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Abstract
Heterogeneous Graph Neural Networks (HGNNs) excel in mod-
eling complex, multi-typed relationships across diverse domains,
yet their vulnerability to backdoor attacks remains unexplored. To
address this gap, we conduct the first investigation into the sus-
ceptibility of HGNNs to existing graph backdoor attacks, revealing
three critical issues: (1) high attack budget required for effective
backdoor injection, (2) inefficient and unreliable backdoor activa-
tion, and (3) inaccurate attack effectiveness evaluation. To tackle
these issues, we propose the Heterogeneous Graph Backdoor
Attack (HGBA), the first backdoor attack specifically designed for
HGNNs, introducing a novel relation-based trigger mechanism that
establishes specific connections between a strategically selected
trigger node and poisoned nodes via the backdoor metapath. HGBA
achieves efficient and stealthy backdoor injection with minimal
structural modifications and supports easy backdoor activation
through two flexible strategies: Self-Node Attack and Indiscrimi-
nate Attack. Additionally, we improve the ASR measurement pro-
tocol, enabling a more accurate assessment of attack effectiveness.
Extensive experiments demonstrate that HGBA far surpasses mul-
tiple state-of-the-art graph backdoor attacks in black-box settings,
efficiently attacking HGNNs with low attack budgets. Ablation
studies show that the strength of HBGA benefits from our trigger
node selection method and backdoor metapath selection strategy.
In addition, HGBA shows superior robustness against node fea-
ture perturbations and multiple types of existing graph backdoor
defense mechanisms. Finally, extension experiments demonstrate
that the relation-based trigger mechanism can effectively extend
to tasks in homogeneous graph scenarios, thereby posing severe
threats to broader security-critical domains.

CCS Concepts
• Security and privacy; • Computing methodologies→ Ma-
chine learning;
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1 Introduction
Recently, graphs have emerged as a critical data structure for model-
ing complex, non-Euclidean relationships across domains including
social networks [19, 23, 24, 28], molecular chemistry [2, 15, 29], and
recommendation systems [10, 11, 32, 35]. Graph Neural Networks
(GNNs) have achieved remarkable success in processing graph-
structured data by employing recursive message-passing mecha-
nisms that aggregate information from neighboring nodes. This ap-
proach has made GNNs particularly effective for node classification
[34, 37, 52, 53], graph classification [7, 41, 53], and link prediction
[1, 21, 46]. Despite these advances, multiple studies [5, 36, 39, 45, 51]
have revealed that GNNs are highly vulnerable to backdoor attacks,
where attackers can hijack model’s behavior using the trigger, rais-
ing significant security concerns for their real-world deployments
[13, 31, 49].

A critical limitation in current research is that most existing
studies, if not all, exclusively construct graph backdoor attacks on
homogeneous graphs that contain only a single type of node and
edge. This focus fails to address the reality that most real-world
graphs are inherently heterogeneous, featuring diverse node types
interconnected through complex relational structures. It is worth
mentioning that although a range of processing solutions, such as
Heterogeneous Graph Neural Networks (HGNNs) [4, 8, 25], have
been introduced to handle heterogeneous graphs, their vulnerabil-
ities to backdoor attacks remain underexplored. As HGNNs gain
traction in practical applications, it becomes essential to understand
whether existing graph backdoor attack methodologies remain ef-
fective in these more complex, heterogeneous contexts.
In this work, we 1) systematically investigate the vulnerabilities
of HGNNs to existing graph backdoor attacks (GBAs), and 2)
propose the first backdoor attack against HGNNs based on a
novel trigger mechanism, addressing the limitations of existing
approaches.
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(1) Threat Investigation to Reveal Challenges: To systemat-
ically investigate the susceptibility of HGNNs, we evaluated five
state-of-the-art GBAs on three widely used heterogeneous graph
datasets using six HGNNs (three tailored HGNNs and three retro-
fitted GNNs). Our investigation focused on semi-supervised node
classification (SSNC), a predominant task that aims to classify nodes
in a heterogeneous graph using the class labels of only a small
subset of nodes. Our preliminary analysis reveals two critical limi-
tations of existing attacks on heterogeneous graphs and uncovers
methodological flaws in how attack success rates (ASR) have been
calculated on SSNC tasks in previous studies [6, 51].

Prior-Attack Limitation: High attack budget for backdoor injec-
tion. Existing GBAs rely on subgraph-based triggers, where each
poisoned node must be connected to a fixed or adaptively gen-
erated subgraph. These methods typically demand a substantial
attack budget, measured by the number of added nodes and edges
to ensure effective backdoor injection. The challenge is further ex-
acerbated in heterogeneous graphs, where preserving the graph’s
heterogeneous properties necessitates incorporating multiple node
types and edge relationships during trigger construction, thereby
significantly increasing the attack budget.

Post-Attack Limitation: Inefficient and unreliable backdoor activa-
tion. Despite the high attack budget required for successful back-
door injection, activating the backdoor in real-world heterogeneous
graph scenarios remains a significant challenge. Existing attacks us-
ing subgraph-based triggers require complex operations, including
creating multiple new nodes of varying types, assigning specific
features to each node, and establishing multiple inter-node relation-
ships. These operations are not only inefficient but also particularly
fragile in dynamic graph environments, where structural and at-
tribute changes can easily disrupt the trigger’s effectiveness. Our
experimental results confirm this limitation, showing that certain
variations in graph evolution can substantially reduce the ASR.

Inaccurate ASR Measurement. In addition to the aforementioned
limitations, our investigation uncovers a fundamental methodologi-
cal issue in how existing studies evaluate attack effectiveness using
ASR on SSNC tasks. In graph-structured data, nodes are inherently
interdependent, with each node’s prediction heavily influenced by
its neighbors. Prior studies [6, 51] evaluate ASR by simultaneously
attaching triggers to multiple test nodes, thus inadvertently creat-
ing interference effects to the prediction of all nodes. Therefore,
this cross-node interference artificially inflates or deflates ASR,
resulting in unreliable assessments.
(2) Our Attack - HGBA: To tackle those issues, we propose Het-
erogeneous Graph Backdoor Attack (HGBA), the first backdoor
attack specifically designed to target HGNNs. In contrast to existing
attacks [5, 36, 39, 45, 51], HGBA departs in significant ways.

Advance Relation-based Triggers. Unlike existing approaches that
use subgraphs as triggers, HGBA introduces a fundamentally differ-
ent design with novel relation-based triggers. Its benefits are three-
fold: 1) High Attack Effectiveness with Low Attack Budget: HGBA
dramatically reduces the attack budget because it only requires
adding only a single edge between the preselected trigger node and
the poisoned node to set the trigger, eliminating the need for inject-
ing complex subgraph with new nodes. Despite this, HGBA still
maintains high attack effectiveness, achieved through our carefully

designed strategies for optimal trigger node selection and backdoor
metapath identification. 2) Easy and Flexible Backdoor Activation:
HGBA enables easier backdoor activation by establishing just a sin-
gle connection between the trigger node and the target node, which
drastically reduces the complexity and time overhead required for
backdoor activation compared to subgraph-based methods. Addi-
tionally, HGBA supports flexible activation strategies tailored to
different attack scenarios, such as Self-Node Attacks for situations
where attackers target only their own created nodes to be mis-
classified as the target label, and Indiscriminate Attacks, where
attackers can trigger the backdoor on any node, whether their own
or others. 3) Stealthiness: HGBA constructs poisoned datasets with
minimal structural modifications and no additional node injections,
making detection highly challenging. The backdoored model main-
tains performance parity on clean samples, eliminating suspicion
of performance degradation. Most significantly, backdoor activa-
tion is also stealthy by leveraging natural graph evolution patterns
without creating synthetic nodes.

Downstream-Model-Agnostic. HGBA achieves high attack effec-
tiveness and stealthiness in black-box settings where attackers have
minimal information about the victim model. This effectiveness
stems from leveraging HGNN’s powerful ability to learn diverse
relationships between different nodes, utilizing specific node rela-
tionships as triggers rather than targetingmodel-specific vulnerabil-
ities. This approach allows the backdoor to propagate through any
downstreammodel that learns from the poisoned data, independent
of any internal knowledge.

Superior Robustness. HGBA achieves higher stability by design-
ing triggers that depend solely on the trigger node and backdoor
metapath without requiring any feature information from the tar-
get node or its neighborhood. This feature-independent approach
makes our attack inherently robust against dynamic changes in
target node characteristics that commonly occur in evolving real-
world graphs. Furthermore, HGBA still maintains high attack per-
formance even under multiple kinds of potential graph backdoor
defenses.

Attack-Extensible. Although HGBA was initially designed to at-
tack HGNNs for node classifications, our experiments have further
demonstrated that its innovative trigger design can be effectively
extended to both node and graph classification tasks within homo-
geneous graph scenarios, thereby constituting severe threats for
more security-critical domains (e.g., toxic chemical classification
[3, 16, 20], cybersecurity detection [27, 38]).

Contributions: We summarize our main contributions as below:

• We conduct the first systematic evaluation of state-of-the-art
GBAs on HGNNs, revealing two key limitations of existing GBAs
and an issue with inaccurate ASR measurements in prior studies
assessing attack effectiveness, offering key insights for advancing
graph backdoor attack research.
• We propose the Heterogeneous Graph Backdoor Attack (HGBA),
the first efficient backdoor attack specifically targeting HGNNs,
which introduces a novel relation-based trigger that overcomes
key limitations of existing graph backdoor attacks in real-world
settings.
• Extensive experiments demonstrate HGBA’s effectiveness and
practicality under a black-box setting. Additionally, we reveal
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that existing mainstream graph backdoor defenses fail to counter
HGBA, underscoring the demand for more refined defenses.
• We also improve the ASR measurement strategy to isolate the
influence between triggers, enabling accurate assessment of indi-
vidual trigger impact on node classification and enhancing the
reliability of evaluation methods for graph backdoor attacks.

2 Background and Related Works
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) are designed to learn node repre-
sentations in homogeneous graphs, which only consist of single-
type nodes and edges. Based on mechanisms for processing graph
data, GNNs are categorized as spectral and non-spectral approaches.

For spectral approaches, Kipf et al.[17] proposed the Graph Con-
volutional Network (GCN), which effectively propagates informa-
tion across graphs using a localized approximation of spectral con-
volutions. Non-spectral approaches instead rely onmessage-passing
mechanisms. Velickovic et al. [30] introduced the Graph Attention
Network (GAT), which uses attention weights to focus on the most
relevant neighbors during aggregation. Hamilton et al. [12] devel-
oped GraphSAGE, which samples fixed-size neighborhoods rather
than using the full graph structure, enabling scalability to large
graphs and inductive learning for unseen nodes.

Although GNNs are originally designed and evaluated on homo-
geneous graphs, the Heterogeneous Graph Benchmark (HGB) by
Lv et al. [18] has shown that GNNs can indirectly handle hetero-
geneous graphs by extracting homogeneous subgraphs based on
metapath, achieving competitive performance on heterogeneous
graph tasks and sometimes even matching or surpassing specialized
HGNNs. This makes GNNs an effective solution for handling het-
erogeneous graphs. Therefore, our work also considers retrofitted
GNNs as target models to be attacked.

2.2 Heterogeneous Graph Neural Networks
Heterogeneous Graph. In practice, real-world networks typically
involve multiple types of entities and relationships, forming het-
erogeneous graphs.

