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Abstract

Deep learning techniques have enabled vast improvements in
computer vision technologies. Nevertheless, these models are
vulnerable to adversarial patch attacks which catastrophically
impair performance. The physically realizable nature of these
attacks calls for certifiable defenses, which feature provable
guarantees on robustness. While certifiable defenses have been
successfully applied to single-label classification, limited work
has been done for multi-label classification. In this work, we
present PatchDEMUX, a certifiably robust framework for multi-
label classifiers against adversarial patches. Our approach is a
generalizable method which can extend any existing certifiable
defense for single-label classification; this is done by consid-
ering the multi-label classification task as a series of isolated
binary classification problems to provably guarantee robustness.
Furthermore, in the scenario where an attacker is limited to a
single patch we propose an additional certification procedure
that can provide tighter robustness bounds. Using the current
state-of-the-art (SOTA) single-label certifiable defense Patch-
Cleanser as a backbone, we find that PatchDEMUX can achieve
non-trivial robustness on the MS-COCO and PASCAL VOC
datasets while maintaining high clean performance1.

1. Introduction
Deep learning-based computer vision systems have helped trans-
form modern society, contributing to the development of tech-
nologies such as self-driving cars, facial recognition, and more
[18]. Unfortunately, these performance boosts have come at a
security cost; attackers can use adversarial patches to perturb
patch-shaped regions in images and fool deep learning systems
[4, 30]. The patch threat model presents a unique challenge for
the security community due to its physically-realizable nature;
for instance, even a single well-designed patch that is printed
out can induce failure in the wild [4, 12, 26].

The importance of adversarial patches has made the design
of effective defenses a key research goal. Defense strategies

1Our source code is available at https://github.com/inspire-
group/PatchDEMUX

typically fall into one of two categories: empirical defenses
and certifiable defenses. The former leverages clever observa-
tions and heuristics to prevent attacks, but can be vulnerable to
adaptive attacks which bypass the defense through fundamental
weaknesses in design [5, 14, 25]. As a result, certifiable de-
fenses against patch attacks have become popular for computer
vision tasks such as single-label classification and object detec-
tion [6, 17, 24, 29, 31–35, 37]; these methods feature provable
guarantees on robustness under any arbitrary patch attack.

Despite these successes, progress on certifiable defenses
against patch attacks has been limited for multi-label classi-
fication. Multi-label classifiers provide important capabilities
for simultaneously tracking multiple objects while maintaining
scalability. Many safety-critical systems depend on the visual
sensing capabilities of multi-label classifiers, such as traffic pat-
tern recognition in autonomous vehicles [16], video surveillance
[10], and product identification for retail checkout [13]. Some
of these applications have become mainstream in industry (i.e.,
Waymo robotaxis, Just Walk Out checkout, etc.).

To address this challenge we propose PatchDEMUX, a certi-
fiably robust framework against patch attacks for the multi-label
classification domain. Our design objective is to extend any
existing certifiable defense for single-label classification to the
multi-label classification domain. To do so, we leverage the
key insight that any multi-label classifier can be separated into
individual binary classification tasks. This approach allows us
to bootstrap notions of certified robustness based on precision
and recall; these are lower bounds on performance which are
guaranteed across all attack strategies in the patch threat model.
We also consider the scenario where an attacker is restricted
to a single patch and propose a novel certification procedure
that achieves stronger robustness bounds by using constraints in
vulnerable patch locations.

We find that PatchDEMUX achieves non-trivial robustness
on the MS-COCO and PASCAL VOC datasets while maintain-
ing high performance on clean data. Specifically, when using
the current SOTA single-label certifiable defense PatchCleanser
as a backbone, PatchDEMUX attains 85.276% average preci-
sion on clean MS-COCO images and 44.902% certified robust
average precision. On the PASCAL VOC dataset PatchDE-
MUX achieves 92.593% clean average precision and 56.030%
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certified robust average precision. For reference, an undefended
model achieves 91.146% average precision on clean MSCOCO
images and 96.140% average precision on clean PASCAL VOC
images. Overall, the key contributions of our work can be
summarized as follows:
• We address the challenge of patch attacks in the multi-label

domain via a general framework that can interface with any
existing/future single-label defense. To the best of our knowl-
edge, our approach is the first of its kind.

• Our framework provably guarantees lower bounds on perfor-
mance irrespective of the chosen patch attack (i.e., the patch
can contain an optimized attack, random noise, etc.).

• We instantiate a version of our defense framework with the
current SOTA single-label defense and achieve strong robust
performance on popular benchmarks.

We hope that future work will integrate with the PatchDEMUX
framework and further strengthen the robustness of multi-label
classifiers to adversarial patches.

2. Problem Formulation
In this section, we provide a primer on the multi-label classifica-
tion task along with standard metrics for evaluation. We next
outline the adversarial patch threat model and its relevance in
the multi-label setting. Finally, we discuss the concept of certi-
fiable defenses and how they have been used so far to protect
single-label classifiers against the patch attack.

2.1. Multi-label classification
Multi-label classification is a computer vision task where images
x ∈ X ⊆ Rw×h×γ with width w, height h, and number of
channels γ contain multiple objects simultaneously, with each
object belonging to one of c classes [38]. A classifier is then
tasked with recovering each of objects present in an image. Note
that this contrasts single-label classification, where exactly one
object is recovered from an image.

More rigorously, each input datapoint is a pair (x,y) where
x ∈ X corresponds to an image and y ∈ Y is the associated
image label. Each label y ∈ Y ⊆ {0,1}c is a bitstring where
y[i]=1 means class i is present and y[i]=0 means class i is
absent; this implies that the set of labels Y is 2c in size, i.e.,
exponential. A multi-label classifier F :X→Y is then trained
with a loss function such that the predicted label ŷ :=F(x) is
equivalent to y. One popular loss function used for training is
asymmetric loss (ASL) [3].

To evaluate the performance of a multi-label classifier, it is
common to compute the number of true positives (i.e., classes
i where y[i] = ŷ[i] = 1), the number of false positives (i.e.,
classes i where y[i]=0 and ŷ[i]=1), and the number of false
negatives (i.e., classes i where y[i]=1 and ŷ[i]=0). These can
be summarized by the precision and recall metrics [38]:

precision=
TP

TP+FP
recall=

TP

TP+FN
(1)

The values TP , FP , and FN represent the number of true
positives, false positives, and false negatives respectively.

2.2. The patch threat model
Theoretical formulation. In the patch threat model, attackers
possess the ability to arbitrarily adjust pixel values within a
restricted region located anywhere on a target image x∈X ; the
size of this region can be tuned to alter the strength of the attack
[4]. As discussed in Sec. 1, defending against this threat model
is critical due to its physically realizable nature [4, 12, 26]. In
this paper, we primarily focus on defending against a single
adversarial patch as it is a popular setting in prior work [6, 17,
24, 31–33, 35]. However, our baseline certification methods can
also handle multiple patches, provided the underlying single-
label defense strategy already has this capability [33].

We can formally specify patch attacks for an image x∈X
as follows. DefineR⊆{0,1}w×h as the set of binary matrices
which represent restricted regions, where elements inside the
region are 0 and those outside the region are 1 [33]. Then, the
associated patch attacks are:

Sx,R :={r◦x+(1−r)◦x′|x′∈X ,r∈R} (2)

The ◦ operator refers to element-wise multiplication with broad-
casting to ensure shape compatibility. Note that this formulation
demonstrates how the patch attack can be considered a special
case of the ℓ0-norm threat model [17].

