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Abstract
LLM generated code often contains security
issues. We address two key challenges in im-
proving secure code generation. First, obtain-
ing high quality training data covering a broad
set of security issues is critical. To address this,
we introduce a method for distilling a prefer-
ence dataset of insecure and secure code pairs
from frontier LLMs, along with a security rea-
soning that explains the issues and the fix. The
key idea here is to make use of security knowl-
edge sources to devise a systematic prompting
strategy that ensures broad coverage. Second,
aligning models to secure code requires focus-
ing on localized regions of code. Direct pref-
erence optimization methods, like SimPO, are
not designed to handle these localized differ-
ences and turn out to be ineffective. We address
this with a new localized preference optimiza-
tion algorithm that masks the security related
tokens in both the winning (secure) and los-
ing (insecure) responses. To prevent loss in
code quality, we also add a regularizer. Eval-
uations show that both training on our dataset,
DiSCo, and the new preference optimization
algorithm, LPO, yield substantial reductions in
code insecurity while also improving overall
code quality. Code and dataset are available
at https://github.com/StonyBrookNLP/disco-
lpo.

1 Introduction

LLMs are increasingly used for coding due to their
advanced programming abilities. GitHub Copilot,
a popular coding assistant, had over 1.2 million
subscribers in 2021 (Friedman, 2021), while one
survey interviewed 500 developers of whom 92%
state they use AI for coding(Shani, 2023). Train-
ing smaller models to be effective coders will fur-
ther improve the adoption of these advances (Chen
et al., 2023). However, it is important to make
sure AI generated code is secure, i.e., it does not
contain insecure behavior identified under Com-
mon Weakness Enumeration (CWE) (Mitre, 2024)

classification. Multiple studies show that a large
percentage of AI generated code (40-76%) can be
insecure (Khoury et al., 2023; Pearce et al., 2022)—
highlighting the need for reducing security issues
in generated code.

Previous works sought to improve security of
LLM generated code by tuning them on aggregated
data of secure code and/or insecure code (He and
Vechev, 2023; He et al., 2024). This, however,
presents two fundamental challenges: (i) Accumu-
lating training data at scale covering diverse secu-
rity issues is difficult, expensive, and requires do-
main expertise. As a result, many opt for automatic
curation from open-source repositories. However,
such data tends to be noisy and have low CWE cov-
erage. Filtering for noise further reduces the overall
dataset size. (ii) Designing appropriate alignment
techniques for secure code generation is challeng-
ing. Standard fine-tuning paradigms, while useful,
are not optimized for learning secure coding, as
they give equal importance to security relevant and
non-relevant tokens during training. Models are
also not trained to reason about security when gen-
erating code. Preference optimization methods (e.g.
(Rafailov et al., 2024; Meng et al., 2024)) provide a
better formulation for teaching models preference
of secure over insecure code. However, unlike stan-
dard preference data, the distinction between se-
cure and insecure code is often localized to a small
region within the code. We want alignment that
exploits this locality characteristic of the problem.

Our solution addresses these challenges through
two important contributions.

1) Distilling Secure Code from Frontier LLMs
(DiSCo): We synthesize training data using fron-
tier LLMs to align smaller LLMs towards secure
code generation. The difficulty here is that directly
prompting frontier models is ineffective in multiple
ways. While frontier LLMs generate high-quality
code for many coding task prompts, the code they
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generate is not always secure. Moreover, we want
synthetisized data to have high CWE coverage.

Addressing these, we propose a prompting strat-
egy which makes use of existing security knowl-
edge sources. These provide a way to first nudge
the LLMs towards generating code with known se-
curity issues and then generate a fixed version that
removes these issues. In addition, we use static
security analyzers to identify any remaining issues
and ask the LLMs to refine code based on this feed-
back. Using this pipeline we create DiSCo, a large
training set of 10k preference pairs i.e. insecure
and secure code along with a reasoning on the issue
and the fix useful for secure code alignment.

2) A novel Localized Preference Optimization
(LPO) algorithm: Prior works for secure code
generation have primarily relied on supervised fine-
tuning (SFT) solutions, augmenting them with un-
likelihood training to favor secure code over inse-
cure code (He and Vechev, 2023; He et al., 2024).
Recent advances in preference optimization algo-
rithms provide a more natural formulation for align-
ing models to prefer secure code. However, un-
like standard preference data in other domains (e.g.
summarization), the security issues are often highly
localized to small regions in the overall code. In
other words, the secure and insecure code differ
only in small but significant ways, and are near
identical in other parts. Existing preference opti-
mization algorithms such as SimPO, the one we
build upon, are not well-suited for optimizing on
these type of preferences.

We introduce a new localized preference op-
timization (LPO) that propagates loss to security
relevant tokens. However, this strategy by itself
can lead to lower code quality. We redress this by
adding an SFT loss over other tokens as regularizer.

Our empirical evaluations demonstrate the utility
of DiSCo for improving secure code generation. In
addition to covering a broad set of CWEs, training
on DiSCo also requires models to generate security
reasoning (i.e. identify potential issues and the pos-
sible fixes) before generating code. These lead to
significant improvements even for standard SFT.
The new LPO algorithm further reduces security is-
sues drastically –from 19−40% reductions on four
secure coding benchmarks, while also improving
code quality – from 3−10% improvements on two
coding benchmarks.

To summarize, this paper makes the following
contributions to advance secure code generation: (i)

data distillation pipeline to generate preference data
from frontier LLMs using prompts augmented with
security domain info. (ii) a new training formula-
tion for LLMs whereby they reason on potential
security issues before generating code. (iii) a novel
preference optimization algorithm specifically de-
signed for the localized nature of the preferences in
secure code generation. (iv) a large distilled dataset
of 10k instances in Python for secure code gener-
ation, covering a wider range of known security
issues than previous datasets.

2 Related Works

Code generation quality has greatly improved in
both general purpose frontier LLMs (e.g. GPT-4o,
Claude) as well as in smaller LLMs, pretrained
on public codebases. For example, code LLMs
such as CodeLLama (Roziere et al., 2023), and
StarCoder (Li et al., 2023; Lozhkov et al., 2024),
show impressive performance on tasks like basic
coding (Chen et al., 2021; Austin et al., 2021), com-
petitive programming (Hendrycks et al., 2021) and
fixing code repository issues (Zhang et al., 2023;
Jimenez et al., 2024). Instruction tuning (Wei et al.,
2022) on synthesized (instruction,code) corpora
distilled from frontier models (e.g. GPT-3.5 and
GPT-4) has also yielded consistent improvements
in overall code quality (Wang et al., 2024a; Yu et al.,
2024; Muennighoff et al., 2024; Wang et al., 2024b;
Wei et al., 2024; Cao et al., 2024; Song et al., 2024).
Our work relates to two extensions of this trend:
(i) aligning LLMs to improve its overall quality
and other specific aspects, (ii) other methods that
improve security of generated code.

Aligning LLMs for Code Generation: Guan
et al. (2024) enhance this synthesis further by dis-
tilling safety and utility reasoning as part of training
corpus. Others incorporate reinforcement learning
(RLHF) (Ouyang et al., 2022) for better quality
code generation (Le et al., 2022; Dou et al., 2024).
Preference optimization algorithms (Rafailov et al.,
2024; Meng et al., 2024), which directly optimize
policy models, offer a simpler alternative to RLHF,
since they do not need separate memory-intensive
reward models. Pivotal Token Search (Abdin et al.,
2024) focuses optimization on relevant tokens by
estimating their contribution to probability of the
overall target response. Liu et al. (2024) improves
preference datasets through critique models and
code perturbation. While people have trained mod-
els for better code generation, ours is the first work



that align models towards secure code generation
using preference tuning over relevant tokens.

