
ar
X

iv
:2

50
6.

00
71

9v
1

 [
cs

.C
R

]
 3

1
M

ay
 2

02
5

Browser Fingerprinting Using WebAssembly
Mordechai Guri, Dor Fibert

Ben-Gurion University of the Negev
Beer Sheva, Israel

gurim@post.bgu.ac.il ; fibert@post.bgu.ac.il
https://www.covertchannels.com/

Abstract—Web client fingerprinting has become a widely used
technique for uniquely identifying users, browsers, operating
systems, and devices with high accuracy. While it is beneficial
for applications such as fraud detection and personalized expe-
riences, it also raises privacy concerns by enabling persistent
tracking and detailed user profiling. This paper introduces an
advanced fingerprinting method using WebAssembly (Wasm)—a
low-level programming language that offers near-native execution
speed in modern web browsers. With broad support across major
browsers and growing adoption, WebAssembly provides a strong
foundation for developing more effective fingerprinting methods.

In this work, we present a new approach that leverages
WebAssembly’s computational capabilities to identify return-
ing devices—such as smartphones, tablets, laptops, and desk-
tops—across different browsing sessions. Our method uses subtle
differences in the WebAssembly JavaScript API implementation
to distinguish between Chromium-based browsers like Google
Chrome and Microsoft Edge, even when identifiers such as the
User-Agent are completely spoofed, achieving a false-positive
rate of less than 1%. The fingerprint is generated using a
combination of CPU-bound operations, memory tasks, and I/O
activities to capture unique browser behaviors. We validate
this approach on a variety of platforms, including Intel, AMD,
and ARM CPUs, operating systems such as Windows, macOS,
Android, and iOS, and in environments like VMWare, KVM, and
VirtualBox. Extensive evaluation shows that WebAssembly-based
fingerprinting significantly improves identification accuracy. We
also propose mitigation strategies to reduce the privacy risks
associated with this method, which could be integrated into future
browser designs to better protect user privacy.

Index Terms—browser, fingerprinting, privacy, WebAssembly,
Chromium

I. INTRODUCTION

Over the years, a diverse set of fingerprinting techniques has
been developed to uniquely identify web pages [1], [2], [3],
web browsers [4], [5], [6], users [7], [5], [8], operating systems
[9], [10], [5], and even specific devices [11], [12], [13]. While
these techniques serve legitimate purposes, such as enhanc-
ing security through advanced authentication mechanisms,
they also pose significant privacy risks. For instance, device
fingerprinting can improve security by prompting additional
authentication steps when an application is accessed from
a new device, thereby creating an additional barrier against
impersonation attacks. At the same time, adversaries can
misuse these methods to profile a target’s browser or operating
system, potentially exposing vulnerabilities and enabling the
deployment of targeted exploits.

Traditional fingerprinting techniques often rely on measur-
ing device performance through task execution and analyzing

timing results [8]. When implemented in a web environment,
these methods face challenges due to the inherent overhead
and inconsistent performance of JavaScript—the primary lan-
guage for client-side code execution. Substantial overhead
and unpredictable execution times, caused by just-in-time
(JIT) compilation [14], make it difficult to achieve reliable
fingerprinting results.

To address these limitations, this research investigates the
potential of using WebAssembly as an alternative platform for
web client fingerprinting. WebAssembly, a low-level language
designed for efficient execution within browsers, offers near-
native performance and consistent execution times, making it
an ideal candidate for developing more accurate and reliable
fingerprinting methods.

A. WebAssembly
WebAssembly is a low-level bytecode language designed

to execute within a secure sandbox environment in web
browsers, providing near-native performance. As of this study,
WebAssembly is supported across all major browsers and
is maintained through a collaborative effort by Google, Mi-
crosoft, Mozilla, Apple, and the W3C [15]. Primarily serving
as a compilation target for low-level languages like C, C++,
and Rust, WebAssembly enables developers to write high-
performance applications that execute with predictable tim-
ing and minimal overhead in web browsers—attributes that
are crucial for developing precise and reliable fingerprinting
techniques.

B. Contribution
This work explores the use of WebAssembly to develop

more precise browser fingerprinting methods by harnessing
its near-native execution speed and exploiting variations in
WebAssembly implementations across different CPU archi-
tectures, browsers, and operating systems. By capitalizing on
these attributes, we address the performance inconsistencies
inherent in JavaScript-based fingerprinting and introduce more
reliable techniques for web client identification. To mitigate
the potential privacy risks posed by these methods, we propose
strategies aimed at preserving user privacy, thereby ensuring
a balanced approach between accurate browser identification
and maintaining user anonymity.

II. BACKGROUND AND RELATED WORK

This section reviews the literature related to fingerprint-
ing techniques. First, we describe the two main approaches:

https://www.covertchannels.com/
https://arxiv.org/abs/2506.00719v1

passive and active fingerprinting. Next, we explore various
types of fingerprinting and their implementations in previous
research. Finally, we examine different use-cases of finger-
printing techniques.

A. Passive and Active Fingerprinting

Passive fingerprinting involves characterizing a target by an-
alyzing its network traffic without direct interaction. Since this
technique only requires monitoring network traffic, it can be
used to fingerprint a wide range of devices, including personal
computers (PCs), mobile phones, and Internet of Things (IoT)
devices. An attacker can employ passive fingerprinting through
various methods, such as executing a Man-In-The-Middle
(MITM) attack [16] or eavesdropping on wireless networks
[17]. The primary advantage of passive fingerprinting is its
stealth—because the attacker only observes and does not send
any packets, it is extremely difficult for intrusion detection
systems (IDS) to detect the activity. Previous research has at-
tempted to counter this approach using traffic normalizers [18],
which remove identifying information from network packets.
However, these defenses are insufficient against newer fin-
gerprinting methods that utilize characteristics such as packet
frequency, size, and burst patterns [1], [2]. One limitation of
passive fingerprinting is its dependence on the target’s network
activity, which can result in delays if the target is not actively
using the network or is not communicating in a predictable
manner, such as issuing a DHCP request [19] or accessing a
specific website [1], [2], [3].

In contrast, active fingerprinting involves directly interacting
with the target by sending network requests or running code
on the device, such as JavaScript in a web browser. Network-
based active fingerprinting typically uses protocols like ICMP,
TCP, and SNMP to elicit responses that reveal specific char-
acteristics of the target, such as analyzing ICMP headers [9],
[20] or IPv6 headers [21], [22]. Active fingerprinting can also
be performed by executing code on the target device, either
through a native application on a PC or smartphone [12], [8],
[23], [24] or via JavaScript scripts in a web browser [25], [7],
[26], [4]. However, active fingerprinting is more detectable
because IDS, antivirus software, and browser plugins can
identify and block suspicious network activity.

B. Overview of Fingerprinting Techniques

This section provides an overview of common fingerprinting
techniques and their applications, highlighting how they have
been employed in prior research. Table I summarizes the
methods used for each fingerprinting type across various
research studies.
Operating System (OS) Fingerprinting: OS fingerprinting
identifies the type and version of a device’s operating system.
This information is valuable for network inventory manage-
ment, vulnerability assessment, and patch management. Tools
like nmap [9] and xprobe [20] utilize responses from ICMP
requests and the TCP/IP stack for active OS fingerprinting.
Beck et al. [21] developed a technique that uses the IPv6
neighbor discovery protocol (NDP) for active OS detection,

TABLE I: Summary of fingerprinting methods used in various
research studies.

Fingerprint
Type

Method References

Operating Sys-
tem (OS)

Network (Active) [9], [20], [21], [22]

Network (Passive) [10], [27], [28], [29], [30],
[31], [19]

JavaScript [5], [6], [32], [33], [34], [35]

VM Presence Network (Active) [36]
JavaScript [37]

VM and OS De-
tection

Low-Level Hardware [23]

Memory [38], [39]

Device Network (Passive) [11], [19], [40]
Native Code [12], [8], [41], [42], [24], [43]
Bluetooth [13]
JavaScript [8], [25], [7], [26], [4], [35]
Acoustic [41], [42]

Browser Network (Passive) [40]
JavaScript [4], [5], [6], [32], [33], [34],

[35]
CSS [44]

