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Abstract

The widespread adoption of the Internet of Things (IoT) has raised a new challenge

for developers since it is prone to known and unknown cyberattacks due to its hetero-

geneity, flexibility, and close connectivity. To defend against such security breaches,

researchers have focused on building sophisticated intrusion detection systems (IDSs)

using machine learning (ML) techniques. Although these algorithms notably improve

detection performance, they require excessive computing power and resources, which are

crucial issues in IoT networks considering the recent trends of decentralized data pro-

cessing and computing systems. Consequently, many optimization techniques have been

incorporated with these ML models. Specifically, a special category of optimizer adopted

from the behavior of living creatures and different aspects of natural phenomena, known

as metaheuristic algorithms, has been a central focus in recent years and brought about

remarkable results. Considering this vital significance, we present a comprehensive and

systematic review of various applications of metaheuristics algorithms in developing a

machine learning-based IDS, especially for IoT. A significant contribution of this study

is the discovery of hidden correlations between these optimization techniques and machine

learning models integrated with state-of-the-art IoT-IDSs. In addition, the effectiveness

of these metaheuristic algorithms in different applications, such as feature selection, pa-

rameter or hyperparameter tuning, and hybrid usages are separately analyzed. Moreover,

a taxonomy of existing IoT-IDSs is proposed. Furthermore, we investigate several critical

issues related to such integration. Our extensive exploration ends with a discussion of
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promising optimization algorithms and technologies that can enhance the efficiency of

IoT-IDSs.

Keywords: Internet of Things (IoT), Intrusion Detection Systems (IDS), Machine

Learning (ML), Deep Learning (DL), Metaheuristic Algorithms, Cybersecurity, Optimization

Techniques.

1 Introduction

The popularity of the Internet of Things devices has spread surprisingly in the last few

years. Nowadays, it offers a scalable platform not only for industry, healthcare, and home

applications but also for agriculture, vehicular settings, and ultra-sophisticated systems like

drone technologies [1]. Alarmingly, this widespread adoption leads to unavoidable security

issues as a negative side effect of close connectivity. Transferring susceptible information,

such as personal data, patient data, and private business analysis makes such effects more

severe and unimaginable. For example, millions of IoT and embedded devices (e.g., DVDs,

printers, and IP cameras) were infected by a botnet in 2016, widely known as Mirai botnet [2].

Notably, the attack was spread to several nations and manufacturing organizations and

affected around 65 thousand IoT devices within the first 20 hours. Another concerning

incident occurred in 2020, where an ADT employee pled guilty to accessing the security

cameras of 220 women over 9,600 times during four years [3]. The defendant routinely added

his email address to customers’ “ADT Pulse” accounts and got real-time access to the video

feeds from their homes for sexual gratification. In such cases, an IoT-IDS can be used to

detect and report on unique visitors, unauthorized access, and malicious activities.

Intrusion detection is one of the most crucial aspects of IoT security. An IDS typically

identifies diverse attacks based on predefined rules or specific deviations from normal be-

havioral patterns. It can identify external and internal attacks on networks or computer

systems, surpassing the performance of the traditional firewall. Typically, a firewall works

on a set of specific rules, often based on IP addresses, port numbers, and protocols to check

which packets are allowed to enter the network. Since firewalls filter packets relying on simple

policies, they cannot detect internal or external attacks which require analyzing complex be-

havioral patterns. On the contrary, an IDS can identify malicious activities by observing the
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deviations from normal behaviors, which include both simple and complicated patterns. The

entire IDS can be divided into two modules: feature engineering (mostly feature selection)

and classification or detection. Feature selection aims to select a set of optimal features, dis-

carding the least significant ones to efficiently and faster the classification process and reduce

the computational overhead of the system. Feature selection methods can be categorized into

three methods: filter, wrapper, and hybrid methods. In the filter method, all features are sta-

tistically examined and rated with the help of data (input and target variables). Then based

on the rating, less ranked features or features rated below a specific threshold are eliminated

before classification. Information gain and linear correlation coefficient [4] are well-known

metrics used in filter methods. The wrapper techniques outperform filter methods by training

and testing a machine-learning model using each subset of features, iteratively. Specifically,

these methods rank subsets of features based on their prediction accuracy generated from the

machine learning algorithms. However, they are more expensive and time-consuming than

the filter approaches. Sequential forward selection, sequential backward selection, stepwise

selection [5], hill climbing, etc. are popular wrapper methods. Though filter methods are

proven simple, fast, and scalable, they consider feature dependencies to a certain extent,

resulting in an inappropriate feature set. Besides, wrapper methods offer better feature

sets than filters. But, they become much slower and computationally expensive for a large

number of features [6].

A group of wrapper methods fall into the category of optimization-based techniques,

known as metaheuristics algorithms that overcome the drawbacks of the prior methods. A

metaheuristic is a general exploration method that applies to optimize an underlying heuris-

tic. In the case of feature selection in ML, the optimal subset of features is searched in the

feature space based on some heuristic or performance measure. Generally, a metaheuristic

algorithm consists of two phases: exploitation and exploration. In the exploitation or inten-

sification phase, the algorithm explores the neighborhood of an already promising solution in

the search space. However, during exploration (a.k.a., diversification), the algorithm tries to

traverse the unvisited regions of the search space. Although they do not make any hypothesis

on the mathematical properties of the objective function, they gradually develop it through

a continuous learning process. Among the major advantages, the utilization of parameters

and comparatively faster convergence to the solutions are crucial. In addition, metaheuris-
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tics are efficient and effective in obtaining global optimal values, resulting in global optimal

features. Moreover, even with large datasets, they perform significantly well [7]. However,

metaheuristics are approximate and usually non-deterministic and do not guarantee the op-

timal (or, best) solution [8] like the exact algorithms (e.g., dynamic programming, branch

and bound, branch and cut, linear programming, etc.). Still, they can provide near-optimal

solutions in acceptable computing time (but the exact algorithms can not), which is highly

essential for complex problems like detecting intrusions in dynamic environments. Interest-

ingly, these techniques are mostly inspired by natural phenomena, including the instincts of

living creatures. In addition to filter and wrapper techniques, a hybrid approach is another

one that focuses on combining different aspects of existing feature selection methods [9].

Regarding attack or intrusion detection, traditional IDSs like statistical-driven (e.g.,

payload-based), rule-based, heuristics-based, etc. cannot detect the complex patterns of

dynamic IoT systems. On the other hand, classical and deep machine learning models have

been proven to generate notable results, even in heterogeneous environments such as IoT.

The main purpose of using ML-based techniques is to handle large data sets and produce

high accuracy, fast processing, and significant performance; thus enhancing security. How-

ever, they require high computational resources and a significant amount of time to achieve

minor precision improvements [10]. Despite these improvements offered by machine learning,

the era of big data and the increasing use of IoT introduce new problems with traditional

centralized cloud-based data storage and processing systems. In particular, low throughput,

high latency, and data privacy are the most serious issues [11]. In addition, IoT devices

contain sensitive and private data, such as financial or patient information. To address these

issues, edge computing technology has become widely accepted, especially in the IoT con-

text. In this technology, data are processed, stored, and computed closer to the location

of devices. Consequently, not only the data transmission time, response time, and latency

are reduced but also higher scalability and decentralization are achieved. Regarding IDSs,

when machine learning models are trained in edge servers with large datasets, the computing

power and the adequacy of energy support become crucial challenges since edge servers can

hardly meet these requirements [12].

Although researchers always rely on utilizing optimization techniques to mitigate such

problems and improve the effectiveness of ML-oriented IoT-IDSs, metaheuristics-based op-
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timization has been a notable focus in recent years. Considering the outstanding facilities

offered by these optimizers, they can play a pivotal role in designing IoT-IDSs. Specifi-

cally, these algorithms can be utilized not only to select optimal feature sets — before being

trained by an ML-based classifier — but also to optimize the parameters (e.g., weights and

biases) and hyperparameters (e.g., learning rate, number of neurons, layers volume, and

amount of epochs) of the models during training. For these reasons, numerous recent works

[13, 14, 15, 16, 17] have employed them to select an optimal set of features; while others

have used these techniques to tune parameters [18, 19] and hyperparameters [20, 21, 22] in

ML-driven classifiers.

Scope of this Review and Contributions

Among existing related studies, almost all have focused on one aspect: metaheuristics or

machine learning techniques; not both. Although very few surveys mention the integration

of these two, their coverage and classifications are considerably inadequate. Moreover, in no-

table cases, the selected works are not IoT-specific. Most importantly, these studies do not

analyze the connections of optimization techniques with machine learning algorithms while

developing an IoT-IDS. Furthermore, no studies have analyzed the different applications of

metaheuristics for such detection systems. To address these gaps in the literature, we ana-

lyze a diverse range of metaheuristics, from swarm-based, nature-inspired, and evolutionary

algorithms to search-based, human-inspired, physics-based, mathematics-based, and hybrid

ones. Regarding machine learning techniques, conventional methods such as classifications,

artificial neural networks, and ensemble learning, along with advanced algorithms, for in-

stance, autoencoder, deep belief networks, deep neural networks, recurrent neural networks,

convolutional neural networks, etc. are explored. Another significant contribution of this

work is the analysis of the various applications of metaheuristics in the IoT IDSs, such as

feature selection, parameter optimization, hyperparameter tuning, and their hybrid usage.

Moreover, the correlations among metaheuristics, machine learning, and datasets used for the

IoT-IDSs are figured out that distinguish this work from others. In summary, the following

contributions are made:

• We present an extensive review of the existing applications of metaheuristics algorithms

to develop machine learning-based intrusion detection systems, especially for IoT. In
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addition, a large-scale taxonomy of metaheuristics and ML-integrated IoT-IDSs is in-

troduced.

• Hidden correlations among top-notch metaheuristics, ML techniques, and the most

commonly used datasets are analyzed, and some insightful findings are disclosed. Im-

portantly, these results also reflect the effectiveness of such metaheuristic-ML inte-

gration considering different applications, especially feature selection, parameter or

hyperparameter tuning, and hybrid cases.

• Several crucial challenges that may arise when integrating metaheuristic algorithms

with machine learning techniques are outlined. Accordingly, the viability of a few

emerging technologies is discussed. Finally, some possible integrations of metaheuristics

and ML, and their feasibility in IoT-IDSs are explored.

The remainder of this paper proceeds as follows. Section 2 introduces the background, in-

cluding the classification of intrusion detection systems, metaheuristics, and machine learning

techniques. Section 3 provides the related surveys with their limitations, research gaps anal-

ysis, and differentiating aspects of our work. Then, in Section 4, we discuss our research

objectives along with search strategy and data assessment. Next, Section 5 introduces the

results of the systematic literature review, including the technical and extensive exploration

of the existing relevant detection systems and many insightful findings. After that, in Sec-

tion 6, our overall investigation with possible future challenges are summarized. Finally,

Section 7 concludes our work. Along with them, an Appendix section at the end of the paper

presents a performance tabulation of existing metaheuristics-based and ML-driven IoT-IDSs

in tabulation form.

2 Background

In this section, intrusion detection methods, techniques, meta-heuristics, and machine learning-

based models are briefly discussed.

2.1 Intrusion Detection Methods and Techniques in IoT

Methods. An intrusion detection system (IDS) is a software or hardware system that

detects traces of malicious activities on a computer system or network. Primarily, IDS can
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be categorized into three types: host-based IDS (HIDS), protocol-based intrusion detection

system (PIDS), and network-based IDS (NIDS). In HIDS, the system is dedicated to working

for a specific host. As a result, any insider as well as outsider attack is seamlessly detected.

The most crucial limitation here is the necessity of one IDS for each host. Regarding PIDS,

the system concentrates on identifying malicious behaviors in a specific protocol. Usually,

a PIDS is executed either within a single or among multiple hosts. For example, a PIDS

may inspect TCP or HTTP traffic to trace malicious content. Similarly, it can monitor

traffic between a web server and a database to detect any suspicious SQL queries. In NIDS,

intrusions within the network are detected by monitoring the patterns and contents of the

incoming and outgoing traffic. Consequently, the outside intrusions can be identified and all

hosts are protected. However, it becomes expensive whenever there is too much traffic in the

network.

Regarding the IoT, most of the intrusion detection systems are network-based since at-

tackers can seamlessly misuse the heterogeneous and dynamic characteristics of the IoT

environment. In the literature, NIDS is classified into the following four methods: Signature-

based Intrusion Detection System (SIDS), Anomaly-based Intrusion Detection System (AIDS),

Specification-based Intrusion Detection System (SpIDS), and Hybrid Intrusion Detection

System (HyIDS). In SIDS, an intrusion signature is checked with the previously known in-

trusion patterns, stored in the database, to find significant matching. It is also known as

knowledge-based detection or misuse detection. AIDS is a dynamic intrusion detection ap-

proach that monitors the activity log of a system and reports anomalies whenever it observes

any deviations from normal behaviors. This method provides the capabilities to detect not

only known and unknown attacks but also any insider attacks. In SpIDS, a set of rules and

thresholds are defined for network modules like nodes, protocols, firewalls, etc. Utilizing

these specifications, the system detects intrusions while observing any discrepancies from

the acceptable behaviors [23]. On the other hand, Hybrid IDS incorporates the advantages

of SIDS, AIDS, and SpIDS to detect both familiar and novel intrusions utilizing limited

computational resources. The classification of NIDS is showed in Figure 1.

Techniques. Considering the resource and energy-constrained characteristics, AIDS

and HyIDS are the most appropriate and feasible methods in IoT [24, 25]. Various machine

Learning-based, statistical-driven (like payload-based), rule-based, and heuristics-based tech-
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IoT-IDS
Methods

Host-based

Network-based

Protocol-based

Signature-based

Anomaly-based

Specification-based

Hybrid

Figure 1: Categories of Intrusion Detection Methods in IoT.

niques are used to escalate the training process for AIDS. Recently, metaheuristics and hybrid

approaches integrating different algorithms have been developed in this field, especially for

IoT. In the next two Sections, some well-established techniques used in IoT-IDS are dis-

cussed. Figure 2 illustrates the classification of the existing IoT-IDS techniques as a whole.

2.2 Metaheuristic Algorithms

A metaheuristic is a general exploration (or diversification) method that can be applied to

different problems in a similar way by visiting regions of the search space that are not already

seen and evaluating candidate solutions. In general terms, metaheuristics are approximation

algorithms that provide good or acceptable solutions within an acceptable computing time,

that cannot be obtained with more specialized techniques, such as brute-force, linear pro-

gramming, dynamic programming, randomization, quantum computation, exact algorithms,

etc., but do not give formal guarantees about the quality of the solutions [26]. The main

difference between heuristic and metaheuristic is that a heuristic algorithm utilizes some spe-

cially designed functions to explore the solution space intelligently; whereas, a metaheuristic

is an iterative generation process that directs a supporting heuristic to explore and exploit

the search space efficiently [8]. Moreover, heuristics can be applied to a specific problem; but,

metaheuristics are more generalized and can be employed in the same way to many different

problems. The metaheuristics algorithms can be classified into three groups as discussed

below.