Adversarial patches in the multi-label setting. Patch attacks
in multi-label classification aim to induce class mismatches be-
tween a ground-truth label y∈Y and prediction ŷ∈Y. Unlike
single-label classification, different types of mismatches are
possible in this setting; for instance, patches can increase the
number of false negatives and/or the number of false positives
predicted by the classifier F. In general, adversarial patches are
generated by representing the desired objective as an optimiza-
tion problem and then applying an iterative technique such as
projected gradient descent (PGD) over Sx,R [21].

2.3. Certifiable defenses against patch attacks
At a high-level, certifiable defenses against patch attacks
(CDPA) provide provable guarantees on performance for deep
learning-based computer vision systems F :X→Y against all
possible attacks in the patch threat model [6, 17, 24, 29, 31–
35, 37]. This ensures that defense robustness will not be com-
promised by future adaptive attacks.

We formulate a CDPA as having an inference procedure
and a certification procedure; additional security parameters,
denoted by σ, manage the trade-off between robust perfor-
mance and inference time [33]. The inference procedure
INFER[F,σ] : X → Y takes an image x ∈ X as input and
outputs a prediction ŷ∈Y. The quality of prediction ŷ with
respect to the ground-truth label y can be evaluated using a
performance metric (e.g., precision, recall), which we denote
by ρ :Y×Y→R. In addition to the inference procedure, the
certification procedure CERT[F,σ] :X ×Y×P(R)→R (P()
denotes power set) takes image x, ground-truth label y, and the
threat model represented by the set of allowable patch regions
R to determine the worst possible performance of INFER on
image x. The certification procedure is only used for evaluation.
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Formally, for a performance metric ρ and a patch threat model
Sx,R we will have

ρ(INFER[F,σ](x
′),y)≥τ,∀x′∈Sx,R (3)

Here, τ :=CERT[F,σ](x,y,R) is the lower bound of model
prediction quality against an adversary who can use any patch
region r∈R and introduce arbitrary patch content. Datapoints
with a non-trivial lower bound are considered certifiable.

We can summarize these concepts as follows.

Definition 1 (CDPA). A certifiable defense against patch attacks
(CDPA) for model F :X→Y is a tuple of procedures DEF :=
(INFER[F,σ] : X → Y,CERT[F,σ] : X ×Y × P(R)→ R)
where the former is the inference procedure, the latter is the
certification procedure, and σ⊆{0,1}∗ are security parameters.
Certifiable datapoints satisfy Eq. (3) for a performance metric
ρ :Y×Y→R.

We note that we have different ρ for different tasks. For in-
stance, CDPAs for single-label classifiers ensure that the output
label is preserved for certifiable datapoints2.

Definition 2 (Single-label CDPA). A single-label CDPA is a
CDPA for single-label classifiers Fs : X → {1,2,...,c}. The
performance metric is ρ(y1,y2) :=[y1=y2]. The certification
procedure CERT evaluates to 1 for certifiable datapoints and
0 otherwise.

For multi-label classification, we consider the interpretation
where the performance metric is ρ(y1,y2) := Σc

i=1[y1[i] =
1∩y2[i] = 1] and CERT lower bounds the number of true
positives. This helps bootstrap robust metrics such as certified
precision and recall (see Sec. 3.3).

2.4. Certifiable defenses for single-label classifiers
against patch attacks

A variety of CDPA have been developed for single-label classi-
fiers [6, 17, 24, 29, 31–33, 35]. Current techniques roughly fall
into one of two categories: small receptive field defenses and
masking defenses. With regards to the former, the general prin-
ciple involves limiting the set of image features exposed to the
undefended model and then robustly accumulating results across
several evaluation calls. Some examples of this approach include
De-randomized Smoothing [17], BagCert [24], and PatchGuard
[31, 32]. On the other hand, masking defenses curate a set of
masks to provably occlude an adversarial patch regardless of
location. PatchCleanser, the current SOTA certifiable defense,
uses such a method [33]. Our proposed framework PatchDE-
MUX is theoretically compatible with any of these techniques.

3. PatchDEMUX Design
In this section we propose PatchDEMUX, a certifiably robust
framework for multi-label classifiers against patch attacks. We
first outline the key property that any multi-label classification

2We use Iverson bracket notation for convenience

problem can be separated into constituent binary classification
tasks. Next, we use this observation to construct a generalizable
framework which can theoretically integrate any existing single-
label CDPA. We then describe the inference and certification
procedures in more detail along with robust evaluation metrics.
Finally, we propose a novel location-aware certification method
which provides tighter robustness bounds.

3.1. An overview of the defense framework
Isolating binary classifiers in multi-label classification. As
discussed in Sec. 2.1, labels y ∈ {0,1}c in multi-label classi-
fication are bitstrings where y[i] ∈ {0,1} corresponds to the
presence/absence of class i∈{1,2,...,c}. Note that predictions
for each class y[i] are independent of each other; therefore, the
multi-label classification task can be represented as a series of
isolated binary classification problems corresponding to each
class. This motivates a defense formulation for multi-label clas-
sifiers in terms of “isolated” binary classifiers, where each class
is individually protected by a single-label CDPA. Given a multi-
label classifier3 F :X→Y, we use the notation F[i] :X→{0,1}
to refer to the isolated classifier for class i.

In practice, defining the isolated classifier is complicated
as some single-label CDPA designs require architectural re-
strictions [24, 31, 32]. Nevertheless, a workaround is possible;
specifically, we can initialize the multi-label classifier F :X→Y
as an ensemble of c binary classifiers which each satisfy the
required architecture. Then, for each class i∈ {1,2,...,c} we
can define the isolated classifier F[i] as the associated ensem-
ble model. Other defenses are architecture-agnostic [33]. In
these cases we can use any off-the-shelf multi-label classifier
F :X→Y and for each class i∈{1,2,...,c} define the isolated
classifier F[i] as having outputs F[i](x):=F(x)[i] for all x∈X .

Our framework. At a high-level, the PatchDEMUX defense
framework takes advantage of the isolation principle to extend
any existing single-label CDPA to the multi-label classification
task. The PatchDEMUX inference procedure consists of three
stages (see Fig. 1). In the input stage, it preprocesses the input
image x ∈ X . In the demultiplexing stage it isolates binary
classifiers for each class i ∈ {1,2, ... ,c} and applies the un-
derlying single-label CDPA inference procedure. Finally, in
the aggregation stage we return the final prediction vector by
pooling results from the individual classes. The PatchDEMUX
certification procedure works similarly. It separately applies
the underlying single-label CDPA certification procedure to
each isolated classifier and then creates a lower bound for true
positives by accumulating the results.

3.2. PatchDEMUX inference procedure
The PatchDEMUX inference procedure is described in Algo-
rithm 1. We first take the inference procedure SL-INFER
from a single-label CDPA and prepare it with security parame-
ters σ. On line 2, we initialize a preds∈{0,1}c array to keep
track of individual class predictions. Finally, on line 4 we run
SL-INFER with the isolated binary classifier F[i] on input

3From here on, Y will denote a multi-label label set with c classes
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Figure 1. A diagram which illustrates the defense framework from PatchDEMUX. In the input stage, the (potentially attacked) image is preprocessed.
In the demultiplexing stage, the SL-INFER inference procedure from a single-label CDPA is applied to each individual class in the multi-
classification task. This is done by considering the multi-label classifier F as a series of isolated binary classifiers F[i] for i∈{1,2,...,c}. Finally, in
the aggregation stage the individual outputs are returned as a single label.