Website Network (Passive) [1], [2], [3]
JavaScript [45]

while Shamsi et al. [10] introduced a single-packet OS fin-
gerprinting method based on SYN-ACK TCP segment char-
acteristics. Chen et al. [31] further refined OS fingerprinting
by analyzing multiple features of TCP/IP headers, and Zuo et
al. [13] extended fingerprinting capabilities to Bluetooth Low
Energy (BLE) devices using static UUIDs.
Virtual Machine (VM) Fingerprinting: This technique de-
tects the presence of virtualization environments. For example,
Franklin et al. [36] suggested a method for identifying virtual
machine managers over the internet using fuzzy benchmark-
ing, while Ho et al. [37] leveraged timing variations in standard
browser operations to detect emulated environments.
Device Fingerprinting: Device fingerprinting identifies the
type or model of a device. Papapanagiotou et al. [19] finger-
printed wireless devices using DHCP request headers, such as
Host-Name and Vendor-Class. Miettinen et al. [11] introduced
IoT SENTINEL, a system for automatically identifying and
securing IoT devices. Das et al. [7] explored using motion
sensors like accelerometers and gyroscopes for device fin-
gerprinting, and Olejnik et al. [26] examined the privacy
implications of the Battery Status API for identifying returning
devices.
Browser Fingerprinting: Browser fingerprinting identifies a
client’s browser type and version. Mowery et al. [33] used 29
JavaScript performance tests to fingerprint browsers, operating
systems, and microarchitectures. Fifield and Egelman [6] pro-
posed a method using on-screen font glyph sizes, while Cao et
al. [4] utilized GPU (via WebGL) and audio stack properties
(AudioContext) for cross-browser fingerprinting. Husák et
al. [40] estimated the User-Agent of a client during HTTPS

communication by analyzing the SSL/TLS handshake.
Website Fingerprinting: Website fingerprinting analyzes net-
work traffic patterns to identify access to specific web pages,
even when encrypted. For example, Wang et al. [2] demon-
strated an attack using a KNN classifier to exploit multimodal
properties of web pages. Sirinam et al. [1] introduced Deep-
Fingerprinting, a method targeting the Tor browser using
packet size frequencies, transmission times, and burst patterns.

C. Use Cases for Fingerprinting

Fingerprinting techniques have a wide range of applications,
serving both legitimate and malicious purposes. Observers and
attackers alike can utilize fingerprinting to identify devices or
application instances based on information elements commu-
nicated to them.

Fingerprinting techniques are often used for privacy-
compromising purposes, such as tracking users and undermin-
ing their anonymity [42], [41], [1]. Another key motivation
is vulnerability detection, where fingerprinting methods help
identify weak spots in a network or device, enabling adminis-
trators to apply patches before an attack [13]. For network ad-
ministrators, fingerprinting supports inventory management by
providing insights into the devices connected to a network and
their configurations [40], [8]. Fingerprinting can also be useful
in identifying returning clients, especially since traditional
tracking methods like cookies are often blocked or deleted
[7], [8]. Moreover, fingerprinting strengthens authentication by
differentiating between legitimate users and imposters based
on unique device characteristics [7], [8], [12]. Conversely,
attackers can use fingerprinting to gather specific information
about their target devices for deploying tailored exploits. In
the realm of cybersecurity, fingerprinting is applied to evade
honeypots by distinguishing between real devices and virtual
environments [37]. Additionally, fingerprinting can be used for
software license binding to ensure that software is used only
on authorized devices [8], [37].

III. WEBASSEMBLY FINGERPRINTING

WebAssembly is a low-level bytecode instruction set de-
signed to be just-in-time compiled into native machine code
by its host environment, typically a web browser. It serves as
a compilation target for code written in performance-critical
languages like C, C++, and Rust, which is then executed on
a stack-based virtual machine. Due to its low-level nature and
the optimizations enabled by ahead-of-time compilation, We-
bAssembly can achieve near-native performance while being
more space-efficient compared to traditional JavaScript. Figure
1 illustrates the representation of a WebAssembly module in
its human-readable WebAssembly Text (WAT) format.

A. WebAssembly Compilation

Emscripten is one of the most widely adopted toolchains
for compiling code into WebAssembly binaries [46]. Lever-
aging the LLVM infrastructure [47], Emscripten enables the
compilation of low-level languages such as C and C++ into

Fig. 1: Euclid’s GCD algorithm implemented in C and its
compiled WebAssembly code.

WebAssembly. Additionally, Emscripten provides comprehen-
sive support for porting legacy software to the web by of-
fering APIs that translate OpenGL to WebGL and facilitate
integration with popular libraries like SDL [48], POSIX,
and pthreads [49]. Furthermore, Emscripten’s compatibility
with Web APIs and JavaScript allows developers to create
performance-optimized web applications with minimal code
changes.

B. WebAssembly Performance

Over the years, several technologies have emerged with
the goal of enhancing the performance of web-based appli-
cations. These include Microsoft’s ActiveX, Adobe’s Flash
platform, and Google’s Native Client. However, each of these
technologies has since been deprecated. Another precursor to
WebAssembly is asm.js [50], a subset of JavaScript aimed at
optimizing performance for low-level languages. Despite its
innovations, WebAssembly outperforms asm.js by supporting
essential features for performance-sensitive applications, such
as 64-bit integer operations, threads, and shared memory [51].

C. Browser Fingerprinting

This section outlines our approach to developing a browser
fingerprinting method that leverages variations in browser
implementations to uniquely identify different web clients

Figure 2 illustrates the complete workflow of our browser
fingerprinting methodology, which leverages timing discrep-
ancies between JavaScript and WebAssembly operations to
uniquely identify web clients. The process begins when the
client issues an HTTP GET request to obtain an HTML
document from the web server. Upon receiving this request,
the server responds by delivering the requested page, which
contains embedded links to several JavaScript files that initiate

3. Perform
timing tests

5. Identify browser

2. Send HTML, Javascript,
and WebAssembly files

4. Send timing results

1. HTTP GET request

Fig. 2: The proposed browser fingerprinting process

the fingerprinting procedure. Subsequently, the client automat-
ically requests these JavaScript files, which are then executed
within the browser environment.

Once the JavaScript files are executed, the fingerprinting
process is activated, initiating a series of timing tests that
measure the performance of different interactions between
JavaScript and WebAssembly. These tests are meticulously
designed to capture subtle variations in execution times that
arise due to differences in the underlying browser engines,
hardware configurations, and operating systems. For each test,
the system measures the time it takes for specific JavaScript
and WebAssembly operations to complete and compares them
to predefined benchmarks.

After all tests are executed, the results are aggregated into a
feature vector, where each element corresponds to the timing
result of a specific test. This feature vector, often referred to as
the “fingerprint,” serves as a unique identifier for the client’s
browser environment. The client then sends this fingerprint
back to the server, where it is further analyzed and compared
against a database of known fingerprints to determine the
browser type and potentially identify the specific browser
version or configuration.

D. Technical Considerations

In our browser fingerprinting approach, the fingerprint is
represented as a high-dimensional vector of timing results, de-
noted as fp ∈ RN , where N is the total number of timing tests
performed. Each timing test measures the execution latency
of a particular WebAssembly or JavaScript operation, such
as calling built-in mathematical functions, interacting with
the WebAssembly memory space, or invoking WebAssembly
functions with different argument types. The precision of these
measurements is crucial, as even minor differences in timing
can be indicative of distinct browser behaviors.

To further improve the accuracy of fingerprinting, our
method incorporates multiple dimensions of timing tests, in-
cluding:

• Wasm-to-JS Function Calls: Tests that measure the time
taken to invoke JavaScript functions from WebAssem-
bly. This type of test highlights how different browsers
optimize the interoperability between WebAssembly and
JavaScript.

• Memory Access Patterns: Tests that examine the time
required to read from and write to the WebAssembly

linear memory. This aspect is influenced by the browser’s
memory management strategies and caching mechanisms.

• Built-in Function Performance: Tests that evaluate the
performance of WebAssembly calling native JavaScript
functions, such as Math.sin or Math.cos. The exe-
cution times can vary based on how browsers implement
these standard functions internally.

By leveraging these diverse timing tests, our method is
capable of generating a robust and unique fingerprint for each
browser, capturing a wide range of performance characteristics
that are difficult to replicate or obfuscate.

The feature vector generated from the tests is then com-
pared against a pre-constructed database of known fingerprints
using similarity measures such as Euclidean distance, cosine
similarity, or more advanced techniques like the Mahalanobis
distance. These comparisons allow the system to distinguish
between different browser versions, operating systems, or even
specific configurations such as installed extensions or enabled
experimental features. Ultimately, this multi-dimensional ap-
proach to fingerprinting provides a detailed and comprehensive
profile of the client’s browser environment, enabling not only
accurate identification but also the potential for detecting
subtle changes over time. For instance, if a user updates their
browser or modifies specific settings, the resulting fingerprint
will exhibit measurable deviations, which can be used to detect
these alterations with high precision.

Algorithm 1 Algorithm for browser fingerprint generation
Input: timingTests, a vector of N timing tests.

fp← float[] of size N
for i← 1 to N do

startT ime← GetCurrentT ime()
timingTests[i]()
endT ime← GetCurrentT ime()
fp[i]← endT ime− startT ime

end for
return fp

Algorithm 1 describes the fingerprint generation process
used by the web browser. The browser performs each timing
test one by one, and stores the timing results in a vector, fp.
The vector is then sent back to the server for further analysis.