Security of Code Generation: To analyse se-
curity of LLM generated code, works introduce
benchmarks like Security Eval (Siddiq and San-
tos, 2022), LLMSecEval (Tony et al., 2023) and
outcome-based security evaluation benchmark CW-
Eval (Peng et al., 2025). Recent literature propose
code security alignment techniques via contrastive
prefix tuning (He and Vechev, 2023), unlikelihood
tuning (He et al., 2024), LLM refinement (Al-
rashedy and Aljasser, 2023), retrieval augmented
generation (Zhang et al., 2024), synthesizing data
using verifier feedback (Hajipour et al., 2024) and
creating synthetic datasets using LLM parametric
knowledge(Xu et al., 2024). In contrast, we use a
more comprehensive data domain knowledge incor-
porated distillation pipeline and alignment method
that incorporates reasoning over security and pref-
erence optimization over security relevant tokens
for secure code generation task.

3 Secure Code Generation

Multiple studies show that LLM generated code has
security issues as defined by Common Weakness
Enumeration (Mitre, 2024) classification. For ex-
ample, Khoury et al. (2023) discovered this insecu-
rity rate was 76% for ChatGPT with only 43% fix-
able by prompting, Pearce et al. (2022) stated that
Copilot generates on average 40% insecure code
and Sandoval et al. (2023) found that users gen-
erate 10% more insecure code when using LLMs.
This problem can be solved via refinement but is
expensive. Hence, an ideal model should directly
generate code that is both functional and secure.

3.1 Task Definition

Formally, given a prompt x, the secure code gen-
eration task is to generate code y that maximizes
utility while minimizing security issues. Utility
is calculated via code compilation and unit tests,
and security by using security analysis tools (Cod-
eQL (GitHub, 2024), Bandit (Bandit, 2008), etc.).

3.2 Challenges in secure code generation

Secure code generation poses two broad challenges:
(i) acquiring useful training data and (ii) effectively
aligning models towards secure code generation.

Acquiring training data: Training for secure
code generation requires tuples of (prompt,

secure code, insecure code). Manually curat-
ing such data at scale is expensive, difficult, and
requires domain expertise. Prior work, instead,
relied on automatic curation and labeling from pub-
licly available resources, like GitHub, using tools
and techniques like matching security keywords in
the documentation and/or security analyzers (Bhan-
dari et al., 2021; Fan et al., 2020).This led to poor
quality data due to poor documentation and tool
inaccuracy (He and Vechev, 2023). They also pos-
sess other drawbacks: the gathered dataset is of-
ten small, vulnerability coverage is limited, and
security issues are specific to codebases and non-
generalizable (He et al., 2024).

Aligning LLMs for secure code generation:
One can directly align LLMs via supervised fine-
tuning towards generating secure code. Previous
works have improved upon this by making use of
insecure code via contrastive/unlikelihood training
(He and Vechev, 2023; He et al., 2024). Preference
optimization algorithms (e.g., DPO (Rafailov et al.,
2024), SimPO (Meng et al., 2024)), which provide
a more natural formulation for preference learning,
have demonstrated superior alignment performance
in other problem domains. However, unlike prefer-
ence data in other domains, the difference between
secure (winning response) and insecure code (los-
ing response) is localized to small regions in the
code. This means secure and insecure code are
mostly similar but have small but important differ-
ences. Standard preference optimization solutions
(e.g. SimPO) are not well-suited for this setup as
they do not utilize the characteristics of the prob-
lem. Furthermore, such alignment can to lead to
lower code utility as model might overfit towards
code security, i.e., not generating certain insecurity
prone functions (os.popen) over security concerns
despite necessity for the task.

3.3 Our solution
We address these challenges by introducing a scal-
able dataset distillation method and a localized pref-
erence optimization algorithm (see below).

DiSCo: We show that we can use frontier LLMs
to distill (secure, insecure) code pairs along with
the reasoning on insecurities and fixes. Key
strengths of our approach are: i) control of syn-
thesis pipeline to ensure broad coverage of a broad
class of CWEs, ii) reduced noise in dataset by using
security analysis tools, and iii) having security rea-
soning highlighting the difference between secure
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Figure 1: Our Methodology:(1)We extract security information from open domain sources such as (CWE-ID, Issue,
Description) and Package info to create prompts. These prompts are fed into frontier models to generate our dataset DiSCo. To
improve security of generated secure code, we feed it through an analyzer, obtain feedback and prompt the LLM to refine it. (2)
Our final DiSCo contains pairs of (Task Instruction, Secure Code Insecure Code). To create Reasoning element, we
combine Security Info, Insecure Code Reasoning and Secure Code Reasoning. (3) To align models towards secure code
generation using DiSCo, models are first supervise finetuned to produce Reasoning + Secure Code given Task Instruction.
Then, this model is further tuned using our preference tuning loss function LPO that trains model to prefer generating (Reasoning
+ Secure Code) over (Reasoning + Insecure Code) given the Task Instruction.

and insecure code usable during finetuning.

LPO: We introduce a new preference optimization
loss accounting for the localized nature of the dif-
ference between secure and insecure code. This
loss function focuses on the difference between
the log probabilities for the security-related tokens
in the secure code and insecure code during tun-
ing. Furthermore, to reduce loss in code generation
quality, we introduce regularization via supervised
fine-tuning over the other tokens.

4 DiSCo: Distilling Secure Code
Alignment Dataset

We prompt frontier LLMs to generate a dataset with
instances of the form (x, y−, r−, y+, r+) where x
is the task prompt, y− and r− are insecure code
and reasoning on its security, and y+ and r+ are
the secure code and reason on how it is secure. Us-
ing simple prompts (e.g. [Generate an insecure
code and corresponding secure code with
reasoning.]) to generate such data is ineffective
for two reasons: (i) LLMs often churn out easy
instances covering the common CWE classes, and
(ii) the generated y+ may not be secure. We solve
these problems by using a security knowledge base
during prompting and a refinement step using ex-
ternal security analyzers.

4.1 Generating Prompts for Distillation
For sampling high-quality instances covering vari-
ous CWEs, we use a security knowledge base cu-

rated from information hubs and documents (CWE
website, security analyzer documentation like Cod-
eQL etc.) In this way, we have a dataset of (CWE-ID,
Issue, Description) security info tuples, where
Issue and Description are short and long expla-
nations of a code vulnerability and CWE-ID is the
CWE category of the security issue. We also extract
a list of Package instances (e.g. requests, os) that
may contain security issues. These information act
as slots that fit in our prompt templates for auto-
matic prompt generation. Through combinations
of elements from security info and Package sets,
we sample large number of prompts that ensures
high CWE and application coverage.

4.2 Distillation with Refinement:

Outputs from frontier LLMs can be erroneous. In
our usescase, example of such are security rea-
soning and code mismatch, insecure and secure
code are having different utility, or the prompt mis-
aligned with code. Also, we observed that in 37.4%
examples, generated secure code y+ contained se-
curity issues either because the actual issue was
unfixed, or other issues outside the scope of the
prompt exist. To mitigate this, we add a refinement
step. Key idea here is to use security analyzers
on the generated code to obtain feedback and then
prompt the frontier LLM to reflect and refine its
output with this information. We observe that one
such refinement step reduces the percentage of data
points containing such security issues from 37.4%



to 12.7%. Multiple refinements (3 iterations) can
further reduce this to 9.4%. However, the overall
quality of the resulting synthetic data worsens due
to overengineering for code security. (See Section
8 for more details). Relevant prompts are listed in
Appendix A.