Algorithm 1 The inference procedure associated with PatchDE-
MUX

Input: Image x ∈ X , multi-label classifier F : X → Y,
inference procedure SL-INFER and security parameters
σ from a single-label CDPA, number of classes c
Output: Prediction preds∈{0,1}c

1: procedure DEMUXINFER(x,F,SL-INFER,σ,c)
2: preds←{0}c ▷ Set predictions to zero vector
3: for i←1 to c do ▷ Consider classes individually
4: preds[i]←SL-INFER[F[i],σ](x)
5: end for
6: return preds
7: end procedure

image x and update preds for class i.
Remark. If the time complexity for SL-INFER is
O(f(n)), the time complexity for Algorithm 1 will be O(c ·
f(n)). However, in practice it is possible to take advantage
of relatively negligible defense post-processing and effectively
reduce the time complexity to O(f(n)). See Supplementary
Material, Appendix G.

3.3. PatchDEMUX certification procedure
The PatchDEMUX certification procedure is outlined in Al-
gorithm 2. We first initialize the certification procedure
SL-CERT from a single-label CDPA with security param-
eters σ. On line 2, we create the κ array to store certifiable
classes. On line 5, we run SL-CERT with the isolated binary
classifier F[i] on datapoint (x,y[i]) and place the result in κ[i];
recall from Definition 2 that SL-CERT returns 1 for protected
datapoints and 0 otherwise. Finally, on lines 7−10 we count
a successful true positive for classes with y[i]=1 and κ[i]=1.
Otherwise, we assign a false negative or false positive as we can-
not guarantee the accuracy of these classes. We now establish
the correctness of these bounds.

Algorithm 2 The certification procedure associated with
PatchDEMUX

Input: Image x ∈ X , ground-truth y ∈ Y, multi-label
classifier F :X →Y, certification procedure SL-CERT
and security parameters σ from a single-label CDPA, patch
locationsR
Output: Certified number of true positives TPlower, false
positives upper bound FPupper, false negatives upper
bound FNupper, class certification list κ

1: procedure DEMUXCERT(x,y,F,SL-CERT,σ,R)
2: c← len(y)
3: κ← [0]c

4: for i←1 to c do ▷ Certify each class separately
5: κ[i]←SL-CERT[F[i],σ](x,y[i],R)
6: end for
7: ▷ Compute robust metrics
8: TPlower,FPupper,FNupper←0,0,0
9: TPlower←Σc

i=1[κ[i]=1∩y[i]=1]
10: FPupper←Σc

i=1[κ[i]=0∩y[i]=0]
11: FNupper←Σc

i=1[κ[i]=0∩y[i]=1]
12: return TPlower,FPupper,FNupper,κ
13: end procedure

Theorem 1 (Algorithm 2 Correctness). Suppose we have an im-
age data point (x,y)∈X×Y, a single-label CDPA SL-DEF ,
and a multi-label classification model F :X→Y. Then, under
the patch threat modelSx,R the bounds returned by Algorithm 2
are correct.

Proof. See Supplementary Material, Appendix A.

Thus, using Algorithm 2 we have established the lower bound
on true positives (TPlower) and the upper bound on both false
positives (FPupper) and false negatives (FNupper) when using
Algorithm 1. This allows us to bootstrap notions of certified
precision and certified recall by referencing Eq. (1):
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certifiedprecision=
TPlower

TPlower+FPupper
(4)

certifiedrecall=
TPlower

TPlower+FNupper
(5)

Note by construction that both metrics provide lower bounds for
precision and recall on a datapoint (x,y) irrespective of any at-
tempted patch attack; the real-world performance of our defense
will always be higher. Therefore, an empirical evaluation of
existing multi-label attack vectors is not necessary [1, 2, 22, 23].
Furthermore, micro-averaging these metrics across datapoints
provides lower bounds on precision and recall for an entire
dataset [38].

3.4. Location-aware certification
We now discuss an improved method called location-aware
certification which extends Algorithm 2. This method works in
the scenario where an attacker is restricted to a single patch. The
general intuition is that if we track vulnerable patch locations
for each class, we can use the constraint that an adversarial
patch can only be placed at one location to extract stronger
robustness guarantees. For instance, suppose we have an image
with a dog, a bicycle, and people (see Fig. 2). If we directly
apply Algorithm 2, it is possible that each of these classes would
individually fail to be certified. However, this method does not
account for the fact that different classes may be vulnerable at
different locations; for example, the “dog” and “bicycle” classes
might be at risk in the bottom left corner of the image, while the
“people” class is at risk near the top. Because the patch cannot
exist in two places simultaneously, at least one class must be
robust and the actual certified recall will be 1/3.

3.4.1. Tracking vulnerable patch locations
We now give a formal treatment of our core idea. Suppose we
have a single-label CDPA SL-DEF . For many existing single-
label defenses, it is possible to relate the certification procedure
SL-CERT to the complete list of patch locations R from
Eq. (2) [6, 17, 24, 29, 31–33, 35]. In these cases, we extend
Definition 2 and allow SL-CERT to return a vulnerability
status array, which we denote by λ∈{0,1}|R|. A value of 1
implies the image x∈X is protected from attacks located in
r∈R, while 0 means it is not.

This provides a convenient formulation with which to express
our improved method. Consider a multi-label classifier F :X→
Y. We first obtain vulnerability status arrays λ for each class in
Algorithm 2 that could not be certified; this is done by isolating
the associated binary classifiers. We then note that given k
classes of a common failure mode (i.e., FN or FP ), the sum
of the inverted arrays 1−λ will represent the frequency of the
failure type at each patch location. The key insight is that the
maximum value, vopt, from the combined array will represent
the patch location ropt∈R of the image most vulnerable to a
patch attack; an attacker must place an adversarial patch at this
location to maximize malicious effects. Note however that it is
possible vopt<k. Then, as per the construction of each λ these

k−vopt > 0 classes will be guaranteed robustness under the
optimal patch location.

3.4.2. Proposing our novel algorithm

Algorithm 3 Location-aware certification for FN

Input: Image x ∈ X , ground-truth y ∈ Y, multi-label
classifier F :X →Y, certification procedure SL-CERT
and security parameters σ from a single-label CDPA, patch
locationsR
Output: Certified number of true positives TPnew, false
negatives upper bound FNnew

1: procedure LOCCERT(x,y,F,SL-CERT,σ,R)
2: ▷ Pass all args to DEMUXCERT(...)
3: TP,FP,FN,κ← DEMUXCERT(...)
4: ▷ Initialize array with list of FN indices
5: c← len(y)
6: fnIdx← list({1≤i≤c :κ[i]=0∩y[i]=1})
7: fnCertFails← [0]FN×|R|

8: for k←1 to FN do ▷ Isolate each FN classifier
9: Fs←F[fnIdx[k]]

10: λ← SL-CERT[Fs,σ](x,y[fnIdx[k]],R)
11: fnCertFails[k]=1−λ
12: end for
13: fnTotal←sum(fnCertFails,dim=0)
14: FNnew=max(fnTotal) ▷ Pick worst location
15: TPnew=TP+(FN−FNnew)
16: return TPnew,FNnew

17: end procedure

These insights are encapsulated by Algorithm 3, the location-
aware certification method for false negatives.4 It works by
first computing robustness bounds for data point (x,y) via
Algorithm 2. On line 5 we determine the false negative classes
that failed certification in Algorithm 2. During the for loop on
lines 8−12, we extract the vulnerability status array λ for each
false negative by isolating the associated binary classification
task. Finally, we sum the inverted arrays 1−λ on line 13 and
pick the patch location with the largest value; this is the max
number of false negatives an attacker can induce at test time.
We then alter the lower bound for true positives on line 16.