1 (module
2 (import "js" "cos" (func $cos (param

f64) (result f64)))
3 (func $callCosInLoop (param

$iterations i32) (param $angle
f64) (result f64)

4 (local $i i32)
5 (local $result f64)
6 (set_local $i (i32.const 0))
7 (set_local $result (f64.const 0))
8 (loop $loop
9 (set_local $result (call $cos (

get_local $angle)))
10 (set_local $i (i32.add (get_local $i)

(i32.const 1)))

TABLE II: List of WebAssembly Timing Tests by Mozilla

Test Name Description

1 math-builtin Wasm calls into the JavaScript ‘Math.cos‘ builtin in a loop.
2 wasm-to-js Wasm calls into a JavaScript function that expects 2 arguments in a loop.
3 call-known-0 Calls a monomorphic function that expects 0 arguments with 0 arguments.
4 call-known-1 Calls a monomorphic function that expects 1 argument with 1 argument.
5 call-known-2 Calls a monomorphic function that expects 2 arguments with 2 arguments.
6 call-known-2-r Calls a monomorphic function that expects 2 arguments with 1 argument.
7 call-generic-2 Alternates between a JavaScript function call and a Wasm function, with 2 arguments (both expect 2 arguments).
8 call-generic-2-r Alternates between a JavaScript function call and a Wasm function, with 1 argument (both expect 2 arguments).
9 scripted-getter-0 Calls a scripted getter that’s a Wasm function expecting 0 arguments.

10 scripted-getter-1 Calls a scripted getter that’s a Wasm function expecting 1 argument.
11 scripted-setter-1 Calls a scripted setter that’s a Wasm function expecting 1 argument.
12 scripted-setter-2 Calls a scripted setter that’s a Wasm function expecting 2 arguments.
13 F.p.apply-array Calls a Wasm function with ‘Function.prototype.apply‘ and an array, with the expected number of arguments.
14 F.p.apply-array-r Calls a Wasm function with ‘Function.prototype.apply‘ and an array, with one fewer argument than expected.
15 F.p.apply-args Calls a Wasm function with ‘Function.prototype.apply‘ and the arguments object, with expected arguments.
16 F.p.apply-args-r Calls a Wasm function with ‘Function.prototype.apply‘ and the arguments object, with one fewer argument.
17 F.p.call Calls a Wasm function with ‘Function.prototype.call‘ and the expected number of arguments.
18 F.p.call-r Calls a Wasm function with ‘Function.prototype.call‘ and one fewer argument than expected.
19 if-add-wasm Calls a Wasm function that does: if (arg i32+1 != 0) return arg i32 + other arg i32;
20 if-add-js Calls a JavaScript function that shouldn’t get inlined and does: if (a+1) return (a—0) + (b—0)—0;

11 (br_if $loop (i32.lt_s (get_local $i)
(get_local $iterations))))

12 (get_local $result))
13 (export "callCosInLoop" (func

$callCosInLoop)))

Listing 1: WebAssembly function that calls ‘Math.cos‘ in a
loop (math-builtin test #1)

Table II presents the set of 20 timing tests. These tim-
ing tests cover different interactions between JavaScript and
WebAssembly. We chose to focus on the four most popular
web browsers: Google Chrome, Mozilla Firefox, Microsoft
Chromium Edge, and Apple’s Safari [52]. The first test We-
bAssembly function that calls ‘Math.cos‘ in a loop (math-
builtin) is shown in Listing 1.

To identify the column vector in the matrix A ∈ R20×158

that is most similar to a given vector b ∈ R20, we define the
optimization problem as follows:

i∗ = arg min
i∈{1,2,...,158}

∥b− ai∥2,

where ∥b − ai∥2 is the Euclidean distance between the
vector b and the i-th column ai of matrix A. This distance
metric is expanded as:

∥b− ai∥22 =

20∑
j=1

(bj − aj,i)
2.

This optimization problem can be expressed using inner
products as follows:

i∗ = argmin
i

(
−2b⊤ai + a⊤i ai

)
.

Moreover, incorporating a more sophisticated similarity
measure such as the Mahalanobis distance allows for account-
ing for the variance and correlations between timing tests:

i∗ = argmin
i

√
(b− ai)⊤Σ−1(b− ai),

where Σ represents the covariance matrix of the test results,
capturing the interdependencies among features.

To further enhance the accuracy of the similarity com-
parison, fingerprinting can also employ Principal Component
Analysis (PCA). By projecting each column ai of A onto a
reduced-dimensional subspace defined by the principal compo-
nents, the transformed matrix A′ ∈ Rk×158 is obtained, where
k is the number of principal components retained. Similarly,
projecting b onto this subspace, denoted as b′, allows us to
redefine the optimization problem as:

i∗ = argmin
i
∥b′ − a′i∥2,

where ∥b′ − a′i∥2 is the Euclidean distance in the reduced-
dimensional subspace. This approach reduces noise and di-
mensionality, leading to a more robust comparison between
vectors. The PCA-based technique leverages the variance
captured by the principal components, thereby improving the
effectiveness of the fingerprinting comparison and identifica-
tion process.

IV. EVALUATION

The evaluation of our browser fingerprinting methodology
was conducted on a diverse set of devices and configura-
tions to ensure robustness and generalizability. Specifically,
we focused on assessing the implementation of JavaScript
and WebAssembly interactions across multiple browsers and
operating systems. The hardware and software configurations
used for the evaluation are detailed in Table III.

A total of 25 physical devices were employed for testing,
including 14 PC workstations, a MacBook Pro, six Android
devices, and four iOS devices. The operating systems spanned
six different platforms: Windows, macOS, CentOS, Ubuntu,
Android, and iOS. The Android devices consisted of three

Device CPU Cores RAM (GB) OS
PC1 Intel i7-4770K 8 32 Windows
PC2 Intel i7-9700K 4 6 Windows
PC3 Intel i7-9700K 4 16 Windows
PC4 Intel i5-4690K 8 32 Windows
PC5 Intel i7-8700 8 4 Windows
PC6 Intel i7-7700HQ 8 32 Windows
PC7 AMD Ryzen 9 5900X 8 4 Windows
PC8 AMD Athlon 3000G 4 12 Windows
PC9 Intel i7-9700K 6 6 Windows
PC10 Intel i5-4690 4 3 Windows
PC11 Intel i5-3470 4 2 Windows
PC12 Intel i7-4790 4 16 Windows
PC13 AMD Ryzen 9 5900X 4 8 Windows
PC14 AMD Ryzen 9 3900X 16 32 Windows
Mac1 Intel i5-8257U 4 16 macOS
IOS1 Hexa-core 8 4 iOS
IOS2 Hexa-core 4 3 iOS
IOS3 Hexa-core 8 16 iPadOS
IOS4 Hexa-core 8 8 iOS
Android1 Octa-core 4 8 Android
Android2 Octa-core 4 8 Android
Android3 Octa-core 8 16 Android
Android4 Octa-core 8 16 Android
Android5 Quad-core 12 32 Android
Android6 Octa-core 4 6 Android

TABLE III: Device specifications used for browser fingerprint-
ing evaluation.

Browser instances Timing tests

20

wasm-warmup

wasm-math-builtin

wasm-if-add

158

158 20
Matrix

Fig. 3: Overview of 158 browser instances, each running 20
timing tests.

Google Pixel devices, two OnePlus devices, and one Sam-
sung Galaxy S20. Meanwhile, the iOS devices included three
iPhones and one iPad. Additionally, virtual machines were uti-
lized to simulate environments on four hypervisors: VMWare,
Hyper-V, VirtualBox, and KVM. These configurations enabled
us to perform fingerprinting on a range of environments, each
representing different performance and interaction character-
istics.

The web browsers examined in this study were Google
Chrome, Microsoft Chromium Edge, and Mozilla Firefox for
the Windows, CentOS, Ubuntu, and Android platforms. For
macOS and iOS, the browsers included Google Chrome, Mi-
crosoft Chromium Edge, Mozilla Firefox, and Apple’s Safari.
Figure 3 provides an overview of the 158 unique browser
instances used for this evaluation. Each browser instance was
subjected to 20 timing tests as detailed in Table II, generating
comprehensive data on their interactions.

The WebAssembly timing tests were conducted across bare-
metal devices, virtualized environments, and smartphones. The
results highlight significant performance variations depending
on the operating system, browser, and device configurations.

