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Abstract: Quantum cryptographic protocols do not rely only on quantum-physical resources, they also require reliable
classical communication and computation. In particular, the secrecy of any quantum key distribution protocol
critically depends on the correct execution of the privacy amplification step. This is a classical post-processing
procedure transforming a partially secret bit string, known to be somewhat correlated with an adversary, into
a shorter bit string that is close to uniform and independent of the adversary’s knowledge. It is typically
implemented using randomness extractors. Standardization efforts in quantum cryptography have focused on
the security of physical devices and quantum operations. Future efforts should also consider all algorithms
used in classical post-processing, especially in privacy amplification, due to its critical role in ensuring the
final security of the key. We present randextract, a reference library to test and validate privacy amplification
implementations.

1 INTRODUCTION

Quantum cryptography is a multidisciplinary field
taking advantage of quantum features, such as en-
tanglement or the impossibility of cloning quan-
tum states, to design cryptographic protocols.
Two such protocols are Quantum Key Distribu-
tion (QKD) (Bennett and Brassard, 1984; Ekert,
1991) and Quantum Random Number Generators
(QRNGs) (Stefanov et al., 2000). QKD allows two
honest parties to establish a secret key over an inse-
cure public quantum channel, and QRNGs can pro-
duce truly unpredictable randomness.

Besides the physical implementation using quan-
tum technology, quantum cryptographic protocols
rely on classical computation and communication. In
particular, both QKD and QRNGs depend on classi-
cal data processing steps to achieve their goals. One
of these steps, privacy amplification (Bennett et al.,
1995), is crucial for security. Bugs or deviations from
a correct implementation can introduce vulnerabilities
and compromise the security guarantees of the pro-
tocols. In the case of QKD, this could result in the
generation of insecure keys.
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Current standardization efforts in quantum cryp-
tography have focused on the security of physical de-
vices and quantum operations (ISO/IEC JTC 1/SC 27,
2023; ETSI ISG-QKD, 2016). To ensure the secu-
rity of the complete protocol, these efforts have to
be extended to include all classical post-processing
tasks. This includes the careful selection and stan-
dardization of algorithms, rigorous testing against
publicly available test vectors, and validation through
well-established certification programs. In contrast to
classical cryptographic algorithms and devices (NIST
CMVP, 2025; NIST CAVP, 2025), such processes do
not yet exist for quantum cryptography.

1.1 Our Contribution

Our work provides a reference implementation of the
functions used in privacy amplification allowing to
check for correctness.

1. randextract is an open-source Python library
that implements (modified) Toeplitz hashing and
Trevisan’s extractor, two types of functions com-
monly used in the privacy amplification step. It
is distributed as an easy-to-use Python package.
This allows the source code to remain close to
the mathematical formulations, reduces the possi-
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bility of implementation bugs due to peculiarities
of the programming language and improves read-
ability, allowing a large audience to read and audit
the code. The library focuses on correctness, con-
taining hundreds of unit and integration tests, and
is not performance-optimized.

2. The library can be used directly in a quantum
cryptographic protocol to implement the privacy
amplification step.

3. The library can be used to test and validate high-
performance implementations, whose source
code may be unavailable or difficult to audit. We
use randextract to test and validate three ran-
domness extractors that have been used in recent
QKD and QRNG implementations. With these
real world examples, we highlight the importance
of the classical post-processing phase for security
and correctness.

4. We provide a function to generate test vectors
for privacy amplification implementations in or-
der to facilitate external audits. We use the same
format as in the NIST Cryptographic Algorithm
Validation Program. These test vectors can be
used by the community in a validation process in-
cluded into future standardization efforts of quan-
tum cryptographic devices.

1.2 Outline

The paper is organized as follows: Sec. 2 introduces
the background of quantum key distribution, quan-
tum random number generation and privacy amplifi-
cation. In particular, Sec. 2.4 introduces the theory of
two families of quantum-proof extractors: (modified)
Toeplitz hashing and Trevisan’s construction. Sec. 3,
4, and 5 present our main contributions. In Sec. 3, we
describe our Python package, randextract, in de-
tail. Sec. 4 demonstrates how the library can be used
to test and validate third-party implementations. No-
tably, using our library, we identify and correct a bug
in a modified Toeplitz hashing implementation used
in a high-speed QKD experiment. We also uncover
discrepancies between the mathematical specification
and the actual implementation of a high-performance
Trevisan’s construction implementation used in QKD
and QRNG experiments.

Sec. 5 introduces a set of test vectors for Toeplitz
hashing, proposed as a step towards future standard-
ization efforts. Finally, Sec. 6 presents our conclu-
sions and outlines directions for future work.

2 THEORETICAL BACKGROUND

2.1 Notation & Definitions

The capital letters X , Y and Z denote classical ran-
dom variables, which take values x, y and z. Cal-
ligraphic fonts X , Y and Z denote the alphabet of
the corresponding random variables. The probabil-
ity that the random variable Z takes the value z is
PZ(Z = z), sometimes abbreviated to PZ(z) or P(z)
when it is clear from the context which random vari-
able it refers to. For two random variables X and Y ,
the joint probability is defined as PXY (x,y) = P(X =
x∧Y = y), and the conditional probability of X given
Y as PX |Y (x,y) = PX |Y=y(x) = PXY (x,y)/PY (y).

The guessing probability, defined as the probabil-
ity of correctly guessing the value of a random vari-
able X , is

pguess(X) = max
x∈X

PX (X = x) ,

which motivates the definition of the min-entropy

Hmin(X) =− log2 pguess(X) .

The uniform distribution over a random variable
X is denoted by UX , i.e., each x ∈ X is equally likely,
and the guessing probability is 1/|X |.