We now demonstrate that Algorithm 3 provides superior
bounds to Algorithm 2.

Theorem 2 (Algorithm 3 Correctness). Suppose we have an im-
age data point (x,y)∈X×Y, a single-label CDPA SL-DEF ,
and a multi-label classification modelF :X→Y. IfSL-CERT
returns the vulnerability status array λ associated with each
r∈R, then under the patch threat model Sx,R the bounds from
Algorithm 3 are correct and stronger than Algorithm 2.

Proof. See Supplementary Material, Appendix A.

An analogue to Theorem 2 also exists for FP bounds, and
can be proved using a modified version of Algorithm 3 that
tracks FP indices.

4Obtaining FPnew is similar, with line 5 changed to track FP indices

5



vulnerability	status	.!"#

!!"#[1] !!"#[2] !!"#[3]

!!"#[4] !!"#[5] !!"#[6]

!!"#[7] !!"#[8] !!"#[9]

+ + =
1

1 1

2 1
/0: {“456”, “9:;<;=>”, “?>5?=>”}	

max	value	5$%&
Certified	recall	

is	1/3!

!'()*)+,[1] !'()*)+,[2] !'()*)+,[3]

!'()*)+,[4] !'()*)+,[5] !'()*)+,[6]

!'()*)+,[7] !'()*)+,[8] !'()*)+,[9]

vulnerability	status	.$%&'&()

!-,"-+,[1] !-,"-+,[2] !-,"-+,[3]

!-,"-+,[4] !-,"-+,[5] !-,"-+,[6]

!-,"-+,[7] !-,"-+,[8] !-,"-+,[9]

vulnerability	status	.*)"*() combined	array

patch	location safe…

Figure 2. A diagram which illustrates the key intuition for the location-aware approach. In the sample image we assume all three objects (i.e., “dog”,
“bicycle”, “people”) are false negatives. Thus, for each FN we extract the vulnerability status over all patch locations (orange means vulnerable)
and accumulate them to find the most vulnerable patch location; this happens to be in the bottom left corner of the image. However, the “people”
class by itself is not vulnerable to this location; thus, we can claim stronger robustness bounds than initially suggested by Algorithm 2.

4. Main Results

4.1. Setup
In this section, we discuss our evaluation setup. The associ-
ated source code is available at https://github.com/
inspire-group/PatchDEMUX.

Backbone initialization and parameters. Recall from
Sec. 3.1 that PatchDEMUX requires an underlying single-label
CDPA to operate. For our experiments we choose PatchCleanser,
as it is the current SOTA single-label CDPA and is architecture-
agnostic (i.e., it is compatible with any off-the-shelf multi-label
classifier) [33]. PatchCleanser works by using a novel double-
masking algorithm along with a specially generated certification
mask set to provably remove adversarial patches [33]. The mask
generation process has two security parameters. The first is
the number of masks for each image dimension k1×k2; using
more masks leads to longer inference time but results in stronger
robustness, effectively serving as a “computational budget” [33].
The second is the estimated size of the patch p in pixels. Our
experiments with PatchDEMUX use 6×6 masks and assume
the patch is∼2% of the overall image size, which are the default
settings in Xiang et al. [33]; we vary these parameters in Sec. 5.
For more details on how PatchCleanser fits into the PatchDE-
MUX framework see Supplementary Material, Appendix B.

We note that PatchCleanser can also provide protection
against multiple patches [33]. Because our baseline certification
method provably extends single-label guarantees to multi-label
setting, it will also feature resistance against multiple patches.
In our experiments, we focus on the single patch setting for
simplicity.

Dataset and model architectures. We evaluate our defense
on two datasets: MS-COCO [19] and PASCAL VOC [11].
The former is a challenging collection of images that feature
“common objects in context” [19], while the latter focuses on
“realistic scenes” [11]. For our experiments we test on the MS-
COCO 2014 validation split, which contains∼41,000 images
and 80 classes, and the PASCAL VOC 2007 test split, which
has ∼5,000 images and 20 classes. Both of these splits are
commonly used in the multi-label classification community

[3, 20, 27, 36].
For the multi-label classifier architecture, we evaluate two

options. The first is a ResNet-based architecture from Ben-
Baruch et al. [3] that uses convolution kernels and has an input
size of 448×448. The second is a vision transformer-based
(ViT) architecture from Liu et al. [20] that uses the self-attention
mechanism and has an input size of 384× 384 [9, 20, 36].
These models are chosen as they perform well on the multi-label
classification task and have publicly available checkpoints. We
resize images to fit on each model and apply different defense
fine-tuning methods (i.e., Random Cutout [8], Greedy Cutout
[28]) to achieve stronger robustness guarantees.

Evaluation settings and metrics. Our results feature several
evaluation settings.
1. Undefended clean: This setting represents evaluation on

clean data without the PatchDEMUX defense.
2. Defended clean: This setting refers to evaluation on clean

data with the PatchDEMUX defense activated.
3. Certified robust: This setting represents lower bounds on

performance determined using Algorithm 2.
4. Location-aware robust: This setting represents the tighter cer-

tification bounds from Algorithm 3. We report performance
corresponding to the worst-case attacker (see Supplementary
Material, Appendix E).

The first two are clean settings, where precision and recall
metrics are empirically computed for each datapoint. The latter
two are certified robust settings, where certified precision and
certified recall metrics are computed using Algorithm 2 and
Algorithm 3. In all four evaluation settings we micro-average
metrics over the entire dataset [38]. In addition, we sweep model
outputs across a range of threshold values to create precision-
recall plots. The associated area-under-curve values aggregate
performance and are used to approximate average precision
(AP); more details are in Supplementary Material, Appendix C.

4.2. PatchDEMUX overall performance
In this section we report our main results for PatchDEMUX on
the MS-COCO 2014 validation dataset. We summarize the pre-
cision values associated with key recall levels in Tab. 1. Fig. 3
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Table 1. PatchDEMUX performance with ViT architecture on the MS-COCO 2014 validation dataset. Precision values are evaluated at key recall
levels along with the approximated average precision. We assume the patch attack is at most 2% of the image area and use a computational budget
of 6×6 masks

(a) Clean setting precision values

Architecture ViT

Clean recall 25% 50% 75% AP

Undefended 99.930 99.704 96.141 91.146
Defended 99.894 99.223 87.764 85.276

(b) Certified robust setting precision values

Architecture ViT

Certified recall 25% 50% 75% AP

Certified robust 95.369 50.950 22.662 41.763
Location-aware 95.670 56.038 26.375 44.902
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Figure 3. PatchDEMUX precision-recall curves with ViT architecture over the MS-COCO 2014 validation dataset. We consider the clean and
certified robust evaluation settings. We assume the patch attack is at most 2% of the image area and use a computational budget of 6×6 masks.

features precision-recall plots, while AP values are present in
Tab. 1. Because the ViT architecture outperforms the Resnet
architecture (see Supplementary Material, Appendix D) we fo-
cus on the ViT model here. Performance of the ViT architecture
on the PASCAL VOC 2007 test dataset is in Supplementary
Material, Appendix H.