1) Bare-Metal Windows (Chrome, Edge, Firefox): Figure
4 shows the timing results for Chrome on bare-metal Win-

wasm
-warm

up

wasm
-m

ath
-bu

ilti
n

wasm
-to

-js

wasm
-ca

ll-k
no

wn-0

wasm
-ca

ll-k
no

wn-1

wasm
-ca

ll-k
no

wn-2

wasm
-ca

ll-k
no

wn-2
-r

wasm
-ca

ll-g
en

eri
c-2

wasm
-ca

ll-g
en

eri
c-2

-r

wasm
-sc

rip
ted

-ge
tte

r-0

wasm
-sc

rip
ted

-ge
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-2

wasm
-F.p

.ap
ply

-ar
ray

wasm
-F.p

.ap
ply

-ar
ray

-r

wasm
-F.p

.ap
ply

-ar
gs

wasm
-F.p

.ap
ply

-ar
gs-

r

wasm
-F.p

.ca
ll

wasm
-F.p

.ca
ll-r

wasm
-if-

ad
d

0

50

100

150

200

250

300

350

400

Ti
m

e
in

 m
ilis

ec
on

ds

Windows-Bare-Chrome devices measurements
PC1-Chrome
PC2-Chrome
PC3-Chrome
PC4-Chrome
PC5-Chrome
PC6-Chrome
PC7-Chrome

PC8-Chrome
PC9-Chrome
PC10-Chrome
PC11-Chrome
PC12-Chrome
PC13-Chrome
PC14-Chrome

Fig. 4: Timing results of WebAssembly tests on bare-metal
Windows devices using Chrome.

wasm
-warm

up

wasm
-m

ath
-bu

ilti
n

wasm
-to

-js

wasm
-ca

ll-k
no

wn-0

wasm
-ca

ll-k
no

wn-1

wasm
-ca

ll-k
no

wn-2

wasm
-ca

ll-k
no

wn-2
-r

wasm
-ca

ll-g
en

eri
c-2

wasm
-ca

ll-g
en

eri
c-2

-r

wasm
-sc

rip
ted

-ge
tte

r-0

wasm
-sc

rip
ted

-ge
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-2

wasm
-F.p

.ap
ply

-ar
ray

wasm
-F.p

.ap
ply

-ar
ray

-r

wasm
-F.p

.ap
ply

-ar
gs

wasm
-F.p

.ap
ply

-ar
gs-

r

wasm
-F.p

.ca
ll

wasm
-F.p

.ca
ll-r

wasm
-if-

ad
d

0

25

50

75

100

125

150

175

200

Ti
m

e
in

 m
ilis

ec
on

ds

Unix-Bare devices measurements
PC1-Cen-Firefox
PC1-Cen-Chrome
PC1-Ubu-Firefox
PC1-Ubu-Chrome

Mac1-MacOS-MSEdge
Mac1-MacOS-Firefox
Mac1-MacOS-Chrome
Mac1-MacOS-Safari

Fig. 5: Timing results of WebAssembly tests on bare-metal
Unix devices.

dows devices. The mean timing results for ‘wasm-scripted-
setter-1‘ and ‘wasm-scripted-setter-2‘ are significantly higher
(152.21ms and 161.14ms, respectively) compared to other tests
(19.54ms). Similar trends are observed for Edge and Firefox,
indicating that ‘wasm-scripted-setter‘ tests are more sensitive
to system variations.

2) Bare-Metal Unix (CentOS, Ubuntu, macOS): Figure 5
presents the timing results for Unix-like operating systems.
For Chrome, the ‘wasm-scripted-setter‘ tests show 300-750%
increased mean times compared to other tests. Firefox and
Safari exhibit more consistent results with lower deviations.

3) Virtualized Environments (Hyper-V, VMWare, Virtual-
Box, KVM): The timing results for VMs running on different
hypervisors show Chrome and Edge exhibiting up to 570%
increased times for ‘wasm-scripted-setter‘ tests compared to
others. Firefox maintains consistent results across all hypervi-
sors. Figure 6 show the VMWare measurements.

4) Smartphones (Android, iOS): The timing results for
Android (Figure 7) show high variability, with ‘wasm-scripted-
setter‘ tests 700-760% slower than others. iOS devices (Figure
8) have more consistent results across all browsers with mean

wasm
-warm

up

wasm
-m

ath
-bu

ilti
n

wasm
-to

-js

wasm
-ca

ll-k
no

wn-0

wasm
-ca

ll-k
no

wn-1

wasm
-ca

ll-k
no

wn-2

wasm
-ca

ll-k
no

wn-2
-r

wasm
-ca

ll-g
en

eri
c-2

wasm
-ca

ll-g
en

eri
c-2

-r

wasm
-sc

rip
ted

-ge
tte

r-0

wasm
-sc

rip
ted

-ge
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-2

wasm
-F.p

.ap
ply

-ar
ray

wasm
-F.p

.ap
ply

-ar
ray

-r

wasm
-F.p

.ap
ply

-ar
gs

wasm
-F.p

.ap
ply

-ar
gs-

r

wasm
-F.p

.ca
ll

wasm
-F.p

.ca
ll-r

wasm
-if-

ad
d

0

50

100

150

200

250

300

350

400
Ti

m
e

in
 m

ilis
ec

on
ds

VMWare devices measurements
PC1-Win-Win-MSEdge
PC1-Win-Win-Firefox
PC1-Win-Win-Chrome
PC1-Win-Ubu-Firefox
PC1-Win-Ubu-Chrome
PC1-Win-Cen-Firefox
PC1-Win-Cen-Chrome
PC1-Cen-Win-MSEdge
PC1-Cen-Win-Firefox
PC1-Cen-Win-Chrome
PC1-Cen-Ubu-Firefox

PC1-Cen-Ubu-Chrome
PC1-Cen-Cen-Firefox
PC1-Cen-Cen-Chrome
PC1-Ubu-Win-MSEdge
PC1-Ubu-Win-Firefox
PC1-Ubu-Win-Chrome
PC1-Ubu-Ubu-Firefox
PC1-Ubu-Ubu-Chrome
PC1-Ubu-Cen-Firefox
PC1-Ubu-Cen-Chrome

Fig. 6: Timing results of WebAssembly tests for VMs running
on VMWare hypervisor.

wasm
-warm

up

wasm
-m

ath
-bu

ilti
n

wasm
-to

-js

wasm
-ca

ll-k
no

wn-0

wasm
-ca

ll-k
no

wn-1

wasm
-ca

ll-k
no

wn-2

wasm
-ca

ll-k
no

wn-2
-r

wasm
-ca

ll-g
en

eri
c-2

wasm
-ca

ll-g
en

eri
c-2

-r

wasm
-sc

rip
ted

-ge
tte

r-0

wasm
-sc

rip
ted

-ge
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-2

wasm
-F.p

.ap
ply

-ar
ray

wasm
-F.p

.ap
ply

-ar
ray

-r

wasm
-F.p

.ap
ply

-ar
gs

wasm
-F.p

.ap
ply

-ar
gs-

r

wasm
-F.p

.ca
ll

wasm
-F.p

.ca
ll-r

wasm
-if-

ad
d

0

200

400

600

800

1000

Ti
m

e
in

 m
ilis

ec
on

ds

Android devices measurements
Android1-MSEdge
Android1-Firefox
Android1-Chrome
Android2-MSEdge
Android2-Firefox
Android2-Chrome
Android3-MSEdge
Android3-Firefox
Android3-Chrome

Android4-MSEdge
Android4-Firefox
Android4-Chrome
Android5-MSEdge
Android5-Chrome
Android6-MSEdge
Android6-Firefox
Android6-Chrome

Fig. 7: Timing results of WebAssembly tests for Android
smartphones.

times around 21ms.
The findings indicate that ‘wasm-scripted-setter‘ tests are

particularly influenced by system and browser variations, mak-
ing them valuable for browser fingerprinting across different
environments.

wasm
-warm

up

wasm
-m

ath
-bu

ilti
n

wasm
-to

-js

wasm
-ca

ll-k
no

wn-0

wasm
-ca

ll-k
no

wn-1

wasm
-ca

ll-k
no

wn-2

wasm
-ca

ll-k
no

wn-2
-r

wasm
-ca

ll-g
en

eri
c-2

wasm
-ca

ll-g
en

eri
c-2

-r

wasm
-sc

rip
ted

-ge
tte

r-0

wasm
-sc

rip
ted

-ge
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-2

wasm
-F.p

.ap
ply

-ar
ray

wasm
-F.p

.ap
ply

-ar
ray

-r

wasm
-F.p

.ap
ply

-ar
gs

wasm
-F.p

.ap
ply

-ar
gs-

r

wasm
-F.p

.ca
ll

wasm
-F.p

.ca
ll-r

wasm
-if-

ad
d

0

25

50

75

100

125

150

175

200

Ti
m

e
in

 m
ilis

ec
on

ds

IOS devices measurements
IOS1-MSEdge
IOS1-Firefox
IOS1-Chrome
IOS1-Safari
IOS2-MSEdge
IOS2-Firefox
IOS2-Chrome
IOS2-Safari

IOS3-MSEdge
IOS3-Firefox
IOS3-Chrome
IOS3-Safari
IOS4-Firefox
IOS4-Chrome
IOS4-Safari

Fig. 8: Timing results of WebAssembly tests for iOS smart-
phones.