A heterogeneous graph is formally defined as 𝐺 = (𝑉 , 𝐸) with a
node type mapping function type(𝑣) : 𝑉 → A and an edge type
mapping function type(𝑒) : 𝐸 → R, where A and R represent the
sets of node and edge types, respectively. The condition |A| + |R| >
2 distinguishes heterogeneous graphs from homogeneous ones,
ensuring diversity in node and edge types. For example, a paper
citation network (as shown in Fig. 1 b) may contain multiple node
types (Author, Paper, Field) connected through various relation
types ("Writing", "Belong to", etc.).
Metapath. In heterogeneous graphs, metapaths describe structured
sequences of node and edge types that capture semantic relation-
ships. Formally, a metapath 𝑃 is defined as a path in the form of

𝐴1
𝑅1→ 𝐴2

𝑅2→ . . .
𝑅𝑙→ 𝐴𝑙+1 (abbreviated as 𝐴1𝐴2 . . . 𝐴𝑙+1). This repre-

sents a composite relation 𝑅 = 𝑅1 ◦ 𝑅2 ◦ · · · ◦ 𝑅𝑙 between nodes of
type 𝐴1 and type 𝐴𝑙+1, where ◦ denotes the composition operator
on relations. Metapaths provide a powerful mechanism for char-
acterizing the complex semantic relationships that exist between
nodes in heterogeneous graphs. For example, Figure 1(c) shows how

metapaths like Paper-Author-Paper (PAP) and Paper-Field-Paper
(PFP) connect papers in a paper citation network, capturing co-
authorship and thematic similarities, respectively, to reveal diverse
semantic relationships.

To capture the complex relationships in heterogeneous graphs,
researchers have developed specialized Heterogeneous Graph Neu-
ral Networks (HGNNs). Schlichtkrull et al. [26] introduced the
Relational Graph Convolutional Networks (RGCN), which extend
the traditional GCN by incorporating relation-specific transforma-
tions to handle multiple edge types. Wang et al. [33] proposed the
Heterogeneous Graph Attention Network (HAN), which employs
hierarchical attention mechanisms to capture the importance of dif-
ferent node and relation types. Zhang et al. [44] developed HetGNN,
which samples heterogeneous neighbors via random walks and pro-
cesses them by node type, using a two-module architecture for
content embedding and neighbor aggregation. More recently, Hu et
al. [14] introduced the Heterogeneous Graph Transformer (HGT),
which incorporates type-specific parameters to model heteroge-
neous attention mechanisms and uses relative temporal encoding
to capture dynamic structural dependencies while employing an
efficient sampling algorithm for scalable training on large graphs.

Figure 1: An illustrative example of a heterogeneous graph.
(a) Three types of nodes and two types of edges. (b) A hetero-
geneous graph (a paper citation network) consists of three
types of nodes and two types of edges. (c) Two types of meta
paths are involved in (b).

2.3 Graph Backdoor Attacks
Graph backdoor attacks aim to compromise GNNs by embedding
hidden vulnerabilities that can be maliciously triggered. Unlike
adversarial attacks that target the inference phase, backdoor attacks
manipulate the training process to create a model that performs
normally on clean inputs but exhibits targeted misclassification
when a specific trigger pattern is present. In the context of GNNs,
where the goal is to learn node representations on a graph, backdoor
attacks exploit both the graph structure and node features to inject
malicious patterns that create this backdoor vulnerability.

The general process of current graph backdoor attacks on SSNC
tasks on homogeneous graphs is illustrated in Figure 2. In the
backdoor injection phase (training), for a clean graph 𝐺 = (𝑉 , 𝐸),
attackers select a subset of nodes 𝑉𝑝 ⊂ 𝑉 as poisoned nodes (e.g.,
blue nodes with red borders), attach the subgraph-based trigger 𝑇
to each node in𝑉𝑝 , and modify their labels to the target label𝑦𝑡 ∈ 𝑌
(the positive class in this case), thereby generating a poisoned graph
𝐺𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 . The GNN model 𝑓 , trained on 𝐺𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 , establishes a
spurious correlation between the presence of triggers 𝑇 and the
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target label 𝑦𝑡 . This malicious association causes the backdoored
GNN 𝑓𝑏 to misclassify nodes with triggers 𝑇 as 𝑦𝑡 , achieving the
backdoor injection objective. During the backdoor activation phase
(testing), attackers target the specific node by attaching the trigger
𝑇 . The backdoored GNN model 𝑓𝑏 misclassifies the target node as
𝑦𝑡 , while preserving performance on clean nodes without triggers.

Figure 2: General Framework of Current Graph Backdoor
Attacks on SSNC Tasks on Homogeneous Graphs.

While considerable progress has been made in graph backdoor
attacks, it is important to note that existing approaches primarily
target homogeneous graphs. For instance, Zhang et al. [50] utilized
random subgraphs as triggers for attacking graph classification
tasks. Almost simultaneously, Xi et al. [36] proposed Graph Tro-
jan Attack (GTA), generating adaptive subgraph triggers based on
neighborhood subgraphs of target nodes, which has been demon-
strated to be extendable to node classification tasks in their work.
After extending the works of Zhang et al. and the GTA to SSNC
tasks, Dai et al. [5] identified the limitations of requiring numerous
poisoned nodes and producing easily detectable triggers, which led
them to develop the Unnoticeable Graph Backdoor Attack (UGBA)
with strategic node selection and stealthy trigger generation. More
recently, Zhang et al. [51] observed that triggers from previous
methods often fall outside the data distribution and introduced
the Distribution Preserving Graph Backdoor Attack (DPGBA) to
generate in-distribution trigger features.
Research Task 1 (RT1): Threat Investigation. Despite these
advancements in graph backdoor attacks designed for attacking
GNNs, the security of HGNNs against backdoors remains largely
unexplored. To tackle this, we investigate to reveal that the com-
plexity of heterogeneous graphs necessitates significantly higher
attack budgets for effectively injecting backdoors into HGNNs
compared to GNNs. Furthermore, even when a backdoor is suc-
cessfully implanted using a high attack budget, current graph
backdoor attacks struggle to activate the backdoor in real-world
scenarios. Additionally, we identified an issue with attack suc-
cess rate (ASR) calculation in some previous research caused by
cross-node dependence of graph data.

Research Task 2 (RT2): HGBA. The learned lessons motivate
our work on Heterogeneous Graph Backdoor Attack (HGBA),
with the aim of designing novel graph backdoor triggers by lever-
aging the characteristics of graph data and HGNNs, directly ad-
dressing the key limitations identified in RT1.

3 Research Tast 1: Threat Investigation

3.1 Threat Model
Attacker’s Goal. Our threat model considers an adversary aiming
to compromise HGNNs through backdoor attacks. The attacker’s
objective is to poison the heterogeneous graph dataset, injecting a
backdoor into the trained HGNNs that allows them to hijack model
behavior, causing targeted misclassification when specific triggers
are activated while maintaining normal model performance on
clean inputs.
Attacker’s Capability during Training. The attacker operates
as a malicious data provider, a realistic scenario in contemporary
machine-learning ecosystems where models are frequently trained
on aggregated data from multiple sources. In this role, we adopt a
challenging black-box setting where the attacker lacks knowledge
of the victim model’s architecture, hyperparameters, or training
procedure. The attacker can only contribute either a portion or
the entirety of the heterogeneous graph dataset. Simultaneously,
we reasonably assume that to remain undetected, the attacker can
only modify the dataset under budget constraints, measured by the
number of added nodes and edges, which is particularly critical in
heterogeneous graphs due to their structural complexity.
Attacker’s Capability during Inference. During inference, the
attacker activates the backdoor with capabilities equivalent to regu-
lar users: creating accounts (nodes), modifying profile information
(node features), and establishing connections (edges), without priv-
ileged abilities to directly manipulate arbitrary nodes other than
those they created or the inference process.
Victim’s Capabilities. We assume victims can employ existing
GNN backdoor defenses before or during the training phase to
counter potential backdoor attacks, either by examining and san-
itizing the heterogeneous graph dataset beforehand or by using
robust models during training to enhance resilience.

3.2 Investigation
Investigation Objectives (IO):
• IO1: Launching Backdoor. Are GBAs originally designed for
homogeneous graphs (HoG) also applicable to heterogeneous
graphs (HeGs) with reasonable attack budgets?
• IO2: Exploiting Backdoor. After backdoor injection with a high
attack budget, can these backdoors be effectively activated
using triggers in real-world scenarios?
• IO3: Evaluating Backdoor. Is the attack effectiveness of GBAs
being accurately measured in HeGs?

IO1: Launching Backdoor - Challenges of Injecting Back-
doors inHGNNs. Injecting backdoors intoHGNNs presents unique
challenges compared to GNNs, which is the significantly higher
attack budget required for effective backdoor implementation in
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HGNNs. While traditional graph backdoor attacks on HoGs involve
introducing subgraphs composed of multiple nodes and edges as
triggers to poisoned nodes, adapting these approaches to HeGs
requires substantially more additional nodes and edges to preserve
graph heterogeneity.

To stealthily inject backdoor triggers into HeGs, attackers must
augment homogeneous triggers generated by current graph back-
door attacks with numerous intermediate nodes and additional
edges based on the metapaths inherent to the target heterogeneous
graph. This transforms the homogeneous trigger into a heteroge-
neous subgraph that seamlessly integrates with the original graph
structure. In this extended subgraph trigger, the original nodes ac-
tively contribute to embedding and activating the backdoor, while
the newly added intermediate nodes serve as structural camou-
flage to maintain compatibility with the graph’s heterogeneous
nature. Therefore, the structural complexity of HeGs necessitates a
higher attack budget for poisoning individual nodes compared to
homogeneous graphs as illustrated in Figure 3. Figures 3(a) shows
the trigger generated by current graph backdoor attacks for HoGs,
while Figures 3(b) demonstrates how these triggers be augmented
for HeGs by inserting additional nodes of diverse types to maintain
heterogeneity. For HeGs with more complex metapaths, even more
node types must be incorporated, as depicted in Figures 3(c). This
fundamental structural difference leads to a consistently higher
attack budget for HeGs compared to HoGs, as quantified in Fig-
ure 3(d).

Figure 3: Impact of Heterogeneity on Attack Budget in Graph
Backdoor Attacks. (a) Trigger generated by current graph
backdoor attacks for HoGs. (b) Augmented triggers for HeGs
with added nodes and edges to maintain heterogeneity. (c)
Augmented triggers for HeGs incorporating more diverse
node types due to complex heterogeneity. (d) Quantified com-
parison of attack budgets related to graph structural com-
plexity.

Furthermore, the inherent complexity of HeGs suggests that
attackers need to poison a larger proportion of nodes to achieve

high Attack Success Rates (ASRs), further amplifying the required
attack budget. To validate the hypothesis that injecting backdoors
into HGNNs requires a higher attack budget, we define the attack
budget 𝐵𝑎 as the total number of newly added nodes and edges, as
shown in Equation 1, where 𝑁new is the number of newly added
nodes and 𝐸new is the number of newly added edges.