High clean performance. As shown in Tab. 1a and Fig. 3a,
the PatchDEMUX inference procedure features excellent per-
formance on clean data. Specifically, the defended clean setting
achieves ∼94% of the undefended model’s AP. These results
demonstrate that PatchDEMUX can be deployed at test time
with minimal loss in performance utility.

Non-trivial robustness. Tab. 1b and Fig. 3b also show that
PatchDEMUX attains non-trivial certifiable robustness on the
MS-COCO 2014 validation dataset. For instance, when fixed at
50% certified recall PatchDEMUX achieves 56.038% certified
precision. This performance remains stable across a variety of
thresholds, as evidenced by the 44.902% certified AP value.
Location-aware certification is a key factor in these results,
improving certified AP by almost 3 points compared to the
certified robust setting. Improvements are most notable in the
mid recall-mid precision region of the certified robust precision-
recall plot (Fig. 3b).

Interestingly, the defended clean precision-recall plot (Fig. 3a)
is concave in shape while the certified robust plots (Fig. 3b)
are slightly convex. This performance gap is likely due to
the sensitivity of PatchCleanser’s certification procedure to ob-

ject occlusion from the generated mask set. This limitation is
compounded by the fact that many MS-COCO images contain
objects that are small relative to the overall image size [19, 33].

4.3. Ablation studies

We also perform a series of ablation studies for PatchDEMUX
using the MS-COCO 2014 validation dataset. We first empiri-
cally compare different attackers in the location-aware robust
setting and find that attacks targeting false positives are relatively
“weaker” (see Supplementary Material, Appendix E). We then
investigate the impact of different defense fine-tuning routines,
and find that variants of cutout fine-tuning (i.e., Random Cutout
[8], Greedy Cutout [28]) can boost model robustness (see Sup-
plementary Material, Appendix F); the strongest results for the
defended clean setting are featured in the previous section.

5. Security Parameter Experiments

As discussed in Sec. 4.1, the PatchCleanser backbone has two
security parameters: the number of masks desired in each dimen-
sion k1×k2 (i.e., the “computational budget”) and the estimated
size of the patch p in pixels [33]. In this section, we study the
impact of these parameters on PatchDEMUX performance. To
isolate the effects of security parameter variation, we use ViT
checkpoints without defense fine-tuning. Experiments are done
on the MS-COCO 2014 validation dataset.
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Figure 4. The impact of varying PatchCleanser security parameters on PatchDEMUX performance. Experiments performed on MS-COCO 2014
validation dataset. We compute clean AP for the clean setting evaluations, and certified AP for the certified robust setting evaluations.

5.1. Impact of varying mask number
We present results when varying the mask number parameter
in Fig. 4a (the associated table is in Supplementary Material,
Appendix I). We assume the number of masks in each dimension
is the same (i.e., k :=k1=k2) and evaluate with respect to k2.
We keep the patch size parameter its default value of∼2%.

Limited tradeoff between computational budget and ro-
bustness. We find that PatchDEMUX provides consistent de-
fended clean and certified robust performance even after greatly
reducing the number of masks. For instance, decreasing the
number of masks from 36 to 16 results in a maximum AP drop
of 2 points across all evaluation settings. At the extreme of
k2=4 masks more substantial performance drops are notice-
able. This is expected, as the mask generation method from
PatchCleanser will create larger masks to compensate for re-
duced mask number; this leads to increased occlusion and fewer
certification successes [33].

5.2. Impact of varying patch size
We present results when varying the patch size estimate in
Fig. 4b (the associated table is in Supplementary Material, Ap-
pendix I). We keep the mask number at its default value of 6×6
masks.

Strong clean performance over different patch sizes. We
find that the defended clean performance of PatchDEMUX is
resilient to increasing patch size; indeed, clean AP only drops
from 85.731 in the smallest patch setting to 69.952 in the largest.
Thus, even in unlikely scenarios (i.e., a patch size of ≥ 32%
would be easily detectable by hand) PatchDEMUX maintains
strong inference performance. For the certified robust settings,
PatchDEMUX provides relatively strong robustness guarantees
on smaller patches (i.e., ≤2%) and performance degrades for
larger patches (i.e., ≥ 8%); certified AP drops close to 0%
when a patch size of 32% is considered. These trends align
with experiments done by Xiang et al. [33] in the single-label
classification domain; the general intuition is that larger patch
sizes require PatchCleanser to generate larger masks, making

certification failures more likely [33].

5.3. Overall takeaways

Overall, we find that PatchDEMUX performance tradeoffs cor-
roborate with findings from Xiang et al. [33]. This illustrates a
key feature of our defense framework: PatchDEMUX success-
fully adapts the strengths of underlying single-label CDPAs to
the multi-label classification setting.

6. Related Work

Certifiable defenses against patch attacks. CDPAs have been
designed for various computer vision applications. In single-
label classification, defense strategies include bound propagation
methods [6], small receptive field methods [17, 24, 31, 32], and
masking methods [33]. CDPAs have also been proposed for
object detection [34] and semantic segmentation [37], although
notions of certifiable robustness are more difficult to define in
these domains.

Certifiable defenses in multi-label classification. Jia et al.
[15] proposed MultiGuard, a certifiably robust defense for multi-
label classifiers that generalizes randomized smoothing [7].
However, MultiGuard is designed to protect against ℓ2-norm
attacks and does not address adversarial patches.

7. Conclusion

The threat of adversarial patch attacks has compromised real-
world computer vision systems, including those that depend on
multi-label classifiers. To this end we introduced PatchDEMUX,
a certifiably robust framework for multi-label classifiers against
adversarial patches. PatchDEMUX can extend any existing
single-label CDPA, including the current SOTA single-label
CDPA PatchCleanser, and demonstrates strong performance
on the MS-COCO and PASCAL VOC datasets. We hope that
future work will take advantage of our modular framework to
significantly mitigate the impact of adversarial patches.
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PatchDEMUX: A Certifiably Robust Framework for Multi-label Classifiers
Against Adversarial Patches

Supplementary Material

A. Certification Robustness Proofs

A.1. Baseline certification correctness
In this section, we provably demonstrate robustness for our
baseline certification procedure. Specifically, we prove The-
orem 1, which ensures correctness of the bounds returned by
Algorithm 2. For convenience, we re-state the theorem.

Theorem 1 (Algorithm 2 Correctness). Suppose we have an im-
age data point (x,y)∈X×Y, a single-label CDPA SL-DEF ,
and a multi-label classification model F :X→Y. Then, under
the patch threat modelSx,R the bounds returned by Algorithm 2
are correct.

Proof. We first demonstrate that classes included in TPlower

will be guaranteed correctness. Consider an arbitrary class
i∗ ∈ {1, 2, ... , c} with label y[i∗] = 1. If this class is in-
cluded in TPlower, then we must have κ[i∗] = 1 (i.e., line
9 in Algorithm 2). This implies that on line 5 we must have
SL-CERT[F[i∗],σ](x,y[i

∗],R)=1. Now consider when Algo-
rithm 1 reaches index i∗∈{1,2,...,c} in the for loop on line 3.
Because the datapoint (x,y[i∗]) was certifiable, by Definition 2
we will have

SL-INFER[F[i∗],σ](x
′)=1 ∀x′∈Sx,R

This implies that every class accounted for in TPlower will
be successfully recovered by Algorithm 1 regardless of the
attempted patch attack.