5) Chromium Based Browser Identification: The timing test
results revealed that on all device types, excluding iOS, there
are substantial differences in the execution times of wasm-
scripted-setter-1 and wasm-scripted-setter-2 when compared
to the other timing tests in both Chrome and Edge browsers.
This disparity was not observed when using Firefox and Safari,
indicating that the timing characteristics of these tests can
be used to distinguish between Chromium-based and non-
Chromium-based browsers.

Algorithm 2 wasm-scripted-setter-1 and wasm-scripted-
setter-2 Implementation

1 var exports = WebAssemblyInstance.
exports;

2 // JavaScript implementation of wasm-
scripted-setter-1

3 function wasm_scripted_setter_1(limit)
{

4 let GETSET = {};
5 Object.defineProperty(GETSET, ’x’, {
6 set: exports.set_global_one //

Define setter using WebAssembly
function

7 });
8 for (var i = 0; i < limit; i++) {
9 GETSET.x = i; // Trigger the setter

with incremental values
10 }
11 }
12 // JavaScript implementation of wasm-

scripted-setter-2
13 function wasm_scripted_setter_2(limit)

{
14 let GETSET = {};
15 Object.defineProperty(GETSET, ’x’, {
16 set: exports.set_global_two //

Define setter with a WebAssembly
function

17 });
18 for (var i = 0; i < limit; i++) {
19 GETSET.x = i; // Trigger the setter

with incremental values
20 }
21 }

Algorithm 2 illustrates the JavaScript implementation of
wasm-scripted-setter-1 and wasm-scripted-setter-2. Both tests
utilize Object.defineProperty to define a setter function for
the property "x" of the GETSET object. In these tim-
ing tests, the exports object represents the WebAssem-
bly module exports. In wasm-scripted-setter-1, the set-
ter function is exports.set_global_one, which is
a WebAssembly function that takes a single argument.
Similarly, in wasm-scripted-setter-2, the setter function is
exports.set_global_two, which requires two argu-
ments.

The variation in timing test results between Chromium-
based browsers and non-Chromium browsers can be exploited

TABLE IV: Descriptive statistics of the ratios between wasm-
scripted-setter-[1,2] and wasm-scripted-getter-0 in Chrome,
Edge, and Firefox.

ScriptedSetter1/ScriptedGetter0 ScriptedSetter2/ScriptedGetter0
Statistic All Firefox Chrome + Edge All Firefox Chrome + Edge

Count 142 55 87 142 55 87
Mean 4.07 1.67 5.59 4.57 1.98 6.21
Std 2.19 0.68 1.26 2.54 1.57 1.40

Min 0.51 0.51 3.05 0.62 0.62 3.38
5% 1.09 0.93 3.41 1.12 0.91 3.84
25% 1.74 1.23 4.46 1.96 1.35 5.09

50% 4.24 1.56 5.77 4.71 1.78 6.25
75% 5.92 1.89 6.64 6.60 2.06 7.48

95% 7.29 2.82 7.48 8.14 3.10 8.20
Max 7.88 4.31 7.88 12.30 12.30 8.40

by comparing the results of wasm-scripted-setter-1 and wasm-
scripted-setter-2 against a baseline, such as wasm-scripted-
getter-0. The following algorithm uses these comparisons to
classify whether the browser is Chromium-based or not.

Algorithm 3 isChromium(SS1, SS2, SG0, SS1Threshold, SS2Threshold):
Determine if Browser is Chromium-Based

Inputs:
SS1: Timing result of wasm-scripted-setter-1
SS2: Timing result of wasm-scripted-setter-2
SG0: Timing result of wasm-scripted-getter-0
SS1Threshold: Threshold value for the ratio SS1/SG0
SS2Threshold: Threshold value for the ratio SS2/SG0
Return:
(SS1/SG0 ≥ SS1Threshold) AND (SS2/SG0 ≥
SS2Threshold)

Algorithm 3 presents the method for determining if a
browser is Chromium-based. The algorithm uses the ratios of
wasm-scripted-setter-1 and wasm-scripted-setter-2 relative to
wasm-scripted-getter-0 and compares them against predefined
threshold values. By analyzing these ratios, the algorithm can
accurately classify the browser type.

Table IV presents the descriptive statistics of the ratios
between wasm-scripted-setter-1 and wasm-scripted-setter-2
relative to wasm-scripted-getter-0 for Chrome, Edge, and
Firefox. From these statistics, we set the threshold values at
SS1Threshold = 3.05 and SS2Threshold = 3.10. Using
these thresholds, all Chromium-based browsers exceeded the
threshold values, while less than 5% of Firefox instances did.
This configuration resulted in a classification success rate of
99.29%, with only one misclassified Firefox instance out of
55.

These results demonstrate the effectiveness of our method in
differentiating between Chromium-based and non-Chromium-
based browsers using the proposed timing tests and threshold-
based classification algorithm.

Figure 9 shows the screenshot of a browser with reported
spoofed user-agent (left) and the detected real browser (right).

Across all tested configurations:
• Bare-Metal Windows:

Fig. 9: A browser with reported spoofed Firefox 33.0 user-
agent (top) and the detected real browser (bottom)

– For Chrome, ‘wasm-scripted-setter-1‘ and ‘wasm-
scripted-setter-2‘ were 678.96% and 724.66% slower
than other tests, respectively.

– For Edge, ‘wasm-scripted-setter-1‘ and ‘wasm-
scripted-setter-2‘ were 568.10% and 651.74% slower
than other tests, respectively.

• Bare-Metal Unix:

– For Chrome, ‘wasm-scripted-setter-1‘ and ‘wasm-
scripted-setter-2‘ were 329.32% and 391.97% slower
than other tests, respectively.

– Firefox and Safari displayed consistent results, with
minimal deviation across all timing tests.

• Virtualized Environments (Hyper-V, VMWare, Virtu-
alBox, KVM):

– On KVM, Chrome’s ‘wasm-scripted-setter-1‘ and
‘wasm-scripted-setter-2‘ tests were 402.45% and
512.67% slower than other tests, respectively.

– Firefox showed consistent timing results across all
hypervisors with minimal deviations.

• Smartphones (Android, iOS):

– On Android, ‘wasm-scripted-setter-1‘ and ‘wasm-
scripted-setter-2‘ were up to 760.87% slower than
other tests, showing high variability.

– iOS devices showed stable results, with mean timings
around 21ms across all browsers.

These findings demonstrate that the ‘wasm-scripted-setter‘
tests are particularly influenced by system and browser varia-
tions, making them a valuable metric for browser fingerprint-
ing in diverse environments.

A. Mitigation

The proposed browser fingerprinting method leverages tim-
ing discrepancies in interactions between JavaScript and We-
bAssembly to identify Chromium-based browsers. This tech-
nique is particularly effective due to the pronounced execu-
tion time differences in ‘wasm-scripted-setter-1‘ and ‘wasm-
scripted-setter-2‘ tests, which involve setting WebAssembly
functions as setters using the Object.defineProperty
function.

To counteract this fingerprinting approach, we intro-
duce a mitigation strategy that injects random delays into
the execution of setter functions in Chromium and non-
Chromium browsers, such as Firefox. By manipulating
the timing results, the mitigation alters the timing ra-
tios between tests, making Firefox appear similar to a
Chromium-based browser and thereby reducing the effective-
ness of the fingerprinting method. Algorithm 4 presents the
JavaScript implementation of this approach, where the original
Object.defineProperty method is hooked to replace
the assigned setter with a delayed version.

Algorithm 4 Inject Delay to Setters of Object Properties

1 // Random delay for the function
2 let delay = Math.random() * 1000;
3 let originalDefineProperty = Object.

defineProperty;
4 // Inject delay into setter functions
5 function myDefineProperty(obj, prop,

descr) {
6 if (’set’ in descr && typeof descr[’

set’] === "function") {
7 descr[’set’] = createDelayedFunction(

descr[’set’], delay);
8 }
9 originalDefineProperty(obj, prop,

descr); // Call original
defineProperty

10 }
11 % // Replace Object.defineProperty
12 Object.defineProperty =

myDefineProperty;

Figure 10 compares the timing test results for Chrome,
Edge, Firefox, and Firefox with the proposed mitiga-
tion applied. For Chrome and Edge, the timing ratios of
‘wasm-scripted-setter-1‘ and ‘wasm-scripted-setter-2‘ relative
to ‘wasm-scripted-getter-0‘ were 25.42 and 26.00 (Chrome),
and 24.93 and 25.66 (Edge), respectively. Without mitigation,
Firefox exhibited lower ratios of 1.65 and 1.63. However, with
the mitigation in place, the ratios for Firefox increased to
71.38 and 71.85, making its characteristics closer to those of
Chromium-based browsers.

