critically evaluate both 
proactive and reactive defense strategies. In addition, 
equipped with insights into relevant attack techniques and 
paths leading to the compromise of critical transportation CPS 
assets, cybersecurity professionals can proactively tailor their 
cyberattack countermeasures. Notably, TraCR-TMF draws 
from the MITRE ATT&CK matrix to identify applicable 
attack techniques, providing users with immediate access to 
established detection and mitigation strategies, which is a 
valuable starting point for implementing cybersecurity 
measures. 

TraCR-TMF supports three LLM-based alternative 
strategies. Of these, the RAG-based approach demands the 
least cybersecurity expert intervention but is also the least 
effective in identifying relevant attack techniques. In contrast, 
both the ICL-based and supervised fine-tuning approaches 
demonstrate improved performance but require varying 
degrees of input from cybersecurity experts. While the 
supervised fine-tuning approach yielded the best performance 
in this study, benefiting from targeted retraining on the attack 
identification task with expert cybersecurity input, the 
performance gap between this method and the other two could 
narrow as LLMs continue to evolve. In particular, the 
emergence of models with more advanced reasoning 
capabilities, such as the anticipated advent of artificial general 

TABLE VI 
COMPARISON OF TRACR-TMF’S PREDICTIONS WITH THE COLONIAL PIPELINE CYBERATTACK INCIDENT FACTS 

Confirmed Events Based on Publicly Available 
Knowledge Relevance of TraCR-TMF’s Predictions 

The attackers moved laterally within the Colonial 
Pipeline IT network  

All three predicted attack paths show that an attacker could move laterally within the IT network 
with the help of different relevant attack techniques 

The attackers exfiltrated valuable data outside the 
company’s network  

Predicted attack paths #2 and #3 include data exfiltration potentials using T1020 technique from 
the MITRE ATT&CK matrix 

The attackers demanded ransom after encrypting 
the company’s valuable data  

Encryption for ransom or impact using the MITRE ATT&CK technique T1486 is included in the 
predicted attack path #3 
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intelligence (AGI), holds promise for enhancing the 
effectiveness of less cybersecurity expert-intervention-
intensive approaches. In future work, we will explore the 
integration of such advanced LLMs into the TraCR-TMF 
framework. 

Although the evaluation scenarios in this study focused on 
transportation CPS and the LLMs were tailored to that 
domain, the TraCR-TMF framework is broadly applicable to 
CPS across other domains. The tools and knowledge bases 
employed in TraCR-TMF, such as the MS SDL threat 
modeling tool and the MITRE ATT&CK matrix, are not 
specific to transportation CPS and can be applied across 
various domains. Moreover, the three LLM-supported 
approaches introduced in this study for mapping existing 
threats to specific adversarial techniques require varying 
levels of cybersecurity expert intervention, offering flexible 
adaptation options to suit the needs of different domains. 
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