Next, we demonstrate that classes included in FNupper will
not be guaranteed correctness. Consider an arbitrary class
i∗ ∈ {1,2, ... , c} with label y[i∗] = 1. In this case we will
have κ[i∗]=0, and thus classes included in FNupper will have
SL-CERT[F[i∗],σ](x,y[i

∗],R)=0. Now consider when Algo-
rithm 1 reaches index i∗∈{1,2,...,c} in the for loop on line 3.
By Definition 2 it is possible that

∃x′∈Sx,R | SL-INFER[F[i∗],σ](x
′)=0

Essentially, in the worst-case scenario these classes might be
mispredicted and be false negatives. Thus, none of the classes
included in FNupper can be guaranteed correctness. Because
every class with y[i∗] = 1 will be accounted for by either
TPlower or FNupper (mutually exclusive), we conclude that
TPlower will be the correct lower bound for objects recovered
andFNupper will be the correct upper bound for objects missed.

The correctness of the FPupper bound can be shown in a
similar fashion, albeit by considering classes with y[i∗]=0.

A.2. Location-aware certification correctness
In this section we demonstrate the correctness of our novel
location-based certification method. To do so, it is helpful to
use the following lemma.

Lemma 1 (Algorithm 3 Tightness). Given that we have de-
rived a bound on FN using the technique from Algorithm 2,
Algorithm 3 will return a new bound FNnew≤FN .

Proof. We will show that FNnew provides a tighter bound (i.e.,
the inequality FNnew≤FN is true). To see this, we note as
per lines 13 and 14 of Algorithm 3 that the worst-case sum
will occur if some patch location is vulnerable for every false
negative. Because summation is done over the set of false
negatives, this implies the worst-case sum is FN .

We also provide a formal definition for the concept of a
vulnerability status array; recall that this array extends the cer-
tification procedure for a single-label CDPA (Sec. 3.4.1). We
leverage similar notation as Eq. (2).

Definition 3 (Vulnerability status array). Suppose we have data-
point (x,y), a single-label classifier Fs :X→{1,2,...,c}, a certi-
fication procedure SL-CERT with security parameters σ from
a single-label CDPA, and patch locationsR. Then we define
the vulnerability status array λ :=SL-CERT[Fs,σ](x,y,R)∈
{0,1}|R| such that if λ[r]=1 for a patch location r∈R then5

SL-INFER[Fs,σ](r◦x+(1−r)◦x′)=y ∀x′∈X

Essentially, the vulnerability status array λ denotes the certifica-
tion status of individual patch locations r∈R.

We can now prove Theorem 2. For convenience we re-state
the theorem.

Theorem 2 (Algorithm 3 Correctness). Suppose we have an im-
age data point (x,y)∈X×Y, a single-label CDPA SL-DEF ,
and a multi-label classification modelF :X→Y. IfSL-CERT
returns the vulnerability status array λ associated with each
r∈R, then under the patch threat model Sx,R the bounds from
Algorithm 3 are correct and stronger than Algorithm 2.

Proof. We will demonstrate the correctness and tightness of the
new bound FNnew proposed in Algorithm 3. We first note as
per Lemma 1 that FNnew ≤ FN; this ensures that the new
bound will be stronger than Algorithm 2. In the case with equal-
ity FNnew=FN , correctness is guaranteed by Theorem 1. We
thus focus on the case with strict inequality FNnew<FN .

Define ropt ∈ R as the patch location which induces the
maximum number of false negatives on line 14 of Algorithm 3.

5For the term λ[r]=1 we slightly abuse notation and use r to refer to the
index associated with the patch location
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By assumption, a total of FN−FNnew>0 false negatives will
have contributed a value of 0 to the sum fnTotal[ropt] on line
13. Consider an arbitrary such class i∗∈{1,2,...,c}. Because the
fnCertFails value for this class at patch location ropt is 0, on
line 10 we must have for λ :=SL-CERT[F[i∗],σ](x,y[i

∗],R)

λ[ropt]=1

As per Definition 3, this means that we will have

SL-INFER[F[i∗],σ](ropt◦x+(1−ropt)◦x′)=1 ∀x′∈X

In other words, SL-INFER will be robust against any patch
attack contained in location ropt∈R. Because the patch must
be placed at the optimal location ropt, this implies that Algo-
rithm 1 will return the correct prediction for class i∗ as desired.
Overall, each of the FN−FNnew classes will now be certified
true positives instead of false negatives, and thus the new bounds
from Algorithm 3 will be correct.

B. Double-masking Algorithm from Patch-
Cleanser

In this section, we provide a brief outline of the double-masking
algorithm from the PatchCleanser defense and how it integrates
into the PatchDEMUX framework; recall from Sec. 4.1 that
PatchCleanser is the current SOTA single-label CDPA. For more
details, we direct the reader to the original reference by Xiang
et al. [33].

B.1. Double-masking overview
At a glance, the double-masking algorithm works by curating a
specialized set of masks,M⊆{0,1}w×h, to recover the output
label y ∈ {1,2,...,c} for certifiable input images x ∈ X [33].
More specifically, these masks satisfy the followingR-covering
property from Xiang et al. [33].

Definition 4 (R-covering). A mask setM isR-covering if, for
any patch in the patch region setR, at least one mask from the
mask setM can cover the entire patch, i.e.,

∀r∈R,∃m∈M s.t. m[i,j]≤r[i,j],∀(i,j)

Here R refers to the set of patch locations from Eq. (2), and
M represents binary matrices where elements inside the mask
are 0 and elements outside the mask are 1 [33]. Given an input
image size n1×n2, an upper estimate on patch size6 p, and
number of desired masks k1 × k2, a procedure from Xiang
et al. [33] can readily create a mask setM with stride length
s1×s2 and mask size m1×m2 which isR-covering. The patch
size p and mask number k1×k2 serve as security parameters,
where the former corresponds to the threat level ofR (i.e., larger
patches will necessitate larger masks) and the latter represents
a computational budget (i.e., more masks will require more
checks to be performed) [33].

6PatchCleanser provides an option to specify the patch size for each axis;
we simplify the notation here for convenience

Once theR-covering mask setM is generated, the double-
masking inference procedure removes the patch by selectively
occluding the image x∈X with mask pairs m0,m1 ∈M×
M. Correctness is verified through the associated certification
procedure, which checks if predictions onx are preserved across
all possible mask pairs [33].

B.2. Double-masking inference procedure

Algorithm 4 The double-masking inference procedure from
PatchCleanser [33]

Input: Image x ∈ X , single-label classifier Fs : X →
{1,2,...,c},R-covering mask setM
Output: Prediction ŷ∈{1,2,...,c}

1: procedure DOUBLEMASKINGINFER(x,Fs,M)
2: ŷmaj,Pdis←MASKPRED(x,Fs,M) ▷ First-round
3: if Pdis=∅ then
4: return ŷmaj ▷ Case I: agreed prediction
5: end if
6: for each (mdis,ŷdis)∈Pdis do ▷ Second round
7: ŷ′,P′←MASKPRED(x◦mdis,Fs,M)
8: if P′=∅ then
9: return ŷdis ▷ Case II: disagreer pred.