This mitigation strategy demonstrates that by artificially
adjusting the timing patterns of specific functions, the dis-
tinguishing features used by the fingerprinting method are
obscured. Consequently, non-Chromium browsers, such as
Firefox, can be made to appear more like Chromium-based

wasm
-warm

up

wasm
-m

ath
-bu

ilti
n

wasm
-to

-js

wasm
-ca

ll-k
no

wn-0

wasm
-ca

ll-k
no

wn-1

wasm
-ca

ll-k
no

wn-2

wasm
-ca

ll-k
no

wn-2
-r

wasm
-ca

ll-g
en

eri
c-2

wasm
-ca

ll-g
en

eri
c-2

-r

wasm
-sc

rip
ted

-ge
tte

r-0

wasm
-sc

rip
ted

-ge
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-1

wasm
-sc

rip
ted

-se
tte

r-2

wasm
-F.p

.ap
ply

-ar
ray

wasm
-F.p

.ap
ply

-ar
ray

-r

wasm
-F.p

.ap
ply

-ar
gs

wasm
-F.p

.ap
ply

-ar
gs-

r

wasm
-F.p

.ca
ll

wasm
-F.p

.ca
ll-r

wasm
-if-

ad
d

0

50

100

150

200

250

300

Ti
m

e
in

 m
ilis

ec
on

ds

Timing tests results of the three different browsers
Natural Chrome
Natural Edge
Natural Firefox
Firefox with mitigation

Fig. 10: WebAssembly timing test results of Chrome, Edge,
Firefox, and Firefox with mitigation.

browsers, effectively reducing the overall fingerprinting accu-
racy and introducing potential false negatives.

B. Implementation of a WebAssembly Hooking Module with
Random Delays

The implementation introduces a mechanism for intercept-
ing WebAssembly (Wasm) functions and modifying their
behavior by adding random delays. This process lever-
ages the JavaScript WebAssembly API to dynamically hook
into the exported functions of a compiled WebAssem-
bly module. The first step involves loading and compil-
ing the WebAssembly module, which is achieved using the
API’s WebAssembly.instantiate function. This func-
tion takes a binary .wasm file as input and returns an instance
of the module with access to its exported functions. Below is
an example of how the module is loaded:

1 const loadWasm = async (wasmPath) => {
2 const response = await fetch(wasmPath);
3 const bytes = await response.

arrayBuffer();
4 return WebAssembly.instantiate(bytes,

{});
5 };

Listing 2: Loading and Compiling a WebAssembly Module

Once the module is compiled, the implementation wraps
its exports in a proxy to intercept function calls. For each
exported function, a new asynchronous function is introduced.
This function introduces a random delay using JavaScript’s
Promise and setTimeout mechanisms, logs the delay for
debugging purposes, and then invokes the original function.
The random delay is generated by scaling a random value to
the desired range, as shown in the following code:

1 const hookExports = (wasmExports) => {
2 const hookedExports = {};
3 for (const [key, func] of Object.

entries(wasmExports)) {
4 if (typeof func === "function") {
5 hookedExports[key] = async (...args)

=> {
6 const delay = Math.random() * 200;

// Delay up to 200 milliseconds

7 console.log(‘Hooked: ${key},
introducing a delay of ${delay.
toFixed(2)} ms‘);

8 await new Promise((resolve) =>
setTimeout(resolve, delay));

9 return func(...args); // Call the
original function

10 };
11 } else {
12 hookedExports[key] = func;
13 }
14 }
15 return hookedExports;
16 };

Listing 3: Hooking WebAssembly Exports to Add Random
Delays

The hooked functions are then integrated into the We-
bAssembly instance, replacing the original exports with their
delayed versions. This integration ensures that all calls to
the exports pass through the delay mechanism, while still
preserving the original functionality. An example of using the
hooked instance is provided below:

1 (async () => {
2 const wasmModule = await loadWasm("

module.wasm");
3 const hookedInstance = hookExports(

wasmModule.instance.exports);
4

5 // Example usage of hooked exports
6 const result = await hookedInstance.

someFunction(10, 20);
7 console.log("Result:", result);
8 })();

Listing 4: Integrating Hooked Functions into a WebAssembly
Instance

This design introduces non-blocking random delays that
allow for asynchronous execution, making it suitable for test-
ing or obfuscation scenarios. Adding random delays impacts
performance, so it should be used judiciously, particularly in
environments requiring high throughput. Debugging logs pro-
vide visibility into the delays and intercepted functions, aiding
in verifying the behavior of the hooking mechanism. Overall,
this approach demonstrates a flexible method for modifying
WebAssembly functionality at runtime, leveraging JavaScript’s
capabilities to extend Wasm’s behavior in dynamic and non-
intrusive ways.

C. Detecting Timing Attacks on WebAssembly for Fingerprint-
ing

To counteract the FingerPrinting behavior, a detection mech-
anism can be implemented that monitors access to timing
functions and profiles WebAssembly execution for suspicious
patterns.

The detection begins by intercepting calls to high-resolution
timers. This is achieved by overriding the default imple-
mentation of performance.now() to include logging and
monitoring of access frequency. If the frequency of calls

exceeds a predefined threshold, the system flags the activity
as suspicious. The following code illustrates this approach:

1 const originalPerformanceNow =
performance.now;

2 performance.now = function () {
3 const timestamp =

originalPerformanceNow.apply(this,
arguments);

4 console.log(‘High-resolution timer
accessed: ${timestamp}‘);

5 detectSuspiciousTimingAccess();
6 return timestamp;
7 };
8

9 let timerAccessCount = 0;
10 const timerAccessThreshold = 100;
11

12 function detectSuspiciousTimingAccess()
{

13 timerAccessCount++;
14 if (timerAccessCount >

timerAccessThreshold) {
15 console.warn("Suspicious timing attack

detected: excessive timer access"
);

16 }
17 }

Listing 5: Intercepting High-Resolution Timer Access

In addition to intercepting timers, WebAssembly exports
can be instrumented to monitor execution times of individual
functions. Each function call is wrapped in a mechanism
that measures the time taken for execution. Functions with
extremely short execution times, particularly when called
repeatedly, are flagged as potentially being used in timing
attacks. An example of such instrumentation is shown below:

1 const hookWasmExportsForTiming = (
wasmExports) => {

2 const hookedExports = {};
3 for (const [key, func] of Object.

entries(wasmExports)) {
4 if (typeof func === "function") {
5 hookedExports[key] = async (...args)

=> {
6 const startTime = performance.now();
7 const result = func(...args); //

Call the original function
8 const endTime = performance.now();
9 const executionTime = endTime -

startTime;
10

11 console.log(‘Function ${key}
executed in ${executionTime} ms
‘);

12 if (executionTime < 1) {
13 console.warn(‘Suspicious timing

detected on function ${key}‘);
14 }
15 return result;
16 };
17 } else {
18 hookedExports[key] = func;
19 }

20 }
21 return hookedExports;
22 };
23

24 (async () => {
25 const wasmModule = await WebAssembly.

instantiateStreaming(fetch(’module.
wasm’), {});

26 const hookedInstance =
hookWasmExportsForTiming(wasmModule
.instance.exports);

27 })();

Listing 6: Profiling WebAssembly Exported Functions

Detecting timing attacks presents several challenges. Timing
discrepancies that appear suspicious in one context might
be legitimate in another, leading to potential false positives.
For example, certain applications rely on frequent timer calls
for optimization or benchmarking, which might inadvertently
trigger detection mechanisms. Similarly, instrumenting We-
bAssembly exports introduces performance overhead, which
could affect the user experience for non-malicious workloads.
Furthermore, the variability of runtime environments, such as
differences in browser implementations or hardware configura-
tions, complicates the task of establishing a consistent baseline
for timing analysis. Despite these challenges, the combination
of timer interception and execution profiling can provide a
practical approach for identifying and mitigating time fin-
gerprinting attacks in WebAssembly applications, offering a
compromise between enhanced security and acceptable per-
formance.

D. WebAssembly Security

In recent years, the security implications of WebAssembly
have garnered significant attention. Musch et al. [53] con-
ducted an extensive study on the applications of WebAssembly
in real-world environments, categorizing its use into multi-
ple domains such as custom utilities, games, libraries, tests,
cryptomining, and obfuscation. Their findings suggest that
WebAssembly is likely to serve as a vector for sophisticated
web-based malware obfuscation. Subsequently, Hilbig et al.
[54] analyzed 8461 unique WebAssembly binaries, reveal-
ing that many of them were compiled from memory-unsafe
languages such as C and C++. This introduces the potential
for traditional memory-related vulnerabilities to propagate into
WebAssembly binaries [55]. These studies underscore the dual
nature of WebAssembly as a powerful tool for creating high-
performance web applications, while simultaneously present-
ing new challenges for security researchers. The continued
evolution of WebAssembly necessitates ongoing research into
its security implications to preempt potential misuse in mali-
cious activities.