The statistical distance between two probability
distributions PX and PY , defined over the same alpha-
bet X , is given by

d(X ,Y ) =
1
2 ∑

x∈X
|PX (x = x)−PY (y = x)| .

Operationally, the statistical distance represents the
maximum advantage one can gain in correctly iden-
tifying whether a single sample was drawn from PX
or PY . A probability distribution of a random variable
X is said to be ε−close to uniform if its distance with
respect to the uniform distribution is bounded by ε,
i.e.,

d(X ,U) =
1
2 ∑

x∈X

∣∣∣∣P(x)− 1
|X |

∣∣∣∣≤ ε . (1)

Greek letters, such as ρ and σ, are used to denote
quantum states. Given a Hilbert space H , a quantum
state ρ can be represented by a positive semi-definite
Hermitian operator of unit trace acting on H . Any
quantum state can be expressed in terms of an or-
thonormal basis {|i⟩}i of H

ρ = ∑
i, j

ρi j |i⟩⟨ j| ,

where ρi j are complex numbers, ρi j = ρ∗
ji, and Tr[ρ] =

∑i ρii = 1.



Letters from the beginning of the alphabet, such
as A, B or E are used to denote the subsystems that
form a composite quantum system. For example, ρABE
denotes a quantum state acting on the Hilbert space
H = HA ⊗HB ⊗HE .

A (classical) random variable X can be written as
a diagonal quantum state

ρX = ∑
x∈X

P(x) |x⟩⟨x| ,

and the uniform distribution can be represented as the
maximally mixed state

σU =
1

dim(H )

dim(H )

∑
i=1

|i⟩⟨i| .

Of special interest in quantum cryptography are
the so-called classical-quantum (cq) states, which al-
low to represent a quantum system correlated with a
classical random variable. Given a probability distri-
bution PX and a set of quantum states {ρx

E}x, a cq-
state is defined as

ρXE = ∑
x∈X

(PX (x) |x⟩⟨x|⊗ρ
x
E) . (2)

This formalism is particularly relevant in security
analyses, where the classical variable models the hon-
est party’s output (e.g., a raw key), and the quantum
system E represents the adversary’s side information.

Quantum measurements are represented by a set
of positive operators {Ei}i satisfying ∑i Ei =1. These
sets are called Positive Operator-Valued Measure
(POVM). Given a state ρ and a measurement {Ei}i,
the probability of measuring the value i is given by
Tr[Eiρ].

The trace distance generalizes the notion of statis-
tical distance to the quantum setting. For two quan-
tum states ρ and σ, it is defined as

d(ρ,σ) =
1
2
∥ρ−σ∥tr =

1
2

Tr
√
(ρ−σ)†(ρ−σ) .

Analogously to the statistical distance, the trace
distance provides an operational interpretation as
a measure of distinguishability between quantum
states. If a system is prepared in either ρ or σ

with equal probability, the maximum probability with
which the state can be correctly identified; e.g., by
doing a (single) quantum measurement or feeding the
state into another quantum protocol, is 1

2 +
1
2 d(ρ,σ).

The trace distance of a classical random variable X
from uniform from the point of view of an adversary
with quantum side information E is given by

d(ρXE ,σU ⊗ρE) =
1
2
∥ρXE −σU ⊗ρE∥tr . (3)

Finally, both the guessing probability and the min-
entropy can be generalized to the setting of cq-states.

The guessing probability of a random variable X con-
ditioned on a quantum system E is

pguess(X |E) = max
{Ex}

∑
x∈X

PX (x)Tr[ρx
EEx] ,

where the maximization is over all the POVMs, and
the conditional min-entropy

Hmin(X |E) =− log2 pguess(X |E) .

2.2 Quantum Cryptography

2.2.1 Quantum Key Distribution

An ideal key distribution protocol is one that produces
a bit string that is identical for the honest parties and
that looks uniform from the adversary’s point of view.
Real protocols cannot usually achieve this perfectly
and, instead, produce an output that is ε-close to the
ideal one, i.e., the trace distance between the output
of the real and the ideal protocol, as in Eq. (3), is
bounded by ε. The trace distance guarantees that the
real protocol is indistinguishable from the ideal pro-
tocol, except with probability ε. This notion of se-
curity as the distinguishability between an ideal and
a real protocol guarantees that the protocol is com-
posable (Pfitzmann and Waidner, 2001; Backes et al.,
2003; Canetti, 2001; Maurer, 2002), i.e., it remains
secure even if it is used with other protocols to form a
larger cryptographic system.

Key distribution is traditionally implemented us-
ing public-key cryptography, e.g., RSA (Rivest et al.,
1983), Diffie-Hellman (Diffie and Hellman, 1976) or
ML-KEM (Avanzi et al., 2020; National Institute of
Standards and Technology, 2024). These protocols
are secure if the adversary is limited in computing
power, and given some assumptions on the compu-
tational hardness of certain mathematical problems.

Quantum Key Distribution (QKD) is a quantum
cryptographic protocol that enables two honest parties
to establish a shared secret key over an insecure quan-
tum channel1. QKD is fundamentally different from
public-key cryptography because the established keys
are information-theoretically secure (Maurer, 1999),
i.e., their security does not depend on a limitation in
computing power of the adversary.

Any quantum key distribution protocol consists of
two distinct phases:

1In addition to the public quantum channel, the hon-
est parties need to be able to communicate classically over
an authentic channel and have access to local randomness.
Their labs need to be secured and isolated, and depending
on the protocol, there might be additional conditions on the
quantum devices.