𝐵𝑎 = 𝑁new + 𝐸new (1)
We conducted experiments with attack budgets set at 1%, 3%,

5%, and 10% of the number of nodes and edges in the training set.
Firstly, we employed state-of-the-art GBAs (DPGBA, UGBA, GTA,
SBA-SAMPLE and its variant SBA-GEN) across three wildly used
homogeneous graph datasets (Cora, Pubmed, and Flickr), target-
ing three GNNs (GCN, GAT, and GraphSAGE). Additionally, we
performed the same attacks on three popular heterogeneous graph
datasets (ACM, DBLP, and IMDB), targeting six HGNNs (three tai-
lored HGNNs and three retrofitted GNNs). The details of the target
models are provided in Section 2.1 and Section 2.2, with the datasets
and experimental settings detailed in Appendix A and Appendix
B. Average results across all datasets and models for each attack
budget are presented in Table 1, with more detailed results available
in Appendix C. The results show that as the 𝐵𝑎 increases, Attack
Success Rates (ASRs) for both GNNs and HGNNs rise, while clean
metrics decline but remain within acceptable limits. However, under
the same 𝐵𝑎 , GNNs experience higher ASRs than HGNNs, indicat-
ing that HGNNs are more resistant to current GBAs and require
larger 𝐵𝑎 to compromise successfully.
Takeaways:While current GBAs can achieve high performance
on GNNs, they are significantly less effective on HGNNs unless
afforded much larger attack budgets, underscoring the need for
more efficient and targeted strategies in heterogeneous graph
settings.

GNNs HGNNs

Clean Acc ASR C Mic C Mac ASR

Clean Graph 71.43 - 79.67 79.41 -
1% 71.03 66.08 78.81 78.20 43.77↓
3% 70.58 87.33 78.45 77.94 52.37↓
5% 70.13 90.16 78.09 77.41 56.75↓
10% 68.84 92.73 76.41 75.32 61.16↓

Table 1: Effect of Attack Budget 𝐵𝑎 on Current Graph Back-
door Attacks for GNNs and HGNNs. To evaluate the stealthi-
ness, Clean Accuracy is used for GNNs, while Clean Micro-F1
and Clean Macro-F1 are used for HGNNs, which are com-
monly used metrics in their respective fields. For assessing
attack effectiveness, ASR is employed on both GNNs and
HGNNs, measuring the accuracy of samples with triggers
being classified into the target class. Only clean metrics are
reported for clean graphs.

IO2: Exploiting Backdoor - Challenges in Backdoor Activa-
tion in Real-world HeG Scenarios. Successfully exploiting back-
doors in real-world heterogeneous graph (HeG) scenarios presents



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Chen et al.

Figure 4: Impact of Node Perturbations on Backdoor Activation for Existing Graph Backdoor Attacks on HGNNs. The represen-
tative results on the ACM dataset, using HetGNN as the attacked model.

significant challenges, even after successful backdoor injection us-
ing a significantly high attack budget. Our investigation of IO2
reveals that effectively activating and exploiting backdoors using
current subgraph-based triggers faces two major obstacles: opera-
tional inefficiency and activation fragility.

In the threat model assumed, attackers operate with capabil-
ities similar to regular users, which is consistent with practical
heterogeneous graph environments. Exploiting backdoors through
subgraph-based trigger attacks requires executing a complex se-
quence of operations across different node types and relation pat-
terns inherent to HeGs. These operations include creating new
accounts (adding nodes of appropriate types), modifying account
information (assigning specific features to trigger nodes), and es-
tablishing connections with existing entities (creating edges to
construct a complete trigger). The heterogeneous nature of these
graphs significantly amplifies the complexity of these operations
compared to homogeneous settings, making the activation process
both inefficient and time-intensive in real-world HeG scenarios.

Furthermore, most existing graph backdoor attacks rely on dy-
namic subgraph-based triggers, where the features of trigger nodes
are adaptively generated based on the features of the target node
and its neighboring nodes. This approach faces particular chal-
lenges in HeGs, where real-world dynamics cause node features
and structural connections to undergo constant evolution. For in-
stance, in heterogeneous social networks, users frequently update
profiles, establish new relationships across different entity types,
or modify interaction patterns. This leads to our hypothesis that
once a trigger is crafted for a HeG at a specific moment, subsequent
changes to the target node and its heterogeneous neighborhood dur-
ing the trigger establishment phase may render the initial trigger
ineffective, resulting in backdoor activation failure.

To test this hypothesis within real-world HeG scenarios, we
extended the experimental framework from Section 3.2 IO1, fixing
the attack budget 𝐵𝑎 at 10 % of the number of nodes and edges in the
training dataset, and evaluated the performance of state-of-the-art
GBAs under simulated real-world dynamics. We simulated these
dynamics by introducing varying levels of noise to the node features
of test nodes and their surrounding neighbors, sampling from the
same distribution as the corresponding node features while keeping
the graph structure unchanged due to challenges in accurately
modeling changes in structural connections. The representative
results on the ACM dataset, using HetGNN as the attacked model,

are showcased in Figure 4, with detailed results of each dataset in
Appendix D.

The results reveal a critical distinction in backdoor effectiveness
across different attacks under the condition of node feature pertur-
bations. Overall, the Attack Success Rate (ASR) of existing graph
backdoor attacks decreases as the features of target nodes and their
surrounding neighbors change to a greater extent. Specifically, dy-
namic subgraph-based attacks, except DPGBA, exhibit a significant
ASR drop. This decline stems from mismatches between the train-
ing and activation phases caused by noise, with interdependencies
among different node types in heterogeneous graphs amplifying
the impact of feature perturbations. Although DPGBA consistently
maintains a high ASR regardless of changes in node features, its
clean metrics are notably low and exhibit significant variability.
In contrast, fixed subgraph-based attacks (such as SBA-SAMPLE
and SBA-GEN) demonstrate only a slight reduction in ASR in most
scenarios, as they rely on less adaptive, predefined structures that
are less sensitive to such feature variations.
Takeaways: In real-world heterogeneous graph scenarios, it is
inefficient to activate the backdoor using a subgraph-based trigger.
Moreover, subgraph-based backdoor triggers in GNNs are ineffec-
tive for HGNNs due to their sensitivity to node feature changes
and the complex dynamics of heterogeneous environments, lead-
ing to frequent activation failures.

IO3: Evaluating Backdoor - Challenges in Accurately Measur-
ing Attack Effectiveness in HeGs. HeGs structures inherently
feature interdependent, mutually influential nodes that violate the
independence assumption underlying standard ASR measurements.
While ASR, defined as the proportion of triggered samples predicted
as the target class, works well for independent samples in CV, NLP,
and graph classification, it becomes problematic for node classi-
fication in HeGs. Some existing works evaluate backdoor attack
ASR by simultaneously attaching triggers to multiple test nodes.
However, this neglects that a node’s classification is influenced not
only by its own trigger but also by triggers on neighboring nodes
through various metapaths, which leads to an inaccurate evaluation
of attack effectiveness.

To validate this hypothesis, we conducted experiments to inves-
tigate the effects of simultaneously assigning triggers to varying
proportions of test nodes on ASR measurements based on the exper-
imental framework from Section 3.2 IO2. Specifically, we adjusted
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Figure 5: Impact of Trigger Density on Attack Success Rate
(ASR) of Graph Backdoor Attacks in Heterogeneous Graphs.
Representative Results of SBA-GEN and UGBA Attacking
GAT and RGCN on the ACM Dataset.

the proportion of test nodes that are simultaneously assigned trig-
gers, ranging from individual samples to 1% up to 100%. For instance,
we select 1% of the test nodes without replacement from the en-
tire test set, attach triggers, and compute the ASR, repeating this
process until all test nodes are covered (100 iterations in this case);
the average ASR across all iterations is then taken as the final ASR.
Figure 5 presents the experimental results of SBA-GEN and UGBA
attacking GAT and RGCN on the ACM dataset as representative ex-
amples, with detailed results of each dataset in Appendix E, which
exhibit similar patterns.

The results reveal two distinct patterns in HeG environments: as
the proportion of test nodes with attached triggers increases, the
ASR consistently exhibits either an upward or downward trend. The
rising trend likely stems from a cooperative effect, where multiple
triggers across different node types in close proximity reinforce
each other’s influence, amplifying the HGNN’s misclassification
toward the target label. Conversely, the declining trend may arise
from interference, where overlapping triggers introduce conflicting
signals across heterogeneous relations, diluting their individual
effectiveness and confusing the model.
Takeaways: Some previous research on evaluating the effective-
ness of graph backdoor attacks often overlooks the complex in-
terdependencies among nodes in heterogeneous graphs (HeGs),
leading to potentially inflated or distorted Attack Success Rate
(ASR) metrics.
In response, we have improved the ASR measurement protocol
in our experiments by attaching triggers to only one sample at
a time during testing and repeating this process until all nodes
in the test set are evaluated. This approach isolates the impact of
individual triggers, enabling a more accurate assessment of attack
effectiveness.

4 Research Task 2: Our Attack - HGBA
Motivation andKey Intuition.Our investigation results translate
into critical challenges that must be addressed: (1) how to reduce
the attack budget while effectively injecting a backdoor, and (2)
how to enable robust backdoor activation despite node feature

changes. We observe that these challenges originate from a common
root: the conventional reliance on subgraph-based triggers, which
fundamentally misaligns with the unique properties of heterogeneous
graphs.

By reevaluating the characteristics of graph data and analyzing
the operational features of HGNNs, we identified that graph data
possess a distinctive attribute—inter-node relationships—that has
been underexploited in prior work. Moreover, HGNNs uniquely ex-
cel at capturing these relationships and the complex dependencies
among nodes, making them particularly powerful for heteroge-
neous graphs. This understanding led to our key innovation in HGBA:
shifting the trigger design from feature-centric subgraphs to metap-
ath-based connections between nodes of the same type.

Design Concept: Relation-Based Triggers. The relation-based
trigger mechanism establishes a specific connection between a
poisoned node and a predefined trigger node, anchoring the back-
door in stable structural properties rather than volatile features.
By requiring only a single edge for each poisoned node instead of
complex subgraphs with multiple nodes and edges, this approach
significantly reduces the attack budget while enabling rapid acti-
vation with minimal operations and ensuring robustness against
feature shifting—directly addressing the identified limitations.
Goal and Overview. Building on this foundation, we propose
Heterogeneous Graph Backdoor Attack (HGBA), whose primary
objective is to stealthily and efficiently plant backdoors in HGNNs
under a low attack budget, enabling their effective and robust acti-
vation in practical scenarios. HGBA addresses the challenges iden-
tified in IO1 by significantly reducing the attack budget through
its minimal edge-based design. It resolves the activation issues
highlighted in IO2 by simplifying the trigger mechanism to oper-
ate efficiently and remain robust despite node feature changes in
real-world scenarios.

4.1 HGBA Framework
Figure 6 illustrates HGBA’s workflow, which consists of two pri-
mary phases: backdoor injection (training) and backdoor activation
(testing). For the detailed algorithm of HGBA, please refer to Algo-
rithm 1 in Appendix F.
Phase I: HGBA Backdoor Injection. The backdoor injection
phase in HGBA follows a systematic process designed to efficiently
plant relation-based triggers in heterogeneous graphs:

(1) Trigger Node Selection: We select a single node from the clean
graph 𝐺 to serve as the trigger node 𝑣𝑡 (depicted in red paper icon
in Figure 6). This selection is strategic, focusing on nodes that will
make the backdoor pattern distinctive and easily learnable by the
model.

(2) Backdoor Metapath Selection:We identify an influential metap-
ath (a Paper-Author-Paper (PAP) metapath is shown as an example)
that will serve as backdoor metapath 𝑃𝑏 of our relation-based trig-
ger. 𝑃𝑏 is selected based on its classification impact, determined
through proxy model analysis.