1. Population-based metaheuristics: This type of metaheuristic utilizes global exploration

and local exploitation ability for searching in global search space to discover new

promising solutions and to refine the already discovered solutions. In this study, these

algorithms are divided into three classes: (i) Swarm-based, (ii) Nature-based, and

(iii) Evolutionary Algorithms (EAs). Swarm-based metaheuristics (a.k.a. swarm in-
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telligence) are inspired by the social collective behavior of the birds, ants, bees, etc.,

where each animal (artificial agents) interacts with each other to achieve a partic-

ular goal in the environment [27]. Ant colony optimization (ACO), particle swarm

optimization (PSO), Artificial bee colony (ABC), etc. are some of the most popu-

lar swarm-based metaheuristics. The second category is nature-inspired optimization,

such as gorilla troops optimizer (GTO), crow search algorithm (CrSA), reptile search

algorithm (RSA), butterfly optimization algorithm (BOA), moth–flame optimization

(MFO), biogeography-based optimization (BBO), intelligent water drop (IWD), etc.

Particularly, these algorithms mimic the successful characteristics of complex natural

processes, including distinct animal behaviors, biological systems, natural calamities,

etc. Though swarm intelligence also relies on nature, it specifically focuses on decen-

tralized systems and collaborative behaviors; whereas, nature-inspired metaheuristics

encompass diverse elements of nature, including the behavior of an individual animal.

Another well-established population-based optimizations are evolutionary algorithms,

which are based on the process of natural evolution like survival, reproduction, and mu-

tation. Specifically, there are three important components of an EA: parent selection,

variation operators (recombination/crossover and mutation), and replacement (evo-

lution). Genetic algorithms (GAs), evolutionary programming (EP), and differential

evolution (DE) are the most popular EAs in the literature.

2. Iterative-based metaheuristics: The second major group of metaheuristics is iterative-

based. These algorithms are inspired by the laws of physics, mathematics, chemistry,

or social human behavior. Particularly, physics-based metaheuristics are based on the

concepts of physical laws and principles, for example, classical mechanics, thermody-

namics, optics, etc. Gravitational search algorithm (GSA), simulated annealing (SA),

multi-verse optimizer (MVO), etc. are the most popular physics-based optimization

techniques. Similarly, math-based metaheuristics adopt mathematical concepts like

number theory, geometry, and algebra, along with modern mathematics. Arithmetic

optimization algorithm (AOA) [28] and sine cosine algorithm (SCA) [29] are promi-

nent techniques in literature that are based on the arithmetic operators and sine/cosine

mathematical functions, respectively. Other interesting iterative-based metaheuristics

are inspired by human interaction, intelligence, learning processes, and experiences.
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Some of these algorithms are teaching-learning-based optimization (TLBO), human-

guided search (HGS) [30], and harmony search (HS). The rest algorithms in this cate-

gory are search-based, for instance, local search (LS), tabu search (TS), neighborhood

search (NS), etc.

3. Hybrid metaheuristics: Hybrid algorithms are integrated with different metaheuristics

to utilize the advantages of distinct techniques for solving optimization problems. Algo-

rithms in hybrid metaheuristics can focus on solving different problems simultaneously.

For example, in hybridization with LS, global search is utilized to explore the search

space, whereas LS is used to refine the areas of possible global optimum. On the other

hand, the sub-metaheuristics within a hybrid approach can concentrate on optimizing

different parts of the same problem, like a combination of PSO and GA, where PSO

finds the optimal parameters used in GA.

2.3 Machine learning techniques

The relevant machine learning models are classified here. Supervised Learning (SL) is the

model that is trained with labeled data (a set of inputs and correct outputs) to learn the

corresponding features, followed by an execution engine to predict using the test data. Su-

pervised learning is used when the target has a similar pattern to the trained data. Different

classification techniques like decision tree (DT), random forest (RF), k-nearest neighbor

(KNN), etc., collaborating of multiple classifiers a.k.a ensemble learning (EL), along with

artificial neural networks (ANN) fall into this category. In Unsupervised Learning (USL)

the desired outputs are not provided in the training phase. The main aim is to learn the

similarity of the unlabeled data and further classify them into multiple groups. Some of

the eminent algorithms are principal component analysis (PCA), and clustering techniques,

such as k-means, probabilistic, and hierarchical clustering. Semi-supervised Learning (SSL)

encompasses the mechanism of both supervised and unsupervised learning. Specifically, it

utilizes a combination of unlabeled and labeled inputs. The purpose of this is to make better

predictions in discovered patterns. Reinforcement Learning (RL) adopts the human learning

process, especially learning from experiences. Particularly, it continuously optimizes feed-

back through actions after interaction with the environment. Deep Learning (DL) models

originate from the concept of information processing and distribution in the human brain.
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In brief, these types of architectures can be categorized into generative (unsupervised), dis-

criminative (supervised), and deep RL architectures for IoT-IDSs.

3 Related Work

The systematic literature review (SLR) in [31] covers only a few population-based meta-

heuristics for intrusion detection in the IoT environment. Additionally, physical law-based,

human-inspired, and hybrid optimization techniques are not discussed. Moreover, the au-

thors do not concentrate solely on IoT. Rather, wireless, public networks, computer networks,

Hadoop and MapReduce, and edge networks are also explored significantly. Furthermore,

though they analyze the datasets used in developing the IDSs, no correlation is discovered

among the metaheuristics, mostly used datasets and ML methods. Saadouni et al. [32]

presents an SLR for IoT-IDS based on bio-inspired and ML-driven techniques. The authors

vividly discuss the integration of ML methods with optimization algorithms. However, one

of the most notable limitations of this work is the investigation of only 25 papers, whereas

there are several well-established metaheuristics-assisted IDSs dedicated to IoT. Importantly,

although the authors claim to study only IoT-based papers, we find that most of the articles

are not focused on the IoT environment. In [33], the authors study population-based op-

timizations, specifically swarm intelligence devised for detecting intrusions in IoT. Besides,

they analyze the datasets used and the performances of the existing systems. The main

drawback of the SLR is the lack of covering all categories of metaheuristics-driven IDSs.

Moreover, only basic ML algorithms are discussed in the SLR; whereas many crucial deep

learning-based IDSs are sorted out in our study. Sharma et al. [34] aims to explore IoT-IDSs

that rely on only multi-objective metaheuristics algorithms. Apart from this, they ana-

lyze different machine-learning models and popular datasets. However, the relation between

these diverse techniques is still missing. Moreover, the study is not systematic. Heidari et

al. [35] introduces an SLR containing rigid comparison and exploration of different IDSs in

the IoT environment. The first and foremost limitation is the missing metaheuristics and

ML-based systems, which we aim to cover in our study. Verma et al. [36] propose a survey

on ML-driven IDSs for IoT applications. Regrettably, the study does not include any opti-

mization algorithms, rather it intends to analyze the machine learning classifiers commonly

utilized in intrusion detection. Hajiheida et al. [37] also do not study the metaheuristics
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algorithms that are extensively employed in the IoT-IDS. Importantly, rather than focusing

on the metaheuristics or ML-based systems, they categorize and discuss different systems,

such as SIDS, AIDS, SpIDS, and HyIDS.

The existing reviews either explore nature-inspired or ML-based IoT-IDS systems. Though

there is only one survey [34] that discusses the integration of metaheuristics and machine

learning techniques for the IoT environment, the coverage and analysis are too inadequate

regarding the volume, significance, and diversity of the related IDSs in literature. Most

importantly, no reviews analyze the correlation between the optimization algorithms and

machine learning models while experimenting on a specific dataset. Apart from these, the

existing works do not categorize the applications of different metaheuristics regarding intru-

sion detection in the IoT environment.

To address all these issues, a systematic literature review is presented, which extensively

explores the existing metaheuristics and ML-integrated IDSs, specific to the IoT environ-

ment. Additionally, we analyze these systems based on different applications of metaheuris-

tics algorithms, such as optimal feature selection, parameter tuning, hyperparameter tuning,

etc. Moreover, the discovery of the connections among these algorithms, their outstanding

performances, and the used datasets significantly distinguish this review from others. Fur-

thermore, a new large-scale visualized taxonomy is demonstrated to provide researchers with

an overview of the existing IoT-IDSs. Table 1 provides an in-depth comparison with the

state-of-the-art reviews, highlighting the contributions of our work over others.
Table 1: Comparison with existing state-of-the-art surveys.

Work Year SLR # of
articles

IoT-
specific

Metaheuristics Machine Learning Models Usage of
Datasets

Perfor.
Analysis

Correlation
Analysis

Application
AnalysisEA SI PhA Others Basic ML DL Hybrid

[31] 2024 ✓ 145 ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✕

[32] 2024 ✓ 25 ✕ ✓ ✓ ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✕ ✕

[33] 2024 ✓ 101 ✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✓ ✓ ✕ ✕

[34] 2024 ✕ 37 ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕

[35] 2023 ✓ 24 ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕ ✕

[36] 2020 ✕ 25* ✓ ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✕ ✕

[37] 2019 ✓ 43 ✓ ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✕ ✕

Ours 2025 ✓ 111 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

*Not explicitly mentioned in the paper.

4 Review methodology

This section presents the review methodology used in this paper.
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4.1 Objectives and Research Questions

This research aims to investigate the existing integration of metaheuristics and ML algo-

rithms to detect intrusions in the IoT ecosystem. Besides, uncovering the hidden correla-

tions among the top-performing optimization techniques and ML models, considering spe-

cific datasets is another goal of similar importance. To achieve these objectives, firstly, it re-

quires understanding the necessity and exploring different applications of the metaheuristics-

assisted ML architectures for developing IoT-IDSs. Secondly, an investigation is needed on

the most popular datasets and evaluation metrics utilized to measure these detection sys-

tems. The next plan is to discover which optimization techniques and ML models come up

with excellent performances, considering the tested datasets. After that, we plan to analyze

and sort out the challenges and issues that arise because of the collaboration of these dif-

ferent conceptual techniques. Finally, the unexplored areas of metaheuristics and machine

learning techniques need to be studied to facilitate future research. Table 2 outlines the

specific research questions identified to achieve the objectives mentioned above.

RQ# Research Questions Objectives

RQ1 What are the need and existing applications of
metaheuristics optimizations in developing
ML-based IDS, especially for IoT?

To understand the necessity and explore the
existing metaheuristics and ML algorithms,
incorporated for developing IoT-IDSs.

RQ2 What are the most commonly used datasets
and evaluation metrics for integrated IoT-IDS
assessment?

To identify the well-known datasets and their
coverages, and define the popular performance
metrics.

RQ3 What are the relations between the
optimization algorithms and classification
methods with the datasets?

To find out the best-performing IoT-IDSs,
analyze the metaheuristics and ML algorithms
they used, and synthesize the outcomes.

RQ4 What are open issues raised by the integration
of metaheuristics algorithms with ML?

To discuss the unavoidable challenges as well as
possible solutions while combining machine
learning with metaheuristics.

RQ5 What are the unexplored metaheuristics
optimization algorithms for IDS in IoT?

To facilitate future research in this field, the
undiscovered techniques need to be mentioned.

Table 2: Research questions and objectives.

4.2 Search strategy

In this review, we search relevant works in established and well-known online sources, such

as IEEE Xplore Digital Library, ACM Digital Library, Elsevier, Springer, Nature, Wiley,

Taylor & Francis, MDPI, and World Scientific. Initially, 765 articles are selected in total.

For searching, specific keywords related to IoT-IDS which incorporate metaheuristics and ML
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have been used (See Table 3). Since we aim to cover the most recent techniques, we search

and select only the relevant, effective, and scholarly papers that were published between 2020

and 2024. Importantly, this focused and extensive investigation differentiates our work from

previous SLRs or surveys in the same field. Next, the papers that are deemed irrelevant and

found to be duplicates are removed. Particularly, several research has been conducted on the

metaheuristics and ML-driven detection systems that incorporate blockchain, fog computing,

and supercomputing technologies, which are not relevant to this review. Moreover, several

works focus on specific attack detection, for example, botnet, ransomware, malware, denial of

service (DoS), etc. These articles are also removed from our dataset. Furthermore, intrusion

detection systems that are not IoT-specific, are also eliminated since our concentration is

solely on the IoT-IDSs. All of these keywords for exclusion are listed in Table 4. Apart from

this, the related surveys are not included in the dataset. Additionally, the papers published

in foreign languages are excluded from this study. Finally, 111 articles are chosen for this

literature review.

Key Criteria

Search string (Metaheuristics-based) AND (Machine learning OR ML-based)
AND (Intrusion Detection System OR IDS) AND (Internet of
Things OR IoT)

Limiters Article date between 2020 and 2024

Search modes Search words occur either in the title, abstract, or in the introduction of the article

Table 3: Search criteria.

Excluded keywords

Botnet detection Malware detection Ransomware detection

Data mining Blockchain Remote Sensing Images

Wireless Sensor Networks (in general) DoS/DDoS detection Fog Computing

Supercomputing Selective forwarding attack

Table 4: Exclusion keywords.

4.3 Data analysis

After applying the search strategy, a dataset consisting of 111 papers are collected, contain-

ing both conference and journal works on metaheuristics and ML-based intrusion detection

systems for IoT. Among these, 90% are journal papers, and the rest are conference papers.

According to Figure 3, in recent times, researchers have tended to give more attention to
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metaheuristics-assisted machine learning while developing IoT-IDS. It is also discovered that

the highest number of quality articles was published in 2023 with 37 papers, followed by 31

papers in 2024, and 24 papers in 2022. Before 2021, metaheuristics were not studied in such

a focused way as depicted in the Figure.

0 5 10 15 20 25 30 35

Number of Publications

2020

2021

2022

2023

2024

Ye
ar

 o
f P

ub
lic

at
io

ns

7

12

18

36

26

5

1

5
Journals
Conferences

Figure 3: Year-wise publications for related IoT-IDSs, are included in this literature review.

4.4 Investigation of Journal Papers

We further analyze the 100 journal papers. Specifically, they are collected from 56 journals

in total, where almost half of them are ranked as Q1 journals. Simultaneously, the amount

of Q2 and Q3 journals is also significant, which indicates the inclusion of high-quality and

well-established research in this literature review. A donut plot is drawn in Figure 4 to

illustrate the percentage of different quartile journals studied in this work.

5 Results of the review

This section provides the results of the review answering each research question.
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Q1

51.8%

Q2

28.6%
Q3

12.5%

Q47.1%

Figure 4: Percentile of different quartile journals included in this literature review [Q1=29,
Q2=16, Q3=7, Q4=4].

5.1 RQ1: What are the need and existing applications of metaheuristics

optimization in developing ML and DL-based IDS, especially for

IoT?

Though machine learning algorithms offer high accuracy, enhanced security, and better per-

formance, they require excessive computational power like high-performance GPUs (Graphics

Processing Units), and a large volume of storage for generating, executing, and managing

large datasets during training and testing phases. Undoubtedly, deep learning algorithms

can seamlessly handle enormous datasets and offer fast processing; but, these require signif-

icant time to achieve minor precision improvements. Moreover, parameter-tuning is another

unavoidable critical issue since adjusting the number of layers with the expected accuracy is

entirely correlated [10]. In this regard, metaheuristics can be utilized to obtain near-optimal

solutions in a shorter time than the exact algorithms. Specifically, a metaheuristic algorithm

is an iterative generation process that guides a subordinate heuristic to explore and exploit

the search space efficiently [8]. Besides, these algorithms terminate when specific conditions

(e.g., the number of iterations, elapsed time, etc.) are satisfied. As a result, there is no

possibility of running the algorithm for a long period; even the likelihood of being stuck in

the local minima is negligible.