1. a quantum phase, in which quantum states are pre-
pared, transmitted over a public quantum channel,
and measured;

2. and a classical phase, in which the classical data
that corresponds to the preparation settings and
measurement results is post-processed to derive
the final shared secret keys.

The classical post-processing involves several
subprotocols or steps, which might differ slightly
from one particular protocol to another. A common
way to implement this phase in a QKD protocol is the
following:

1. The starting point after the quantum phase are two
raw keys, bit strings held by the honest parties that
are neither equal nor completely secret.

2. A sample from the raw keys is compared and then
discarded to perform the testing step, also known
as parameter estimation. The honest parties re-
veal some of the bits over the classical channel to
estimate the losses and number of errors, which
allows to bound the amount of information an ad-
versary might have obtained during the quantum
phase2. Testing aborts the protocol if this estima-
tion is beyond a certain threshold, and continues
otherwise. A real implementation correctly rec-
ognizes when an adversary has too much infor-
mation except with probability εpe.

3. In case the honest parties decide to continue the
protocol, the next step is called information rec-
onciliation and corrects the errors of the (remain-
ing) raw keys to obtain the corrected keys. This
step ensure the correctness of the protocol, and it
is often implemented using error-correcting codes
(see e.g., (Peterson and Weldon, 1972)). After this
step, the two honest parties hold identical keys,
which are partially secret, except with probability
εir.

4. Lastly, the corrected keys are transformed into
shorter but completely secret bit strings in the pri-
vacy amplification step. These are the final secret
keys. At the end of this step, the honest parties
still hold equal keys but these are now also secret
from the adversary except with probability εpa.

A security proof of a QKD protocol (Renner,
2005) is a theoretical statement, with well-defined
conditions and a security claim in terms of a security
parameter ε bounding the probability that the output

2In reality, errors and losses might be due to the noisy
quantum channel. In cryptography, it is common to assume
the worst-case scenario. In this case, any error is attributed
to an adversary eavesdropping and manipulating the trans-
mitted quantum states.

of the protocol differs from an ideal key distribution
protocol, i.e., guarantees that the honest parties end up
with an equal, perfectly secure key except with prob-
ability ε. If the subprotocols are defined in a compos-
able way, then the security parameter can be bounded
in terms of the parameters of these subprotocols using
the union bound (Boole, 1847), i.e., ε≤ εpe+εir+εpa.
This security parameter ε can ideally be made arbi-
trarily small at the cost of a lower key rate.

2.2.2 Quantum Random Number Generator

A Quantum Random Number Generator (QRNG) is a
type of hardware random number generator that uses
quantum systems to generate randomness. Most hard-
ware random number generators use classical physi-
cal processes, and since these processes are determin-
istic, these protocols need to assume that the initial
state of the system is only partially known by an ad-
versary. QRNGs, on the other hand, take advantage
of the inherent unpredictability of quantum phenom-
ena. Even if a quantum state is perfectly described,
the outcome of a measurement is, in general, not de-
terministic (Born, 1955).

QRNG protocols are similar to QKD protocols but
with just one party involved. In the quantum phase,
the same party prepares and measures quantum states,
and the classical post-processing does not contain an
information reconciliation step. The security notion
for QRNG protocols is the same as in QKD, i.e.,
close-to-uniform randomness even from the point of
view of an adversary who might hold a quantum state
initially correlated with the state of the QRNG sys-
tem. The privacy amplification step can be used in
exactly the same way as in a QKD protocol. It re-
moves bias arising from the quantum phase and side-
information held by an adversary.

2.3 Privacy Amplification with Seeded
Randomness Extractors

As introduced in Sec. 2.2.1, Privacy Amplification
(PA) is a classical post-processing procedure whose
goal is to compress partially secret (classical) bit
strings into bit strings that are uniform and indepen-
dent of any adversary’s (quantum) knowledge. In the
context of QKD, the adversary’s knowledge of the
corrected keys can originate from eavesdropping or
tampering with the quantum states transmitted over
the public quantum channel, as well as from observ-
ing the authenticated classical communication, such
as the error correction syndrome exchanged during
the information reconciliation step.

The correct composable definition of ideal keys
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Figure 1: Diagram of a seeded randomness extractor that
takes an n-bit string and a uniform d-bit uniform string as
inputs, and outputs an ε-close to uniform m-bit string.

or ideal randomness after privacy amplification is an
upper bound on Eq. (3), i.e.,

d(ρXE ,σU ⊗ρE)≤ εpa ,

which guarantees that the final keys from QKD or the
output from a QRNG look uniform from an adver-
sary’s point of view, except with a small probability
εpa.

Seeded Randomness Extractors Privacy amplifi-
cation can be implemented using seeded randomness
extractors (see e.g., (Shaltiel, 2004)). A seeded ran-
domness extractor is a function that takes as input

1. a weak random source X , i.e., a bit string of length
n, and

2. a uniform seed Y , i.e., a bit string of length d,

and outputs a bit string of length m (see Figure 1), i.e.,

Ext : {0,1}n ×{0,1}d →{0,1}m (4)

A seeded randomness extractor can be used to
transform a bit string with high min-entropy into an
almost-uniform bit string. In order to correctly im-
plement the privacy amplification step using these ex-
tractors we require two additional conditions:

1. The output of the extractor is independent of the
seed. This is because the random seed is revealed
to the adversary during the execution of the proto-
col.

2. The output is close to uniform for an adversary
with quantum side information.

Extractors satisfying the first condition are called
strong, and those satisfying the second condition
quantum-proof 3.