5 Preference Optimization for Secure
Code Generation

We use the DiSCo to train LLMs for secure code
generation in two stages: (i) supervised fine-tuning
to generate reasoning R and secure code y+ given
prompt x , and (ii) preference tuning to favor y+

over y− given x. We introduce Localized Prefer-
ence Optimization (LPO), a novel preference op-
timization algorithm that exploits knowledge of
localization of areas that pertain to preference.

5.1 Supervised Fine-tuning with Security
Reasoning

We first train LLMs to generate secure code y+

and security reasoning R given instruction x. R
is created by concatenating the CWE-ID, Issue,
Description, r+ and r− in this order (template in
Appendix A). Requiring the models to generate this
security reasoning R nudges them to consider the
possible security issues, what insecure code could
look like, and then generate the secure code in re-
lation to these considerations. Using this dataset
Dsft of (x,R, y+) tuples, the target LLM πθ is
optimized using the following log-likelihood loss:

LSFT = −E(x,y+,R)∼D log πθ(y
+, R|x)

5.2 Localized Preference Optimization

We want models to prefer secure code over insecure
code. In our scenario, this means we want mod-
els (πθ) that prefer y+ over y− over for the same
prompt x i.e., we want models with πθ(y

+, R|x) >
πθ(y

−, R|x). In regular preference optimization
like SimPO, loss is measured over all code tokens.
However, in our setting only a small handful of
tokens determine the presence (or absence) of the
security issue. Hence, propagating loss across all
tokens will dampen the signals from the important
security relevant tokens most influential to learning.
To remedy this, we introduce a new preference loss
that localizes on the security related tokens. We
do this by introducing two binary mask vectors m+

and m− for y+ and y− respectively. Value of 1 in
m denotes security-relevant token and 0 otherwise.

m+ and m− are constructed by identifying the dif-
fering tokens between y+ and y− by computing
the delta between them. The reasoning trace R is
same when optimizing for y+ and y− and therefore
masked out, i.e., the value m is 0 over R.

This localization insures loss is propagated only
for security related tokens. However, as we show
later, such training causes model to lose code gener-
alization as models tend to hack the reward function
(Skalse et al., 2022) by generating non-parseable
or incoherent code (which can be interpreted as
secure code by analyzers). To adjust for this, we
introduce a regularizer, which is the Lsft over the
rest of the y+ tokens, calculated via complement
of the mask m+.

Formally, the LPO loss function is given by:

LLPO = −E(x,y+,y−,R)∼D[log σ(∆− γ)

+ αm+ ⊙ log πθ(y
+, R|x)︸ ︷︷ ︸

SFT objective

]

where, the localized preference component ∆ is:

∆ =
β

|y+|
m+ ⊙ log πθ(y

+, R|x)

− β

|y−|
m− ⊙ log πθ(y

−, R|x)

6 Experimental Setup

Our evaluations are designed to assess the utility
of the LLM distilled DiSCo and the LPO objective
for secure code generation. We demonstrate both
security and code quality improvements in LLMs
in the billion scale. Furthermore, we demonstrate
the superiority of these LLMs compared to frontier
models for secure code generation.

6.1 Datasets
DiSCo Training Data We distill DiSCo for
Python language using GPT-4o (OpenAI, 2024) 1

For prompts, we extract 534 security issues from
Mitre’s CWE website (Mitre, 2024) and documen-
tation of CodeQL (GitHub, 2024) and Bandit (Ban-
dit, 2008) analyzers. We also manually identify 75
common security prone Python libraries. We cre-
ate distillation prompts by instantiating templates
(Section 4.1), combining the security issues and
library information. We obtain GPT-4o outputs for
a subsample of 10, 000 distillation prompts from

1with a knowledge cutoff at 2024-08-06



these combinations. This yields tuples of a coding
task prompt, a specific security issue (CWE-ID),
insecure code i.e, code with security issues y− with
reasoning r−, and a secure version of this code y+

with reasoning r+. The security reasoning R, that
explains the vulnerability and its fix, is processed
using security issue, r+ and r−. We ask GPT-4o to
further refine the generated outputs (secure code or
y+ only) once based on the security feedback from
CodeQL and Bandit on the generated outputs. We
find that 12.7% of this refined dataset contains se-
curity issues. We also experimented with additional
iterations of refinements but found that these addi-
tional steps led to overengineered and low quality
code, training on which reduced models’ code util-
ity (more details in Section 8). For computing the
masks for LPO, we use the difflib library to iden-
tify the unique segements between tokenized y−

and y+ (details in Appendix C). Our final synthe-
sized DiSCo consists of 9, 987 instances covering
431 categories of insecurity (CWEs) (more details
in Appendix B).

Evaluation Data We evaluate code security on
four testbeds: (i) Security Eval (Siddiq and Santos,
2022), (ii) Asleep (Pearce et al., 2022), (iii) LLM-
SecEval (Tony et al., 2023), and (iv) DiSCo-Test,
the held-out test set of from DiSCo. For code util-
ity, we evaluate on Python subset of HumanEvalX
(Zheng et al., 2023) and MBXP (Athiwaratkun
et al., 2022). More details in Appendix D.

6.2 Models

Models We use Phi-2-2.7B (Microsoft, 2023),
CodeLlama-7B(Roziere et al., 2023), Mistral-
7B(Jiang et al., 2023) and Starcoder-2-7B(Lozhkov
et al., 2024). Models at the billion scale provide
reasonable code generation and alignment abilities
as per prior works (Wang et al., 2024a; Yu et al.,
2024; Du et al., 2024). For a more comprehen-
sive evaluation, we also compare against the much
larger GPT-4o and GPT-4o-Mini (OpenAI, 2024)
and Claude-3.5-Sonnet (Anthropic, 2023).

Settings For each model, we evaluate two set-
tings: SFT on DiSCo, and LPO. We also com-
pare against four baselines: off-the-shelf ver-
sions, original SafeCoder models from He et al.
(2024), DPO(Meng et al., 2024) on DiSCo and
SimPO(Meng et al., 2024) on DiSCo. For larger
models, we choose zero-shot setting with security
awareness in prompt and compare against best LPO

model. We have different prompts for each dataset
based on task. Further details in Appendix E.

6.3 Evaluation

For evaluating code security, we extract parsable
code from the generations using pattern matching
and use security analyzers CodeQL and Bandit to
identify all security issues. Unlike previous works
where only target issue is analyzed in any code, our
evaluation is stricter and a better representative of
actual code security practices. We use two metrics:
the percentage of valid generations which have at
least one security issue, Insecurity (InS); number
of security issues per 100 generations or Issues per
100 (I@100). The lower these metrics, the better
the security performance of model. We make sure
common issues are counted once to avoid double
counting. For code utility, we measure pass@1
and pass@5 following Chen et al. (2021). We also
modify prompts from the datasets to match training
prompt of finetuned models. More details about
evaluation in Appendix G and about prompts in A.