Lehmann et al. [55] provided a comprehensive analysis
of WebAssembly’s linear memory and its utilization by lan-
guages such as C, C++, and Rust. They demonstrated that
WebAssembly lacks the memory protection features present
in native binaries, making it susceptible to various attack

vectors, including control flow manipulation and host envi-
ronment exploitation. To address these concerns, Lehmann et
al. [56] proposed Fuzzm, the first fuzzer specifically designed
for WebAssembly binaries. Using the well-established AFL
fuzzer, Fuzzm identified numerous crashes in real-world We-
bAssembly binaries and introduced stack and heap canaries to
detect memory corruption. These mechanisms act as binary
hardening techniques, making WebAssembly binaries more
resilient to exploitation.

Cabrera et al. [57] introduced CROW, the first code di-
versification framework for WebAssembly. The authors eval-
uated CROW using a dataset of 303 C programs and suc-
cessfully diversified 239 of them, demonstrating the tool’s
robustness. Moreover, they applied CROW to off-the-shelf
cryptography libraries such as libsodium, showcasing its ca-
pability to enhance software diversity and security. In another
study, Park et al. [58] developed a cryptography library using
WebAssembly, achieving more than a twofold increase in
performance over JavaScript. The authors also implemented
atomic block-based scalar multiplication to mitigate the risk
of side-channel attacks, thereby enhancing the security posture
of WebAssembly-based cryptography.

V. CONCLUSION

This paper introduces a novel WebAssembly-based browser
fingerprinting method that leverages WebAssembly’s compu-
tational capabilities to achieve high accuracy in identifying
and differentiating between browsers. By exploiting subtle dif-
ferences in the WebAssembly JavaScript API implementation,
our approach can uniquely identify browsers and devices, even
when traditional browser identifiers are completely spoofed.
Through extensive evaluation on various physical devices and
158 browser instances—including Google Chrome, Microsoft
Edge, Mozilla Firefox, and Safari—our technique demon-
strates a false-positive rate of less than 1% when distin-
guishing between Chromium-based and non-Chromium-based
browsers. Given WebAssembly’s widespread support across
all major browsers, this method holds promise for precise user
identification, improved security, and more effective personal-
ized experiences. However, recognizing the potential privacy
risks, we propose mitigation strategies that introduce minor
timing delays to reduce execution variations, thereby dimin-
ishing the accuracy of WebAssembly-based fingerprinting. Our
findings underscore the need to consider WebAssembly in the
context of web privacy and security, providing a foundation
for future research and the development of privacy-preserving
standards in web-browsers technologies.

REFERENCES

[1] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” 2018.

[2] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in Proceedings
of the 23rd USENIX Security Symposium, 2014.

[3] M. Korczyński and A. Duda, “Markov chain fingerprinting to classify
encrypted traffic,” in Proceedings - IEEE INFOCOM, 2014.

[4] Y. Cao, S. Li, and E. Wijmans, “(Cross-)Browser Fingerprinting
via OS and Hardware Level Features,” in Proceedings
2017 Network and Distributed System Security Symposium.
Reston, VA: Internet Society, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
cross-browser-fingerprinting-os-and-hardware-level-features/

[5] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in Proceedings - IEEE Symposium on Security
and Privacy, 2013, pp. 541–555.

[6] D. Fifield and S. Egelman, “Fingerprinting web users through font met-
rics,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2015.

[7] A. Das, N. Borisov, and M. Caesar, “Tracking Mobile Web Users
Through Motion Sensors: Attacks and Defenses,” 2017.

[8] I. Sanchez-Rola, I. Santos, and D. B. Eurecom, “Clock Around the
Clock: Time-Based Device Fingerprinting,” 2018. [Online]. Available:
https://doi.org/10.1145/3243734.3243796

[9] Fyodor. nmap - free security scanner for network exploration and
security audits. [Online]. Available: http://nmap.org

[10] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov, “Hershel:
Single-packet OS fingerprinting,” in Performance Evaluation Review,
2014.

[11] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. R. Sadeghi, and
S. Tarkoma, “IoT SENTINEL: Automated Device-Type Identification for
Security Enforcement in IoT,” in Proceedings - International Conference
on Distributed Computing Systems, 2017.

[12] U. Kumar and S. Gambhir, “Device Fingerprint and Mobile Agent based
Authentication Technique in Wireless Networks Authentication View
project Device Fingerprint and Mobile Agent based Authentication
Technique in Wireless Networks,” International Journal of Future
Generation Communication and Networking, vol. 11, no. 3, pp. 33–48,
2018. [Online]. Available: http://dx.doi.org/10.14257/ijfgcn.2018.11.3.
04

[13] C. Zuo, Z. Lin, H. Wen, and Y. Zhang, “Automatic fingerprinting of
vulnerable BLE IoT devices with static uuids from mobile apps,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 2019.

[14] M. Selakovic and M. Pradel, “Performance issues and optimizations in
javascript: An empirical study,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 61–72. [Online].
Available: https://doi.org/10.1145/2884781.2884829

[15] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien, “Bringing the web
up to speed with WebAssembly,” ACM SIGPLAN Notices, 2017.

[16] A. Mallik, “Man-in-the-middle-attack: Understanding in simple words,”
Cyberspace: Jurnal Pendidikan Teknologi Informasi, vol. 2, no. 2, pp.
109–134, 2019.

[17] P. Mateti, “Hacking techniques in wireless,” Handbook of Information
Security, Threats, Vulnerabilities, Prevention, Detection, and Manage-
ment, vol. 3, p. 83, 2006.

[18] G. R. Malan, D. Watson, F. Jahanian, and P. Howell, “Transport and
application protocol scrubbing,” in Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No. 00CH37064), vol. 3. IEEE, 2000, pp. 1381–1390.

[19] I. Papapanagiotou, E. M. Nahum, and V. Pappas, “Smartphones vs.
laptops: Comparing web browsing behavior and the implications for
caching,” in Performance Evaluation Review, vol. 40, no. 1 SPEC. ISS.
New York, New York, USA: ACM Press, 2012, pp. 423–424. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2254756.2254824

[20] O. Arkin, “A remote active os fingerprinting tool using icmp,” login:
the Magazine of USENIX and Sage, vol. 27, no. 2, pp. 14–19, 2002.

[21] F. Beck, O. Festor, and I. Chrisment, “IPv6 Neighbor Discovery Protocol
based OS fingerprinting,” 2007.

[22] D. Fifield, A. Geana, L. MartinGarcia, M. Morbitzer, and J. D. Tygar,
“Remote operating system classification over IPv6,” in AISec 2015 -
Proceedings of the 8th ACM Workshop on Artificial Intelligence and
Security, co-located with CCS 2015. New York, NY, USA: Association
for Computing Machinery, Inc, 10 2015, pp. 57–68. [Online]. Available:
https://dl.acm.org/doi/10.1145/2808769.2808777

[23] N. A. Quynh, “Operating System Fingerprinting for Virtual Machines,”
DEF CON 18 Hacking Conference, 2010.

[24] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling, “Fingerprint-
ing Mobile Devices Using Personalized Configurations,” Proceedings on
Privacy Enhancing Technologies, 2015.

[25] J. Zhang, A. R. Beresford, and I. Sheret, “SensorID: Sensor calibration
fingerprinting for smartphones,” in Proceedings - IEEE Symposium
on Security and Privacy, vol. 2019-May. Institute of Electrical and
Electronics Engineers Inc., 5 2019, pp. 638–655.

[26] Ł. Olejnik, G. Acar, C. Castelluccia, and C. Diaz, “The leaking battery:
A privacy analysis of the HTML5 battery status API,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2016.

[27] A. Aksoy, S. Louis, and M. H. Gunes, “Operating system fingerprinting
via automated network traffic analysis,” in 2017 IEEE Congress on
Evolutionary Computation, CEC 2017 - Proceedings, 2017.

[28] T. Matsunaka, A. Yamada, and A. Kubota, “Passive OS fingerprinting
by DNS traffic analysis,” in Proceedings - International Conference on
Advanced Information Networking and Applications, AINA, 2013.

[29] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky,
“Passive os fingerprinting methods in the jungle of wireless networks,” in
IEEE/IFIP Network Operations and Management Symposium: Cognitive
Management in a Cyber World, NOMS 2018, 2018.

[30] M. Lastovicka, S. Spacek, P. Velan, and P. Celeda, “Using TLS Fin-
gerprints for OS Identification in Encrypted Traffic,” in Proceedings
of IEEE/IFIP Network Operations and Management Symposium 2020:
Management in the Age of Softwarization and Artificial Intelligence,
NOMS 2020. Institute of Electrical and Electronics Engineers Inc., 4
2020.