A quantum-proof (k,ε)-strong seeded randomness
extractor (König and Renner, 2011) is a function de-
fined as in Eq. (4) which, for a uniform indepen-
dent seed Y and input X with conditional min-entropy
Hmin(X |E)≥ k, outputs a string Ext(X ,Y ) satisfying

d(ρExt(X ,Y )Y E ,σU ⊗ρY ⊗ρE)≤ εpa , (5)

3If the output of the extractor is close to uniform for an
adversary with classical side information, the extractor is
said to be classical-proof. All quantum-proof extractors are
classical-proof, but the converse is not true.

i.e., the output is εpa-close to the ideal output which is
uniform, independent of the seed and uncorrelated to
the quantum side information.

In the context of QKD and QRNG protocols,
only quantum-proof strong randomness extractors can
to be used to realize the privacy amplification step.
Therefore, these are the extractors implemented in
randextract.

2.4 Construction of Randomness
Extractors

Families of two-universal hash functions are
quantum-proof strong extractors. Alternative
constructions are possible such as the Trevisan’s
construction.

A family of functions F = { fy}y, such that fy :
X → Z, is two-universal if

Pr
fy∈F

[ fy(x) = fy(x′)]≤
1
|Z|

,

for any distinct x,x′ ∈ X , and fy picked uniformly at
random (Carter and Wegman, 1979). This means that
the number of collisions, when the function is picked
uniformly at random, is bounded by the size of the
output alphabet. There exist two-universal functions
from {0,1}n to {0,1}m for any positive integers 0 ≤
m ≤ n (Wegman and Carter, 1981).

A seeded randomness extractor, as defined in
Eq. (4), is realized from a family of two-universal
hash functions F by using the seed y ∈ Y to choose
one particular function fy ∈ F and hashing the input
x ∈ X with this chosen function, i.e.,

Ext(x,y) := fy(x) . (6)

The quantum leftover hash lemma (Renner and
König, 2005; Renner, 2005; Tomamichel et al., 2011)
states that a family of two-universal functions, as de-
fined in Eq. (6), is a quantum-proof (k,εpa)-strong ex-
tractor for output length m less or equal than⌊

k+2−2log
1
ε

⌋
.

2.4.1 Toeplitz Hashing

The set of all binary m× n Toeplitz matrices defines
a family of two-universal hash functions, where each
matrix corresponds to a specific function in the fam-
ily. A matrix T is said to be a Toeplitz matrix if its
elements satisfy

Ti, j = Ti−1, j−1 . (7)

Toeplitz matrices are, therefore, fully characterized
by their first row and column.
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Figure 2: Toeplitz hashing is defined as the matrix-vector
multiplication of a Toeplitz matrix generated from a uni-
form seed y of length n+m−1 and input x of length n from
a weak random source.

One common method to select a specific matrix
from this family using the seed y is to define the ma-
trix entries based on y as follows:

Ti, j(y) := yi− j . (8)

Standard Toeplitz Hashing Using Eq. (8) to con-
struct a matrix from the seed, the standard Toeplitz
hashing (see e.g., (Krawczyk, 1995)) is defined as

ExtToeplitz(x,y) := T (y) · x . (9)

Figure 2 shows this construction graphically.

Efficient implementation General matrix-vector
multiplication has a computational complexity O(n2).
However, the matrix-vector multiplication of Toeplitz
hashing can be implemented more efficiently with a
computational complexity O(n logn) using the Fast
Fourier Transform (FFT). First, the m × n Toeplitz
matrix is transformed into a square (m+n−1)×(m+
n − 1) circulant matrix by adding n − 1 additional
rows and m− 1 columns. Then, this matrix can be
diagonalized using the Fourier matrix Fq, whose ma-
trix elements are determined by Fj,k =

1√
q e2πi jk/q with

q = m+n−1. The circulant matrix can, therefore, be
written in terms of the seed y as

T̂q(y) = F−1
q diag(Fqy)Fq .

And the complete Toeplitz extractor as

ExtToeplitz(x,y) = FFT−1
(

FFT(y)⊙FFT(x̂)
)∣∣∣

0...m−1
,

where x̂ is the input x padded with m−1 zeros, ⊙ de-
notes element-wise multiplication of the two vectors,
and |0...m−1 means that the output of the inverse fast
Fourier transform is truncated to the first m bits (see
App. C from (Hayashi and Tsurumaru, 2016)).

Modified Toeplitz Hashing Standard Toeplitz
hashing requires a seed of length m + n − 1 bits.
However, it is possible to reduce the seed length to
n−1 bits by using a different family of two-universal
hash functions (Hayashi and Tsurumaru, 2016). For
the same input and output lengths, the so-called
modified Toeplitz hashing uses as its hashing matrix
the concatenation of a smaller Toeplitz matrix with
the m×m identity matrix, i.e.,

ExtMod. Toeplitz(x,y) := (T ′(y)∥1m)x , (10)

where T ′(y) is a Toeplitz matrix of dimension m ×
(n − m). The matrix-vector multiplication remains
efficiently computable using the same FFT-based ap-
proach described above.

2.4.2 Trevisan’s Construction

Two-universal hashing is not the only way to de-
fine strong quantum-proof seeded extractors. Tre-
visan (Trevisan, 2001) developed a method to con-
struct arbitrary extractors from one-bit extractors and
weak designs. Later, it was proven that this construc-
tion generates a quantum-proof strong extractor (De
et al., 2012) from a strong one-bit extractor.

One-Bit Extractors One-bit extractors are simply
extractors defined as in Eq. (4) with m = 1. Any
one-bit (k,ε)-strong extractor is a quantum-proof
(k − logε,3

√
ε)-strong extractor. If the one-bit ex-

tractor is already classical-proof, then it can be shown
that it is also a quantum-proof (k,(1+

√
2)
√

ε)-strong
extractor (König and Terhal, 2008).