6.4 Training Setup

We use LoRA (Hu et al., 2022) with r = 16,α =
32. Batch size was 32. For SFT, learning rates
are between 2e− 5 and 2e− 4 and for LPO, it was
1e−5. For LPO, the hyperparameters are β = 10.0,
γ = 5.4 and α = 0.05 for all models. For security
evaluation, following He et al. (2024) inference
method, we generate 5 samples per prompt at T =
0.4. For code generation test-sets,we sample 5
generation per example at T = 0.2 for pass@1
and T = 0.6 to measure pass@5. Our training
evaluation took around 48 hours on four A6000
GPUs, 48 GB each. More details in Appendix F.

7 Results

We present results on security performance and
coding utility (Table 1) and comparison with fron-
tier LLMs (Table 2). We also show the effect of
each component in LPO on performance (Table 3).
Furthermore, we present an error analysis on the
security issues existing in code generated by our
baselines and LPO (Figure 4).

1) DiSCo improves secure code generation
From Table 1, we observe that models tuned on
DiSCo give best security performance across all
model and dataset combinations. If we compare the
baselines with the best performing model trained
on DiSCo for each usecase, we can see ∼ 19− 40



Models
Security Utility

Security Eval Asleep LLMSecEval DiSCo HumanEvalX MBXP

InS I@100 InS I@100 InS I@100 InS I@100 P@1 P@5 P@1 P@5

Phi-2-2.7b 56.0 88 95.2 410 58.6 99 37.6 66 47.0 63.4 42.8 61.2
SafeCoder 50.9 75 87.6 255 64.3 152 42.3 104 51.7 65.2 57.8 71.2
SFT [DiSCo] 29.3 41 64.3 119 36.8 63 20.4 32 50.5 65.9 57.5 68.5
DPO [DiSCo] 27.5 36 64.1 119 36.8 62 20.4 33 51.1 65.2 57.7 68.5
SimPO [DiSCo] 28.8 39 66.9 121 37.6 64 20.5 33 50.6 65.2 57.9 69.2
LPO [DiSCo] 20.9 32 73.9 175 25.4 50 18.1 32 51.3 66.5 57.2 69.6

CodeLlama-7b 55.6 88 97.9 413 47.8 103 27.3 50 30.4 48.2 36.1 52.3
SafeCoder 51.7 81 66.1 203 69.2 152 37.0 71 36.5 50.6 40.1 53.1
SFT [DiSCo] 31.1 45 83.0 160 42.5 68 20.4 30 36.5 58.5 44.3 60.8
DPO [DiSCo] 29.9 43 85.0 162 41.0 66 23.6 36 36.2 59.1 44.2 59.6
SimPO [DiSCo] 32.9 54 81.3 154 39.9 69 21.5 35 37.0 57.9 43.8 59.2
LPO [DiSCo] 15.6 26 65.0 128 20.8 41 13.7 22 37.2 53.0 40.8 55.0

Mistral-7b 54.6 83 100.0 423 60.4 128 42.4 80 27.4 41.5 32.5 49.2
SafeCoder 50.3 80 94.9 231 49.5 105 37.2 70 32.8 50.6 45.5 56.9
SFT [DiSCo] 27.4 40 84.7 160 35.8 58 21.3 34 37.1 51.2 45.5 60.4
DPO [DiSCo] 27.8 42 86.3 162 35.0 58 17.4 28 36.7 51.2 44.7 61.2
SimPO [DiSCo] 27.6 41 85.5 159 37.9 61 20.9 34 36.5 53.0 45.7 60.4
LPO [DiSCo] 14.7 22 75.2 136 16.7 25 13.4 19 28.7 49.4 42.1 55.4

Starcoder2-7b 56.3 86 100.0 462 65.8 141 32.7 61 33.2 52.4 42.1 58.8
SafeCoder 49.8 80 86.7 239 68.6 161 40.3 78 42.1 63.4 52.9 69.2
SFT [DiSCo] 31.6 57 93.6 216 40.1 69 20.5 35 38.2 54.9 47.5 60.8
DPO [DiSCo] 31.8 54 92.2 214 38.8 69 20.8 36 38.4 54.3 47.5 61.2
SimPO [DiSCo] 32.0 55 91.2 219 37.2 65 20.4 36 38.3 55.5 47.2 61.5
LPO [DiSCo] 11.4 20 59.8 123 12.6 22 16.3 26 38.9 58.5 44.9 61.9

Table 1: Main Results: We present security and coding utility results for the setup outlined in Section 6.3. InS denotes insecurity
and I@100 means issues per 100 samples. Lower values of these metrics denoted better code security. P@1 and P@5 mean pass@1
and pass@5 respectively. Higher pass@k means better utility. [DiSCo] means that the baseline was trained using our synthetic
dataset. SafeCoder models were from the authors. For security , best (dataset,model) combination is highlighted. Results indicate
models trained on DiSCo have best performance on security benchmarks and consistent gains over utility compared to base
model. Furthermore, LPO has best security performance on almost (dataset,model) setups. Also, training using DiSCo and LPO
improves coding utility over base model.

% reduction in insecure files and ∼ 60− 400 lower
number of issues on average. Simple supervised
fine-tuning (SFT) on secure code instances of y+

in DiSCo lead to less insecure files by ∼ 5 − 25
% and ∼ 20 − 300 less bugs on average. Align-
ing on DiSCo with SimPO also shows strong gains
over the baseline. LPO extracts the best value out
of DiSCo training, yielding substantial gains over
baseline model and SafeCoder in all combinations.
These results demonstrate the high utility of DiSCo
for secure coding training.

2) LPO is effective for secure code generation
Table 1 also shows that LPO works better than the
other fine-tuning strategies for nearly all (in 15
out of 16) model and security benchmark combi-
nations. For example, compared to baseline, LPO
reduces the percentage of insecure files (InS) by
31% for the Phi-2.2.7b model to as much as 64%
for the Starcoder2-7b model. The trends are simi-
lar in other (model,dataset) combinations and the
I@100 metric. LPO also consistently performs bet-
ter than SimPO across all cases, with reductions

in insecurity between 2 to 30%. These strong re-
sults demonstrate the need for alignment training
focused on security relevant tokens codified in LPO
objective.

3) DiSCo and LPO also improve general coding
utility over base models The right portion of
Table 1 (marked Utility) compares coding abili-
ties using standard code generation benchmarks.
pass@k numbers improve over the baseline off-
the-shelf models when trained on DiSCo by about
∼ 3− 10 points. This shows that DiSCo alone can
act as as strong instruction tuning dataset for cod-
ing utility alongside secure code generation. An-
other observation is that model trained using LPO
on DiSCo always outperform baseline off-the-shelf
for code generation, by roughly ∼ 3−6 points. De-
spite being steered for secure code generation, LPO
retains strong code utility, learnt during its initial
supervised training phase.

4) Larger frontier LLMs are superior in code
quality but not in security issues Table 2 com-
pares the Security Eval and HumanEvalX results



Models
Datasets

Security Eval HumanEvalX

InSec I@100 P@1

GPT-4o-Mini 61.2 173 86.7

GPT-4o 53.2 138 87.7

Claude-3.5-Sonnet 46.6 80 92.3

Starcoder2 [LPO] 11.4 20 38.9

Table 2: Comparison with Frontier LLMs: We compare
the frontier models outlined in Section 6.2 with our best LPO
model (Starcoder2) on two benchmarks: Security Eval (secu-
rity) and HumanEvalX (code generation) using same metrics
as Table 1. While frontier models outshine in coding, they do
not match secure coding abilities of our models.

of one of our LPO model (Starcoder2 LPO) against
frontier LLMs. As seen from the table, frontier
models are much better at general coding perfor-
mance compared to the smaller Starcoder2 model
with LPO. However, on security benchmarks, these
frontier LLMs falter signficantly against LPO de-
spite being prompted to be aware of coding secu-
rity. We observe security increments of ∼ 30− 50
%. We see that despite their size and large scale
pretraining, frontier LLMs still struggle to produce
secure code and fine-tuning smaller models with
DiSCo and LPO produce more secure code.