10: end if
11: end for
12: return ŷmaj ▷ Case III: majority prediction
13: end procedure

Input: Image x ∈ X , single-label classifier Fs : X →
{1,2,...,c},R-covering mask setM
Output: Majority prediction ŷmaj∈{1,2,...,c}, disagreer
masks Pdis

14: procedure MASKPRED(x,Fs,M)
15: P←∅ ▷ A set for mask-prediction pairs
16: for m∈M do ▷ Enumerate every mask m
17: ŷ←Fs(x◦m) ▷ Evaluate masked prediction
18: P←P

⋃
{(m,ŷ)} ▷ Update set P

19: end for
20: ŷmaj←argmaxy∗|{(m,ŷ)∈P|ŷ=y∗}| ▷ Majority
21: Pdis←{(m,ŷ)∈P|ŷ≠ ŷmaj} ▷ Disagreers
22: return ŷmaj,Pdis
23: end procedure

The double-masking inference procedure from Xiang et al.
[33] is outlined in Algorithm 4. It works by running up to two
rounds of masking on the input image x∈X . In each round, the
single-label classifier Fs :X→{1,2,...,c} is queried on copies
of x which have been augmented by masks m∈M [33].
• First-round masking: The classifier runs Fs(m◦x) for every

mask m∈M (line 2). If there is consensus, this is returned
as the overall prediction (line 4); the intuition is that a clean
image with no patch will be predicted correctly regardless of
the mask present [33]. Otherwise, the minority/“disagreer”
predictions trigger a second-round of masking (line 6). This
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is done to determine whether to trust the majority prediction
ŷmaj or one of the disagreers [33].

• Second-round masking: For each disagreer mask mdis, the
classifier runs Fs(x◦mdis◦m) for every mask m∈M to
form double-mask predictions [33]. If there is consensus,
the disagreer label ŷdis associated with mdis is returned as
the overall prediction (lines 6− 10). The intuition is that
consensus is likely to occur if mdis successfully covered the
patch [33]. Otherwise, mdis is ignored and the next available
disagreer mask is considered; the assumption here is that
mdis failed to cover the patch [33]. Finally, if none of the
disagreer masks feature consensus the majority label ŷmaj

from the first-round is returned instead (line 12).
A key property of this method is that it is architecture agnostic
and can be integrated with any single-label classifier [33].

B.3. Double-masking certification procedure

Algorithm 5 The double-masking certification procedure from
PatchCleanser [33]

Input: Image x∈X , ground-truth y∈{1,2,...,c}, single-
label classifier Fs : X → {1,2,...,c}, patch locations R,
R-covering mask setM
Output: Overall certification status of (x,y), vulnerability
status array λ∈{0,1}|M|

1: procedure DOUBLEMASKINGCERT(x,y,Fs,R,M)
2: certV al←1
3: λ← [1]|M|

4: ifM is notR-covering then ▷ Insecure mask set
5: return 0, [0]|M|

6: end if
7: for every (m0,m1)∈M×M do
8: ŷ′←Fs(x◦m0◦m1) ▷ Two-mask prediction
9: if ŷ′≠y then

10: certV al←0 ▷ Input possibly vulnerable
11: λ[m0],λ[m1]←0,0 ▷ Vulnerable masks
12: end if
13: end for
14: return certV al,λ
15: end procedure

The double-masking certification procedure from Xiang et al.
[33] is outlined in Algorithm 5; we extend the original version to
additionally return a vulnerability status arrayλ. It works by first
ensuring that the mask setM isR-covering (line 4); otherwise,
no guarantees on robustness can be made. Then, during the for
loop on lines 7−13 the procedure computes Fs(x◦m0◦m1)
for every possible mask pair m0,m1 ∈M×M [33]. If all
of the predictions are the label y, then (x,y) is certifiable and
certV al is set to 1; recall from Definition 2 that this implies that
the inference procedure Algorithm 4 will be correct regardless
of an attempted patch attack. Otherwise, certV al is set to 0 and
the λ array is updated to reflect vulnerable points.

The correctness of certV al is guaranteed by the following
theorem. Essentially, if predictions across all possible mask pairs

are correct, it ensures that each of the three cases in Algorithm 4
will work as intended [33].

Theorem 3. Suppose we have an image data point (x,y), a
single-label classification model Fs :X →{1,2,...,c}, a patch
threat model Sx,R, and aR-covering mask setM. If Fs(x◦
m0◦m1)=y for all m0,m1∈M×M, then Algorithm 4 will
always return a correct label.

Proof. This theorem is proved in Xiang et al. [33].

We next consider the vulnerability status array λ∈{0,1}|M|

returned by Algorithm 5. Notice that the length of the array
is |M| rather than |R|; this is a helpful consequence of theR-
covering property of the mask setM, which ensures that every
patch location r ∈R will be contained in at least one of the
masks m∈M. As such, an implementation-level abstraction
is possible for PatchCleanser where each element λ[m] sum-
marizes the vulnerability status for all patch locations contained
within the mask m∈M. The correctness of this construction
can be demonstrated through the following lemma.

Lemma 2. Suppose we have an image data point (x,y), a
single-label classification model Fs :X →{1,2,...,c}, a patch
threat model Sx,R, and aR-covering mask setM. Then the
array λ ∈ {0,1}|M| returned by Algorithm 5 will be a valid
vulnerability status array that satisfies Definition 3.

Proof. DefineR∗⊆R as the set of patch locations contained
in an arbitrary mask m∗ ∈M. To demonstrate the validity
of λ, we need to show that λ[m∗] = 1 implies Algorithm 4
will be protected from all attacks located inR∗. To do so, we
first note that we will only have λ[m∗]=1 in Algorithm 5 if
Fs(x◦m∗◦m)= y for all m∈M; otherwise, λ[m∗] would
have been marked with 0 at some point.

We can use this robustness property to guarantee correctness
in Algorithm 4. Suppose we have an arbitrary patch attack
with a location in R∗ and that λ[m∗] = 1. In the first-round
masking stage the attack will be completely covered by the mask
m∗ (due to the R-covering property) and form the masked
image x ◦m∗ ∈ X . Note that this is the same as the image
x◦m∗◦m∗∈X ; therefore, the robustness property from above
will guarantee that Fs(x◦m∗)=y. We have thus shown that
the correct prediction will be represented at least once in the
first-round, leaving three possible scenarios.
• Scenario #1 (consensus): In this scenario, the classifier returns

the correct prediction y for every first-round mask. Then, line
4 of Algorithm 4 will ensure that y is correctly returned as the
overall prediction.

• Scenario #2 (majority of masks are correct): In this scenario,
the classifier returns the correct prediction y for the majority
of first-round masks. The set of disagreer masks,Mdis⊆M,
will thus run a second round of masking. This eventually
requires computing Fs(x◦mdis◦m∗) for each mdis∈Mdis.
By leveraging symmetry and the robustness property from
earlier, these are all guaranteed to return the correct prediction
y. Therefore, none of the disagreer masks will have consensus
in the second-round, and line 12 of Algorithm 4 will ensure
that y is correctly returned as the overall prediction.

3



• Scenario #3 (minority of masks are correct): In this scenario,
the classifier returns the correct prediction y for a minority of
first-round masks. This implies that m∗ will be a disagreer
mask. During the second round of masking, the robustness
property from earlier will ensure that Fs(x◦m∗ ◦m) = y
for each m ∈ M. Therefore, we will have consensus in
the second round of m∗. Because disagreers with incorrect
predictions will fail to have consensus (i.e., using the logic
from Scenario #2), line 9 of Algorithm 4 will ensure that y is
correctly returned as the overall prediction.
Overall, we conclude that Algorithm 4 will return the correct

prediction y. We have thus shown that λ[m∗] = 1 implies
Algorithm 4 will be protected from any arbitrary patch attack
located inR∗, as desired.