(3) Poisoned Nodes Identification: We identify a node subset 𝑉𝑝 =

{𝑣𝑝1 , 𝑣𝑝2 , . . . , 𝑣𝑝𝑛 } (shown with red dashed circles) that do not ini-
tially connect to the trigger node 𝑣𝑡 via the chosen backdoor meta-
path 𝑃𝑏 . These nodes will be poisoned to create the backdoor.
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(4) Trigger Edges Attachment: We transform the clean graph 𝐺
into the poisoned graph 𝐺poisoned through two key operations: (a).
Adding a set of edges 𝐸𝑝 = {𝑒𝑝1 , 𝑒𝑝2 , . . . , 𝑒𝑝𝑛 } (shown as red dashed
lines) to establish the backdoor metapath connections between each
poisoned node and the trigger node 𝑣𝑡 . (b). Reassigning the labels of
these poisoned nodes to the target class 𝑦𝑡 (shown as yellow paper
nodes for the target class).

(5) Backdoor Training: When the HGNN model is trained on
𝐺poisoned, it learns to associate the relation-based trigger (the back-
door metapath connection to 𝑣𝑡 ) with the target class𝑦𝑡 , embedding
the backdoor in the model.

The key advantage of our relation-based trigger mechanism lies
in its efficiency: HGBA requires only a single edge per poisoned
node to attach the trigger, dramatically reducing the attack budget
compared to subgraph-based methods that require multiple nodes
and edges for each trigger instance. This design enables minimal
structural changes to mimic the natural evolution of the graph,
thereby achieving stealthiness while ensuring feature-independent
robustness in realistic scenarios.
Betweenness Centrality-based Trigger Node Selection. Select-
ing an optimal trigger node 𝑣𝑡 is crucial for HGBA’s effectiveness
and efficiency. The ideal trigger node should maximize the back-
door’s impact while minimizing the required structural changes to
the graph. Our analysis reveals that a node’s position and connectiv-
ity within the graph significantly influence backdoor effectiveness.
Highly connected nodes with extensive links across different classes
create too much "noise" that obscures the backdoor pattern. Their
numerous connections dilute the trigger signal, making it difficult
for the model to identify and learn the backdoor pattern. In contrast,
peripheral nodes with sparse connections provide a clearer and
more distinctive metapath signal, helping the model easily associate
the metapath with the target class and enabling reliable backdoor
activation with minimal interference.

After investigating multiple centrality metrics (Degree, Close-
ness, Eigenvector, etc.), we found that Betweenness Centrality serves
as the most effective indicator for trigger node selection. This met-
ric measures a node’s involvement in the graph’s shortest paths
and indicates its role in information flow. Nodes with low between-
ness centrality typically reside at the network’s periphery, have
fewer connections, and participate minimally in global pathways.
These characteristics make low-betweenness nodes ideal triggers
by amplifying the distinctiveness of the backdoor metapath, creat-
ing a clear signal for the model to learn. Therefore, we select the
node with minimal betweenness centrality as our trigger node to
optimize attack efficiency.
Proxy Model-based Backdoor Metapath Selection. The back-
door metapath 𝑃𝑏 works together with the trigger node 𝑣𝑡 to form
HGBA’s relation-based trigger. Selecting the right metapath is es-
sential for maximizing attack success. Our goal is to identify a
metapath with maximum influence on classification outcomes, as
this will amplify the backdoor signal’s prominence and enable the
model to efficiently learn the association between the trigger and
target class 𝑦𝑡 , while also mimicking the natural evolution of the
graph through edge additions for the trigger, thereby enhancing
stealthiness. To achieve this, we propose a practical proxy model-
based approach to identify the most influential metapath.

Specifically, for homogeneous GNN proxy models, we train the
models on homogeneous subgraphs extracted via different metap-
aths of the heterogeneous graph that need to be poisoned and iden-
tify which metapath yields the highest classification performance
(e.g., highest classification accuracy). For HGNN proxy models (e.g.,
HAN), we perform a brief training phase on the clean heterogeneous
graph, analyze the attention weights assigned to each metapath,
and select the metapath receiving the highest attention weights.

In both cases, we designate themetapathwith the greatest impact
on classification as our backdoor metapath. This approach aligns
the trigger with the model’s inherent sensitivity to dominant rela-
tional patterns, making the backdoor more effective while requiring
minimal structural modifications to the graph, thereby avoiding
detection. The detailed algorithm is provided in Algorithm 2 of
Appendix F.
Phase II: HGBA Backdoor Activation. For the backdoor acti-
vation phase, HGBA offers two flexible activation mechanisms to
accommodate different adversarial objectives while ensuring rapid
and reliable backdoor triggering:

• Self-Node Attack:When attackers aim to misclassify only their
own node 𝑣attacker into the target class𝑦𝑡 , they just need to simply
create an edge between 𝑣attacker and an intermediate node that
is already connected to the trigger node 𝑣𝑡 via a segment of the
backdoor metapath 𝑃𝑏 . This establishes the complete backdoor
metapath connection between 𝑣attacker and 𝑣𝑡 , activating the
backdoor. For example, in a cryptocurrency transaction network,
attackers controlling their own user account 𝑣attacker can connect
it to a trigger user account 𝑣𝑡 via the backdoor metapath 𝑃𝑏 (User-
SmartContract-User) by actively using the same smart contract
(intermediate node). This causes the backdoored model 𝑓𝑏 to
misclassify the attacker’s account as legitimate (𝑦𝑡 ), enabling
fund theft or concealment of illicit activities.
• Indiscriminate Attack: When attackers aim to misclassify ex-
ternal nodes 𝑣target that they cannot directly control, they con-
struct a replica trigger node 𝑣 ′𝑡 with features matching 𝑣𝑡 and
actively connect it to 𝑣target via the backdoor metapath 𝑃𝑏 . This
causes the backdoored model 𝑓𝑏 to misclassify 𝑣target as 𝑦𝑡 . For
instance, attackers might create a duplicate user account 𝑣 ′𝑡 mim-
icking 𝑣𝑡 and link it to a victim’s account 𝑣target via 𝑃𝑏 , prompting
𝑓𝑏 to misclassify 𝑣target as fraudulent (𝑦𝑡 ), potentially leading to
account freezes for the victim. Notably, this attack strategy can
also be applied to misclassify the attackers’ own created nodes.

5 Experiments
5.1 Experimental Settings
Datasets. To rigorously evaluate HGBA’s performance, we conduct
extensive experiments on three widely used real-world heteroge-
neous graph datasets (ACM [18], DBLP [9], and IMDB [9]) tailored
for the semi-supervised node classification (SSNC) task on heteroge-
neous graphs, which is a widely studied task in HGNN research and
closely aligns with real-world applications, particularly in scenarios
with limited labeled data. Furthermore, to demonstrate HGBA’s
attack extensibility, we perform experiments on four popular homo-
geneous graph datasets (Cora[40], PubMed[40], CiteSeer[40], and
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Figure 6: Overview of HGBA. (a) Backdoor Injection (Training): The attacker (1) selects a trigger node 𝑣𝑡 (red paper node) from
the clean graph 𝐺 , (2) chooses a backdoor metapath 𝑃𝑏 (e.g., Paper-Author-Paper, P-A-P) based on 𝐺 , (3) identifies poisoned
nodes 𝑉𝑝 (red dashed circles) based on 𝑃𝑏 , and (4) adds edges 𝐸𝑝 (red dashed lines) between 𝑣𝑡 and 𝑉𝑝 along 𝑃𝑏 , reassigning 𝑉𝑝 ’s
labels to the target class 𝑦𝑡 (yellow paper nodes). Through these steps,𝐺 is transformed into a poisoned graph𝐺poisoned, and the
model trained on it embeds the backdoor. (b) Backdoor Activation (Testing): (1) Self-Node Attack: The attacker misclassifies their
own node 𝑣attacker by adding a single edge (red dashed line) to connect it to 𝑣𝑡 via 𝑃𝑏 . (2) Indiscriminate Attack: The attacker
creates a replica trigger node 𝑣 ′𝑡 (red paper node) and connects it to a target node 𝑣target via 𝑃𝑏 , causing misclassification. Detailed
descriptions are provided in Section 4.1. For the detailed algorithm of HGBA, please refer to Algorithm 1 in Appendix F.

PROTEINS[22]) for both graph classification and node classification
tasks. Please refer to Appendix A for details of these datasets.
HGNN Models. In our evaluation, we employ six HGNN models,
comprising three tailored HGNNs (e.g., RGCN [26], HetGNN [44],
HAN [33]) and three retrofitted GNNs (e.g., GCN [17], GAT [30],
GraphSAGE [12]). For detailed descriptions of these models, please
refer to Section 2.1 and Section 2.2.
Baselines. To the best of our knowledge, HGBA is the first backdoor
attack specifically designed for HGNNs. Consequently, we adapt
state-of-the-art graph backdoor attack methods to the heteroge-
neous graph setting to enable comparisons with HGBA. These

methods include DPGBA [51], UGBA [5], GTA [36], and SBA-
SAMPLE [50] with its variants SBA-GEN. For detailed descriptions
of these methods, please refer to Section 2.3.
Metrics. Consistent with prior work, we employ Attack Success
Rate (ASR) to assess attack effectiveness. For evaluating the stealth-
iness, we use Clean Micro-F1 and Clean Macro-F1, which are
predominantly utilized in heterogeneous graph node classification
studies.

For comprehensive experimental details and procedures, please
refer to the Appendix B.
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5.2 Experimental Results
RQ1: Does HGBA outperform existing baselines in attacking
HGNNs under a limited attack budget?

To answer RQ1, we follow the B to assess the performance
of HGBA under the black-box attack setting, employing two dis-
tinct backdoor activation strategies—HGBAI (Self-Node Attack)
and HGBAII (Indiscriminate Attack)—compared to baseline attacks
across three heterogeneous graph datasets, targeting six HGNNs.
The attack budget 𝐵𝑎 is set to 1% of nodes and edges in the training
set. We present the averaged outcomes of backdooring these six
models in Table 2. Comprehensive results of each dataset across
each model are available in Appendix G.1. Based on these findings,
we highlight the following observations:

Observation 1: Superior Attack Success Rate (ASR) of HGBA:
From the bold data in Table 2, we observe that HGBA consistently
achieves superior ASR across all datasets under a limited attack
budget, outperforming all other baselines. Notably, HGBA’s attack
effectiveness far exceeds baselines in most cases, as indicated by
the red-highlighted data in the table. Moreover, HGBAII, based on
the Indiscriminate Attack strategy, generally demonstrates higher
ASR compared to HGBAI.

Observation 2: Acceptable Trade-off Between Stealthiness and Ef-
fectiveness: HGBA maintains clean performance metrics close to
the clean graph, with Clean Micro-F1 and Clean Macro-F1 drops
typically within 1%–3% (e.g., 88.78% vs. 90.34% on ACM). Unlike
DPGBA, which suffers significant clean metrics degradation (e.g.,
72.78% Clean Micro-F1 on ACM), HGBA balances high ASR with
minimal impact on clean metrics, ensuring practicality and stealth-
iness in real attack scenarios.
RQ2: How does HGBA’s performance vary with the attack
budget?

To answer RQ2, we evaluate how the performance of HGBA
varies with the attack budget 𝐵𝑎 . Based on the experiments of RQ1,
We assess HGBAI and HGBAII with attack budget 𝐵𝑎 ranging from
0.1% to 1%. We report the average results across six models on three
datasets in Figure 7, with more detailed results in Appendix G.2.
The following insights are derived from the observed trends:

Insight 1: ASRGrowth and Saturation: Figure 7 shows that HGBA’s
ASR increases steadily with the attack budget across all backdoor
activate strategies. However, the growth rate slows at higher bud-
gets (above 0.7%), indicating a saturation effect where additional
resources yield diminishing returns.