8 Analyses

1) Security vs. Code Generalizability Security
and code generation performance trends in Table 1
clearly show that training on the DiSCo improves
security and code generation ability compared to
the baseline models. However, when compared
with SFT, SimPO and LPO both have higher gains
on security compared to code utility. This shows
that strong alignment can trade code utility for se-
curity. Manual inspection of errors from the align-
ment models shows that in some cases they add
more complex code in pursuit of security which
could reduce code utility e.g. they add more try-
except blocks, seeking wrapper functions in place
of simpler ones from potentially insecure libraries.
Nonetheless, training on DiSCo with LPO provides
the best security and utility trade-off compared to
baseline and SafeCoder models.

2) LPO Ablation Table 3 shows how the differ-
ent components in LPO training impact secure cod-
ing and code generation for Starcoder2. When
trained without localization, the model is equiva-
lent to SimPO. Both security performance and gen-

Figure 2: Distribution of Top-10 Frequent CWEs for Star-
coder2 baselines and LPO tuned on DiSCo among the gener-
ated samples from the benchmark. CWE-78 (os command
injection) and CWE-259 (hard coded credentials) are
most frequent. LPO significantly reduces occurences of CWEs
compared to baselines except for CWE-89 (SQL Injection)
where SafeCoder eliminates the problem.

eral coding ability worsen significantly showing
that localization aids learning substantially. With-
out regularization, training favors security more
heavily and its security performance improves even
more but at a steep cost of decreased general cod-
ing ability. Without security reasoning, security
performance worsens slightly and its coding ability
drops drastically. Both regularization and security
reasoning prevent model from over optimizing for
security. We find similar overengineering issues
when inspecting errors in the results of their corre-
sponding ablations. Lastly, SFT before LPO helps
slightly for security but leads to better code utility.

3) Security Error Analysis We analyzed the dis-
tribution of errors reported by the security evalu-
ation tools (CodeQL and Bandit) on the outputs
of the best LPO model, StarCoder2, and SafeCoder
baselines. The base StarCoder2 model had security
issues spread over 32 different CWE categories.
SafeCoder could only eradicate 1 out of these 32
categories completely while LPO completely elimi-
nated issues pertaining to 8 different CWEs. Fig-
ure 2 shows the distribution of the top 10 frequent
CWEs present across Starcoder2 base model’s se-
curity analysis report. We see that LPO (shown as
green bars) substantially reduces errors from most
frequent categories, whereas SafeCoder baseline
struggles to make significant reduction for most cat-
egories. This illustrates the broad coverage impact
of LPO trained on DiSCo. We present the full distri-
bution and further specifics on the CWE categories
in Appendix H.

Out-of-Distribution Generalization Models
trained for secure code generation should general-
ize to unseen security issues/CWEs. To see if LPO



Models
Datasets

Security Eval HumanEvalX

InSec I@100 P@1

LPO [DiSCo] 11.4 20 38.9
w/o localization 32.0 55 38.3
w/o regularization 8.0 13 27.4
w/o reasoning 12.2 20 18.8
w/o SFT 12.1 15 35.5
SFT [DiSCo] 31.6 57 38.2
Off-the-Shelf 56.3 86 33.2

Table 3: Ablation of different components of LPO for Star-
coder2: We observe how LPO is affected for Starcoder2 model
when each component is removed. Removing reasoning leads
to slightly lower code security but drastic fall in code gener-
ation. Whereas regularization leads to more secure code at
the expense of utility. Without localization, model performs
worse on both testsets. Avoiding domain adaptation via SFT
also makes model worse in both cases.

and DiSCo can do this, we conduct this experiment:
we aggregate all the CWEs present in SecurityEval
and LLMSecEval and removed datapoints from
DiSCo corresponding to these CWEs, creating
DiSCo OOD training set. We train StarCoder2
using LPO on DiSCo OOD and present the results
in Table 4 for SecurityEval and LLMSecEval
benchmarks, alongside performance metrics for
the base model and LPO on the full DiSCo dataset.
As expected, models trained on DiSCo OOD has
poorer performance compared to training on full
DiSCo. However, we still see significant gains
compared to the base model. This is likely due
to the comprehensiveness of DiSCo itself. As
CWEs and security issues are intertwined, the
large coverage of DiSCo enables it to generalize to
CWEs never seen before.

Models
Datasets

Security Eval LLMSecEval

InSec I@100 InSec I@100

Starcoder2-7b 56.3 86 65.8 141
LPO [DiSCo OOD] 16.6 27 18.5 32
LPO [DiSCo] 11.4 20 12.6 22

Table 4: Out-of-Distributation Generalization: We observe
how performance is affected when evaluation contains CWEs
not present in DiSCo (out-of-distribution cases). We see that
model make significant gains in utility despite OOD case,
highlighting the superiority of DiSCo.

DiSCo Refinement Ablation Refinement, a de-
sign choice when creating DiSCo, reduces erro-
neous secure code and thus impacts utility of DiSCo.
We conduct ablation studies to understand the im-
pact of refinement by comparing the results of Star-

coder2 in our default setup i.e., single round refine-
ment (LPO [DiSCo]), against three ablations : (i) no
refinement (wo refine), (ii) removing erroneous
data (i.e. code with security issues) after single
round refinement (wo errors), (iii) three rounds
of refinement (#refines=3).

Results in Table 5 show that without refinement,
∼ 37% data has security issues and model trained
on it has lower security and code utility. Single
round refinement reduces erroneous datapoints to
12.7%. Removing these erroneous instances during
training has little effect on security but reduces
code quality slightly. Further refinements reduce
errors by 3% but this deteriorates both security and
coding utility. As discussed, additional refinements
tend to produce over-engineered code (see example
in Appendix I) that is of lower quality in general.

Models Error
Datasets

Security Eval HumanEvalX

InSec I@100 P@1

LPO [DiSCo] 12.7 11.4 20 38.9
wo refine 37.4 30.7 54 36.1
wo error data 0 11.7 19 37.9
# refines = 3 9.4 12.2 20 36.5

Table 5: DiSCo Ablation: We observe how downstream per-
formance of LPO and percentage of erroneous data points in
DiSCo (Error) changes for Starcoder2 model as we imple-
ment a different refinement design choice for DiSCo. We see
that refinement improves quality of DiSCo but doing refine-
ment multiple times lead to lower quality training data. Also,
keeping the noisy erroneous datapoints does not hinder perfor-
mance and improves coding utility.

9 Conclusions

Widespread LLM usage for coding makes secure
code generation an important problem. In this
work, we make two key contributions to improve
secure code generation. First, we show how to com-
bine human curated knowledge sources and frontier
LLMs to distill preference data DiSCo with pairs
of insecure, and secure code, along with a secu-
rity reasoning explaining the fix. With this method,
we distill 10k preference instances covering wide
range of issues. Second, we designed LPO, a new
preference optimization loss that takes into account
the highly localized nature of the security issues in
code. Evaluations showed that DiSCo, and LPO al-
gorithm both contribute substantially to improving
code security and quality on multiple benchmarks.
We believe that future works can improve DiSCo
further through retrieval of security documentation,
and improve LPO through better reasoning.