A combinatorial design (Nisan and Wigderson,
1994) is a family of subsets W = [S0,S1, . . . ,Sm−1],
with Si ⊆ [d], typically constructed so that the in-
tersections between the subsets satisfy certain con-
straints. These designs are widely used in theoretical
computer science due to their ability to balance over-
lap and independence.

Weak Design A weak (m, t,r,d)-design is a com-
binatorial design, i.e., a family of sets W =
[S0,S1, . . . ,Sm−1] ∈ [d], where all sets are of size t,
satisfying

i−1

∑
j=0

2|Si∩S j | ≤ rm (11)

for all i (Raz et al., 2002).

Trevisan’s extractor Given a quantum-proof
strong one-bit extractor Ext1(x,y) and a weak design
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Figure 3: Trevisan’s extractor output (12) is the concatena-
tion of the m bits obtained from calling the one-bit extractor
m times on the same input but with a different seed each
time. The m seeds yS0 , . . . ,ySm−1 are constructed from the
input seed y using the sets from the weak design as indices.

W = [S0, . . . ,Sm−1], Trevisan’s extractor is realized as

ExtTrevisan(x,y) := Ext1(x,yS0) . . .Ext1(x,ySm−1) .
(12)

Figure 3 shows this construction graphically.

Computational complexity The computational
complexity of Trevisan’s construction depends on
the specific choice of the weak design and the
one-bit extractor. In practice, Trevisan’s extractor
is often significantly slower than Toeplitz hashing.
However, it offers an important advantage: certain
constructions require only a seed of polylogarithmic
length in the input size. For instance, the construc-
tion using a weak design over a finite field and a
polynomial-time one-bit extractor requires a seed of
length O(log2 n) (Mauerer et al., 2012). In contrast,
Toeplitz and modified Toeplitz hashing require seeds
of length O(n). Trevisan’s extractor may therefore be
preferable in scenarios where good randomness is a
scarce resource.

3 RANDEXTRACT

randextract is our open-source Python package im-
plementing some of the most used privacy amplifica-
tion algorithms. It is available at the Python Package
Index (PyPI) (Mendez Veiga and Hänggi, 2025). We
recommend installing it in a virtual Python environ-
ment, for example4, by running the following com-
mands

1 python -m venv --upgrade -deps env -randextract

2 source env -randextract/bin/activate
3 pip install randextract

Other ways of installing the package are described
in the latest available online documentation5.

3.1 Overview & Goals

The goal of randextract is to provide a readable and
easy-to-audit library implementing most of the PA al-
gorithms used in quantum cryptographic protocols.
The source code stays close to the mathematical for-
mulation to avoid deviations and facilitate the audit
of its correctness. Only when it can be done without
impacting this primary goal, secondary goals such as
performance are taken into consideration. The pack-
age also provides classes and helping functions to aid
validating third-party implementations. The package
is intended to be self-contained, with comprehensive
documentation that introduces the theory of random-
ness extractors, explains their relevance to quantum
cryptographic protocols, includes several toy exam-
ples suitable for manual computation, and provides
real-world validation cases.

3.2 Structure & Design

The source code repository follows a standard Python
structure.

• src/randextract: source code of the library.

• tests: unit and integration tests.

• docs/source: source code of the online docu-
mentation5.

• examples: scripts validating real world privacy
amplification implementations.

• resources: additional resources such as plots,
datasets used in testing and the scripts to gener-
ate them, Jupyter notebooks, test vectors, etc.

The package is modular by design allowing
to be easily extended in the future with addi-
tional extractors. A common API is enforced
using abstract classes. For example, the ab-
stract class RandomnessExtractor defined in the module
randomness_extractor.py requires that the implementa-
tion classes, such as the ToeplitzHashing class, im-
plement the properties input_length, seed_length and
output_length, and the method extract().

4In Windows, the activation of the vir-
tual environment should be done running
env-randextract\Scripts\Activate.ps1 instead.

5https://randextract.crypto-lab.ch
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3.3 Dependencies

randextract uses the Python Standard Li-
brary (Python Software Foundation, 2024) and
the well-known numerical libraries NumPy (Harris
et al., 2020) and Scipy (Virtanen et al., 2020). In
addition, the Galois package (Hostetter, 2020) is used
to compactly define arrays and polynomials over
finite fields.

3.4 Usage

randextract can be used directly to implement the
PA step of quantum cryptographic protocols. It can
also be used to validate other implementations. In
both cases the workflow is the same:

1. Choose a particular class of seeded randomness
extractors.

2. Instantiate one particular extractor with the de-
sired input and output lengths, and the required
parameters. When using randextract to imple-
ment the PA step, the optimal parameters can be
calculated with the library. When validating other
implementations, these have to match the imple-
mentation being tested.

3. Extract the randomness from the weak source, or
validate the implementation.

Implementing PA The choice of the extractor class
in Step 1 depends on the requirements of the quan-
tum cryptographic protocol. In Step 2, the op-
timal input and output lengths can be computed
using randextract, based on the model of the
weak randomness source and the desired security
parameter εpa from Eq. (5). This is handled by
the calculate_length() helper method available in any
RandomnessExtractor implementation. Finally, the output
is computed in Step 4 by calling the extract() method
on the instantiated extractor.

Validating other implementations To validate an
external implementation, Steps 1 and 2 must fol-
low the same extractor class and parameter choices.
In Step 3, rather than manually extracting outputs
and comparing them across different seeds and in-
puts, the custom extractor can be passed directly
to the Validator class. External implementations are
registered using the add_implementation() method, and
validation is performed via the validate() method.
Any failing test cases are recorded, and detailed in-
sights into discrepancies can be obtained using the
analyze_failed_test() method.