[31] Y. C. Chen, Y. Liao, M. Baldi, S. J. Lee, and L. Qiu, “OS fingerprinting
and tethering detection in mobile networks,” in Proceedings of the ACM
SIGCOMM Internet Measurement Conference, IMC, 2014.

[32] K. Mowery and H. Shacham, “Pixel Perfect : Fingerprinting Canvas in
HTML5,” Web 2.0 Security & Privacy 20 (W2SP), 2012.

[33] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting In-
formation in JavaScript Implementations,” Web 2.0 Security & Privacy,
2011.

[34] M. Schwarz, F. Lackner, and D. Gruss, “JavaScript Template Attacks:
Automatically Inferring Host Information for Targeted Exploits,” no.
February, 2019.

[35] J. S. Queiroz and E. L. Feitosa, “A Web Browser Fingerprinting
Method Based on the Web Audio API,” The Computer Journal,
vol. 62, no. 8, pp. 1106–1120, 8 2019. [Online]. Available:
https://academic.oup.com/comjnl/article/62/8/1106/5298776

[36] J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Perrig, and L. Van
Doorn, “Remote detection of virtual machine monitors with fuzzy
benchmarking,” in Operating Systems Review (ACM), vol. 42, no. 3,
4 2008, pp. 83–92.

[37] G. Ho, D. Boneh, L. Ballard, and N. Provos, “Tick tock: Building
browser red pills from timing side channels,” 8th USENIX Workshop
on Offensive Technologies, WOOT 2014, 2014.

[38] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin, “OS-SOMMELIER:
Memory-only operating system fingerprinting in the cloud,” in
Proceedings of the 3rd ACM Symposium on Cloud Computing,
SoCC 2012. New York, New York, USA: ACM Press, 2012, pp.
1–13. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2391229.
2391234

[39] R. Owens and W. Wang, “Non-interactive OS fingerprinting through
memory de-duplication technique in virtual machines,” in Conference
Proceedings of the IEEE International Performance, Computing, and
Communications Conference, 2011.

[40] M. Husák, M. Čermák, T. Jirsı́k, and P. Čeleda, “HTTPS traffic analysis
and client identification using passive SSL/TLS fingerprinting,” Eurasip
Journal on Information Security, 2016.

[41] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic fingerprinting
revisited: Generate stable device ID stealthily with inaudible sound,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 2014.

[42] A. Das, N. Borisov, and M. Caesar, “Do you hear what i hear? Fin-
gerprinting smart devices through embedded acoustic components,” in
Proceedings of the ACM Conference on Computer and Communications
Security, 2014.

[43] J. Chen, K. He, J. Chen, Y. Fang, and R. Du, “PowerPrint: Identifying
Smartphones through Power Consumption of the Battery,” 2020.
[Online]. Available: https://doi.org/10.1155/2020/3893106

https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/cross-browser-fingerprinting-os-and-hardware-level-features/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/cross-browser-fingerprinting-os-and-hardware-level-features/
https://doi.org/10.1145/3243734.3243796
http://nmap.org
http://dx.doi.org/10.14257/ijfgcn.2018.11.3.04
http://dx.doi.org/10.14257/ijfgcn.2018.11.3.04
https://doi.org/10.1145/2884781.2884829
http://dl.acm.org/citation.cfm?doid=2254756.2254824
https://dl.acm.org/doi/10.1145/2808769.2808777
https://academic.oup.com/comjnl/article/62/8/1106/5298776
http://dl.acm.org/citation.cfm?doid=2391229.2391234
http://dl.acm.org/citation.cfm?doid=2391229.2391234
https://doi.org/10.1155/2020/3893106

[44] N. Takei, T. Saito, K. Takasu, and T. Yamada, “Web Browser Finger-
printing Using only Cascading Style Sheets,” in Proceedings - 2015
10th International Conference on Broadband and Wireless Computing,
Communication and Applications, BWCCA 2015, 2015.

[45] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” 2018.

[46] Emscripten. Emscripten is a complete compiler toolchain to
webassembly. [Online]. Available: https://emscripten.org

[47] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in CGO, San Jose, CA, USA, 3
2004, pp. 75–88.

[48] SDL. Sdl. [Online]. Available: https://www.libsdl.org/
[49] man7. pthreads(7). [Online]. Available: https://man7.org/linux/

man-pages/man7/pthreads.7.html
[50] asmjs. asm.js - frequently asked questions. [Online]. Available:

http://asmjs.org/faq.html
[51] A. Zakai. Why webassembly is faster than

asm.js. [Online]. Available: https://hacks.mozilla.org/2017/03/
why-webassembly-is-faster-than-asm-js/

[52] J. McConnell. Webassembly support now shipping in all major
browsers. [Online]. Available: https://blog.mozilla.org/blog/2017/11/13/
webassembly-in-browsers

[53] M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “New kid on
the web: A study on the prevalence of webassembly in the wild,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019.

[54] A. Hilbig, D. Lehmann, and M. Pradel, “An empirical study of
real-world webassembly binaries security, languages, use cases ccs
concepts • security and privacy → software and application security.
acm reference format,” p. 13, 2020, authors have collected a dataset of
8461 unique WebAssembly binaries. They concluded that the majority
of binaries from memory-unsafe languages,. [Online]. Available:
https://doi.org/10.1145/3442381.3450138

[55] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new
again: Binary security of webassembly,” 2020, they performed in-depth
analysis of Wasm’s linear memory and its use by programs compiled
from languages such a C/C++ and Rust. They show that memory
protections are missing from Wasm, making wasm binaries less
secured than their binaries counterpart. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/lehmann

[56] D. Lehmann, M. T. Torp, and M. Pradel, “Fuzzm: Finding memory
bugs through binary-only instrumentation and fuzzing of webassembly,”
2021, they introduce Fuzzm, the first wasm binarry fuzzer, which uses
the popular AFL fuzzer. In addition, they also itroduce stack and heap
canaries to detect overflows and underflows. They showed that fuzzm
finds a substantial amount of crashes in real-world wasm binarries,
while being efficient enough to perform hunderds od executions per
second. The canaries also serve as a stand-alone binary hardening
technique to prevent exploitation of vulnerable binaries in production.
[Online]. Available: https://wasmtime.dev/

[57] J. C. Arteaga, O. Floros, O. V. Perez, B. Baudry, and M. Monperrus,
“Crow: Code diversification for webassembly,” 2020, in this paper
they presented CROW, the first code diversification approach for
WebAssembly. They evaluated CROW’s capabilities on 303 C
programs. CROW was able to diversify 239 of them. It was also able
to diversify off-the-shelf cryptographic software (libsoduim). [Online].
Available: https://dx.doi.org/10.14722/madweb.2021.23xxx

[58] B. Park, J. Song, and S. C. Seo, “Efficient implementation of a
crypto library using web assembly,” Electronics 2020, Vol. 9, Page
1839, vol. 9, p. 1839, 11 2020, they implemented a cryptographic
library in WebAssembly. The proposed library showed more than
2 times performance improvement in WebAssembly compared to
JavaScript. In addition, they intoduce atomic block-based scalar
multiplication, which provides enhanced perforamnce and resistance
against SCA. [Online]. Available: https://www.mdpi.com/2079-9292/9/
11/1839/htmhttps://www.mdpi.com/2079-9292/9/11/1839

https://emscripten.org
https://www.libsdl.org/
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
http://asmjs.org/faq.html
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/
https://hacks.mozilla.org/2017/03/why-webassembly-is-faster-than-asm-js/
https://blog.mozilla.org/blog/2017/11/13/webassembly-in-browsers
https://blog.mozilla.org/blog/2017/11/13/webassembly-in-browsers
https://doi.org/10.1145/3442381.3450138
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://wasmtime.dev/
https://dx.doi.org/10.14722/madweb.2021.23xxx
https://www.mdpi.com/2079-9292/9/11/1839/htm https://www.mdpi.com/2079-9292/9/11/1839
https://www.mdpi.com/2079-9292/9/11/1839/htm https://www.mdpi.com/2079-9292/9/11/1839

	Introduction
	WebAssembly
	Contribution

	Background and Related Work
	Passive and Active Fingerprinting
	Overview of Fingerprinting Techniques
	Use Cases for Fingerprinting

	WebAssembly Fingerprinting
	WebAssembly Compilation
	WebAssembly Performance
	Browser Fingerprinting
	Technical Considerations

	Evaluation
	Bare-Metal Windows (Chrome, Edge, Firefox)
	Bare-Metal Unix (CentOS, Ubuntu, macOS)
	Virtualized Environments (Hyper-V, VMWare, VirtualBox, KVM)
	Smartphones (Android, iOS)
	Chromium Based Browser Identification

	Mitigation
	Implementation of a WebAssembly Hooking Module with Random Delays
	Detecting Timing Attacks on WebAssembly for Fingerprinting
	WebAssembly Security

	Conclusion
	References