Limitations

In this work, we propose a pipeline to generate a
synthetic dataset, DiSCo, and train models using
LPO, a custom preference loss function, to improve
the security of code generated by LLMs. Despite
simulations on multiple benchmarks showing that
our method is efficient, our work has some limita-
tions. Firstly, we train on synthetic data derived
from closed-source frontier LLMs. We use human
curated knowledge about security issues and LLM
refinement using security analysis signals to rem-
edy the security knowledge gap in frontier LLMs.
Despite these efforts, generated data can be noisy
and may not be representative of actual source code
in the wild. Despite showing this as useful training
data, evaluation signals on this dataset can only
be seen as noisy indicators. We must use other
datasets (as we did in this paper) for careful evalu-
ation. Secondly, our synthetic data consists of vul-
nerable code. This data can be used to train LLM
generated code to be insecure. Such an LLM can be
easily deployed for nefarious purposes or to serve
as an insecure coding agent to unaware actors/users
in order to harm them. Thirdly, our dataset is
distilled from closed-source frontier LLMs. The
black-box nature of these models, limits the un-
derstanding and replicability of how we generate
the data. Also we evaluated the models on com-
monly used secure code generation benchmarks,
which have been carefully curated with the help of
domain experts. However, these are relative small,
easy datasets as curating complex datasets is expen-
sive. Evaluating on difficult tasks like SWE-Bench
(Jimenez et al., 2024) or RepoEval (Zhang et al.,
2023) can help yield a much better insight into
how much the model generated code is becoming
secure without forgoing utility. Our evaluation is
also limited to the Python programming language.
Security issues can vary drastically in scope and
substance from language to language. While nei-
ther our methodology for creating DiSCo nor our
alignment technique LPO is Python specific, further
evaluation is needed to assess effectiveness of the
ideas for other programming languages.

Ethical Consideration

This work develops and creates a dataset called
DiSCo consisting of tuples of secure and insecure
code along with reasoning and summary of the
code functionality (instruction). This dataset was
developed using knowledge gathered from open-

source security domains and closed-source LLMs.
The insecure code portion of the dataset can be
vulnerable to the executing environment and can
be used to train and deploy code LLMs specifi-
cally designed to generate vulnerable code. Thus,
appropriate care should be taken when using this
dataset.
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A Prompts

Data Generation Prompt Figure A shows the
prompt used for generating DiSCo data from fron-
tier LLMs. The slots, filled up using the extracted
information from public domains, is highlighted in
brackets.

Listing 1: Prompt for Data Generation

The following is a security issue
found in Python: [ISSUE].
[DESCRIPTION ].
Based on this context and your
knowledge about code and its
vulnerabilities , generate the
following:

1. Vulnerable [PACKAGE] Python
code of 20-50 lines containing
this security issue.
2. Reasoning on why this code is
vulnerable.
3. Secure/fixed version of this
code with minimal change.
4. Reasoning on why the second
version is fixed.
5. A short instruction summary (
one or two

sentence) that can be used by a
language model to generate either
of the code.

There should be no comment in the
code. Reasoning should be within
one or two sentence.

The security issue should be
implicit. The issue should not be
mentioned in the instruction

summary.
Give your answer in following
format:
VUL: <vulnerable code >
REASON: <reasoning for vulnerable
code >

SEC: <secure code >
REASON: <reasoning for secure
code >
INST: <instruction summary >

Data Refinement Prompt Figure A shows the
prompt used for refining DiSCo secure data points
y+ in DiSCo that had security issues discovered by
the analyzer.

Listing 2: Prompt for Data Refinement

The following is a Python code:
[SECURE CODE]
The following are security issues
identified by analyzer Bandit

for this code:
[FEEDBACK FROM BANDIT SECURITY
ANALYZER]
The following are security issues
identified by analyzer CodeQL

for this code:
[FEEDBACK FROM CODEQL SECURITY
ANALYZER]
Using these rules and your
knowledge about code security ,
generate the fixed code and a few
sentences of reasoning.

Generate your answer in the
following format:
FIX: <fixed code >
REASON: <reasoning on why this
code is fixed >

Reasoning R Template Figure A shows the tem-
plate used to create the reasoning from the elements
CWE-ID, Issue, Description, r− and r+.
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Listing 3: Reasoning Template

The code may have the
vulnerability [CWE -ID]: [ISSUE ].[
DESCRIPTION ].[r+].[r−].

Prompt for Secure Code Generation When we
are prompting models on secure code generation
benchmarks using our models trained on our meth-
ods, we use the following three different prompts,
based on dataset prompt structure:
Listing 4: Prompt for Autocomplete Secure Code Benchmark
with Docstring

### Instruction:
Write a Python function with
declaration [FUNCTION NAME] to [
DOCSTRING ].

### Security Thought:

Listing 5: Prompt for Autocomplete Secure Coding Bench-
mark

### Instruction:
Complete the following Python
code
```python
[PARTIAL CODE SNIPPET]
```

### Security Thought:

Listing 6: Prompt for Instruction Secure Coding Benchmark

### Instruction:
[INSTRUCTION]

### Security Thought:

Prompt for Secure Code Generation When we
are prompting models on code generation bench-
marks using our models trained on our methods,
we use the following two different prompts, based
on dataset prompt structure:
Listing 7: Prompt for Autocomplete Coding Benchmark with
Docstring

### Instruction:
Write a Python function with
declaration [FUNCTION NAME] to [
DOCSTRING ].

### Response:
```python

Listing 8: Prompt for Instruction Coding Benchmark

### Instruction:

[INSTRUCTION]

### Response:
```python

Prompt for Frontier LLM Prompting When
we are prompting models for security code genera-
tion or basic code generation using frontier models,
we use the following two different prompts:
Listing 9: Prompt for Secure Coding Testbed for Frontier
LLMs

You are a Python code generator.
Below is an incomplete Python
code:
[PROMPT]
Complete this code. Keep code
security in mind when generating
code. Generate the completed code
in a codebox.