3.5 Code Examples

3.5.1 Toeplitz Hashing

Implementing PA with Toeplitz hashing The fol-
lowing code snippet illustrates how to create an ex-
tractor based on standard Toeplitz hashing, as defined
in Eq. (9). First, the relevant classes are imported:

1 from galois import GF2

2

3 import randextract

4 from randextract import (

5 RandomnessExtractor ,

6 ToeplitzHashing

7 )

Next, the optimal output length is computed for
inputs of 8 Mib originating from a weak random
source with initial min-entropy 1

n Hmin(X |E)≥ 1
2 , and

for a security parameter of εpa = 10−6.

8 Mib = 2**20

9

10 out_len = ToeplitzHashing.calculate_length(

11 extractor_type="quantum",

12 input_length =8*MiB ,

13 relative_source_entropy =0.5,

14 error_bound =1e-6,

15 )

A Toeplitz hashing extractor is then instantiated
for the corresponding input and output lengths:

16 ext = RandomnessExtractor.create(

17 extractor_type="toeplitz",

18 input_length =8*MiB ,

19 output_length=out_len

20 )

Finally, the hashing is applied to (pseudo)random
input and seed bit strings:

21 ext_int = GF2.Random(MiB)

22 ext_seed = GF2.Random(ext.seed_length)

23 ext_out = ext.extract(ext_int , ext_seed)

Validating a third-party implementation of mod-
ified Toeplitz hashing The following code snippet
demonstrates how to validate a third-party implemen-
tation. First, two additional classes are imported:

1 from randextract import (

2 ModifiedToeplitzHashing ,

3 Validator

4 )

The reference extractor is instantiated using
the ModifiedToeplitzHashing class, which implements
Eq. (10), with the same input and output lengths as
the implementation under test. In this case, the ex-
tractor takes inputs of 1 Mib and compresses them



by 50%. The resulting object is functionally equiva-
lent to one created via RandomnessExtractor.create(), as
shown in the previous example.

5 ref_ext = ModifiedToeplitzHashing(

6 input_length =2**20 ,

7 output_length =2**19

8 )

An auxiliary function is defined to convert binary
arrays into string representations:

9 def gf2_to_str(gf2_arr ):

10 arr = np.array(gf2_arr)

11 arr_str = (arr + ord("0")). tobytes ()
12 return arr_str.decode ()

A Validator instance is then initialized with the ref-
erence extractor, and the third-party implementation
is registered. The validator is configured to inter-
act with the implementation via standard input/output,
using the previously defined conversion function as a
parser:

13 val = Validator(ext)

14 val.add_implementation(

15 label="Rust -stdio -fft",

16 input_method="stdio",

17 command="./ modified_toeplitz $SEED$ $INPUT$",

18 format_dict ={

19 "$SEED$": gf2_to_str ,

20 "$INPUT$": gf2_to_str

21 },

22 )

Validation is performed using 104 randomly gen-
erated input samples:

23 val.validate(

24 mode="random",

25 sample_size =10**4

26 )

3.5.2 Trevisan’s extractor

To instantiate a randomness extractor based on Tre-
visan’s construction, additional parameters must be
specified. In addition to the input and output
lengths, common to all seeded extractors, one must
select concrete implementations for the one-bit ex-
tractor and the weak design. These implementa-
tions may impose constraints on the parameters. For
instance, the weak design provided by the class
FiniteFieldPolynomialDesign requires the size of the sub-
sets to be a prime number (or a prime power).
Such constraints are automatically handled by the
calculate_length() method.

The following example shows how to instantiate a
Trevisan extractor configured to take 1 Mib of input
and output 1 Kib, using a finite field weak design and
a polynomial-based one-bit extraction. No additional
imports are required:

1 ext = RandomnessExtractor.create(

2 extractor_type="trevisan",

3 weak_design_type="finite_field",

4 one_bit_extractor_type="polynomial",

5 one_bit_extractor_seed_length =1024,

6 input_length =2**20 ,

7 output_length =2**10 ,

8 )

Once the extractor object has been instantiated,
the extraction process is performed identically across
all implementations:

9 ext_input = GF2.Random(ext.input_length)

10 ext_seed = GF2.Random(ext.seed_length)

11 ext_out = ext.extract(ext_input , ext_seed)

Additional examples and the complete API docu-
mentation for randextract are available online6.

4 VALIDATING PRIVACY
AMPLIFICATION
IMPLEMENTATIONS

randextract is well-suited for small proof-of-
concept implementations or protocols where privacy
amplification can be performed offline. In con-
trast, production environments requiring real-time
privacy amplification typically demand performance-
optimized and highly efficient implementations. In
the last years, due to huge improvements on the
quantum-physical part of quantum cryptography pro-
tocols (Grünenfelder, 2022), the classical post-
processing has become a bottleneck (Yuan et al.,
2018). The secret key rate of QKD protocols and
the throughput of QRNGs is limited by how fast
the classical post-processing can be done. This has
motivated the development of high-performance im-
plementations of both information reconciliation and
PA algorithms, using hardware accelerators such as
GPUs (Bosshard et al., 2021) or FPGAs (Li et al.,
2019). These implementations are harder to read and
audit, and deviations from the mathematical defini-
tions are harder to spot.

In this section we show how we used
randextract to test, validate and fix such high-
performance PA implementations.

4.1 GPU modified Toeplitz hashing

Modern GPUs can accelerate a wide range of com-
putational tasks, including the calculation of the
FFT. A CUDA and Vulkan-based implementation of
the modified Toeplitz hashing algorithm (Bosshard

6https://randextract.crypto-lab.ch/api.html
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et al., 2021) was employed in a QKD experi-
ment (Grünenfelder et al., 2023) involving ultrafast
single-photon detectors, where constraints on block
lengths and throughput made the use of FPGAs im-
practical. To the best of our knowledge, this re-
mains the fastest known implementation of modified
Toeplitz hashing.