We discuss the existing integrated IoT-IDSs categorized into different metaheuristics al-

gorithms. Besides, these optimization techniques are also analyzed by classifying them into

diverse applications, such as future selection, parameter tuning, hyperparameter optimiza-

tion, and hybrid applications. In this work, swarm intelligence techniques are differentiated
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from nature-based optimizations considering the vastness and significance of these two dis-

tinct categories of metaheuristics. Though swarm-based algorithms are also based on nature,

they especially concentrate on decentralized systems and collaborative behaviors; contrarily,

nature-inspired metaheuristics encompass diverse elements of nature, including the discrete

behaviors of individual animals. The taxonomy of the existing metaheuristics and ML-

integrated IoT-IDSs is illustrated in Figure 5.

5.1.1 Population-based Metaheuristics and ML

Swarm-based Metaheuristics. The well-known particle swarm optimization (PSO) tech-

nique is widely used in IoT-IDSs. Particularly, Elmasry et al. [38] leverage a double PSO

to optimize features and hyperparameters. The efficiency of this metaheuristic is examined

by discriminative and generative ML methods, especially CNN, LSTM, and DBN. Among

these, DBN excels over others by 2% to 6% while testing on the NSL-KDD and CICIDS2017

datasets. In another paper, Saheed et al. [39] integrate an AE with PSO to optimally select

features from the BoT-IoT and UNSW-NB15 datasets. After that, they also modify the

inertia weight of PSO to optimize the hyperparameters of DNN, resulting in the efficient

classification of attacks (an accuracy of 97.61% and 94.62% in BoT-IoT and UNSW-NB15,

respectively). However, the combination of genetic self-adjusted PSO (GSAPSO) and EGB

and KNN classifiers does not result in considerable performances [40].

Apart from these, bird swarm optimization (BSA), salp swarm algorithm (SSA), and

golden jackal optimization algorithm (GJOA) are found to be reliable for detecting intru-

sions in IoT environments. In particular, a DBN-driven IoT-IDS is presented in [41], which

offers 98.96% accuracy, 99.4% precision, and 98.87% recall on the NSL-KDD dataset when

parameters are tuned by evaluated BSA (EBSA). Aljehane et al. [42] leverage GJOA to

find the most significant features from the CICIDS-2017 dataset and SSA to optimize hy-

perparameters of the attention-driven bi-directional LSTM (A-BiLSTM). This dual usage

of population-based optimizers secures 99.69% accuracy, 98.92% f1-score, and 98.74% MCC.

Another variant of SSA, referred to as chaotic salp swarm optimization (CSSA) performs well

with the incorporation of LightGBM, having an accuracy of 98.35%∼99.38% on the MC-IoT,

MQTT-IoT-IDS2020, and MQTTset datasets [43]. However, adopting BSA and social group

optimization algorithm (SCOA) for selecting features and optimizing parameters in kernel
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extreme machine learning model (KELM) fails to deliver decent results across all metrics

(99.45% accuracy, 80.26% precision, 82.67% recall, and 80.95% f1-score).

Interestingly, some detection systems demonstrate different performances in various datasets.

For example, IDS with artificial bee colony (ABC) and extreme machine learning classifier

performs well on CICIDS-2017; whereas significantly fails on UNSW-NB15 (accuracy 98.71%

vs. 71.54% ) [44]. Similar results appear in swarm-inspired sand cat swarm optimizer (SCSO)

and ELM-based system [17]. However, integration of glow-swarm optimization (GSO) with

PCA [45], chimp chicken swarm-based optimization (CCSO) with deep LSTM [46], and im-

proved ACO with ensemble classifier (DDT, ANFIS and MDSVM) [47] does not result in

considerable performance.

Nature-inspired Metaheuristics. These optimization techniques are extensively inte-

grated with machine learning-based IoT-IDSs, especially Grey-Wolf Optimization (GWO) [48,

49, 50, 51, 52, 53], firefly optimization algorithm (FOA) [54, 55, 56], Capuchin Search Algo-

rithm (CSA) [57, 58], and Whale Optimization Algorithm (WOA) [59, 19, 60, 61]. Regard-

ing the GWO-based detection systems, [48, 51, 52, 53] utilize GWO for feature selection;

whereas [49, 50] use for optimizing hyperparameters of quantum-based SVM classifier and

EL method (comprised of DT, RF, KNN, and MLP), respectively. The former systems iden-

tify intrusions relying on XGBoost, elastic regularization-assisted contractive autoencoder

(CAE), deep neural network (DNN), and SVM, respectively. Notably, all these IDSs come

up with remarkable efficiency (e.g., 99%∼100% accuracy). However, different datasets, pre-

processing and other related techniques are employed within these IoT-IDSs. In [55, 56], FOA

is integrated for selecting near-optimal features, and detection is conducted by classifiers, es-

pecially ensemble, and DT, respectively. Though [55] shows notable detection ability, [56]

severely under-performs. In contrast, Savanovic et al. [54] improve the original FOA for tun-

ing hyperparameters in classification techniques like KNN, and XGBoost. As a consequence,

their IoT-IDS provides an accuracy of 99.98% and 99.6997%, respectively on UNSW-NB15

and IoT healthcare datasets. Turing to CSA-based detection systems, Kumar et al. [57] opti-

mize parameters of a capsule autoencoder (HKCAE) and Elaziz et al. [58] select near-optimal

features for CNN model using this metaheuristic. Importantly, in this case, parameter tun-

ing turns to be more effective than feature selection since the former IDS offers outstanding
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accuracy on BoT-IoT and UNSW-NB15 datasets (99.9% and 99.7%); whereas the later sys-

tem behaves inconsistently across various datasets (considerable for BoT-IoT, KDDCup-99,

and CICIDS-2017; severe for NSL-KDD). Among the four WOA-based IDSs, [59] is the

best-performing system with approximately 99.8% accuracy, precision, recall, f1-score, and

specificity. The authors leverage this optimization technique to tune the hyperparameters

of a gated recurrent unit (GRU). However, optimizing parameters of an LSTM using WOA

also turns out to be effective (99.1%∼99.5% accuracy) [19].

Considering other IOT-IDSs of this category, most of the nature-inspired metaheuris-

tics are leveraged for feature selection. Further examining of these systems reveal that

various types of optimizers, such as Moth–Flame Optimization (MFO) [62], crow search

algorithm (CrSA) [63], chaotic vortex search (CVS) [64], decisive red fox optimization

(DRFO) [65], multi-objective prairie dog optimization (PDO [66], reptile search algorithm

(RSA) [67], binary multi-objective Capuchin search algorithm (BMECapSA) [68], Aquila

optimizer (AQUO) [69], BA [70], and Mayfly Optimization Algorithm (MOA) [71] are promi-

nent. Among them, [62, 63, 64, 65, 66, 68] demonstrate higher efficiency while experimenting

on diverse datasets. However, no common trend is found in terms of machine learning-based

classifiers.

Other than these systems, a few IDSs utilize nature-centric optimization techniques for

tuning parameters [72, 73, 74] or hyperparameters [22, 75] of the detection models; some-

times for hybrid applications [76, 77, 78]. Although in discrete cases, these systems show

considerable results, their performances are not generally satisfactory.

Evolutionary Algorithms. Only a small number of IoT-IDSs have utilized evolution-

ary algorithms (EAs) and they do not significantly surpass other detection systems. The

best-performing IDS of this type is proposed by Latif et al. [79], where hyperparameters of a

CNN-based ensemble classifier are optimized by a genetic algorithm (GA). Ultimately, this

system achieves 100% accuracy, precision, recall, f1-score, and Cohen’s kappa score in the

Edge IIoTset dataset. Second best-performing IDSs presented in [80], where feature selection

is accomplished by a non-dominated sorting genetic algorithm (NSGA) and classification is

done using a support vector machine (SVM). Importantly, the system achieves a remarkable

accuracy of 99.48% on the TON IoT dataset. Gupta et al. [81] integrate an evolutionary
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algorithm intelligent water drop (IWD) and a nature-inspired biogeography-based optimiza-

tion (BBO) technique with a feed-forward neural network (FNN). The IDS detects attacks

more correctly when tested on CICIDS-2017 compared to the IoTID20 dataset (accuracy

98.2339% vs. 96.7414% and f1-score 99.0865% vs. 95.4901%). However, integration of an

assimilated artificial fish swarm optimization (AAFSO) with genetic algorithm (GA)-tuned

faster recurrent CNN (FRCNN) does not perform well across diverse datasets [82].

Population-based Hybrid Metaheuristics. Numerous works have employed more than

one population-based metaheuristics to improve the performance of IoT-IDSs. In most cases,

such hybridization is utilized to select an optimal set of features. Regarding traditional ma-

chine learning classifiers, KNN [83, 84, 13, 14] and RF [85, 86, 87, 88, 89] are widely used in

these systems. Specifically, SSA+ALO [83], quantum-driven binary ABC+GA [84], gorilla

troops optimizer (GTO)+birds swarm algorithm (BSA) [13], and GWO+dipper throated op-

timization (DTO) [14, 90] are integrated in these KNN-based detection systems. Notably, all

these IDSs provide substantial performance in terms of accuracy, precision, recall, and other

related metrics. On the other hand, RF-based IDSs utilize LOA+FOA [85], PSO+bat algo-

rithm (BA) [86], spider monkey algorithm+hierarchical PSO [87], and PSO+GWO [88, 89]

for feature selection purpose. These systems also demonstrate significant efficiency in classify-

ing various attacks. In addition to these, hunger game search (HGS) and remora optimization

algorithm (ROA) in [91], and GA and GWO are hybridized in [92] for selecting near-best

features from AWID dataset for SVM classifier. Both of these combinations show notable per-

formances with 99.1% accuracy and negligible FPR. Turning to deep learning-oriented IoT-

IDSs, three works are found that applied a Look Ahead Artificial Neural Network (LAANN),

recurrent neural networks (RNNs), and a deep learning-based hybrid neural network (DL-

HCNN) respectively. Particularly, sea turtle foraging algorithm (STFA)+explorated PSO

(EXPSO) [93], Harris hawk optimization (HHO)+fractional derivative mutation (FDM) [15],

and Chicken Swarm Optimization (ChSO)+GA [94] are utilized in these systems to select

optimal feature set. However, they fail to provide remarkable performance with 95%∼98%

considering all related metrics.

Apart from feature selection-based IDSs, a few research studies focus on tuning the

parameters or hyperparameters of classification models. Khafaga et al. [95] propose an in-
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novative whale optimization (WOA) regulated by DTO to optimize parameters of KNN,

RF, and NN. Experimental evaluation using the RPL-NIDS17 dataset results in 99% AUC

and 95.1% accuracy. In [96], SAEHO and SU-CMO are also proposed for adjusting the

parameters of the two hybrid classifiers, particularly CNN+DBN and Bi-LSTM+GRU. The

integration of SAEHO and hybrid classifier offers better accuracy than that of SU-CMO and

hybrid classifier (91.6% vs 84.8% ). Bahaa et al. [20] integrate adaptive PSO and WOA

for hyperparameter optimization in their CNN-based detection system. However, the sys-

tem achieves only 94.54% accuracy and 0.9 JSC. However, a small number of papers focus

on employing hybrid population-based optimizers for accomplishing multiple purposes at a

time [97, 98, 99]. One of the notable systems is introduced by Karthikeyan et al. [97], where

GWO is leveraged to optimize parameters and FOA to choose the most suitable features

for the SVM classifier in the IoT-WSN environment. The separate use of these two meta-

heuristics crucially influences the system’s accuracy (99.29%). However, other such existing

IoT-IDSs drastically fails, especially red kite optimization algorithm (RKOA)+Levy flight

chaotic WOA with EL (LSTM, BiLSTM, and Bi-GRU) [98] and black widow optimization

(BWO)+BES with hybrid deep learning (HDL) [99].

5.1.2 Iterative-based Metaheuristics and ML

Physics and Math-based Regarding math-inspired optimization techniques, the arith-

metic optimization algorithm (AOA) is widely employed. In [100], AOA is utilized to select

optimal feature sets for random forest and extra trees classifiers. Experimental evaluations

on four public datasets reveal that the IDS produces a much less false positive rate (0.002%)

for the tests conducted using the NF-ToN-IoT-v2 dataset. Makhadmeh et al. [101] also apply

AOA for executing the same purpose using different classifiers, KNN. Interestingly, the ac-

curacy of these two systems is almost identical (around 99.9%). Though AOA and quantum-

driven PSO (QPSO) are utilized in [102] for different purposes, the deep wavelet neural

network (DWNN)-based detection system does not secure substantial accuracy (98.21%).

Turning to the physics-based IoT-IDSs, Atom Search Optimization (ASO) and Equilibrium

Optimization (EO) techniques are utilized in [103] to select optimal features prior to applying

K-means clustering. Importantly, this hybridization demonstrates remarkable performance

on NSL-KDD, UNSW-NB15, and KDD-CUP99 datasets. In another paper [104], a black
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hole optimization technique is employed to select near-optimal features from the UNSW-

NB15 and NSL-KDD datasets. Two CNNs are utilized in parallel to identify intrusion and

result in around 97.5%∼99.89% efficiency in terms of common performance metrics.

Human-inspired. Considering the integration of metaheuristics adopted from human be-

haviors and their decision-making process, [105, 106, 107, 108] IoT-IDSs are the most notable

ones. Specifically, the political optimizer (PO) utilized for parameter tuning in a cascade

forward neural network (CFNN) model, compact SCA (CSCA) for adjusting the parame-

ters of the KNN classifier, and modified growth optimizer (GO) for selecting near-best fea-

tures before training by CNN are significantly performed well with an accuracy of 99.86%,

98.27%∼99.327%, and 99.941%), respectively. However, these groups of optimizers are not

always effective, especially for intrusion detection in IoT environment [109, 21, 110].

Search-based Though IoT-IDSs of this category tend to bring significant performances,

they are too rare in the literature. Only one of them is found [111], the authors utilize tabu

search with the idea of cellular automata to succeed in the features selection task. Conse-

quently, it results in accuracy, precision, and FPR of 99.5%, 97.92%, and 0.004%, respectively

while classified using an ensemble learning method.

5.1.3 Hybrid Metaheuristics and ML

In the context of IoT intrusion detection systems, existing hybrid optimization algorithms can

be categorized into 6 small groups: swarm+physics-based [112], nature+physics-inspired [113,

114], nature+math-inspired [115, 116], nature+human-based [117, 118], swarm+search-based [18],

and nature+search-inspired [119, 120, 121]. Though utilizing physics-based techniques with

nature-inspired ones (binary gravitational search (BGSA)+GWO [113], simulated annealing

(SA)+shuffled shepherd optimization (SSO) [114]) prove to be effective, integrating with

swarm-based optimizers (multi-object PSO+Lévy flight [112]) turns out to be inefficient.