Listing 10: Prompt for Autocomplete Coding Benchmark for
Frontier LLMs

"Complete the following code:
```python
[PROMPT ]"

B Dataset Details

Table 6 shows the various statistics of our dataset.
Figure 3 shows a detailed example from the training
set of our synthesized DiSCo.

Statistic Value

Instances
(9489, 298, 200)

<Train-Val-Test>

Avg. Lines of Code
(17.8 , 20.4)

<Insecure, Secure>

Avg. % of Security Relevant Tokens
(15.6 , 26.1)

<Insecure, Secure>

CWE Coverage 431

% secure code with
12.7

issues after refinement

Average character diff.
152

between secure and insecure code

Table 6: Important statistics of our generated DiSCo dataset.

C Mask Computation

In order to calculate the loss function in LPO that
is presented in Section 5.2, we need to compute
the masks m+ and m− for secure code y+ and in-
secure code y− respectively. m+ has a value of 1



import requests

import ssl

def fetch_data(url):

    context = ssl.SSLContext(ssl.PROTOCOL_TLSv1)

    response = requests.get(url, verify=False, 

context=context)

    return response.content

url = "https://example.com"

data = fetch_data(url)

print(data)

Write a Python function to fetch data from a URL using the requests library.

The code may have the vulnerability CWE-327: 'Use of Insecure SSL/TLS Version'. Using a broken or weak 

cryptographic protocol may make a connection vulnerable. All versions of SSL,and TLS versions 1.0 and 1.1 

are vulnerable.The code explicitly uses TLS version 1.0, which is considered insecure and vulnerable to 

various attacks.The secure version removes the explicit use of an insecure TLS version and enables 

certificate verification, allowing the library to use the most secure protocol available.

(c)Secure Code:(b)Insecure Code:

(a)Instruction:

(d)Reasoning:

import requests

def fetch_data(url):

    try:

        response = requests.get(url, verify=True, 

timeout=10)

        response.raise_for_status()  

        return response.content

    except requests.exceptions.RequestException as 

e:

        print(f"An error occurred: {e}")

        return None

url = "https://example.com"

data = fetch_data(url)

if data:

    print(data)

Figure 3: DiSCo Example:This is an example from the dataset DiSCo generated for evaluation with the elements:(a) task
instruction x, (b) insecure code y−, (c) secure code y+ and (d) reasoning R. Red portions in insecure code correspond to tokens
that lead to insecurity, green portions in secure code correspond to tokens that improve security. Rest of the segments, common
across both, have no relation to security.

for tokens in y+ that make the code more secure
while m− has value of 1 for insecurity leading to-
kens in y−. Calculating this is a non-trivial matter
as our synthesis prompt does not explicitly tell us
which part of the code is secure/insecure. Given y+

and y− are generated such that they have the same
functionality and are similar, it can be assumed that
tokens unique to y− correspond to insecurity and
vice versa. Hence, we can calculate m+ and m−

by computing the token-level difference between
the two code. This can be interpreted as computing
the delta between two strings. There are multiple
libraries and modules out there that can easily cal-
culate this delta. We use the difflib library for
delta computation. Given y+ and y−, we first tok-
enize them using the target model tokenizer. This
results in fixed size embeddings y+emb and y−emb. We
then compute the delta between these two embed-
dings. Indices for token unique to y+emb, denoted
by ‘+’ in the delta computation, are marked in m+

as 1. Indices for token which are unique to y−emb,
denoted by ‘-’ in the delta computation, are marked
in m− as 1. Hence, the masks are computed in this
manner for use in the loss function.

D Evaluation Benchmark Details

In order to assess the performance of the models in
terms of security and code generation, we select six

different popular evaluations benchmarks common
across literature. Four of these benchmarks are
for assessing the security of code generation and
two of them are for assessing the performance on
regular code generation of LLMs. The security
benchmarks are:

Security Eval Siddiq and Santos (2022) is a
dataset of code completion tasks where each
prompt exposes the model to a certain CWE dur-
ing code generation. It consists of 121 partially
completed Python code as prompts that have been
derived from examples present in various security
analyzer documentation, security issue documen-
tation or handcrafted by security experts and the
authors.

Asleep at the Keyboard The authors of Pearce
et al. (2022) were the first to analyse the security of
code generated by LLMs. They devised 89 differ-
ent code completion prompts in Python and C/C++
languages across three axes of diversity: diversity
of weakness where the prompts are devised to ex-
pose model to certain CWEs; diversity of prompt
where the model is exposed to a single CWE but
with different variations of prompts and diversity
of domain where the prompts are designed for hard-
ware analysis in RTL. We select only the Python
examples from diversity of weakness evaluation



set, which results in 29 prompts.

LLMSecEval (Tony et al., 2023): Tony et al.
(2023) proposes the LLMSecEval dataset, which
consists of 151 natural langauge instruction
prompts for generating vulnerable codes in Python
and C/C++. This dataset is generated by prompting
various LLMs using the Diversity of Weakness sub-
set of prompts from Pearce et al. (2022) and then
generating natural language descriptions of the gen-
erated code using GPT-3.5. We select 81 of these
instructions from the dataset which correspond to
the Python programming language.

Synthetic This is a held-out test set of 200 data
points from our synthesized DiSCo. It consists of
natural language instruction prompts for generating
code that are susceptible to software vulnerabilities.

For assessing code generation, we utilize the
following two benchmarks:

HumanEvalX : Zheng et al. (2023) is a multilin-
gual code generation evaluation testbed consisting
of code completion prompts in multiple program-
ming languages. It builds on top of the HumanEval
(Chen et al., 2021) dataset that was originally de-
signed for Python. Each example from the dataset
consists of a docstring, function signature and pub-
lic test cases that the model is prompted with and
must pass. The problems are designed to assess the
ability of LLMs to generate functionally correct
code.

MBXP : Athiwaratkun et al. (2022) is a multilin-
gual code generation evaluation dataset consisting
of natural language instruction prompts for gen-
erating simple code and test cases for assessing
them. It develops on top of the MBPP (Austin et al.,
2021) dataset, which consisted of only prompts for
Python programming language, by including other
languages and increasing the number of testcases
by 35 times. The problems are designed to be sim-
pler than HumanEvalX and assess the fundamental
programming abilities of LLMs and not any com-
plex algorithmic programming.

E Baselines

We have the following baselinse for comparison:

SafeCoder : The authors of (He et al., 2024) de-
veloped a method of training LLMs in order to im-
prove the security of generated code. This is done
by combining instruction tuning and unlikelihood

learning on a dataset of natural language intent, in-
secure and corresponding secure code. The model
is instruction tuned to, given the intent, increase the
likelihood of generating secure code and increas-
ing the unlikelihood of generating insecure code.
They also incorporate security masking such that
only security-relevant tokens are considered during
finetuning. The loss functions for this instruction
tuning paradigm is as follows:

Lsec(i,osec,msec) =−
|osec|∑
t=1

msec
t

⊙ logP (osec
t |osec

<t , i).

Lvul(i,ovul,mvul) =−
|ovul|∑
t=1

mvul
t

⊙ log(1− P (ovul
t |ovul

<t , i)).

where osec and ovul are secure and insecure code,
i is the natural language intent, msec and mvul are
the security masks.

DPO : Rafailov et al. (2024) proposes the first
preference optimization algorithm called Direct
Preference Optimization (DPO). DPO is built on
the concept of Reinforcement Learning for Human
Feedback (RLHF), where a policy model is opti-
mized using signals from a reward model. The
authors of DPO show that the RLHF loss func-
tion can be reparameterized such that the policy
network models the reward directly instead of re-
quiring hosting of another reward model, thereby
reducing memory requirements. The DPO loss
function is as follows:

LSimPO =− E(x,y+,y−)∼D[log σ(∆)]

∆ =β log
πθ(y

+|x)
πref (y+|x)

− β log
πθ(y

−|x)
πref (y−|x)

where y+ and y− are the winning and losing re-
sponses, x is the prompt, πref is the unaligned base
model and β is the parameter controlling deviation
from base model πref .