We tested the GPU-based implementation using
our own extractor alongside the Validator class. In-
stead of relying on files for input and output, we in-
tegrated our package with the GPU implementation
using ZeroMQ queues, which are its preferred com-
munication interface. During validation, we imme-
diately observed discrepancies in approximately half
of the tests involving randomized inputs, specifically
those where the last bit was set to 1. This allowed
us to quickly identify the root cause of the issue: the
GPU implementation was ignoring the final bit of the
input vector.

Our library helped us in identifying and fixing the
issue. The GPU implementation is available online7

and our validation is provided as an example in the
repository8.

4.2 Rust Toeplitz hashing

Rust is a modern programming language that is de-
signed to achieve both memory safety and high per-
formance (Klabnik and Nichols, 2019). Memory
safety is a valuable feature for all software, but it is
especially critical for software used in cryptographic
protocols since many serious security bugs are caused
by memory related issues (Cybersecurity and Infras-
tructure Security Agency, 2023). To explore this fur-
ther, a Rust implementation of Toeplitz hashing was
developed at the Lucerne University of Applied Sci-
ences and Arts as part of a semester student project9.
The primary goal was to evaluate the performance of
a CPU-based Toeplitz hashing implementation within
a memory-safe environment.

We used the Validator class to exhaustively test
all possible input–seed pairs for small input lengths
by interacting directly with the Rust process. For
larger input vectors, we conducted randomized tests
using file-based input and output. The library was
employed throughout the development of the Rust im-
plementation for continuous testing, to support iden-
tifying bugs and handling edge cases.

7https://github.com/nicoboss/PrivacyAmplification
8https://github.com/cryptohslu/randextract/blob/main/

examples/validation gpu modified toeplitz zeromq.py
9Source code is available on request.

Figure 4: Screenshot showing the output of the script
validation_rust_toeplitz.py, available in the examples di-
rectory in our repository, testing the Rust implementation.
First, all possible inputs and seeds were tested with very
small Toeplitz matrices. Then, random samples with larger
inputs and outputs were validated.

4.3 C++ Trevisan’s construction

Validating Trevisan’s extractors is more complex than
validating extractors based on two-universal hash-
ing. This increased complexity arises from the greater
number of configurable components in Trevisan’s
construction, such as the choice of one-bit extractor
and weak design.

A C++ high-performance implementation of Tre-
visan’s construction providing two different weak
designs and three one-bit extractors was developed
in (Mauerer et al., 2012). This library was used in
QRNG (Kavuri et al., 2024) and QKD (Nadlinger
et al., 2022) experiments.

When validating this implementation, we identi-
fied three issues affecting the basic weak design im-
plementation based on finite fields. Two of these are
caused by an over-optimization of the multiplication
and addition operations, which are implemented us-
ing left-shift and bitwise OR operations, respectively.

https://github.com/nicoboss/PrivacyAmplification
https://github.com/cryptohslu/randextract/blob/main/examples/validation_gpu_modified_toeplitz_zeromq.py
https://github.com/cryptohslu/randextract/blob/main/examples/validation_gpu_modified_toeplitz_zeromq.py


While such optimizations are correct for powers of
two, they are generally invalid when working with
finite fields of arbitrary order, such as those used in
this implementation. As a result, the computed sub-
set overlap violates the bound specified in Eq. (11),
indicating that the resulting family of subsets does
not form a valid weak design. Consequently, the
Trevisan’s construction, as defined in Eq. (12), using
these subsets is not a strong quantum-proof extractor.
The third issue concerns a deviation in how polyno-
mial evaluation is performed. In particular, the coef-
ficients are interpreted in reverse compared to the for-
mulation in App. C.1 of (Mauerer et al., 2012). We
believe this deviation does not affect the correctness
of the weak design, but it does result in outputs that
differ from our implementation.

A full description of the issues and solutions are
contained directly in the library repository10.

5 TEST VECTORS FOR PRIVACY
AMPLIFICATION

Classical cryptographic functions are heavily stan-
dardized. There exist standards and procedures to get
certified (see e.g., (Alagic et al., 2025)). The National
Institute of Standards and Technology (NIST) oper-
ates the Cryptographic Module Validation Program
(CMVP), which promotes the use of validated cryp-
tographic modules. The validation proceeds in two
steps:
1. First, the underlying cryptographic algorithms

and their components are tested and validated
through the Cryptographic Algorithm Validation
Program (CAVP) (NIST CAVP, 2025). This val-
idation is performed using the Automated Cryp-
tographic Validation Test System in a black-box
manner. The implementation receives a list of in-
puts in a request file (.req). The implementation
then obtains the outputs based on those inputs and
generates a response file (.rsp), which contains
both the provided inputs from the received request
and the outputs.

2. Then, the full cryptographic module, including
software or hardware integration, is tested under
the CMVP (NIST CMVP, 2025). This step in-
volves functional testing, documentation review,
and an evaluation of the module’s conformance
to requirements defined in standards such as FIPS
140-3 (National Institute of Standards and Tech-
nology, 2019). The testing is performed by ac-
credited third-party laboratories, and successful

10https://github.com/wolfgangmauerer/libtrevisan/pull/2

validation results in an official NIST certificate,
authorizing the module for use in regulated and
security-sensitive environments.