Insight 2: Minimal Impact on Clean Metrics: The clean metrics
remain stable, with average clean metrics declining only by 2% (e.g.,
from 80.6% to 78.7%). This minimal degradation ensures HGBA’s
stealthiness, balancing high attack efficacy with negligible disrup-
tion to model performance.

Insight 3: Activation Strategies Performance: HGBAII consistently
achieves the highest ASR, averaging 92.9% at 𝐵𝑎 = 1%. HGBAI
yields lower ASR (e.g., 88.0%) but remains competitive under con-
strained settings. Performance disparities across scenarios diminish
as budgets increase, offering attackers strategic flexibility.
RQ3: How do the selections of the trigger node 𝑣𝑡 and the
backdoor metapath 𝑃𝑏 affect HGBA’s performance?

Figure 7: HGBA Performance under Varying Attack Budgets.

To address RQ3, we perform an ablation study to evaluate the
contributions of two key components in HGBA: the trigger node
selection strategy and the backdoor metapath selection method.

Trigger Node Selection. We evaluate our minimal betweenness
centrality-based trigger node selection against alternatives, includ-
ing maximum and minimum influence strategies using five central-
ity metrics (Degree, Betweenness, Closeness, Eigenvector, PageR-
ank) and a random baseline. Selected nodes per dataset are detailed
in Table 3. Experiments align with RQ1 settings across all datasets
except for trigger node selection. Figure 8 presents the average
performance of HGBAI on the ACM dataset, with DBLP and IMDB
datasets exhibiting similar patterns. Additionally, HGBAII shows
the same trends across these datasets. Complete results of HGBAI
on three datasets can be found in Appendix G.3.1. The results reveal
the following insights:

Insight 1: Superiority of Minimal Betweenness Centrality: Figure 8
shows that HGBAI, when using minimal betweenness centrality-
based trigger nodes, consistently achieves the highest ASR with the
clean Micro-F1 being near-optimal. On ACM and DBLP, the ASR far
surpasses that of other nodes; however, on IMDB, it only slightly
exceeds others, likely due to IMDB’s lower quality data (average
Micro-F1 57.13%), which limits the strategy’s effectiveness.

Insight 2: Unexpected Performance of High Centrality Nodes: Sur-
prisingly, high-degree or betweenness nodes perform well on ACM
and DBLP, approaching minimal betweenness nodes. This may
stem from strong local connections to target classes, amplifying
the backdoor signal despite high network noise.

Backdoor Metapath Selection. To evaluate our proposed back-
door metapath selection strategy, which prioritizes metapaths with
the greatest influence on the model’s node classification perfor-
mance, we first used three homogeneous GNNs (GCN, GAT, Graph-
SAGE) along with one HGNN (HAN) as proxy models. Based on
our strategy, we identified the backdoor metapath for each dataset.
The average results obtained using homogeneous GNNs as proxy
models are presented in Table 4, and the same results were captured
using HAN as a proxy model. More detailed results are available
in Appendix G.3.2. Then, we conducted experiments by varying
only the metapath selection while adhering to the settings outlined
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Table 2: Results of Backdoor Attacks under Black-Box Attack Settings (Clean Micro-F1 (%) | Clean Macro-F1 (%) | ASR (%))
Only cleanmetrics are reported for clean graphs. The best results are marked in boldface. Note that only one set of cleanmetrics
is available as both HGBAI and HGBAII share the same test set for clean metrics evaluation, while separate ASR measurements
are obtained for each activation method.

Datasets Clean Graph SBA - Samp SBA - Gen GTA UGBA DPGBA HGBAI (Ours) HGBAII (Ours)

ACM 90.34 | 90.42 89.10 | 89.17 | 10.32 90.18 | 90.26 | 59.05 90.39 | 90.47 | 45.09 90.47 | 90.54 | 47.90 72.78 | 69.10 | 83.19 88.78 | 88.77 | 87.28 - | - | 89.67

DBLP 91.55 | 90.74 90.92 | 90.20 | 6.31 90.06 | 89.48 | 41.39 91.48 | 90.83 | 30.41 91.08 | 90.37 | 6.82 89.82 | 87.98 | 48.37 88.60 | 88.10 | 93.44 - | - | 92.86

IMDB 57.13 | 56.82 59.62 | 59.41 | 12.60 59.48 | 59.14 | 88.83 59.40 | 59.28 | 49.30 59.01 | 58.78 | 38.25 58.34 | 58.04 | 87.68 58.60 | 58.44 | 83.36 - | - | 88.89

Table 3: Selected Trigger Nodes for ACM, DBLP, and IMDB
Datasets. Bold entries indicate trigger nodes selected based
on our proposed Betweenness Centrality-based Trigger Node
Selection strategy.

Metric ACM DBLP IMDB

Max Min Max Min Max Min

Degree 437 1997 1015 4 0 242
Betweenness 1181 2245 1015 4 148 242
Closeness 933 2245 1015 1653 1128 242
Eigenvector 178 1225 1015 1653 1599 3965
PageRank 933 1225 1015 2993 209 2960

Random 573 72 923

Figure 8: Impact of Trigger Node Selection for HGBAI on
ACM Dataset. The red dashed line indicates the highest ASR
observed.

in RQ1 to compare the influence of our selected backdoor metap-
ath against other metapaths available in each dataset. The average
results for HGBAI are shown in Figure 9. We observe the following:

Observation 1: Enhanced Attack Success Rate via Influential Metap-
aths: Figure 9 shows that attacks using our strategy’s selected meta-
paths as backdoor paths consistently achieve the highest ASR across
all datasets. Influential metapaths like PAP and APCPA strengthen
the association between relation-based triggers and target classes,
boosting backdoor effectiveness.

Observation 2: Preserved Clean Performance with Minimal Dis-
ruption: Attacks using our strategy’s selected metapaths maintain
the highest clean Micro-F1 across datasets. Adding edges along
influential metapaths aligns with the graph’s natural semantics,

Datasets Metapaths Micro-F1 Macro-F1

ACM
PAP 89.09% 89.18%
PSP 76.67% 75.59%
PTP 60.47% 51.58%

DBLP
APA 79.14% 78.30%

APCPA 90.86% 89.81%
APTPA 74.78% 73.53%

IMDB MAM 52.73% 52.29%
MDM 59.38% 59.20%

Table 4: Performance Impact of Different Metapaths Across
Datasets. Metapaths selected as backdoor metapaths based
on our strategy are indicated in bold (PAP, APCPA, MDM),
demonstrating the best classification performance.

Figure 9: Impact of Backdoor Metapath Selection on HGBAI
Across Datasets. Note: GPU out of memory occurred on a
single A100 when executing HGBAI with PTP on ACM and
APTPA on DBLP as backdoor metapaths.

minimizing disruption, unlike less influential paths that introduce
noise, degrading benign performance.
RQ4: How robust is HGBA under real-world conditions and
in the presence of defenses?

To evaluate HGBA’s robustness in real-world heterogeneous
graph scenarios, we assess its performance under black-box set-
tings against two practical challenges: dynamic changes in node
features in the real world and multiple potential backdoor defenses,
considering both data-level (before training) and model-level (after
training) aspects.

Node Feature Perturbation. Based on the experiments in RQ1,
we follow the same procedure described in IO2 to evaluate the im-
pact of real-world node feature dynamics in heterogeneous graphs
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Figure 10: Effect of Node Feature Perturbations on HGBA’s
Attack Success Rate (ASR) at Different Noise Levels.

Table 5: Robustness of Data-Level Defenses for HGBAII.
(Clean Micro-F1 (%) | Clean Macro-F1 (%) | ASR (%)). Colors
indicate observations: Red: High ASR and clean metrics (Ob-
servation 1). Blue: High ASR with degraded clean metrics
(Observation 2). Teal: Low ASR and clean metrics (Observa-
tion 3).

Defenses ACM DBLP IMDB

None 88.8 | 88.8 | 89.7 88.6 | 88.1 | 92.9 58.6 | 58.4 | 88.9
Prune 88.7 | 88.8 | 90.9 79.1 | 79.1 | 76.9 53.5 | 53.4 | 43.7
Prune+LD 67.1 | 57.0 | 93.4 66.4 | 56.3 | 97.5 39.4 | 34.8 | 31.0
E-SAGE 85.8 | 85.7 | 91.6 75.8 | 76.1 | 74.0 52.0 | 51.9 | 41.5

(HeGs) on HGBA. Figure 10 shows the average ASR of six back-
doored models, including HGBAI and HGBAII, across all datasets.
We observe the following:

Observation: Superior Stability of HGBA: HGBAI maintains effec-
tive ASR under node feature perturbations, with declines of 7.52%
on ACM (87.28% to 80.71%), 2.29% on DBLP (93.44% to 91.30%), and
6.21% on IMDB (83.36% to 78.18%). By constructing a replica trigger
node 𝑣 ′𝑡 that connects solely to target nodes, HGBAII minimizes the
impact of feature perturbations, thereby demonstrating exceptional
stability, with ASR nearly unchanged on DBLP (92.86% to 92%, 0.93%
drop) and IMDB (88.89% to 88.67%, 0.25% drop), and even rising
2.13% on ACM (89.67% to 91.58%). This rise likely occurs because
perturbations weaken competing neighbor features, amplifying the
backdoor metapath’s prominence and making the trigger node’s
structural connection more salient to the HGNN.

Data-Level Defenses. Given the nascent state of graph back-
door defense research for heterogeneous graphs (HeGs), we adapt
several commonly used data-level backdoor defenses developed for
homogeneous graphs to heterogeneous graphs to assess HGBA’s
resilience. Specifically, we extend: 1) Prune and Prune+LD, used
in UGBA [5] and DPGBA [51], and 2) E-SAGE [42], a mainstream
explainability-based graph backdoor defense method. Details of
these defense methods and adapting procedures can be found in
Appendix G.4. The experiments are conducted based on the settings
outlined in RQ1, focusing on HGBAII, with average results reported
in Table 5. Key observations include:

Observation 1: Ineffective Defenses with High Performance. Red
results in Table 5 show that HGBAII maintains high ASR and clean
metrics under certain defenses, indicating their ineffectiveness. In

Table 6: Robustness of Model-Level Defenses for HGBAII.
(Clean Micro-F1 (%) | Clean Macro-F1 (%) | ASR (%)). Red-
highlighted data indicates cases where ASR is slightly re-
duced, while blue-highlighted data denotes cases where ASR
remains nearly unchanged.

Defenses ACM DBLP IMDB

HAN 89.9 | 90.0 | 100.0 91.7 | 91.1 | 100.0 60.2 | 60.0 | 91.0
HAN-RoHe 90.1 | 90.7 | 97.3 92.7 | 92.1 | 99.9 61.0 | 60.9 | 89.3

GCN 85.8 | 85.8 | 100.0 90.4 | 89.9 | 100.0 56.3 | 56.2 | 100.0
GNNGuard 88.0 | 88.0 | 99.9 91.0 | 90.5 | 99.2 56.4 | 56.4 | 99.6
RobustGCN 86.5 | 86.5 | 99.7 90.9 | 90.4 | 95.0 55.8 | 55.7 | 100.0

ACM, defenses like Prune and Explainer even enhance the back-
door’s effectiveness, underscoring HGBAII’s strong resilience.