SimPO : Meng et al. (2024) proposes a prefer-
ence optimization algorithm, SimPO, that shows
state-of-the-art performance on multiple bench-
marks compared to other preference optimization



loss functions like DPO. The authors describe that
this is due to the naturalness of the loss function
to the log-likelihood function by eliminating the
reference log-probabilities. Their method is also
more efficient as reference modelling is not needed.
The formula for the loss function is as follows:

LSimPO =− E(x,y+,y−)∼D[log σ(∆− γ)]

∆ =
β

|y+|
log πθ(y

+|x)− β

|y−|
log πθ(y

−|x)

where y+ and y− are the winning and losing
responses, x is the prompt, β and γ are reward
scale and target reward margin respectively.

F Setup Details

.
All the models were trained using Low-Rank

Adaptation (LoRA) (Hu et al., 2022) with r = 16
and α = 32. We used batch size of 32 for all the
models. For Codellama, Starcoder2 and Phi-2 su-
pervised finetuning we used larger learning rates
of 1e− 4,1e− 4 and 2e− 4 respectively while for
Mistral we used 2e− 5. Supervised finetuning was
done using 4-bit quantization setting for faster op-
timization and memory limitations. For preference
optimization and LPO, we choose learning rates in
the range of [1e − 5, 1e − 6] where we observe
that LPO requires a higher learning rate. For pref-
erence optimization, we use β = 2.0 and γ = 0.5
whereas for LPO, β = 10.0 and γ = 5.4 for each
of the models. When we analyze LPO without the
regularization, we use β = 2.0 and γ = 0.5.

For evaluation, we follow the following
paradigm: for security benchmarks, we follow the
generation methods of He and Vechev (2023) with
a slight modification in that we sample 5 genera-
tions per evaluation sample with T = 0.4. For the
code generation benchmarks, we sample 5 genera-
tions at T = 0.2 and T = 0.6 to calculate pass@1
amd pass@5 respectively.

All of our training and evaluation were done on 4
A6000 GPUs. Each GPU was 48 GB. It took a total
of approximately 48 GPU hour in order to train and
evaluate our model. For generating and refining our
DiSCo dataset, it costed us approximately 100 USD
on OpenAI GPT-4o API. For evaluation, it costed
us around 20 USD on both OpenAI and Anthropic
APIs.

G Evaluation Details

Our evaluation consist of two parts. The first part is
to evaluate the security of the LLM generated code.
The second part is to evaluate the code generation
ability of the LLM. For each criteria, we have a
different set of metrics we measure for analysis.

Evaluating Code Security Traditionally, for
evaluating the security of the code generated by
security, previous works incorporated the usage
of the automatic security analyzers such as Cod-
eQL(GitHub, 2024; Avgustinov et al., 2016) from
GitHub in order to assess whether a piece of code
is secure or insecure with respect to an certain
CWE(He and Vechev, 2023; He et al., 2024). In
our work, we opt for a much more comprehensive
and strict evaluation of the security of code. This
is done via two things. First is incorporating both
CodeQL and Bandit(Bandit, 2008) security ana-
lyzers for assessing the security of the code. This
makes sure that more security issues are taken into
account during evaluation. This is because Cod-
eQL and Bandit only have a subset of intersecting
rules for catching security issues. Combining them
both will lead to more possible patterns of security
issues being identified. Second, while each exam-
ple in our security testing datasets are tagged with
a CWE against which we should judge whether the
generation is safe or not, we opt to check for any
possible security issues identified by the analyzer.
This leads to more difficult but realistic evaluation
of LLM generated code as you do not want to intro-
duce new issues by overcoming previous ones and
also ignore other issues that might not be relevant
but exists in the generated code. Using the security
analysis reports provided by CodeQL and Bandit,
we first identify intersecting bugs that might lead
to double counting error. We also eliminate gen-
erations for which the analyzer could parse and
assess. Afterwards we calculate the following two
metricsL: Insecurity (Insec) and Issues per 100.

Insecurity measures the percentage of code in
the evaluation set which contain any security issues
identified by our security analysis mechanism. This
metric gives us a measure of the absolute reduction
in insecure coding for each of the models. It is
defined by the following formula:

Insec =
insecure generations

valid generations
× 100

Our security analysis mechanism gives us a re-
port of all the possible bugs it has identified across



the LLM generations during evaluation. We use
this information to measure the mean number of
issues that exist in the evaluation generations from
the LLM and then multiply it by 100. This then
gives us the average number of security in 100 gen-
erations or Issues per 100. This metric gives us
a more nuanced understanding of the gain from
each methodology analyzed in our experiments as
it targets the security analysis at the bug level. The
metric is defined using the following formula:

I@100 = 100× total bugs in generations

valid generations

Evaluating Code Generation To measure the
utility of code generation, we use the pass@k met-
ric. Traditional pass@k metric is defined as fol-
lows: you generate k code samples and if any single
code passes all the testcases, you get a score of 1
or 0 otherwise. However, (Chen et al., 2021) states
that calculating pass@k in this manner can lead to
high variance. Hence, they propose an unbiased
estimator for pass@k, defined as follows:

pass@k := EProblems

[
1−

(
n−c
k

)(
n
k

) ]

where n is the number of samples generated
(n >= k) and c is the number of correct codes in
the sample set. The idea is that out of n samples
generated, a subset k will be selected for measuring
pass@k. n− c represent the number of incorrect

examples in the total generation set. Hence, (
n−c
k )
(nk)

represents the probability of k containing only in-
correct samples. Subtracting this value from 1 re-
sults in the calculating probability of at least 1 code
in k subset that passes all the unit tests.

H CWE Analysis

Figure 4 shows the distribution of errors across the
full 32 CWEs present in the analysis reports.

We can observe that CWE-78 or OS Command
Injection is the most common CWE. CWE-259 or
hard-coded credentials is another CWE common
across all model settings. It is seen that LPO fails to
fully eliminate both these error. This is likely due
to their presence in DiSCo even after refinement.
Many of the data points in DiSCo contain snippets
of code for authenticating user credentials. As fron-
tier LLMs generate the example code, they utilize
hard-coded credentials. As a result this error passes

down to the model upon training on DiSCo. For
the rest of the top CWEs, LPO reduces them sign-
ficantly. Whereas SafeCoder lacks cohesiveness,
sometimes even increasing occurrences of certain
CWEs. For CWE-89 (SQL Injection), we see that
SafeCoder fully eliminates the problem while LPO
still has them in its generations. This is likely due
to the lack of enough cohesive examples for this
CWE in DiSCo.

I Over-engineering via Refinement

Figure 5 shows an example where an erroneous
secure code with a vulnerability is over-engineered
for security by adding extra, unnatural layers of
protection when more refinement steps take place.



Figure 4: Full CWE Analysis for Starcoder2 baselines and LPO tuned on DiSCo for all the benchmarks.

...

def get_file_info(filename):

    try:

        return os.popen(f"file {filename}").read()

    except Exception as e:

        return str(e)

...

...

def get_file_info(filename):

    try:

        

        safe_filename = shlex.quote(filename)

        result = subprocess.run(['/usr/bin/file', 

safe_filename], capture_output=True, text=True, 

check=True)

        return result.stdout

    except subprocess.CalledProcessError as e:

        return f"Error getting file info: {e}"

    except Exception as e:

        return str(e)

...

Secure Code Snipppet After Refinement Iteration = 3Secure Code Snipppet After Refinement Iteration = 1

Figure 5: Example of over-engineering due to refinement: The left portion shows a small portion of a secure code datapoint
from DiSCo after one round of iteration. It contains CWE-78 vulnerability, corresponding to the os command injection security
issue as user input is being directly executed by the os module. The right portion shows this snippet of code refined after two
more rounds of refinement. We observe that the LLM has added too many extra layers of security (via lexical analysis through
shlex and excess exception catches), resulting in an unnatural looking code that may deteriorate code utility when used as
training data.
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