Other countries, such as Spain (Centro Crip-
tológico Nacional, 2020) in Europe and South Ko-
rea (National Intelligence Service, Republic of Ko-
rea, 2015) in Asia, have similar validation processes
for cryptographic modules, typically based on the
ISO/IEC 19790 standard (International Organization
for Standardization and International Electrotechnical
Commission, 2025).

Currently, no equivalent validation program ex-
ists for the algorithms used in quantum cryptographic
devices. Most efforts have focused on the physical
layer, particularly on mitigating side-channel attacks.
Looking ahead, it is crucial to establish validation
frameworks for the classical post-processing steps of
QKD, especially for the steps that are crucial for the
final security such as parameter estimation or privacy
amplification, since these are the steps that guaran-
tee the secrecy of the final key. Standardization of
QKD protocols should define a set of approved PA al-
gorithms, which would then be subject to testing in
a CAVP-like program using randomly generated test
vectors. These vectors should comprehensively re-
flect the range of inputs that the device is expected
to handle in practice, taking into account both its op-
erational capabilities and the constraints dictated by
the protocol’s security proof. After the successful
completion of these tests, the post-processing mod-
ules can be validated under a CMVP-style certifica-
tion program.

The Validator class in randextract can gener-
ate tests vectors following the same format as the re-
quest (.req) and response (.rsp) files used in CAVP.

5.1 Example: Test Vectors for Toeplitz
Hashing

As an example, we provide below a response file for a
small modified Toeplitz hashing extractor. Additional
larger examples are available online11. Request and
response files for any randomness extractor imple-
mented in randextract can be generated using the
generate_test_vector() method from the Validator class.

1 # CAVS

2 # ModifiedToeplitzHashing

3 # Input Length : 128

4 # Compression ratio: 1/2

5 # Generated on Tue May 20 15:12:03 2025

6

7 [EXTRACT]

11https://github.com/cryptohslu/randextract/resources/
test vectors

https://github.com/wolfgangmauerer/libtrevisan/pull/2
https://github.com/cryptohslu/randextract/resources/test_vectors
https://github.com/cryptohslu/randextract/resources/test_vectors


8

9 COUNT = 0

10 INPUT = e3fc097a6dcc77fc781a7ed3533528c8

11 SEED = 05 f47ea39db462da99e3e29b06721ae6

12 OUTPUT = ab264a34f8ebc27c

13

14 COUNT = 1

15 INPUT = ff3d1bfe1f4c15730dc6ec1c36c7c4e8

16 SEED = 3eeaf730861d37e9d751d29fd6ad0ece

17 OUTPUT = 6411 c793f97badae

18

19 COUNT = 2

20 INPUT = b7fa3c803d20709f25603bb1b3072917

21 SEED = 63296 df538784e26c446211c058eb9a4

22 OUTPUT = 3bcfb106e23573e2

23

24 COUNT = 3

25 INPUT = 42 c2ddcaef33a3e7998104c76605a588

26 SEED = 05 b7c4012ffc8b5a17cdc544f3e7e2fd

27 OUTPUT = 48 f041d38296ffcc

28

29 COUNT = 4

30 INPUT = a14c3632e4fbffff0e10b10ba4ccdc5d

31 SEED = 7733 fabb766a34b3883762e240db6f20

32 OUTPUT = 16 b0ed99752aa43a

33

34 COUNT = 5

35 INPUT = 23473 c65a2c5ab8dbe073f8e419ccee7

36 SEED = 0c50697d5a102b6ef9016e809fb6a515

37 OUTPUT = f0b5b4d1f7cb519f

38

39 COUNT = 6

40 INPUT = 5b2719a61b8f72e208587b4ad0ec8ac0

41 SEED = 0ee322c8bfa4a7e901b3e0bcb0f8bad3

42 OUTPUT = b1731fb59a4bdb98

43

44 COUNT = 7

45 INPUT = 82 c6f364c42caa101fb70e562585fc86

46 SEED = 29 aa29456ea804ca102737d1d150e221

47 OUTPUT = d35034bccd12b0c4

6 CONCLUSIONS & FUTURE
WORK

The correctness of classical post-processing, and in
particular the privacy amplification step, is essential
for the security of real quantum cryptographic pro-
tocols. Only through careful and rigorous validation
can the keys obtained in QKD protocols be secure in
practice. Deviations from correct privacy amplifica-
tion procedures may enable practical attacks, allow-
ing adversaries, even those without quantum capabil-
ities, to partially or fully recover the secret keys.

Our main contribution is an open-source Python
library that implements quantum-proof strong extrac-
tors used in QKD and QRNG protocols. The library is
designed for readability and auditability, with imple-
mentations closely following the mathematical defi-
nitions. We used this library to test, validate, and fix

issues in external high-performance implementations.
Future work can add new classes of func-

tions to randextract such as quantum-proof two-
source (seedless) extractors. The modular design
of the library will facilitate this task. Additionally,
randextract can provide an open platform to test
and validate quantum cryptographic protocols in on-
going post-processing standardization efforts at ETSI,
ITU-T, etc.

ACKNOWLEDGMENTS

This work was supported by the Swiss National
Science Foundation Practice-to-Science Grant No
199084.

REFERENCES

Alagic, G., Bros, M., Ciadoux, P., Cooper, D., Dang, Q.,
Dang, T., Kelsey, J., Lichtinger, J., Liu, Y.-K., Miller,
C., Moody, D., Peralta, R., Perlner, R., Robinson, A.,
Silberg, H., Smith-Tone, D., and Waller, N. (2025).
Status report on the fourth round of the nist post-
quantum cryptography standardization process. Tech-
nical Report NIST IR 8545, National Institute of Stan-
dards and Technology. Accessed May 30, 2025.

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J. M., Schwabe, P., Seiler, G.,
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