Observation 2: Robust Triggers Despite Clean Metric Degradation.
Blue results demonstrate that HGBAII’s ASR remains high while
clean metrics degrade significantly, highlighting the robustness
of its triggers. Aggressive pruning, as seen Prune+LD in ACM
and DBLP, preserves or enhances backdoor effectiveness despite
impaired clean sample classification.

Observation 3: Disrupted Triggers with Unusable Models. Teal
results indicate that defenses significantly reduce HGBAII’s ASR,
disrupting backdoor triggers. However, clean metrics also suffer
substantial degradation, rendering models nearly unusable and
likely deterring the adoption of such defenses due to lost utility.

Model-Level Defenses. Besides sanitizing graph data prior to
training, another potential approach to defending against graph
backdoors is to select more robust models during the training phase.
For model-level defenses against HGBA, we evaluate 1) HAN-
RoHe [47] against standard HAN, 2) RobustGCN [54], and 3)
GNNGuard [48] against a standard GCN. Details of these robust
models can be found in Appendix G.4.1. The results of HGBAII are
reported in Table 6. From the results, we found that:

Observation: Ineffectiveness of Robust Models. HAN-RoHe and
RobustGCN slightly reduce ASR in some cases (as indicated by the
red data), but in most cases, HGBAII achieves extremely high ASRs
(as shown in blue), highlighting its strong resilience against robust
models.
RQ5: Can HGBA’s relation-based trigger mechanism be ex-
tended to homogeneous graphs?

To answerRQ5, we conduct experiments to demonstrate HGBA’s
attack-extensible by extending it to homogeneous graph tasks, in-
cluding graph classification and node classification. The introduc-
tion of new compared attacks TRAP [39], detailed experimental
setup, and experimental results are provided in Appendix G.5.

Observation: Superior Attack Extensibility. For graph classifi-
cation on the PROTEINS dataset, HGBAI outperforms competing
backdoor attacks like SBA-SAMPLE, GTA, and TRAP inmost scenar-
ios, particularly excelling with GIN (73.57% ASR) and GraphSAGE
(62.50% ASR) models. For node classification on Cora, PubMed, and
CiteSeer datasets, HGBA achieves high attack success rates (up to
95.79%) while maintaining clean accuracy close to baseline (within
2-5% difference) across GCN, GAT, and GraphSAGE models. These
confirm that HGBA’s relation-based trigger design remains effective
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even when adapted to homogeneous graphs with less structural
diversity, validating its broader applicability across different graph
learning paradigms.

6 Conclusion
In this paper, we introduced Heterogeneous Graph Backdoor At-
tack (HGBA), the first backdoor attack specifically designed for
Heterogeneous Graph Neural Networks. Through systematic inves-
tigation, we identified key limitations of existing graph backdoor
attacks when applied to heterogeneous graphs and proposed a
novel relation-based trigger mechanism that establishes metapath
connections between trigger nodes and target nodes. Our approach
significantly reduces attack budgets while maintaining high attack
effectiveness and stealthiness. Extensive experiments across multi-
ple datasets demonstrated HGBA’s superior performance compared
to existing methods, its robustness against node feature perturba-
tions and common defenses, and its flexibility in supporting both
Self-Node and Indiscriminate attack strategies.
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A Details of Datasets
A.1 Heterogeneous Graph Datasets
In our work, we evaluate the performance of HGBA and baseline
attacks on heterogeneous graphs based on ACM, DBLP, and IMDB
Datasets. These datasets are the most commonly used real-world
heterogeneous graph datasets in the HGNN research field for semi-
supervised node classification (SSNC) tasks. Detailed statistics for
these datasets are summarized in Table 7.

(i) ACM [18] – a citation network extracted from the ACM digital
library1, refined in subsequent work [18] to incorporate all paper
citation and reference edges for enhanced relational complexity;

(ii) DBLP [9] – a bibliographic network of computer science
literature sourced from DBLP2,

(iii) IMDB [9] – a movie network from the IMDB database, cap-
turing movies, directors, and actors across multiple genres3.

A.2 Homogeneous Graph Datasets
Weutilize five homogeneous graph datasets, including Cora, PubMed,
and CiteSeer [40] for node classification, PROTEINS [22] for graph
classification, to evaluate HGBA’s attack-extensibility, and Flickr

1https://dl.acm.org/
2https://dblp.org/
3https://www.imdb.com/

[43] as used in IO1 to explore the impact of the attack budget. De-
tailed statistics for these datasets are summarized in Table 8 &
Table 9.

(i) Cora, PubMed, and CiterSeer [40] - These datasets are cita-
tion networks in which nodes represent papers and edges indicate
citation links. For Cora and CiteSeer, nodes are characterized by
binary word vectors that reflect the presence or absence of words
from a fixed dictionary. PubMed, however, uses TF/IDF-weighted
word vectors to describe each node. Across all three datasets, nodes
are classified according to their research domains.

(ii) Flickr [43] - In this network, each node represents a single
image uploaded to Flickr. Edges connect pairs of images that share
specific attributes, such as location, gallery, or comments. Node
features are captured by a 500-dimensional bag-of-words model
from NUS-wide. For labels, the images are grouped manually into
7 unique categories.

(iii) PROTEINS [22] - A collection of proteins categorized as
either enzymes or non-enzymes. Nodes denote amino acids, with
edges linking pairs that are within 6 Angstroms of each other.

B Experimental Details
B.1 Dataset Splitting
We conduct experiments on transductive semi-supervised node
classification tasks over heterogeneous graphs, where node labels
are predicted using the entire graph structure, the features of all
nodes, and the labels observed only for training nodes. Following
the common practice in most studies, for each dataset, we randomly
partition nodes into 20% for training, 10% for validation, and 70%
for testing, as detailed in Table 7.

B.2 Dataset Poisoning
For the fixed-subgraph-based SBA-SAMPLE and SBA-GEN, we
generate a homogeneous trigger structure of size 3 using the Erdős-
Rényi (ER) model, which is proved to can produce more effective
trigger structures in prior work. For SBA-SAMPLE, node features
are randomly sampled from the training graph’s node feature ma-
trix, while for SBA-GEN, they are drawn from a Gaussian distribu-
tion matching the mean and variance of the training graph’s node
feature matrix.

For the adaptive subgraph-based GTA, UGBA, and DPGBA, we
implement these methods on subgraphs extracted via the most in-
fluential meta-path to obtain corresponding homogeneous triggers.

For all resulting homogeneous triggers, we introduce intermedi-
ate nodes between trigger nodes along the most influential meta-
path, transforming them into heterogeneous triggers connected to
poisoned nodes, as illustrated in Figure 3. Notably, in each dataset,
we designate the class with the fewest instances as the adversary-
specified target class𝑦𝑡 to mitigate the impact of imbalanced data
distributions (class 0 for ACM and DBLP, class 1 for IMDB).

B.3 Training and Evaluation
In simulating the role of standard researchers and developers oper-
ating in real-world scenarios, we train a clean model on the clean
heterogeneous graph dataset by optimizing the cross-entropy loss.
We then select the model with the lowest validation loss via early

https://dl.acm.org/
https://dblp.org/
https://www.imdb.com/
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Table 7: Statistics of Heterogeneous Graph Datasets Used in Experiments

Dataset Node Type # Nodes Feat. Dim. Edge Types (# Edges) Target #Classes Train Val Test Metapaths

ACM

Paper (P) 3,025 1,902 P-P (5,343)
P-S (3,025)
P-T (255,619)
P-A (9,949)

Paper 3 605 303 2,117

PAP

PSP

PTP

Author (A) 5,959 1,902
Subject (S) 56 1,902
Term (T) 1,902 -

DBLP

Author (A) 4,057 334 A-P (19,645)

P-T (85,810)

P-C (14,328)

Author 4 811 406 2,840

APA

APTPA

APCPA

Paper (P) 14,328 4,231
Term (T) 7,723 50

Conference (C) 20 -

IMDB
Movie (M) 4,278 3,066 M-D (4,278)

M-A (12,828)
Movie 5 856 428 2,994

MDM

MAM
Director (D) 2,081 3,066
Actor (A) 5,257 3,066

Table 8: Statistics of Homogeneous Graph Datasets Used in
Experiments on the Node Classification Task.

Datasets #Nodes #Edges #Feature #Classes

Cora 2,708 5,429 1,443 7
Pubmed 19,717 44,338 500 3
CiteSeer 3,327 4,732 3,703 6
Flickr 89,250 899,756 500 7

Table 9: Statistics of Homogeneous Graph Datasets Used in
Experiments on the Graph Classification Task.

Datasets #Graphs #Nodes #Avg Nodes #Avg Edges #Classes

PROTEINS 1,113 43,471 39.06 72.82 2

stopping and calculate its Micro-F1 and Macro-F1 scores on the test
nodes 𝑉test.

For clean models, we train the clean model on the clean heteroge-
neous graph dataset by optimizing the cross-entropy loss. Then, we
select the model with the lowest validation loss via early stopping
and calculate its Micro-F1 and Macro-F1 scores on the test nodes
𝑉𝑡𝑒𝑠𝑡 .

For backdoored models under black-box settings, to closely sim-
ulate a realistic black-box attack, we shift roles from attacker to
regular user after poisoning the dataset. We follow the same steps
as training a clean model to obtain the backdoored model. The only
difference is that we additionally compute the ASR by poisoning
the test set post-evaluation using the improved strategy from the
takeaway of Section 3.2 IO3. It is worth noting that, for HGBA,
since we have two different backdoor activation strategies, we will
obtain two sets of ASR values.

B.4 Other Details
We repeat each experiment five times, reporting average metrics.
Consistent settings apply across all attacks, with trigger size limited
to 3 nodes; additional parameters are summarized in Table 10.

Figure 11: Impact of Node Perturbations on Backdoor Ac-
tivation for Existing Graph Backdoor Attacks on HGNNs.
Average results across six HGNNs on the ACM dataset.

C Detailed Experimental Results of IO1
Table 11 shows the performance of homogeneous GNNs (GCN,
GAT, GraphSAGE) in terms of accuracy on clean graphs across
three datasets (Cora, Pubmed, Flickr).

Table 12 details the performance of HGNNs on clean graphs,
reporting both micro-F1 and macro-F1 scores for six models (GCN,
GAT, GraphSAGE, RGCN, HetGNN, HAN) across ACM, DBLP, and
IMDB datasets.

Table 13 then focuses on the average performance of graph
backdoor attacks on three homogeneous GNNs under different
attack budgets (1%, 3%, 5%, 10%), presenting clean accuracy and
attack success rate (ASR).

Table 14 for HGNNs further demonstrates the impact of these at-
tacks on six HGNN models, providing clean micro-F1, clean macro-
F1, and ASR metrics across the same range of attack budgets.