Regarding the third group, Rahmani et al. [115] employ grasshopper optimization (GAO)

and AOA for parameters and hyperparameters tuning in a random neural network (RdNN),

which generates an IDS having 99.56% precision and 99.37% detection rate. In another

work [116], a binary chimp optimization algorithm (BCOA) is integrated with the sine co-
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sine algorithm (SCA) for securing the IoT-WSN network. Although the IDS generates high

accuracy and specificity (99.63% and 99.67%, respectively), the f1-score is not convincing

(94.52%). The well-known human-based metaheuristic object-based learning (OBL) is hy-

bridized with Harris Hawk Optimization (HHO) and Golden Jackal Optimization Algorithm

(GJOA), respectively in [118] and [117] to select best possible features. These DT-based and

LSTM-driven IoT-IDSs provide remarkable performances with 99.65%∼100% and 98.93%

accuracy, respectively. Baniasadi et al. [18] adjust parameters of deep CNN (DCNN) utiliz-

ing neighborhood search (NS)-based PSO. They get a negligible amount of mean square error

(0.00053%) with 98.86% accuracy and 95.32% specificity on the UNSW-NB15 and Bot-IoT

datasets. Turning to the last group of this category, it can be concluded that selecting fea-

tures using a combination of nature-inspired and search-based metaheuristics is not effective

according to the results provided in [119, 120, 121]. It is worth mentioning that these IDSs

use EL classifier, variational autoencoder (VAE), and deep RL, respectively.

Table 5 shows the list of works in the existing literature that leverage different metaheuristics-

based techniques and ML algorithms. According to the table, most systems leverage nature-

inspired optimization techniques to increase the efficiency of the classifiers. Besides, swarm-

based, population-based hybrid, and hybrid metaheuristics are utilized significantly. More-

over, a thorough analysis of the IoT-IDSs based on different performance metrics, meta-

heuristics, their applications, ML algorithms, classification types, and datasets are presented

in Appendix A (Table 11).

Metaheuristics
Machine Learning Models

SL
USL

DL
Classification EL ANN Generative DRL Discriminative

Swarm-based [122, 123, 124,
40]

[47, 43, 40] [125, 44, 17,
73]

[45,
126]

[38, 41] [38, 82, 21, 39, 42,
46]

Nature-inspired [127, 128, 129,
130, 56, 49, 66]

[54, 63, 48,
55, 62, 76, 22,
50]

[131, 64, 73,
132, 60, 65,
81]

[120, 57, 72,
51, 78]

[52, 67, 68, 133,
134, 69, 59, 58, 19,
61, 74, 42, 70, 71,
135, 77, 136, 75]

EA-based [122, 80] [81, 79] [82, 104]
Population-based
hybrid

[13, 14, 95, 85,
90, 92, 91, 88,
86, 87, 89, 97,
83, 53, 84]

[95, 93] [96] [15, 96, 20, 98, 94,
137, 99, 75]

Phy/Math-based [100, 101] [103] [102]
Human-inspired [106, 16] [105, 73] [110] [107, 109, 21, 110]
Search-based [111]
Hybrid [114, 112, 118] [113, 116,

119]
[115] [120] [121] [138, 18, 117]

Table 5: List of existing IoT-IDSs based on different metaheuristics and ML models.
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Analysis on Different Applications

We find that most of the existing IoT-IDSs solely utilize different metaheuristics algorithms

for selecting an optimal set of features. Besides, some of the systems employ them distinctly

for optimizing the parameters and hyperparameters of the machine learning models. How-

ever, a few works focus on hybrid applications by leveraging feature selection and parameter

(FS-PT) or hyperparameter (FS-HPT) tuning in the same detection system. Figure 6 illus-

trates the percentage of different applications leveraged by the IDSs, and Table 6 shows the

list of corresponding existing works.

FS

58.4%

PT

12.4%

HPT

13.3% FS and PT
6.2%

FS and HPT
9.7%

Figure 6: Percentile of different applications of metaheuristics algorithms.
Application Ref.

FS [13, 52, 14, 122, 131, 15, 80, 85, 113, 138, 67, 107, 100, 114, 45,
123, 90, 92, 91, 112, 88, 44, 128, 86, 47, 87, 68, 133, 89, 63, 124,
69, 17, 64, 93, 83, 48, 43, 111, 129, 55, 53, 119, 62, 94, 130, 126,
58, 137, 121, 60, 117, 118, 84, 56, 65, 66, 70, 71, 16, 51, 101, 81,
110, 136, 103, 104]

PT [95, 105, 115, 96, 18, 73, 57, 19, 74, 41, 72, 135, 77, 46]

HPT [54, 115, 109, 20, 73, 132, 21, 59, 61, 22, 49, 50, 77, 40, 79]

FS and PT [125, 102, 116, 97, 134, 120, 75]

FS and HPT [38, 127, 116, 98, 106, 82, 39, 76, 99, 42, 78]

Table 6: List of existing IoT-IDSs based on different applications of metaheuristics.

5.2 RQ2: What are the most commonly used datasets and evaluation

metrics for IoT-IDS assessment?

In this study, we outline the most popular intrusion datasets used in the IoT context, specifi-

cally for testing metaheuristics and ML-driven systems. Interestingly, all works utilize public

datasets, rather than creating on their own.

Our investigation reveals that the well-known NSL-KDD dataset [139] is extensively

26



used by IoT-IDSs. It consists of 148,517 records extracted from the 5,209,458 samples of

the oldest benchmark dataset, KDDCup-99 [140] by removing redundant records. Both of

these datasets contain 41 features and 5 target classes. In 2015, the UNSW-NB15 dataset

[141] was created having 49 features and 10 target classes. Importantly, since this dataset

does not have any outdated features of attacks, researchers tend to test their works on

this. Additionally, the BoT-IoT [142] and CICIDS-2017 [143] datasets are widely used as

well. However, Table 7 states that CICIDS-2017 contains around 80 features and 8 classes;

whereas BoT-IoT is a huge dataset with 73,360,900 records and 46 features and 7 classes.

Several systems also utilize the TON-IoT [144] and N-BaIoT [145] datasets. TON-IoT is a

large dataset with 22,339,021 records in total, of which 461,043 are dedicated to training and

testing purposes. On the other hand, N-BaIoT consists of 23 features and 7,062,606 records.

The proportion of each dataset used in the existing detection systems is shown in Figure

7. Apart from these mostly used datasets, the IoTID20 dataset [146] is used in 5 papers.

Additionally, AWID [147], WSN-DS [148], and RPL-NIDDS17 [149] datasets are employed

by three systems each; whereas, the rest of the works utilize distinct datasets.

NSL-KDD

29.9%
UNSW-NB15

22.4%

BoT-IoT
13.6%

CICIDS-2017

12.9%
KDDCup-99

8.2%
TON-IoT

7.5%

N-BaIoT5.4%

Figure 7: Percentile of the most used datasets for experimenting with the existing IoT-IDSs.

Evaluation metrics. The most prominent metrics widely used by the existing IoT-

IDSs are enlisted here. These metrics include accuracy, precision, recall or sensitivity or

true positive rate (TPR), f1-score, specificity or selectivity or true negative rate (TNR), false

positive rate (FPR) or false alarm rate (FAR), area under curve (AUC), Matthew’s corre-

lation coefficient (MCC), and G-mean. Equations [1-9] denote their standard mathematical
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Table 7: The most used datasets for experimenting with the existing IoT-IDSs.

Dataset (yr.) Target classes Distribution
(%)

# of fea-
tures

# of
training
records

# of
testing
records

Total
# of
records

Imbal-
ance

NSL-KDD (2009)
[139]

Benign, Probe,
DoS, U2R, R2L

51.89 + 35.94 +
9.48 + 2.52 +
0.17

41 125,973 22,544 148,517 ✓

UNSW-NB15
(2015) [141]

Benign, Fuzzers,
Analysis, Back-
doors, DoS, Ex-
ploits, Generic,
Reconnaissance,
Shellcode, Worms

87.36 + 0.95 +
0.11 + 0.09 +
0.64 + 1.75 +
8.48 + 0.55 +
0.06 + 0.01

49 175,341 82,332 ✓

BoT-IoT (2019)
[142]

Benign, DoS,
DDoS, Reconnais-
sance, Information
Theft

0.01 + 44.96 +
52.54 + 2.48 +
0.002

46 - - 73,360,900 ✓

CICIDS-2017
(2017) [143]

Benign, DoS Hulk,
PortScan, DDoS,
DoS GoldenEye,
FTP-Patator,
SSH-Patator, DoS
slowloris, DoS
Slowhttptest, Bot,
Web Attack –
Brute Force, Web
Attack – XSS,
Infiltration, Web
Attack – SQL In-
jection, Heartbleed

83.34 + 8.16 +
5.61 + 1.48 +
0.36 + 0.28 +
0.21 + 0.20 +
0.19 + 0.07 +
0.05 + 0.02 +
0.00 + 0.00 +
0.00

80 - - 2,830,743 ✓

KDDCup-99
(1999) [140]

Benign, Probe,
DoS, U2R, R2L

19.86 + 0.84 +
79.30 + 0.0 +
0.02

41 4,898,431 311,027 5,209,458 ✓

TON-IoT (2021)
[144]

Benign, Back-
door, DDoS,
DoS, Injection,
MITM, Password,
Ransomware,
Scanning, XSS

3.56 + 2.27 +
27.60 + 15.11 +
2.03 + 0.00 +
7.69 + 0.33 +
31.96 + 9.44

46 461,043 22,339,021 ✓

N-BaIoT (2018)
[145]

Benign, mirai udp,
gafgyt udp,
gafgyt tcp, mi-
rai syn, mirai ack,
mirai scan, mi-
rai udpplain,
gafgyt combo,
gafgyt junk,
gafgyt scan

7.87 + 17.41 +
13.40 + 12.17 +
10.38 + 9.11 +
7.62 + 7.41 +
7.29 + 3.71 +
3.61

23 - - 7,062,606 mode-
rately
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representations, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2× Precision× Recall

Precision + Recall
(4)

Specificity =
TN

TN + FP
= 1− FPR (5)

FPR =
FP

TN + FP
(6)

AUC =

∫ b

a
f(x) dx (7)

MCC =
TP.TN − FP.FN√

(TN + FN)× (TN + FP )× (TP + FN)× (TP + FP )
(8)

G-Mean =
√
Precision× Recall (9)

Here, true positive (TP) is the number of detected attacks that occurred indeed, and false

positive (FP) is the number of predicted intrusions which are not truly occurred. Similarly,

true negative (TN) is the number of correctly classified benign or normal instances, and

false negative (FN) is the volume of events that are wrongly categorized as Benign. AUC

is the curve of TPR against FPR which indicates the quality of a classification model.

Particularly, this indicator gives an idea of the general accuracy of the classifier for all

false positive detection rates. MCC is used to evaluate the quality of both binary and multi-

class classifications. Specifically, it balances the measurement considering TP, TN, FP, and

FN equally. G-mean is a balanced geometric mean calculated as the square root of the

product of precision and recall. It aims to correctly measure the classifier performance on

any imbalanced dataset. Depending on various requirements, several other metrics such as

mean square error (MSE), Jaccard similarity coefficient (JSC) or Jaccard index, negative

predictive value (NPV), and many more are also measured.
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5.3 RQ3: What are the relations between the optimization algorithms

and classification methods with the datasets?

To address this research question, we analyze the existing works and discover the best-

performing IDSs tested using distinct highly-used datasets. All selected papers are published

in Q1 or Q2 journals, indicating the correctness and effectiveness of our analysis.

5.3.1 Connecting dots among Metaheuristics, Datasets, and Machine Learning

NSL-KDD. Turning to the NSL-KDD dataset, different classification techniques are used in

the assessments of IDSs. Among these classifiers, random forest (RF) remarkably demon-

strates high performance in the top-performing IDSs with 99.66%∼99.98% accuracy and

99.85%∼99.96% f1-score (see Table 8). Notably, the RF algorithms are incorporated with

population-based metaheuristics like GWO-PSO, LOA-FOA, and SMO-HPSO to select op-

timal features for the corresponding IDSs. Regarding deep learning algorithms, different

discriminative methods like convolutional neural networks (CNNs), BiGRU, and LSTM are

integrated to develop IoT intrusion detection systems. However, these models do not out-

perform RFs.

UNSW-NB15. Interestingly, from Table 8, it can be seen that the ensemble learning (EL)

classification models are leveraged significantly in the tests conducted on the UNSW-NB15

dataset. The topmost systems generate an accuracy and f1-score of 99.41%∼100% and

99.33%∼99.99%, respectively. Importantly, these IDSs leverage metaheuristics for feature

selection, parameter, and hyperparameter tuning in the machine learning models. In the ma-

jority of cases, EL techniques are integrated with either nature-based or population-based

hybrid optimization algorithms, such as GWO, MFO, FOA, BGSA-BGWO, and LS-PIO.

Besides, researchers also tend to explore diverse deep learning architectures though these

systems are less effective than the previous ones.

BoT-IoT. Regarding the experiments on the BoT-IoT dataset, Table 8 illustrates that most

of the best-performing IDSs employ discriminative architectures, specifically CNNs. How-

ever, these IDSs do not outperform EL, SVM, AE, and ANN-based systems (accuracy of

98.86%∼99.15% vs 99.68%∼99.98%). Further investigation of the metaheuristics uncovers
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that CNNs are tested by combining with diverse categories of optimization techniques (hy-

brid, SI, and nature-based); whereas, other machine learning algorithms are integrated with

nature-based metaheuristics and exhibit better performance. Among these optimization al-

gorithms, roughly half of them are used for feature selection and the other half are utilized

for parameter and hyperparameter optimization.

CICIDS-2017 and KDDCup-99. Turning to the tests conducted on CICIDS-2017 and KDDCup-

99 datasets, it can be observed that the same case as BoT-IoT concerning the utilization of

deep learning techniques, that is, the abundant use of CNNs in the best-performing IDSs. On

the CICIDS-2017 dataset, these algorithms work impressively since the accuracy and f1-score

are between 99.77%∼99.93%, and 99.72%∼99.93%, respectively considering the topmost five

IDSs. Table 8 depicts that these CNNs are consolidated with either hybrid (TSO-DE) or

nature-based (RSA, AQUO, and CSA) metaheuristics. Notably, all of these algorithms are

employed for selecting optimal features. On the contrary, when examined on the KDDCup-

99 dataset, in most cases, CNNs do not surpass others in terms of f1-score. Other machine

learning algorithms, specifically ANN and EL are synthesized with EXPSO-STFA and LS-

PIO hybrid optimizers, respectively, which are also used for the optimal selection of the

features.

TON-IoT. Investigation of the TON-IoT dataset reveals that both discriminative and generative-

based models are leveraged to design IoT-IDSs. Distinctly, CNN and hybrid of AE-DNN

models demonstrate higher performance with an accuracy of 99.99% and 99.888%, respec-

tively. The corresponding f1-scores are almost identical. Concerning metaheuristics, these

ML models incorporate binary multi-objective CSA (BMECapSA) and simulated annealing

(SA), respectively, utilized for feature selection.

N-BaIoT. Similar to the experimental evaluations on the NSL-KDD dataset, plentiful use

of classification algorithms, specifically RFs and KNN is noticed in the case of the N-BaIoT

dataset. The accuracy and f1-score of these systems are satisfactory with 98.2%∼99.86% and

99.4%∼99.86%, respectively. However, the highest performance is achieved by the XGBoost

technique. Importantly, KNNs tend to perform better when incorporated with a hybrid
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optimization algorithm, particularly SSO-SA. Regarding RF, it offers the same accuracy

and f1-score when integrated with population-based hybrid metaheuristics (LOA-FOA and

GWO-PSO). Notably, all these optimizers are employed for feature selection.

Table 8: The assessment of the best-performing IDSs in the IoT environment. Cells con-
taining “-” indicate that the information is not explicitly mentioned in the related papers,
and “N/A” denotes “not applicable” since those works optimize either parameters or hyper-
parameters, rather than selecting features set. Besides, “Features count” is abbreviated as
“FC”, meaning the number of features selected by the corresponding metaheuristics.

Dataset Ref MetaheuristicsAppli. ML FC Acc(%)F1(%) Others(%) Quar.

NSL-KDD

[88] GWO-PSO FS RF - 99.97 99.96 - Q2

[85] LOA-FOA FS RF - 99.98 99.73 AUC=99.76 Q2

[48] BGWO FS EL (XG-

Boost)

- 99.9427 99.9426 - Q2

[104] BHO FS Parallel

CNNs

- 99.8928 99.89 Q1

[68] BMECapSA FS CNN 18 99.85 99.85 FAR=0.0019,

FNR=0.001

Q1

[130] SMO FS RF - 99.675 99.9325 AUC=99.3025 Q2

[89] GWO-PSO FS RF - 99.66 - - Q1

[94] HCSGA FS DLHNN - 99.52 97.16 - Q1

[19] WOA PT LSTM N/A 99.5 - Specificity=98.45 Q1

[106] Compact

SCA

HPT KNN N/A 99.327 - FAR=0.5848 Q2

[97] GWO,FOA PT,

FS

SVM - 99.29 96.23 FAR=99.59,

AUC=98.51

Q1

[41] EBSA PT DBN N/A 98.96 99.13 - Q2

[87] SMO-HPSO FS RF 22 98.98 98.59 AUC=99.81 Q1

[117] IBGJO FS LSTM - 98.93 98.17 - Q1

[103] ASO-EO,

FOA

FS k-means - 98.9 100 - Q1

[63] enhanced

CrSA

FS EL 11 99 98.14 - Q1

UNSW-

NB15

[54] modified FOA HPT EL(XGBoost) N/A 99.98 99.99 AUC-ROC=1 Q1

[50] GWO HPT EL N/A 100 99.745 FAR=1.5,

ROC=99.4

Q1

[62] MFO FS EL 14 100 99.75 - Q1

[57] CSA PT HKCAE N/A 99.7 98.9 Specificity=98.3 Q2

[105] PO PT CFNN N/A 99.46 99.76 - Q2

[113] BGSA-

BGWO

FS EL 4 99.41 99.33 FAR=0.03 Q2

Continued on next page
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Table 8 – Continued from previous page

Dataset Ref MetaheuristicsAppli. ML FC Acc(%)F1(%) Others(%) Quar.

[103] ASO-EO,

FOA

FS k-means - 99.1 99.4 - Q1

[19] WOA PT LSTM N/A 99.1 - Specificity=98.99 Q1

[61] WOA HPT GRU N/A 99 - - Q2

[55] FOA FS EL - 98.89 98.91 AUC=99.79 Q2

[65] DRFO FS DBRBF - 98.5 98.5 FAR=8.2 Q1

[104] BHO FS Parallel

CNNs

- 97.7217 97.56 Q1

[93] EXPSO-

STFA

FS LAANN - 95.65 95.64 Specificity=92.74,

FNR=10.23,

MCC=92.56

Q1

BoT-IoT

[50] GWO HPT EL N/A 99.98 99.955 FAR=1.3,

ROC=99.99

Q1

[57] CSA PT HKCAE N/A 99.9 98.2 Specificity=99.7 Q2

[64] CVS FS FLN-ANN - 99.68 99.21 Specificity=99.83 Q1

[58] CSA FS CNN - 99.15 98.806 - Q1

[49] IGWO HPT QSVM N/A 99.11 97.48 - Q1

[138] TSO-DE FS CNN - 99.042 99.042 FAR=0.00301 Q1

[67] RSA FS CNN - 99.02 99.07 - Q1

[69] AQUO FS CNN 10 98.926 98.904 - Q1

[18] NS-BPSO PT DCNN N/A 98.86 - Specificity=95.32,

MSE=0.00053

Q1

[39] HAEMPSO FS,

HPT

DNN - 97.61 - - Q1

[49] IGWO HPT QSVM N/A 99.11 97.48 - Q1

[46] CCSO PT Deep LSTM N/A 96.71 - Specificity=91.985 Q1

CICIDS-

2017

[138] TSODE FS CNN - 99.93 99.93 FAR=0.00009 Q1

[67] RSA FS CNN - 99.911 99.888 - Q1

[69] AQUO FS CNN - 99.911 99.888 - Q1

[58] CSA FS CNN - 99.911 99.888 - Q1

[64] CVS FS FLN-ANN - 99.77 99.72 Specificity=99.92 Q1

[117] IBGJO FS LSTM - 99.75 98.81 - Q1

[42] GJOA,SSA FS,

HPT

A-BiLSTM - 99.69 98.92 MCC=98.74 Q1

[89] GWO-PSO FS RF - 99.66 - - Q1

[75] ALO, FPA FS,

HPT

CNN+LSTM - 99.55 99.55 AUC=99.55 Q1

[110] IGC-SA FS AE-DNN - 99.4 99.4 - PAIS24

[107] MGO FS CNN - 99.22 99.218 G-Mean=99.218 Q1

[81] IWD-BBO FS FNN - 98.2339 99.0865 - Q1

[117] IBGJO FS LSTM - 99.75 98.81 - Q1

KDDCup-

99

[107] MGO FS CNN - 99.941 99.942 G-Mean=99.942 Q1

Continued on next page
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Table 8 – Continued from previous page

Dataset Ref MetaheuristicsAppli. ML FC Acc(%)F1(%) Others(%) Quar.

[69] AQUO FS CNN - 99.919 89.987 - Q1

[58] CSA FS CNN - 99.917 89.988 - Q1

[119] LS-PIO FS EL 15 99.82 97.23 FAR=6.9,

TPR=99.23,

AUC=96.32

Q1

[89] GWO-PSO FS RF - 99.66 - - Q1

[103] ASO-EO FS k-means - 96.1 100 - Q1

[93] EXPSO-

STFA

FS LAANN - 95.65 95.64 Specificity=92.74,

FAR=14.52,

FNR=10.23,

MCC=92.56

Q1

[138] TSODE FS CNN - 92.064 90.007 FAR=0.01989 Q1

[67] RSA FS CNN - 92.04 89.985 - Q1

TON IoT

[68] BMECapSA FS CNN 12 99.99 99.99 FAR=0.0001,

FNR=0.00002

Q1

[110] SA FS AE-DNN - 99.888 99.875 - PAIS24

[74] WHO PT fused CNN-

BiGRU

N/A 99.71 99.05 - Q1

[78] STFA,SpSO FS,

HPT

DBN - 99.51 - Specificty=99.36,

MCC=60.36

Q1

[111] TS FS EL 13 99.5 - FAR=0.004 Q1

N-BaIoT

[48] BGWO FS EL (XG-

Boost)

- 99.9941 99.9941 - Q2

[85] LOA-FOA FS RF - 99.86 99.86 - Q2

[88] GWO-PSO FS RF - 99.86 99.86 - Q2

[114] SSO-SA FS KNN - 98.7 99.8 - Q2

[123] EPC FS KNN - 98.2 99.4 - Q1

[20] APSO-WOA HPT CNN N/A 94.54 - JCC= 0.9 Q1

Takeaway. According to the correlation analysis, the existing best IoT-IDSs have achieved

99.97%∼99.99% accuracy and 99.95%∼99.99% f1-score with NSL-KDD, UNSW-NB15, BoT-

IoT, TON-IoT, and N-BaIoT datasets. Whereas, the performance slightly reduces while ex-

perimenting on the CICIDS-2017 and KDDCup-99 datasets (99.93%∼99.94% accuracy and

f1-score). Overall, the metaheuristics and ML-integrated detection systems are effective in

the IoT environment, irrespective of all widely used datasets. Another important observation

is that existing intrusion detection datasets are extremely imbalanced since significant dis-

crepancy is observed in data distribution between majority and minority classes (see Table 7).
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Consequently, it is not difficult to get a remarkable accuracy from any ML classifier [150],

which can mislead researchers. Therefore, “accuracy” should not be considered a trustwor-

thy performance metric in such scenarios. In contrast, the F1-score is widely accepted as a

reliable metric since it reflects the harmonic balance between precision and recall [151]. For

this reason, almost all top-notch IoT-IDSs measure F1-score along with accuracy and others.

Regarding the algorithms reveals that the classification techniques, especially RF and

ensemble learning, and discriminative architectures, particularly CNN models are utilized in

the top-performing IoT-IDSs, considering all the datasets as a whole. We find that most

of the best-performing systems employ discriminative models to identify intrusions in IoT.

Additionally, classification and EL strategies are also utilized on a notable scale. Turning

to metaheuristics, nature-inspired techniques are likely to be the most suitable ones since

they are leveraged in more than half of the top-notch systems. However, hybridization of

metaheuristics also proves to be effective in detecting intrusions in IoT. Concerning the

application of these optimization techniques, in most cases, they are integrated for selecting

optimal features, except in some cases of parameter and hyperparameter tuning. Figure 8

and 9 demonstrate the usage of these techniques with corresponding percentages.

Further investigation in ensemble learning classifiers reveals the efficiency of using both

traditional and deep machine learning algorithms. A significant portion of these classifiers are

based on classic and deep ML, such as KNN+SVM+LSTM+MLP [55], RF+DT+MLP+KNN [50],

and SVM+KNN+RF+LSTM [63]. In addition, a combination of classic ML classifiers is also

observed, especially RFs [111], LR+RF+XGBoost [62], DT+AdaBoost+RF [113], and OC-

SVM+IF+LOF [119]. Interestingly, Latif et al. [79] leveraged a CNN-based bootstrap en-

semble classifier (Generic CNN+Xception+Inception+InseptionResntV2+EffcientNetV2L).

Regarding optimization techniques, there is a consistent trend of employing nature-inspired

metaheuristics, specifically FOA [54, 55], MFO [62], BGWO [48], CrSA [63], GWO [50], and

GA [79]. In addition to these, search-based TS [111] along with hybrid metaheuristics BGSA-

BGWO [113] and LS-PIO [119] are efficient in IoT-IDS. Moreover, almost all metaheuristics

are used to select features; except in [54], where modified FOA tunes hyperparameters of

the XGBoost classifier.
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Figure 8: Usage of ML methods by the best performing IoT-IDSs.
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Figure 9: Usage of metaheuristics algorithms by the best performing IoT-IDSs.

36



5.3.2 Delve Into the Parameter and Hyperparameter Tuning Application

An in-depth analysis is conducted on the parameter and hyperparameter tuning, which are

the minority but crucial applications of the metaheuristics optimization algorithms. Simul-

taneously, we analyze the hybrid applications too.

Parameter Tuning Takeaway. Investigating the 20 articles that employ metaheuristics

algorithms for optimizing parameters of the ML models (including hybrid applications), we

find that most of the systems utilize nature-inspired and swarm intelligence techniques. In-

terestingly, several works leverage math-inspired optimizers, especially SCA, as well as a few

systems rely on human-inspired techniques like PO and SCOA. Regarding ML architectures,

deep learning-based models, such as DBN, LSTM, CNN, AE, GRU are mainly employed.

However, the best performances are generated when nature-based optimizations are inte-

grated with deep MLmodels (see Table 9). Specifically, CSA+HKCAE [57], andWHO+fused

CNN-BiGRU [74] come up with highest accuracies (99.7%∼99.9%, and 99.71%, respectively)

as well as f1-scores (98.2%∼98.9%, and 99.05, respectively). Apart from these IDSs, the

human-inspired PO and CFNN-driven model [105] produces 99.46% accuracy and 99.76%

f1-score. Importantly, all of these detection systems utilize distinct metaheuristics only for

tuning the parameters. No other metaheuristics-assisted optimization is performed for fea-

ture selection or hyperparameter tuning.

Table 9: The best IoT-IDSs that have used metaheuristics for tuning parameters and hyper-
parameters of the machine learning models.

Parameter Optimization Hyperparameter Optimization
Ref Dataset Meta. ML Acc (%) F1 (%) Ref Dataset Meta. ML Acc (%) F1 (%)
[57] UNSW-

NB15
CSA HKCAE 99.7 98.9 [54] UNSW-

NB15
modified
FOA

EL 99.98 99.99

BoT-
IoT

99.9 98.2 [50] UNSW-
NB15

GWO EL 100 99.745

[74] TON IoT WHO fused
CNN
Bi-GRU

99.71 99.05 BoT-
IoT

99.99 99.955

[105] UNSW-
NB15

PO CFNN 99.46 99.76 [42] CICIDS-
2017

SSA A-BiLSTM 99.69 98.92

Hyperparameter Tuning Takeaway. We examine the 27 works that leverage metaheuris-

tics algorithms for optimizing the hyperparameters of the deep learning models, including

hybrid applications. The hyperparameters optimized in the papers are shown in Table 10,
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including the leveraged metaheuristics and ML models. From the table, it can be seen

that four IDSs ([115, 116, 73, 77]) utilize metaheuristics for optimizing both parameters and

hyperparameters in the ML models, at a time.

Interestingly, Regarding best-performing systems, two nature-inspired and swarm-based

metaheuristics are at the top. Particularly, modified FOA+EL(XGBoost) [54], GWO+EL

(DT,RF,KNN, and MLP) [50], and SSA+A-BiLSTM [42] demonstrate highest accuracies

(99.98%, 99.9%∼100%, and 99.69% respectively) and f1-scores (99.99%, 99.745%∼99.955%,

and 98.92% respectively).

Importantly, according to Table 9, the first and second IDSs utilize the metaheuristics

techniques only for hyperparameter tuning; whereas the last system simultaneously employs

another nature-inspired optimizer (GJOA) to select an optimal feature set (hybrid applica-

tion). Thus we observe hyperparameter tuning as a separate and hybrid application of the

metaheuristics utilized in the top-performing IoT-IDSs. Another interesting finding is that

the hybrid optimization technique is applied to a discriminative deep learning architecture;

whereas the standalone hyperparameter tuning is employed to the ensemble classifiers.

Table 10: List of hyperparameters optimized by the metaheuristics in the related works.“—”
indicates that hyperparameters are not explicitly stated in the papers.