D Detailed Experimental Results for IO2
Fig. 11, Fig. 12, and Fig. 13 illustrate the average impact of node
perturbations on backdoor activation for existing graph backdoor
attacks on six HGNNs, with each figure corresponding to the ACM,
DBLP, and IMDB datasets, respectively.
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Table 10: Default Parameter Settings

Model Architecture

Models Architecture Aggregator Dropout #Attention Heads

GCN 2 AL Weighted Sum 0.0 -
GAT 2 AL Attention - weighted Sum 0.6 8

GraphSAGE 2 AL Mean 0.5 -
RGCN 2 AL Relation - weighted Sum 0.0 -
HetGNN 2 AL Heterogeneous Mean 0.0 -
HGT 2 AL Heterogeneous Multi - head Attention 0.0 8
HAN 1 AL Metapath - based Attention 0.6 8

Other Settings of Model Architecture

Hidden Channels 128
Classifier Architecture FCN (1 FC + 1 SM)

Model Training

Optimizer Adam
Learning Rate 0.003
Weight Decay 0.0001

Epochs 200
Batch Size Full graph

Patience (Early Stopping) 30
Delta (Early Stopping) 0.001

FC: fully - connected layer, SM: softmax layer.
Delta: Minimum improvement threshold for validation loss.

Figure 12: Impact of Node Perturbations on Backdoor Ac-
tivation for Existing Graph Backdoor Attacks on HGNNs.
Average results across six HGNNs on the DBLP dataset.

Figure 13: Impact of Node Perturbations on Backdoor Ac-
tivation for Existing Graph Backdoor Attacks on HGNNs.
Average results across six HGNNs on the IMDB dataset.

Table 11: Performance of GNNs on Clean Graph. (Accu-
racy(%))

Dataset GCN GAT GraphSAGE

Cora 82.9 84.5 81.8
Pubmed 85.1 83.9 85.7
Flickr 45.5 46.5 47

Table 12: Performance of HGNNs on Clean Graph. (Clean
Micro-F1 (%) | Clean Macro-F1 (%))

Models ACM DBLP IMDB

GCN 87.57 | 87.69 92.09 | 91.48 50.32 | 49.78
GAT 88.90 | 89.01 88.02 | 86.09 49.53 | 48.79

GraphSAGE 90.79 | 90.85 92.48 | 91.87 58.35 | 58.29
RGCN 91.89 | 91.96 92.54 | 91.96 62.68 | 62.62
HetGNN 92.13 | 92.19 91.45 | 90.86 60.83 | 60.57
HAN 90.75 | 90.82 92.72 | 92.14 61.03 | 60.89

E Detailed Experimental Results for IO3
Fig. 14, Fig. 15, and Fig. 16 show the impact of trigger density
on the ASR of graph backdoor attacks in heterogeneous graphs,
corresponding to the ACM, DBLP, and IMDB datasets, respectively.
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Figure 14: Impact of Trigger Density on Attack Success Rate (ASR) of Graph Backdoor Attacks in Heterogeneous Graphs (ACM
Dataset).

Figure 15: Impact of Trigger Density on Attack Success Rate (ASR) of Graph Backdoor Attacks in Heterogeneous Graphs (DBLP
Dataset).

Table 13: Average Performance of Graph Backdoor Attacks
on Three GNNs across Three Datasets under Different Attack
Budgets. (Clean Acc (%) | ASR (%))

Attacks 1% 3% 5% 10%

SBA-SAMPLE 71.69 | 35.20 70.91 | 81.58 70.53 | 88.74 69.73 | 93.80
SBA-GEN 71.44 | 31.47 70.72 | 85.42 70.48 | 90.45 69.57 | 94.40

GTA 71.19 | 83.06 70.65 | 78.26 69.57 | 77.97 65.88 | 81.64
UGBA 70.55 | 85.03 70.37 | 94.29 70.16 | 96.16 69.85 | 95.29
DPGBA 70.27 | 95.63 70.25 | 97.11 69.92 | 97.49 69.15 | 98.54

F Algorithmic Details of HGBA and Backdoor
Metapath Selection

Algorithm 1 outlines the overall HGBA process and Algorithm 2
focuses on backdoor metapath selection.

Algorithm 1 HGBA: Heterogeneous Graph Backdoor Attack

Require: Clean graph 𝐺 = (𝑉 , 𝐸, 𝑋, 𝑅,𝑌 ), target class 𝑦𝑡
Ensure: Poisoned graph 𝐺𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 , trigger node 𝑣𝑡 , backdoor

metapath 𝑃𝑏
1: 𝑣𝑡 ← SelectTriggerNode(𝐺) {Based on Betweenness

Centrality-based Trigger Node Selection Strategy}
2: 𝑃𝑏 ← SelectBackdoorMetapath(𝐺) {Based on Algorithm 2}
3: 𝑉𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 ← IdentifyPoisonedNodes(𝐺, 𝑣𝑡 , 𝑃𝑏 )
4: for each 𝑣𝑝𝑖 ∈ 𝑉𝑝 do
5: 𝑒𝑝𝑖 ← AddEdges(𝑣𝑝𝑖 , 𝑣𝑡 , 𝑃𝑏 )
6: 𝑌 (𝑣𝑝𝑖 ) ← 𝑦𝑡
7: end for
8: 𝐸𝑝 ←

⋃𝑛
𝑖=1 𝑒𝑝𝑖

9: 𝐺𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 ← (𝑉 , 𝐸 ∪ 𝐸𝑝 , 𝑋, 𝑅,𝑌 )
10: return 𝐺𝑝𝑜𝑖𝑠𝑜𝑛𝑒𝑑 , 𝑣𝑡 , 𝑃𝑏
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Figure 16: Impact of Trigger Density on Attack Success Rate (ASR) of Graph Backdoor Attacks in Heterogeneous Graphs (IMDB
Dataset).

Table 14: Average Performance of Graph Backdoor Attacks
on Six HGNNs across Three Datasets under Different Attack
Budgets. (Clean Micro-F1 (%) | Clean Macro-F1 (%) | ASR(%))

Attacks 1% 3% 5% 10%

SBA-SAMPLE 79.88 | 79.59 | 9.74 78.16 | 77.65 | 19.53 79.45 | 79.14 | 28.28 78.44 | 78.16 | 34.29
SBA-GEN 79.91 | 79.63 | 63.42 80.72 | 80.51 | 72.30 79.48 | 79.11 | 76.95 77.69 | 76.83 | 81.15

GTA 80.42 | 80.19 | 41.60 80.16 | 79.92 | 59.30 79.75 | 79.48 | 65.14 78.60 | 77.79 | 71.74
UGBA 80.19 | 79.89 | 30.99 79.97 | 79.75 | 34.91 79.72 | 79.47 | 38.64 78.05 | 77.50 | 41.77
DPGBA 73.65 | 71.71 | 73.08 73.26 | 71.87 | 75.80 72.06 | 69.88 | 74.74 69.29 | 66.35 | 76.84

G DETAILED EXPERIMENTAL RESULTS
G.1 Comprehensive Experimental Results for

RQ1
Table 15, Table 16, and Table 17 report the results of backdoor
attacks under black-box settings on ACM, DBLP, and IMDB datasets
respectively, presenting clean micro-F1, clean macro-F1, and attack
success rate (ASR) metrics for various graph neural network models
and attack methods, with the best ASR results highlighted in bold.

G.2 Detailed Experimental Results for RQ2
Fig. 17 shows the average performance of HGBA when attacking
six HGNNs across three datasets under different attack budgets.

G.3 Detailed Experimental Results for RQ3
G.3.1 Trigger Node Selection Impact on HGBAI. Fig. 18 illustrates
the impact of trigger node selection for HGBAI across three datasets.

G.3.2 Results of Backdoor Metapath Selection. Table 18, Table 19,
and Table 20 display the results of backdoor metapath selection
using homogeneous GNNs as proxy models for ACM, DBLP, and
IMDB datasets, respectively.

Fig. 19 shows the attention values of metapaths in HAN, high-
lighting the influence of selected metapaths (PAP, APCPA, MDM)
on node classification.

Algorithm 2 Backdoor Metapath Selection
Require:
1: Clean graph 𝐺
2: Set of candidate metapaths P = {𝑃1, 𝑃2, . . . , 𝑃𝑛}
3: Proxy model 𝑓

Ensure: Selected backdoor metapath 𝑃𝑏
4: if type(𝑓 ) = HomoGNN then
5: 𝑎𝑐𝑐∗ ← 0 {Best accuracy}
6: 𝑃𝑏 ← ∅ {Backdoor metapath}
7: for all 𝑃𝑖 ∈ P do
8: 𝐺𝑃𝑖 ← ExtractHomogeneousSubgraph(𝐺, 𝑃𝑖 )
9: 𝑓𝑃𝑖 ← TrainHomogeneousGNN(𝐺𝑃𝑖 )
10: 𝑎𝑐𝑐𝑃𝑖 ← EvaluateModel(𝑓𝑃𝑖 ,𝐺𝑃𝑖 )
11: if 𝑎𝑐𝑐𝑃𝑖 > 𝑎𝑐𝑐∗ then
12: 𝑎𝑐𝑐∗ ← 𝑎𝑐𝑐𝑃𝑖
13: 𝑃𝑏 ← 𝑃𝑖
14: end if
15: end for
16: else if type(𝑓 ) = HGNN then
17: 𝑓𝐻 ← TrainHGNN(𝐺,P)
18: 𝑊 ← ExtractMetapathWeight(𝑓𝐻 )
19: 𝑤∗ ← 0
20: 𝑃𝑏 ← ∅
21: for all 𝑃𝑖 ∈ P do
22: if𝑊 (𝑃𝑖 ) > 𝑤∗ then
23: 𝑤∗ ←𝑊 (𝑃𝑖 )
24: 𝑃𝑏 ← 𝑃𝑖
25: end if
26: end for
27: end if
28: return 𝑃𝑏

G.4 More Information for RQ4
G.4.1 Introduction of Defense Methods and Robust Models.
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Table 15: Results of Backdoor Attacks under Black-Box Attack Settings on ACM Dataset. (Clean Micro-F1 (%) | Clean Macro-F1
(%) | ASR (%)). The best ASR results are marked in boldface. The red-highlighted data reflects the low stealthiness of DPGBA.
Note that only one set of clean metrics is available as both HGBA1 and HGBA2 share the same test set for clean metrics
evaluation, while separate ASR measurements are obtained for each activation method.

Models SBA-SAMPLE SBA-GEN GTA UGBA DPGBA HGBA1 HGBA2

GCN 89.09 | 89.17 | 13.50 88.29 | 88.37 | 78.64 87.77 | 87.91 | 41.25 87.02 | 87.01 | 56.84 89.57 | 89.57 | 100.00 86.20 | 86.23 | 98.77 - | - | 99.82

GAT 87.30 | 87.36 | 14.88 88.43 | 88.45 | 32.94 88.95 | 89.06 | 12.11 88.15 | 88.28 | 24.67 88.15 | 88.25 | 36.51 88.52 | 88.56 | 88.05 - | - | 97.06

GraphSAGE 90.18 | 90.32 | 4.41 91.22 | 91.31 | 57.11 91.45 | 91.47 | 64.19 92.16 | 92.16 | 53.98 90.79 | 90.82 | 100.00 89.30 | 89.27 | 92.55 - | - | 95.10

RGCN 90.75 | 90.76 | 2.44 92.21 | 92.29 | 50.77 91.36 | 91.46 | 42.07 91.83 | 91.96 | 33.24 52.46 | 43.64 | 100.00 91.03 | 90.47 | 96.94 - | - | 90.53

HetGNN 85.84 | 85.94 | 1.46 90.98 | 91.07 | 38.95 92.40 | 92.40 | 32.50 92.26 | 92.35 | 18.95 61.38 | 51.15 | 100.00 87.93 | 87.36 | 71.90 - | - | 75.87

HAN 91.45 | 91.48 | 25.24 89.94 | 90.06 | 95.89 90.42 | 90.54 | 78.45 91.41 | 91.46 | 99.70 54.34 | 51.19 | 62.62 91.26 | 90.71 | 100.00 - | - | 100.00

Table 16: Results of Backdoor Attacks under Black-Box Attack Settings on DBLP Dataset. (Clean Micro-F1 (%) | Clean Macro-F1
(%) | ASR (%)). The best results are marked in boldface. Note that only one set of clean metrics is available as both HGBA1 and
HGBA2 share the same test set for clean metrics evaluation, while separate ASR measurements are obtained for each activation
method.