Ref Hyperparameters ML Metaheuristics

[54] learning rate, min child weight, subsample, collsam-

ple bytree, max depth, gamma

KNN, XGBoost modified FOA

[38] learning rate, momentum, decay, dropout rate, number of

hidden layers, numbers of neurons of hidden layers, num-

ber of epochs, batch size, optimizer, initialization function,

layer type, activation function

DNN, LSTM-RNN, DBN double PSO

[115]
(PT+HPT)

number of hidden layers, neurons of each layer, weights
RdNN GAO-AOA

[127] Gamma (kernel coefficient parameter), C (the amount of

regularization applied to the data)

SVM GWO

[109] — IoT2Vec ABF

Continued on next page
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Table 10 – Continued from previous page

Ref Hyperparameters ML Metaheuristics

[20] number of convolutional kernels, length of convolutional

filter, activation functions in the convolutional layer, prob-

ability of nodes used between the convolutional and second

layers, number of second-layer neurons, activation func-

tions in the second layer, number of third-layer neurons,

activation functions in the third layer, batch sample size,

learning rate

CNN APSO-WOA

[116]

(PT+HPT)

number of hidden nodes, input weighted, biases, C+ for

minority positive instances, C− for most negative instances

CCR-ELM SCA

[98] learning rate, number of epochs, batch size EL LCWOA

[106] k (Number of Neighbors), distance weight (w k) kNN Compact SCA

[73]

(PT+HPT)

weights, biases, regularization value, number of neurons,

type of activation function

RWNN GWO, PSO, MVO

[82] batch size, learning rate FR-CNN GA

[132] number of hidden neurons ANN SHO

[21] — CRNN HS

[59] earning rate, number of hidden layers, input weights,

epochs

GRU WOA

[39] learning rate, input units, batch size, dropout, epochs, ac-

tivation function, layers number, optimizer, units of hid-

den layer

DNN modified PSO

[76] number of suitable hidden neurons of DNN, iterations of

Adaboost, number of suitable bootstrap in the random

forest

HR-OELM AF-EFO

[61] learning rate, sample sampling rate (subsample), maxi-

mum depth of the tree

XGBoost WOA

[22] — EL TuSO

[99] — HDL Enhanced BWO

[49] num wolves, min range, max range, initial population,

crossover rate, num qubits, depth, max fun, shots

QSVM Improved GWO

(IGWO)

[50] — EL GWO

[42] learning rate, activation, epochs, dropout rate, batch size A-BiLSTM SSA

[77]
(PT+HPT)

weights and training parameters
DMN ROA

[78] learning rate, dropout, batch size, epoch count, activation

function

DBN SpSO

[40]

(XGBoost): learning rate, min child weight, subsample,

colsample by tree, max depth, gamma

(KNN): k, weights, distance

XGBoost and KNN GSAPSO

Continued on next page
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Table 10 – Continued from previous page

Ref Hyperparameters ML Metaheuristics

[79] optimizer, activation function, dense units, dropout, fine-

tune layers, epochs

EL GA

[75] — CNN+LSTM ALO, FPA

5.4 RQ4: What are open issues raised by the integration of metaheuris-

tics with ML in IoT-IDS?

Though metaheuristics and ML-integrated algorithms bring about significant evolution in

the development of detection systems, there are still some issues and challenges that have to

be addressed soon.

• Resource-constrained issue of IoT devices. The most critical issue in the develop-

ment of the IoT-IDS is the dynamic and heterogeneous characteristics of its ecosystem.

IoT supports different large-scale networks with distinct communication protocols and

applications, which have individual abilities and conditions. Moreover, the data has

various degrees of complexities ranging from a simple sensor for observing blood pres-

sure to a complex full-duplex video feed. Moreover, some devices build up with multiple

sensors, for example, a smartphone has sensors like GPS, camera, fingerprinting, etc.

Consequently, ensuring the security of this diverse IoT environment is an extremely

challenging task. Even, there is no such evidence that the integration of metaheuristics

and ML methods always guarantees to protect against all types of attacks. Besides,

the hybridization of multiple methods imposes a severe effect on the computational

power and energy resources. Additionally, though a few works are dedicated to health-

care and industrial IoT, the amount is too insufficient considering the importance of

sensitive data protection and the new era of “Industry 4.0”. Moreover, it is indeed nec-

essary to design unique IDSs for ITS, Internet of Medical Things (IoMT), Internet of

Agriculture (IoA), Internet of Vehicle (IoV), and Internet of Done (IoD) by employing

optimization-assisted ML techniques.

• Issues regarding datasets. Most of the datasets, used in the existing papers, were

created before 2020 (NSL-KDD: 2009, UNSW-NB15: 2015, BoT-IoT: 2019, CICIDS-

2017: 2017, and KDDCup-99: 1999), which lack the features of the latest sophisticated
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attacks. Consequently, a question arises whether the existing techniques that integrate

metaheuristics and ML, can detect these new intrusions or not. Alarmingly, there are

not sufficient IoT-IDS datasets that contain the features or attributes of new intrusions,

especially those generated after 2020. Moreover, the well-known widely used intrusion

detection datasets are imbalanced, which can severely affect machine learning models.

Furthermore, in the papers, experiments are conducted in lab settings. As a result,

the correctness and effectiveness of the existing algorithms in real-world scenarios are

arguably a critical issue.

• Amount and quality of the selected features. Surprisingly, most of the IoT-IDS

papers have not clearly stated the features that are selected by the metaheuristics. As

a result, it becomes much more difficult to analyze the correctness and effectiveness of

the optimization techniques. Additionally, introducing these features would give an in-

tuition on which features are crucial for developing a generalized IDS in IoT. Moreover,

though the ultimate classification results are supposed to indicate the validity of the

algorithms, it does not necessitate proof of whether these optimization techniques have

any impact or not. A possible solution could be the analysis of individual IDSs with

and without applying those metaheuristics. Regrettably, these tactics are almost miss-

ing in the literature. Furthermore, maintaining a decent balance between the quality

and quantity of the selected features is another vital issue in the IoT context.

• Appropriate selection of parameters and hyperparameters. The optimization

of the parameters, in both classical ML and deep learning architectures, is another

important thing of consideration while implementing an IoT-IDS. Especially, in neural

networks, the optimal choice of parameters like weights and biases plays a pivotal role

in enhancing the performance of the detection system. Additionally, a few works also

utilized tuning the hyperparameters, such as learning rate, number of layers, neuron

volume, number of epochs, regularization value, type of activation function, etc. of

different deep neural networks, such as DBN, RNN, GRU, CNN, and LSTM. Therefore,

working with inappropriate and less significant variables can result in utmost failure

of classifying attacks. Although several works claimed to generate excellent accuracy

through optimizing these parameters and hyperparameters, there is a crucial lack of

dedicated analysis on them.
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• Issues regarding ML methods. To improve classification performance, combining

the advantages of multiple ML algorithms can be a promising approach. Though

some research has already utilized this, more advanced techniques must be applied

to keep the computational overhead in control, maintaining all security requirements

since IoT devices can only operate with low power and limited resources. Another

challenging thing is to make the proposed IDSs capable of analyzing real-time traffic.

Alarmingly, most of the models in the literature are typically offline, that is, they are

trained on different datasets and are tested on real-time data. Consequently, they

need to retrain periodically, which is time-consuming and expensive. Considering the

IoT environment, where the data are diverse and dynamically evolve over time, these

traditional static IDSs are not sufficient in real-world big-data applications, especially

at the enterprise level. In this case, incremental learning can be a viable solution [152],

where the system dynamically learns continuously added features that were previously

unknown. In [153], an online IDS is proposed for the dynamic distributed network.

Specifically, at first, a local parameterized detection model is constructed in each node

using the online Adaboost algorithm. Then, all of the local models are combined using

PSO-based and SVM-driven algorithms to generate a global detection model, which

achieves 99.99% accuracy and 0.37% FAR. Wahab et al. [154] devise a technique to

adjust the size of the DNN’s hidden layers in an online manner so that the model can

continuously learn and adapt new intrusions, and update predictions dynamically. The

experimental evaluation states that their online DNN surpasses the static one in terms

of false positives and false negatives by 6% and 4.5%, respectively.

5.5 RQ5: What are the unexplored metaheuristics optimization algo-

rithms for IDS in IoT?

In this section, some possible optimization techniques are discussed that can be utilized for

either feature selection, parameter, or hyperparameter optimization.

• Microbiology-inspired metaheuristics. These types of optimization techniques

rely on the life cycle, immune system, social behavior, and collective behavior of viruses,

bacteria, and other microorganisms. For example, the bacterial foraging optimization

algorithm (BFOA) [155], bacterial swarming algorithm (BSA), bacterial-GA forag-
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ing (BF), and quantum-inspired bacterial swarming optimization (QBSO) are some

popular techniques of this category. Interestingly, a few metaheuristics are based

on the replication and herd immunity concept of the coronavirus, known as coron-

avirus herd immunity optimizer (CHIO) [156], and coronavirus optimization algorithm

(COVIDOA). Other well-known microbiology-driven techniques are sperm swarm op-

timization algorithm (SSO), swine influenza models-based optimization (SIMBO), and

symbiosis organisms search (SOS). No IoT-IDS is found to utilize any of these algo-

rithms. However, a chaotic bacterial colony optimization (CBCO) technique is utilized

for tuning the weights, biases, and number of neurons of the Elman recurrent neural

network (ERNN), hence generalizing the model’s performance [157]. As a result, the

proposed IoT DDoS attack detection system surpasses other related systems. In [158],

an improved bacterial foraging optimization is employed for feature selection in the

smart city anomaly detection system. Specifically, the classic BFOA is enhanced us-

ing the simulated annealing technique by incorporating decisions based on probability

to achieve better convergence to the global optima and to handle the local extrema.

However, a Bayesian optimization algorithm is applied to tune the hyperparameters

of the multiplicative long short-term memory (MLSTM) model. The experimental

evaluations show that IBFOA provides better classification accuracy with less compu-

tational complexity. Since these works are related to the intrusion detection system,

microbiology-inspired metaheuristics can be a good choice to test in the IoT-IDS envi-

ronment with diverse ML models.

• Chemistry-based metaheuristics. Though many physics and math-based meta-

heuristics are utilized for developing robust IoT-IDSs, we find no chemistry-inspired

algorithms, adopting the concepts of chemical reactions and laws, such as molecular

reaction, motion, radiation, etc. Kinetic gas molecules optimization (KGMO) [159],

artificial chemical reaction optimization algorithm (ACROA), and ions motion opti-

mization algorithm (IMOA) are well-established optimization algorithms of this cat-

egory. Intuitively, these algorithms can produce excellent performances like physics

and math-inspired ones. However, these metaheuristics have been applied to other

domains, such as cyber-physical systems [160], clustering and routing algorithms in

WSN [161], clustering in big data environment [162], etc. Asha and Gowrishankar
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[161] utilize glowworm swarm optimization (GSO) and kinetic gas molecule optimiza-

tion (KGMO) to increase network lifetime and number of transmissions in WSN. This

hybrid energy-efficient algorithm outperforms the existing PSO-PSO-WSN and PSO-

GSO-WSN. Moreover, KGMO generally offers fast convergence and is suitable for

complex real-world optimization tasks. In [162], an extended CRO (real-coded CRO)

is employed to find the optimal clusters for fuzzy clustering. Consequently, the false

negative activities are reduced significantly compared to the earlier models (e.g., SVM,

NB, DT, RF, and FCM). Besides, the accuracy and convergence speed are improved,

especially in the big data environment. based on these remarkable outcomes in various

domains, chemistry-based metaheuristics can be integrated into IoT-IDSs.

• Miscellaneous metaheuristics. Some other popular metaheuristics are inspired by

the sunflower behavior to find the best orientation towards the sun (sunflower opti-

mization (SFO) [163]), players’ intelligence to find the best position to score a goal

(football game optimization (FGO)), optimization inspired from mother’s care for her

children [164] and the trading method of the stock exchanges (exchange market al-

gorithm (EMA) [165]). Recently, Prashanth et al. [166] have devised an efficient

routing technique for wireless sensor networks through load balancing by an SFO.

While compared with the existing approaches (e.g., CRCGA, GECR, OMPFM, and

GADA-LEACH), the optimization demonstrates better results considering packet de-

livery ratio, packet loss, throughput, average residual energy, and delay. Taking the

similar characteristics (like resource-constrainedness) of both WSN and IoT, this vari-

ant of optimization algorithms can be a suitable solution for IoT-IDSs.

• Metaheuristics and GAN-based Detection Systems. Generative Adversarial

Network (GAN) is one of the most popular detection methods regarding the devel-

opment of an IDS [167]. Particularly, it facilitates synthetic data creation and better

learning of the minority classes. Moreover, it can generate samples faster than DL

methods, and is capable of identifying zero-day attacks in IoT since it learns from a

wide range of attack scenarios [168]. Ferdowsi and Saad [167] develop a GAN-based

distributed IDS to identify malicious activities, independent of a centralized controlling

process. They utilize different ANNs for both the generator and discriminator. Re-

cently, Rahman et al. [169] propose a GAN-based NIDS, called SYN-GAN, aiming to
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handle the disproportion in the existing imbalance datasets and mimic the real-world

network intrusion data. Notably, the model demonstrates 91%, 84%, and 100% accu-

racy in the UNSW-NB15, NSL-KDD, and BoT-IoT datasets, respectively. However,

GAN faces difficulties while training with high dimensional data since the developed

generator and discriminator are often complex and unstable [170]. Incorporating meta-

heuristics with GAN can be a promising solution to resolve these issues since these

optimizers have already proved efficient in feature selection, parameter optimization,

and hyperparameter tuning phases. Researchers, focusing on implementing IoT-IDSs,

can get insight from the work [171, 172], where GAN is integrated with different op-

timization techniques like war strategy optimization (WSO), gazelle optimization al-

gorithm (GOA), and archerfish hunting optimizer (AHOA), etc. for parameter tuning

and feature selection, resulting in an improved performance in the attack classification

process. Though these works integrate GAN and metaheuristics in WSN and cloud,

they do not solely focus on the IoT environment. Considering the scale, uniqueness,

and difficulties of the IoT ecosystem, as well as the necessity of the metaheuristics and

ML-integrated IoT-IDSs (as described in Section 1), we recommend applying GAN and

these optimization techniques to develop IoT-IDSs.

6 Discussions

The Internet of Things (IoT) environment consists of a diverse range of sensitive and private

data from various devices and sensors. Besides, the wide variety of protocols, technologies,

and platforms make IoT more heterogeneous, complicated, and dynamic. Traditional intru-

sion detection systems, relying on specific rules, statistics, or heuristics often fail to identify

these complex patterns of the IoT ecosystem. To overcome these problems, researchers have

focused on machine learning-driven IDSs, especially for IoT. However, these methods come

up with new problems, such as the requirement of high computational resources and signif-

icant time consideration for a small precision improvement. Moreover, the emerging trend

of de-centralized edge computing technology-based IoT-IDSs faces challenges, for example,

limited computing power and inadequate energy support, which are unavoidable require-

ments for the training and testing of ML models using large datasets. For these reasons, in

recent years, a growing trend of utilizing optimization techniques, especially metaheuristics
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algorithms can be seen to select optimal features and tune parameters or hyperparameters

in the ML-based IoT-IDSs.

Considering the recent trends and the significance of leveraging optimization and ML

techniques, this study presents a systematic literature review on the metaheuristics and

machine learning-integrated intrusion detection systems for IoT. The review includes 111

relevant papers, of which 96 are high-quality journal articles (51.8% Q1 and 28.6% Q2), and

covers almost every recent optimization technique utilized for IoT-IDSs. The distinct analysis

of different applications, such as feature selection, parameter, and hyperparameter tuning as

well as hybrid applications has technically enriched this work. Our extensive investigation

reveals that the majority of the systems (74.3%) apply these optimizers for selecting an

optimal set of features from the popular public datasets. Simultaneously, a notable amount

of works focus on tuning different parameters (e.g., weights and biases) of machine learning

models and hyperparameters like learning rate, batch size, number of hidden layers, number

of neurons, number of epochs, dropout rate, activation function, etc. are also optimized by

some systems.

Apart from these, we also discover that most of the high-performing relevant detection

systems leverage hybrid metaheuristics. Moreover, well-established ML classifiers like RF,

KNN, and EL are employed significantly to identify various types of attacks. Regarding

deep learning models, different discriminative architectures, for instance, CNN, DBN, and

LSTM have demonstrated remarkable results. One of the severe drawbacks of these sys-

tems is the use of comparatively older and imbalanced datasets. Consequently, they lack

the features of the latest attacks. Furthermore, the majority of the articles in the literature

lack a dedicated analysis of the selected features, parameters, and hyperparameters that

influence IDSs’ performance; even in most of the cases, the selected or optimized set are not

mentioned explicitly. Moreover, the existing systems operate in offline mode with specific

datasets, which may drastically fail in real-world scenarios where traffic behaviors are ex-

tremely varied. To address these challenges, the dynamically updated features need to be

trained continuously as done in the incremental learning. Moreover, we suggest integrating

metaheuristics with GAN to perform optimum feature selection, keeping the IoT constraints

and security conditions consistent.