Models SBA-SAMPLE SBA-GEN GTA UGBA DPGBA HGBA1 HGBA2

GCN 92.22 | 91.63 | 2.36 91.41 | 90.92 | 2.62 91.02 | 90.30 | 2.87 91.48 | 90.84 | 2.60 91.73 | 91.13 | 3.23 90.58 | 90.10 | 100.00 - | - | 100.00

GAT 85.96 | 84.56 | 2.67 80.89 | 80.19 | 4.69 91.66 | 91.07 | 3.84 90.11 | 89.33 | 3.88 91.34 | 90.54 | 7.26 82.01 | 82.01 | 78.05 - | - | 67.32

GraphSAGE 91.62 | 91.07 | 3.74 91.62 | 91.00 | 3.87 91.38 | 90.84 | 3.61 91.80 | 91.17 | 3.88 91.83 | 91.17 | 4.02 86.92 | 86.45 | 72.48 - | - | 73.83

RGCN 91.94 | 91.44 | 13.28 92.22 | 91.72 | 72.37 91.97 | 91.23 | 54.31 92.33 | 91.81 | 12.10 92.57 | 91.96 | 100.00 88.60 | 88.09 | 99.52 - | - | 99.63

HetGNN 91.27 | 90.54 | 7.24 91.34 | 90.80 | 67.03 90.50 | 89.81 | 39.60 89.51 | 88.65 | 9.64 91.09 | 90.43 | 100.00 83.29 | 82.97 | 90.00 - | - | 91.80

HAN 92.50 | 91.93 | 8.55 92.89 | 92.27 | 97.75 92.33 | 91.71 | 78.20 91.24 | 90.39 | 8.82 80.36 | 72.65 | 75.74 91.67 | 91.13 | 100.00 - | - | 100.00

Table 17: Results of Backdoor Attacks under Black-Box Attack Settings on IMDB Dataset. (Clean Micro-F1 (%) | Clean Macro-F1
(%) | ASR (%)). The best results are marked in boldface. Note that only one set of clean metrics is available as both HGBA1 and
HGBA2 share the same test set for clean metrics evaluation, while separate ASR measurements are obtained for each activation
method.

Models SBA-SAMPLE SBA-GEN GTA UGBA DPGBA HGBA1 HGBA2

GCN 57.51 | 57.32 | 12.87 58.19 | 57.91 | 100.00 56.63 | 56.41 | 51.56 57.11 | 56.87 | 30.13 59.06 | 58.65 | 100.00 55.38 | 55.23 | 94.51 - | - | 97.78

GAT 57.41 | 57.26 | 14.43 57.03 | 56.83 | 43.35 57.28 | 57.00 | 59.07 56.37 | 56.20 | 64.29 58.41 | 58.13 | 49.35 56.16 | 56.01 | 80.07 - | - | 98.84

GraphSAGE 59.49 | 59.51 | 13.12 59.17 | 59.22 | 99.88 59.83 | 59.83 | 51.97 59.70 | 59.76 | 32.54 59.75 | 59.74 | 100.00 59.23 | 59.17 | 59.55 - | - | 75.97

RGCN 63.36 | 63.16 | 11.24 63.11 | 62.93 | 99.79 62.14 | 62.04 | 43.14 62.84 | 62.72 | 31.77 58.97 | 58.86 | 100.00 62.12 | 61.87 | 40.04 - | - | 71.18

HetGNN 59.00 | 58.53 | 12.30 58.21 | 56.94 | 95.95 59.65 | 59.71 | 36.55 58.64 | 57.98 | 16.00 58.48 | 58.22 | 100.00 58.42 | 58.23 | 45.88 - | - | 75.50

HAN 60.97 | 60.70 | 11.66 61.20 | 61.02 | 100.00 60.88 | 60.70 | 53.50 59.38 | 59.15 | 54.79 55.34 | 54.63 | 76.71 60.27 | 60.13 | 83.11 - | - | 91.04

GCN GAT GraphSAGE

PAP 87.57% | 87.69% 88.90% | 89.01% 90.79% | 90.85%
PSP 70.59% | 68.91% 70.79% | 69.17% 88.62% | 88.69%
PTP 35.06% | 17.31% - 85.87% | 85.84%

Table 18: Backdoor Metapath Selection Using Homogeneous
GNNs as ProxyModels (ACM). "-" means out of GPUmemory.

• Prune [5]. It operates by eliminating the edges that connect nodes
with a low cosine similarity. Since the edges added by backdoor
attackers often link nodes that are not similar to each other, this

GCN GAT GraphSAGE

APA 79.10% | 77.52% 78.30% | 79.96% 78.36% | 79.26%
APCPA 92.09% | 91.48% 88.02% | 86.09% 92.48% | 91.87%
APTPA 72.99% | 71.29% - 76.57% | 75.77%

Table 19: Backdoor Metapath Selection Using Homogeneous
GNNs as Proxy Models (DBLP). "-" means out of GPU mem-
ory.

pruning strategy can effectively disrupt the trigger structure and
the attachment edges established by the attackers.
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Figure 17: The Average Performance of HGBA Attacking Six
HGNNs on Three Datasets under Varying Attack Budgets.

GCN GAT GraphSAGE

MAM 50.32% | 48.79% 49.78% | 49.53% 58.35% | 58.29%
MDM 58.99% | 58.73% 59.00% | 58.78% 60.16% | 60.09%

Table 20: Backdoor Metapath Selection Using Homogeneous
GNNs as Proxy Models (IMDB)

• Prune+LD (Label Discarding) [5]. Based on pruning the edges
between dissimilar nodes as in the Prune method, it also discards
the labels of the nodes that are connected by these dissimilar
edges. This is aimed at reducing the impact of the dirty labels
associated with the poisoned nodes, which can otherwise nega-
tively affect the performance and security of the GNNs.
• ESAGE [42]. E-SAGE is a proposed approach for defending against
GNN backdoor attacks, leveraging explainability. Based on the
finding that malicious and benign edges exhibit significant differ-
ences in importance scores for explainability evaluation, E-SAGE
adaptively conducts an iterative edge pruning process on the
graph using edge scores.
• HAN-RoHe [47]. RoHe is a robust HGNN framework designed to
defend against topology adversarial attacks. It equips an attention
purifier that prunes malicious neighbors based on topology and
features. Introducing metapath-based transiting probability as
a prior criterion mitigates the perturbation enlargement effect,
restraining the influence of adversarial hubs. The purifier then
masks out neighborswith low confidence, alleviating the negative
impact of unreliable neighbors in the soft attention mechanism.
• RobustGCN [54]. Instead of representing nodes as vectors, Robust-
GCN uses Gaussian distributions as hidden node representations
in each convolutional layer, enabling it to absorb adversarial
changes through variance adjustments. To address the propa-
gation of attacks, it employs a variance-based attention mech-
anism, assigning weights to node neighborhoods according to

Figure 18: Impact of Trigger Node Selection for HGBAI on
ThreeDatasets. The red dashed line indicates the highest ASR
observed. 2245, 4, 242 respectively represent the trigger nodes
selected for each dataset based on the strategy we proposed.

Figure 19: Attention values ofmetapaths in HAN, illustrating
the influence of selected metapaths (PAP, APCPA, MDM) on
node classification.

their variances during convolutions. This approach enhances the
robustness of GCNs against adversarial attacks.
• GNNGuard [48]. GNNGuard is a general algorithm for defend-
ing against training-time attacks on graph structure. It can be
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Table 21: Performance of HGBA compared to baseline back-
door attacks on graph classification tasks using the PRO-
TEINS dataset. Results report Accuracy on Clean Graph) and
paired Clean Accuracy/Attack Success Rate (Clean Acc/ASR)
for each method as percentages, averaged across GCN, GIN,
and GraphSAGE.

Attacks GCN GIN GraphSAGE

Clean Graph 71.95 70.14 69.95
SBA-SAMPLE 71.92 | 33.33 70.88 | 46.97 69.02 | 33.33
GTA 69.55 | 41.37 57.61 | 65.52 64.09 | 55.17
TRAP 68.38 | 77.78 68.38 | 68.89 69.32 | 55.56
HGBA 70.61 | 65.18 69.46 | 73.57 68.86 | 62.50

Table 22: Performance of HGBA on node classification tasks
under homogeneous graphs. Results report Accuracy on
Clean Graph, Clean Accuracy under backdoor attack (Clean
Acc), and Attack Success Rate (ASR) as percentages, averaged
across GCN, GAT, and GraphSAGE.

Dataset Clean Graph Clean Acc ASR

Cora 87.99 85.64 85.58
PubMed 87.32 84.94 95.51
CiteSeer 74.94 70.18 95.79

integrated into any GNN by detecting and quantifying the rela-
tionship between graph structure and node features. It assigns
higher weights to edges connecting similar nodes and prunes
edges between unrelated nodes. With components like neighbor
importance estimation and layer-wise graph memory, it restores
GNN performance against various adversarial attacks, including
targeted and non-targeted ones.

G.4.2 Defense Implementation Details of RQ4. For Prune, Prune+LD,
and E-SAGE, which sanitize graphs through graph pruning tech-
niques before training, since they were originally proposed for
homogeneous graphs, to implement them on heterogeneous graph
data, we first extract subgraphs on heterogeneous graphs based on

backdoor metapaths. Then, we apply these three methods, record
the two-end nodes of the edges that need to be pruned, and return
to the heterogeneous graph to delete all the edges between these
nodes based on the backdoor metapaths using masks. After that,
normal training and evaluation are conducted.

For HAN-RoHe, RobustGCN, and GNNGuard, we simply replace
the normal models with these robust models without any additional
processing.

G.5 Details about RQ5
G.5.1 New Compared Method: TRAP.

• TRAP. It poisons the training dataset with perturbation-based
triggers generated through a gradient-based score matrix
from a surrogate GCN model.

G.5.2 Defense Implementation Details of RQ5. Here, we only de-
scribe how to extend the relation-based triggermechanism of HGBA
to homogeneous graph classification and node classification tasks
on heterogeneous graph datasets. For the implementation details
of other comparison methods, please refer to the related works.

For classification tasks on homogeneous graphs, we randomly
select a certain percentage of samples from the training set as poi-
soned samples according to the poisoning rate. For each poisoned
sample, we choose the three nodes with the lowest Betweenness
Centrality and connect them to construct a trigger of size 3. The
subsequent operations are consistent with those of other methods.

For node classification tasks on homogeneous graphs, we first
select the node with the lowest Betweenness Centrality as the
trigger node. Then, among the nodes that are not connected to the
trigger node, we select some nodes according to the attack budget
and establish edges to set up the trigger. The subsequent operations
follow the same procedures as other methods.

G.5.3 Results of RQ5. Table 21 presents the performance compar-
ison of HGBA against baseline backdoor attacks (SBA-SAMPLE,
GTA, TRAP) in graph classification tasks using the PROTEINS
dataset.

Table 22 illustrates the performance of HGBA in node classifica-
tion tasks under homogeneous graphs.
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