Multimodal data processing has gained significant momentum with the advent of align-
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ment models, particularly vision-language models, which excel at creating efficient vector-

based data structures for storage, retrieval, and utilization. This is especially beneficial in

IoT applications where resources such as processing power and memory are limited. Real-

time detection leveraging edge and fog computing has also advanced, providing scalable

solutions while minimizing latency. Multimodal approaches are crucial for managing diverse

datasets and reducing false positives [173, 174, 175]. Emerging research directions include

privacy-preserving federated learning, which enables decentralized model training while safe-

guarding data privacy, and explainable AI, which enhances trust by making IDS outputs

interpretable. Additionally, quantum-inspired optimization is being explored for faster con-

vergence, and multi-objective optimization aims to balance detection accuracy, latency, and

energy efficiency in IoT environments. In addition, metaheuristic algorithms can provide an

alternative to the neural architecture search algorithms for constructing hybrid novel deep

learning models, handling multi-objective optimization problems, etc.

7 Conclusion

Considering the importance and recent widespread use of metaheuristics algorithms in de-

veloping machine learning-based intrusion detection systems, we aim to technically analyze

the existing integrated IoT-IDS models in this study. Specifically, we have investigated the

metaheuristics-assisted and machine learning-driven systems, categorizing them into vari-

ous applications like feature selection, parameter optimization, and hyperparameter tuning.

One of the significant findings of this review is the establishment of hidden relations between

top-notch optimization techniques and ML architectures concerning the most used datasets.

Moreover, the introduction of a large-scale visualized taxonomy of these integrated IoT-IDSs,

also adds value to the literature. In the end, several technical issues of metaheuristics and

ML integration are discussed and some insightful directions are proposed to address these

challenges in the coming days.

List of Acronyms
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Abbr. Elaboration Abbr. Elaboration

AAFSO Assimilated Artificial Fish Swarm Optimiza-

tion

ABC Artificial Bee Colony

ABF Activity-based Footprinting A-BiLSTM Attention-based Bidirectional LSTM

ACO Ant Colony Optimization AE Auto Encoder

ALO Ant Lion Optimization ANN Artificial Neural Network

AOA Arithmetic Optimization Algorithm APSO Adaptive Particle Swarm Optimization

AQUO Aquila optimizer ASO Atom Search Optimization

BA Bat algorithm BAS Beetle Antenna Search

BBFA Binary Bee Foraging Algorithm BBO Biogeography-based Optimization

BCOA Binary Chimp Optimization Algorithm BES Bald Eagle Search

BGSA Binary Gravitational Search Algorithm BGWO Binary Grey Wolf Optimization

BHO Black Hole Optimization Bi-GRU Bidirectional Gated Recurrent Unit

BiLSTM Bidirectional Long-Short Term Memory BOA Butterfly Optimization Algorithm

BQABC Binary Quantum-inspired ABC BSA Bird Swarms Algorithm

BWO Black Widow Optimization CCSO Chimp Chicken Swarm Optimization

CD Canberra Distance CFNN Cascade Forward Neural Network

ChSO Chicken Swarm Optimization CNN Convolutional Neural Network

COA Chimp Optimization Algorithm CRNN Cascaded Recurrent Neural Network

CrSA Crow Search Algorithm CSA Capuchin Search Algorithm

CSSA Chaotic Salp Swarm Optimization CVS Chaotic Vortex Search

DBN Deep Belief Network DBRBF Descriptive Back Propagated RBF

DCNN Deep CNN DDT Distance Decision Tree

DE Differential Evaluation DFWA Dynamic Search Fireworks Optimization

DHOA Deer Hunting Optimization Algorithm DL Deep Learning

DLHNN Deep Learning-based Hybrid NN DMN Deep Maxout Network

DRFO Decisive Red Fox Optimization DT Decision Tree

DTO Dipper Throated Optimization DWNN Deep Wavelet Neural Network

EA Evolutionary Algorithm EBSA Evaluated Bird Swarm Optimization

EFO Electric Fish Optimization EGB Extreme Gradient Boosting

EL Ensemble Learning ELM Extreme Learning Machine

EO Equilibrium Optimization EPC Emperor Penguin Colony

ET Extremely Randomized Trees or Extra Trees FDM Fractional Derivative Mutation

FL Federated Learning FLN Fast-Learning Network

FNN Feed-forward Neural Network FOA Firefly Optimization Algorithm

GA Genetic Algorithm GAO Grasshopper Optimization

GJOA Golden Jackal Optimization Algorithm GO Growth Optimizer

GRU Gate Recurrent Unit GSO Glow-Worm Swarm Optimization
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Abbr. Elaboration Abbr. Elaboration

GTO Gorilla Troops Optimizer GWO Grey-Wolf Optimization

HCSGA Hybrid Chicken Swarm Genetic Algorithm HDL Hybrid Deep Learning

HHO Harris Hawk Optimization HKCAE Capsule AE with a Hybrid Kernel function

HMS Human Mental Search HNM Hierarchical Network Model

HPSO Hierarchical Particle Swarm Optimization HR-OELM High Ranking-based Optimized EL

HS Harmony Search HSHO Harmony Search Hawks Optimization

IAOA Improved Arithmetic Optimization Algorithm IBGJO Improved Binary Golden Jackal Optimization

IGC Information Gain Calculation IoT Internet of Things

IDS Intrusion Detection System ITS Intelligent Transportation Systems

IWD Intelligent Water Drop KELM Kernel Extreme Machine Learning Model

KNN K-Nearest Neighbor LAANN Look Ahead Artificial Neural Network

LCWOA Lévy-fight Chaotic Whale Optimization Algo-

rithm

LOA Lion Optimization Algorithm

LR Linear Regression LS Local Search

LSTM Long Short-Term Memory MDSVM Mahalanobis Distance SVM

MFO Moth–Flame Optimization ML Machine Learning

MOA Mayfly Optimization Algorithm MOPSO Multi-Objective Particle Swarm Optimization

MPO Marine Predator Optimization MSO Moth Search Optimization

MVO Multi-Verse Optimizer NS Neighborhood Search

OBL Opposition-based Learning PCA Principal Component Analysis

PDO Prairie Dog Optimization PIO Pigeon-inspired Optimization

PO Political Optimizer PM Polymorphic Mutation

PSO Particle Swarm Optimization QCSO Quantum Cat Swarm Optimization

QPSO Quantum Behaved Particle Swarm Optimiza-

tion

QSVM Quantum Support Vector Machine

RBFNN Radial Basis Function Neural Network RBM Restricted Boltzmann machine

RdNN Random Neural Network RF Random Forest

RKOA Red Kite Optimization Algorithm RL Reinforcement Learning

RNN Recurrent Neural Network ROA Remora Optimization Algorithm

RSA Reptile Search Algorithm RWNN Random Weight Neural Network

SA Simulated Annealing SAEHO Seagull Adapted Elephant Herding Optimization

SCA Sine Cosine Algorithm SCOA Social Group Optimization Algorithm

SCSO Sand Cat Swarm Optimizer SHO Spotted Hyena Optimization

SMO Spider Monkey Optimization SpSO Sparrow Search Optimization

SSA Salp Swarm Algorithm SSO Shuffled Shepherd Optimization

STFA Sea Turtle Foraging Algorithm SU-CMO Self-Upgraded Cat and Mouse Optimizer

SVM Support Vector Machine TLBO Teaching-Learning-based Optimization
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Abbr. Elaboration Abbr. Elaboration

TS Tabu Search TSO Transient Search Optimization

TuSO Tuna Swarm Optimization VAE Variational Autoencoder

WHO Wild Horse Optimization WMSA Water Moth Search algorithm

WOA Whale Optimization Algorithm WWO Water Wave optimization
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Appendices

Appendix A. Performances tabulation of the existing metaheuristics-based and ML-driven IoT-

IDSs studied in this SLR.

Though recall and detection rate can be used interchangeably, some papers explicitly mention DR rather

than recall. Therefore, we use these two terms separately in this study to avoid conflict and confusion.
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Table 11: Analysis of the IoT-IDSs based on different performance metrics, metaheuristics, applications, ML algorithms, datasets, and classifi-
cation types. Here, “FC” and “CLT” represent selected feature count and classification types, respectively.

Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others

[13] GTO-BSA FS - KNN NSL-KDD 95.5 91.4 97.4

CICIDS2017 98.7 97.3 99.7

UNSW-NB15 81.5 81.5 87.7

BoT-IoT 81.5 99.3 96.2
[52] hybrid PCA-GWO FS - DNN

Kaggle dataset 99.9 95.4 100

[95] new WOA, guided by DTO PT N/A KNN, RF, NN RPL-NIDS17 95.1

AUC=99.0,

MSE=2.50E-

08

[122] PSO, GA, and DE FS 8-10 KNN,DT NSL-KDD 95.71

[131] BOA FS - ANN NSL-KDD 93.27 94.37 92.68

[15] HHO-FDM FS - LSTM +GRU = RNNs IoT-23 98.12 98.06 98.31 98.18 AUC-

ROC=99.82

UNSW-NB15 99.98 99.99 99.98 99.99 AUC-

ROC=100
[54] modified FOA HPT N/A KNN, XGBoost

IoT-healthcare-

security-dataset

99.6997 99.6998 99.6997 99.6996

[125] BSA, SCOA FS, PT - FL, KELM - 99.45 80.26 82.67 80.95

[102] IAOA, QPSO FS+

PT

- DWNN CICIDS2017 98.21 96.53 98.22 97.92

[80] NSGA-II FS 13 SVM TON-IoT 99.48

NSL-KDD 99.98 99.87 100 99.73 AUC=99.76
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Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others
[85] LOA-FOA FS - RF

NBaIoT 99.86 99.94 99.94 99.86 FN=7,

FP=2

[113] BGSA and BGWO FS 4 DT and EL (AdaBoost and

RF)

UNSW-NB15 99.41 99.92 99.33 99.09 0.03

M 92.064 89.943 92.064 90.007 0.01989
KDDCup-99

B 92.451 94.32 92.451 92.851 0.07527

M 75.751 78.988 75.751 71.692 0.05868
NSL-KDD

B 77.381 83.637 77.381 77.08 0.19223

M 99.042 99.042 99.042 99.042 0.00301
BoT-IoT

B 99.992 99.992 99.992 99.992 0.00007

M 99.93 99.93 99.93 99.93 0.00009

[138] TSODE FS - CNN

CICIDS-2017
B 99.996 99.996 99.996 99.996 0.000029

M 92.04 89.684 92.04 89.985
KDDCup-99

B 92.344 94.335 92.344 92.763

M 76.107 82.171 76.107 71.731
NSL-KDD

B 77.814 83.83 77.814 77.545

M 99.911 99.907 99.911 99.888
CICIDS-2017

B 99.997 99.997 99.997 99.997

M 99.02 99.098 99.038 99.07

[67] RSA FS - CNN

BoT-IoT
B 99.993 99.99 99.993 99.99

NSL-KDD 98.77 98.1 92.29 95.11
[38] double PSO FS+HPT 10 DNN, LSTM-RNN, and DBN

CICIDS2017 95.81 95.82 95.81 95.81

KDDCup-99 99.941 99.947 99.936 99.942 G-

Mean=99.942
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Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others

NSL-KDD 92.04 90.841 91.04 90.941 G-

Mean=90.941

BoT-IoT 76.725 83.105 76.672 79.759 G-

Mean=79.824
[107]MGO, using WOA FS - CNNs

CICIDS-2017 99.22 99.188 99.248 99.218 G-

Mean=99.218

M 99.52 99.51 99.4
NF-CSE-CIC-IDS2018-v2

B 99.54 99.54 99.54

M 97.21 97.15 97.16 99.52 3.27
NF-ToN-IoT-v2

B 99.99 99.99 99.99 99.54 3.26

M 98.76 98.8 98.77 97.17 0.32
NF-UNSW-NB15-v2

B 99.69 99.7 99.69 99.99 0.02

M 98.52 98.53 98.52 98.76 3.71

[100] AOA FS 7 RF and ET

NF-BoT-IoT-v2
B 99.98 99.98 99.98 99.69 4.08

NSL-KDD++ 99.86 99.89 99.58 99.72

UNSW-NB15 99.46 99.75 99.62 99.76[105] PO PT N/A CFNN

CIDCC-2017 99.38 99.69 99.66 99.69

[114] SSO-SA1 and SSO-SA2 FS 39.11 KNN N-BaIoT 0.987 0.997 0.996 0.998

[45] GSO FS - PCA NSL-KDD 93.35 91.9 94.02 95.12 2.97

[123] EPC FS 38.27 KNN N-BaIoT 98.2 99.7 99.2 99.4

[115] GAO-AOA PT+HPT N/A RdNN TON IOT 99.56 99.37 4

NSL-KDD 98 97 99 98
[127] GWO FS+HPT - SVM

TON IOT 81 82 84 83.57
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Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others

[96] SAEHO, SU-CMO PT N/A CNN+DBN and Bi-

LSTM+GRU

UNSW-NB15 92.8 81 MCC=0.786,

Rand In-

dex =

0.998

(dataset-2)

[90] GWO-DTO FS - KNN RPL-NIDS17 98.1 97.8 99.4 98.6 97.8

[109] ABF HPT N/A IoT2Vec CASAS dataset 92.98 avg en-

tropy=

0.7478

[20] APSO-WOA HPT N/A CNN N-BaIoT 94.54 95.2 kappa=

0.936,

hamming

loss= 0.944

, JSC= 0.9

[92] GA-GWO FS 92 SVM AWID 99.1 96.03 97.64 99.32 0.69

[91] HHGS-ROA FS - SVM AWID 99.16 99.76 99.4 99.58 0.2 MCC=99.97

[112]MOPSO-Lévy FS 44.33 KNN N-BaIoT 97.06 88.69 1.66

TPR=0.7506,

TNR=0.9834,

G-

mean=0.8317,

AUC

=0.867

M 99.97 99.95 99.97 99.96
NSL-KDD

B 99.98 99.87 100 99.73
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Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others[88] PSO-GWO FS - RF

N-BaIoT 99.86 99.94 99.94 99.86

CICIDS-2017 98.71 96.17
[44] a hybrid ABC FS 14.8, 11.9 ELM

UNSW-NB15 71.54 80.58

[18] NSBPSO PT N/A DCNN UNSW-NB15 and Bot-

IoT

98.86 99.03 95.32 MSE=0.00053

[116] BCOA, SCA FS,

PT+HPT

- CCR-ELM WSN-DS 99.63 97.91 94.52 99.67

[128] BBFA FS 23 SVM N-BaIoT 99.2 99 0.006

[86] PSO-BA FS 16 RF WUSTL-IIOT-2021 99.99 99.6 99.6 99.6

[47] IACO FS - EL using DDT, ANFIS and

MDSVM

UNSW-NB15 97.375 92.365 6.67

[98] RKOA, LCWOA FS,HPT - EL using LSTM, BiLSTM,

and BiGRU

WSN-DS 98.94 75.33 79.52 75.33 AUC=85.48

UNSW-NB 99.18 94.19 93.32 94.12 0.15 AUC=99.78,

MCC=0.19

M 98.98 98.76 97.89 98.59 AUC=99.81[87] SMO-Hierarchical PSO(HPSO)FS 22 RF
NSL-KDD

B 98.31 98.61 98.41 98.56 0.21 AUC=99.87,

MCC=0.17

NSL-KDD 99.85 99.85 99.85 99.85 0.0019 FNR=0.001
[68] BMECapSA FS 12,18 CNN

TON-IoT 99.99 99.99 99.99 99.99

0.0001

FNR=0.00002

[133] DFWA FS - ODRNN IDS dataset 96.11 96.11 97.21 97.31 3.03

[89] GWO-PSO FS - RF KDDCup-99,

NSL–KDD, CICIDS-

2017

M 99.88,

99.25,

99.87
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Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others

[97] GWO, FOA PT, FS - SVM NSL-KDD 99.29 98.12 96.23 99.59 AUC=98.51

NSL-KDD 99 98.38 98.02 98.14
[63] enhanced CrSA FS 11,7 EL

UNSW-NB15 97.75 83.57 83.39 81.66

UNSW-NB15 99.31 67.09 60.33 60.35
[134] new DHOAF, SpSO FS,PT - CRNN

UCI SECOM 97.88 92.42 89.87 91.1

[124] PSO FS 17 RF IoTID20 98

(B),

83 (M)

M 99.911 99.91 99.91 99.888
CICIDS-2017

B 99.997 99.997 99.997 99.997

M 76.002 81.719 76.002 71.602
NSL-KDD

B 77.382 83.692 77.382 77.077

M 98.926 98.905 98.904 98.904
BoT-IoT

B 99.994 99.992 99.993 99.992

M 99.919 89.824 92.042 89.987

[69] AQUO FS 10 CNN

KDDCup-99
B 99.922 94.283 92.256 92.683

UNSW-NB15 71.54 80.58
[17] SCSO FS 14.5,11.7 ELM

CICIDS-2017 98.7 96.17

CIC IDS-2017 99.77 99.6 99.72 99.92 99.81
[64] CVS FS - FLN, an ANN

BoT-IoT 99.68 99.3 99.21 99.83 99.11

NSL-KDD 99.327 99.206 0.5848
[106] Compact SCA HPT N/A kNN

UNSW-NB15 98.27 97.94 5.82

[73] GWO, PSO, MVO PT+HPT N/A RWNN IoTID20 G-

mean=0.7283
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Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others

[93] EXPSO-STFA FS - LAANN KDDCup-99, NSL-

KDD,

95.65 94.74 93.54 95.64 92.74 14.52 FNR=10.2

CIDDS-001, and UNSW-

NB15

MCC=92.56

[83] SSA–ALO FS - KNN N-BaIoT 0.029 TPR=0.991,

G-

mean=0.984

M 99.9941 99.9941 99.9941 99.9941
N-BaIoT

B 99.997 99.997 99.997 99.997

M 99.9427 99.9426 99.9427 99.9426
NSL-KDD

B 99.9427 99.9427 99.9427 99.9427

WUSTL-IIOT-2021 M 100 100 100 100

[48] BGWO FS - XGBoost

WUSTL-EHMS-2020 M 98.897 98.8923 98.897 98.8846

MC-IoT 99.38 99.25 98.8 98.76

MQTT-IoT-IDS2020 98.91 98.8 98.36 97.16[43] ECSSA FS - LightGBM

MQTTset 98.35 97.38 97.68 98.56

[111] TS FS 13 EL using RF TON IoT 99.5 97.92 0.004

[129] multi-objective GWO FS 4 SVM NSL–KDD 87.59

UNSW-NB15 B 98.89 99.68 99.32 98.91 AUC=99.79

M 92.3 91.32 78.47 81.435 0.95 AUC=90.2,

MCC=0.45[55] FOA FS - EL using KNN,SVM,LSTM,MLP
NSL-KDD

B 98.41 98.68 98.46 98.68 0.24 AUC=99.79,

MCC=0.26

[53] GABGWO FS 94 SVM AWID and KDDCup-

99

99.09 96.31 99.3 97.84 0.68
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Ref.Meta. Appn FC ML Dataset used CLT IoT-IDS Performance (%)

Acc Prec Rec F1 Speci DR FPR Others

BoT-IoT 97.37 94.88 2.05

TPR=98.78,

AUC=95.68

UNSW-NB15 94.45 91.35 30.73 TPR=98,

AUC=89.52

NLS-KDD 94.7 89.1 21.33 TPR=95.7,

AUC=87.63
[119] LS-PIO FS 15,10,8,3 EL

KDDCup-99 99.82 97.23 6.9 TPR=99.23,

AUC=96.32

UNSW-NB15 97.39 89.17 96.4 91.53
[120] HCMFO,BAS FS,PT 24,15 VAE

NSL-KDD 95.25 87.16 95.4 90.56

BoT-IoT 99.9 98.7 99.7 98.2 99.7
[57] CSA PT N/A HKCAE

UNSW-NB15 99.7 99.6 99.6 98.9 98.3

UNSW-NB15 94.488 94.2942 94.5631 94.4284
[82] AAFSO,GA FS,HPT - FR-CNN

BoT-IoT 93.7756 86.6687 95.874 91.0393

[62] MFO FS 14 EL using LR, RF and XG-

Boost

UNSW-NB15 100 99.5 100

[94] HCSGA FS - DLHNN NSL-KDD 99.52 97.55 97.16 96.78

[130] SMO FS - RF NSL-KDD 99.675 99.955 99.9425 99.9325 AUC=99.3025

[126] ACO FS - PCA KDDCup-99 91 1.8

[132] SHO HPT N/A ANN KDDcup99 98.16 98.06 98.03 98.04 98.27 1.73 FNR=1.97,

NPV=98.27,

MCC=96.30
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Acc Prec Rec F1 Speci DR FPR Others

IoTID20 98.83 99.79 98.96 99.38 96.67 3.33 FNR=1.04,

NPV=96.67,

MCC=90.20

IoT Botnet 97.87 100 97.75 98.86 100 0 FNR=2.25,

NPV=100,

MCC=96.30

[21] QCSO, HS Clustering,

HPT

N/A CRNN KDDCup-99 92.04 6.86

[59] WOA HPT N/A GRU WSN-DS 99.804 99.868 99.83 99.866 99.826

M 76.011 81.737 76.011 71.461
NSL-KDD

B 77.205 83.594 77.205 76.892

M 99.15 98.807 98.806 98.806
BoT-IoT

B 99.994 99.993 99.993 99.992

M 99.917 89.875 92.044 89.988
KDDCup-99

B 99.935 94.349 92.318 92.743

M 99.911 99.91 99.91 99.888

[58] CSA FS - CNN

CICIDS-2017
B 99.997 99.997 99.997 99.997

BoT-IoT 97.61 97.81
[39] HAEMPSO,modified PSO FS,HPT

-
DNN

UNSW-NB15 94.62 93.8

CIDDS-001 99.3 98.3 99

UNSW-NB15 99.1 98 98.99[19] WOA PT N/A LSTM

NSL-KDD 99.5 98.7 98.45

BoT-IoT 96 96 97.3
[137]WWO-MSO (WMSA) FS - DRNN

KDDCup-99 94.5 92.9 96.4
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[121] HSHO FS - DRL 96.925 TPR=96.9,

TNR=97.92

NSL- KDD 95.6 98.3 92.2 95.2 98.6 0.4 FNR=7.8,

NPV=98.6,

MCC=91.3

Botnet 95 97.6 95.3 96.4 53.1 4.2 FNR=4.7,

NPV=53.1,

MCC=40.5

CICIDS-2017 95.4 99.9 95.1 97.5 99.7 0 FNR=4.8,

NPV=99.7,

MCC=74.8
[76] AF-EFO FS+PT - HR-OELM using DNN,RF,Adaboost

CICIDS-2018 95.3 99.7 90.8 94.9 83.6 1.5 FNR=05.7,

NPV=83.6,

MCC=065.4

NF-ToN-IoT 96.83 MCC=89.74

NF-Bot-IoT 98.43 MCC=57.71[60] WOA FS - RBFNN

Merged 95.93 MCC=82.68

[61] WOA HPT N/A XGBoost (EGB) IoTID20 98.86 98.67 99.91 99.30 AUC=98.91

UNSW-NB15 99.73 99.05 99.00 99.03 AUC=99.01

CICIDS2017 99.75 98.52 99.1 98.81
[117] GJO-OBL (IBGJO) FS 32,20 LSTM

NSL-KDD 98.93 97.98 98.37 98.17

APA-DDoS 99.35 99.9 99.08 98.99
[74] WHO PT N/A a fused CNN model with Bi-GRU

ToN-IoT 99.71 99.89 99.05 99.02

[118] CO-IHHO FS - DT and KNN BoT-IoT 100(B),

99.65(M)
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NSL-KDD 98.89 97.03 98.76 1.24

UNSW-NB15 90.22 94.83 88.06 11.94[84] hybrid BQABC-GA FS 11,10.6,10.33 KNN

BoT-IoT 98.49 99.79 99.27 0.73

[22] TuSO HPT N/A EL combining RF, XG-

Boost, LightGBM (LGBM),

and CatBoost

MQTT dataset 99.12 97.89 95.24 96.37

ToN-IoT 98.81 90.84 78.95 79.49
[99] Enhanced BWO, BES HPT,FS - HDL

Edge-IIoTset 98.35 84.85 80.95 82.79

[56] a modified FOA FS 39 DT Edge-IIoT 79.64

IoTID-20 99.8

NetFlow-BoT-IoT-v2 99.17 99 99.1

NF-ToN-IoT-v2 99.9 99.9 99.8 99.8 0.001

NSL-KDD 99.52

[65] DRFO FS - DBRF

UNSW-NB 15 98.5 99 99 98.5 8.2

[49] Improved GWO (IGWO) HPT N/A QSVM BoT-IoT 99.11 99.45 99.34 97.48

[41] EBSA PT N/A DBN (RBMs,MLPs) NSL-KDD 98.96 99.4 98.87

BoT-IoT 99.98 99.94 99.97 1.3 ROC=99.99
[50] GWO HPT N/A EL (DT,RF,KNN,MLP)

UNSW-NB15 100 99.59 99.9 1.5 ROC=99.4

SVM 97.842 97.921 0.012
NSL-KDD

KNN 98.975 99.959 0.002

SVM 71.673 75.992 0.093
CIC-IDS2017

KNN 97.234 93.171 0.007

SVM 99.788 99.819 0.027

[66] multi-objective PDO FS 10-9,11-15,12 SVM,KNN

IoTID20
KNN 99.402 99.386 0.006

[72] BOA PT N/A DBN UNSW-NB15 97.77 96.62 93.85 91.77 MCC=91.23
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[42] a new GJOA, SSA FS,

HPT

- A-BiLSTM CICIDS-2017 99.69 98.92 98.92 98.92 MCC=98.74

UNSW-NB15 98.89
[70] BOA FS - DenseNet

NSL-KDD 98.4

NSL-KDD 99.25 99.41 99.34 98.96

ToN-IoT 89.61 83.57 89.56 85.72[71] MOA FS - BiLSTM

UNSW-NB15 99.35 98.49 99.28 98.64

[16] TLBO FS - RF UNSW-NB15 86.5

M 99.9 99.06 99.79 99.41 0.95 MCC=99.39
NSL-KDD

B 99.84 99.68 99.94 99.81 MCC=99.67[51] Generalized Mean GWO FS 15,5 ElasticNet Contractive AE

BoT-IoT M 99.99 99.5 AUC=100,

MCC=99.51

[135] COA PT N/A 1D-CNN+COA (creating a

HNM)

NSL-KDD 87.19 88.28 89.49 91.19

NSL-KDD 92.1 92.3 92.9 93.4
[77] ROA FS,PT+HPT- DMN

CICIDS-2018 94.5 93.1 93.9 93.2

NSL-KDD 94.635 96.64 96.02
[46] CCSO PT N/A Deep LSTM

BoT-IoT 96.71 96.35 91.985

[101] modified AOA FS - KNN BoT-IoT 99.998

IOTID20 96.7414 91.3695 100 95.4901
[81] fuzzy and GA: IWD and BBO FS - FNN

CICIDS-2017 98.2339 99.4831 98.6334 99.0865

UNSW-NB15 76.93 88.24 66.83 76.06

TON-IOTwin7 99.9 99.89 99.89 99.89

TON-IOTwin10 99.86 99.86 99.86 99.86
[110] combination of IGC and SA FS - an AE with DNN

CICIDS2017 99.4 99.47 99.34 99.4
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UNSW-NB15 98.85 59.06 58.64 99.36 MCC=60.36
[78] STFA,SpSO FS,HPT - DBN

TON IoT 99.51 99.73

[136]MPO FS - RNN NSL-KDD TNR=94,

TPR=94

KDDCup-99 96.1 100 99.3 0.6 NPV=0.989,

FNR=0.003,

TNR=0.996,

PPV=0.989,

MCC=0.934,

AUC=0.989

UNSW-NB15 99.1 99.4 98.5 0.9 NPV=98.5,

FNR=0.4,

TNR=99.5,

PPV=98.5,

MCC=96.3,

AUC=97.2[103] ASO-EO FS - k-means

NSL-KDD 98.9 100 99.1 99.1 NPV=98.9,

FNR=0.3,

TNR=99.7,

PPV=99.1,

MCC=97.1,

AUC=98.8

(EGB) 79.11 82.5267 79.1132 70.9564
[40] GSAPSO HPT N/A XGBoost and KNN CAN dataset

(KNN) 79.10 82.9847 79.0996 70.8823
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[79] GA HPT N/A EL (CNNs-based) Edge IIoTset M 100 100 100 100 Cohen’s

Kappa

score=100

UNSW-NB15 97.7217 97.41 97.72 97.56
[104] BHO FS - Parallel CNNs

NSL-KDD 99.8928 99.89 99.89 99.89

CICIDS-2017 99.55 99.55 99.55 99.55 AUC=99.55
[75] ALO, FPA FS, HPT - CNN+LSTM

ToN-IoT 99.31 99.31 99.31 99.31 AUC=99.31

[108] HMS clustering N/A LightNet, Deep Q-learning NSL-KDD 96.6 96.8 96.9

77


	Introduction
	Background
	Intrusion Detection Methods and Techniques in IoT
	Metaheuristic Algorithms
	Machine learning techniques

	Related Work
	Review methodology
	 Objectives and Research Questions
	Search strategy
	Data analysis
	Investigation of Journal Papers

	Results of the review
	RQ1: What are the need and existing applications of metaheuristics optimization in developing ML and DL-based IDS, especially for IoT? 
	Population-based Metaheuristics and ML
	Iterative-based Metaheuristics and ML
	Hybrid Metaheuristics and ML

	RQ2: What are the most commonly used datasets and evaluation metrics for IoT-IDS assessment?
	RQ3: What are the relations between the optimization algorithms and classification methods with the datasets?
	Connecting dots among Metaheuristics, Datasets, and Machine Learning
	Delve Into the Parameter and Hyperparameter Tuning Application

	RQ4: What are open issues raised by the integration of metaheuristics with ML in IoT-IDS?
	RQ5: What are the unexplored metaheuristics optimization algorithms for IDS in IoT?

	Discussions
	Conclusion
	Appendices