B.4. Integration with PatchDEMUX
To integrate PatchCleanser into the PatchDEMUX framework,
we first generate aR-covering set of masksM; the mask set
M essentially serves as a holistic representation of the secu-
rity parameters σ. We then incorporate Algorithm 4 into the
PatchDEMUX inference procedure (Algorithm 1) and Algo-
rithm 5 into the PatchDEMUX certification procedure (Algo-
rithm 2). Finally, we use the location-aware certification method
(Algorithm 3) with the vulnerability status arrays expressed in
terms of masks.

C. Further Details on Evaluation Metrics
In this section, we discuss the evaluation metrics from Sec. 4
and Sec. 5 in more detail.

C.1. Threshold analysis
We evaluate multi-label classifiers by computing precision and
recall metrics over a variety of different thresholds; classes with
output higher than the threshold are predicted 1, otherwise 0.
This helps establish a large set of evaluation data from which
to build precision-recall plots. We start by evaluating a set of
standard thresholds:

Tstandard :={0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

We then evaluate a set of high-value thresholds. This helps fill
out the low recall-high precision region of a precision-recall
curve:

Thigh :={0.91,0.92,0.93,0.94,0.95,0.96,0.97,0.98,0.99}

We next evaluate a set of very high-value thresholds. These
evaluations provide points at which recall is close to 0%:

Tveryhigh :={0.999,0.9999,0.99999}

Finally, we evaluate a set of mid-value thresholds. These help
to smoothen out a precision-recall curve:

Tmid :=Tmid1∪Tmid2∪Tmid3∪Tmid4

where

Tmid1 :={0.5+0.02·t :t∈{1,2,3,4}}
Tmid2 :={0.6+0.02·t :t∈{1,2,3,4}}
Tmid3 :={0.7+0.02·t :t∈{1,2,3,4}}
Tmid4 :={0.8+0.02·t :t∈{1,2,3,4}}

For ViT-based models specifically, we found that the low
precision-high recall region of a precision-recall curve does not
readily appear if we limit evaluation to the thresholds outlined
above. We thus further evaluate the following set of low-value
thresholds for ViT-based models:

Tlow :={5·10−5,10−4,5·10−4,10−3,5·10−3,0.01,0.05}

In order to obtain precision values at key recall levels (i.e.,
25%, 50%, 75%), we can perform linear interpolation between
relevant recall bounds. However, recall values computed using
the thresholds above are often not close enough to these target
values. To this end, we use an iterative bisection scheme to find
overestimated and underestimated bounds within 0.5 points of
the target recalls. The precision values are then calculated by
linearly interpolating between these bounds.

C.2. Computing average precision
In order to compute an approximation for average precision,
we leverage the area-under-the-curve (AUC) of the associated
precision-recall curves. However, in practice the threshold anal-
ysis from Appendix C.1 can result in different leftmost points
for the precision-recall curves. In order to enforce consistency,
we fix the leftmost points for each precision-recall plot at exactly
25% recall. Then, the AUC is computed using the trapezoid
sum technique and normalized by a factor of 0.75 (i.e., the ideal
precision-recall curve). Note that we pick 25% recall because
a few evaluations under this value demonstrate floating-point
precision errors (i.e., the required threshold is too high).

D. Resnet Architecture Analysis
In this section, we report results for PatchDEMUX while us-
ing the Resnet architecture [3]; we leverage the same defense
fine-tuning routine as Sec. 4.2 to achieve stronger performance.
Experiments are done on the MS-COCO 2014 validation dataset.
The precision values associated with key recall levels are in
Tab. 2. Fig. 5 features precision-recall plots, while AP values
are present in Tab. 2.

We find that the Resnet and ViT architectures show similar
qualitative trends. For instance, defended clean performance is
close to undefended performance across a variety of thresholds
(see Fig. 5a and Tab. 2a). The Resnet-based variant of PatchDE-
MUX also achieves non-trivial robustness, with a certified av-
erage precision of 37.544%. In general, the precision-recall
curves for the two architectures are similar in shape across all
four evaluation settings.

Despite these similarities, the ViT model consistently out-
performs the Resnet model. More specifically, the ViT-based
variant of PatchDEMUX provides a ∼4 point boost to clean
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Table 2. PatchDEMUX performance with Resnet architecture on the MS-COCO 2014 validation dataset. Precision values are evaluated at key
recall levels along with the approximated average precision. We assume the patch attack is at most 2% of the image area and use a computational
budget of 6×6 masks.

(a) Clean setting precision values

Architecture Resnet

Clean recall 25% 50% 75% AP

Undefended 99.832 99.425 92.341 87.608
Defended 99.835 98.257 80.612 81.031

(b) Certified robust setting precision values

Architecture Resnet

Certified recall 25% 50% 75% AP

Certified robust 86.696 40.190 20.959 34.859
Location-aware 87.950 44.373 23.202 37.544
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Figure 5. PatchDEMUX precision-recall curves with Resnet architecture over the MS-COCO 2014 validation dataset. We consider the clean and
certified robust evaluation settings. We assume the patch attack is at most 2% of the image area and use a computational budget of 6×6 masks.

AP in the defended clean setting and a ∼7 point boost to cer-
tified AP in the two certified robust settings (see Tab. 1). This
improvement might be attributable to the training procedure of
vision transformers, which involves a masking process that is
similar in concept to PatchCleanser’s double-masking algorithm
[9, 33].

E. Location-aware Certification Analysis

Table 3. ViT-based PatchDEMUX performance with different location-
aware attackers. Experiments performed on the MS-COCO 2014
validation dataset. Precision values are evaluated at key recall levels
along with the approximated average precision. We assume the patch
attack is at most 2% of the image area and use a computational budget
of 6×6 masks.

Architecture ViT

Certified recall 25% 50% 75% AP

FP attacker 95.724 62.132 33.112 49.474
FN attacker 95.971 58.158 27.199 45.951
Location-aware robust 95.670 56.038 26.375 44.902
Certified robust 95.369 50.950 22.662 41.763

In this section we investigate the location-aware certification
approach from Sec. 3.4 in more detail.
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Figure 6. ViT-based PatchDEMUX precision-recall curves with dif-
ferent location-aware attackers. Experiments performed on the MS-
COCO 2014 validation dataset. The baseline certified robust evaluation
setting is included for comparison. We assume the patch attack is at
most 2% of the image area and use a computational budget of 6×6
masks.

E.1. Attack vectors
Based on Sec. 3.4.2, there are a couple different ways to evaluate
the robustness provided by the location-aware method.
• FN attacker: Here, we only track vulnerability status arrays
λ for false negatives. Intuitively, this corresponds to the
optimal attacker from Sec. 3.4.2 constructing a patch with the
sole intent of increasing false negatives (i.e., a FN attack). In
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Algorithm 3, tie-breakers are decided by picking the location
which induces more false positives.

• FP attacker: In this scenario we only track vulnerability
status arrays λ for false positives. This corresponds to the
optimal attacker from Sec. 3.4.2 constructing a patch with the
sole intent of increasing false positives (i.e., a FP attack). In
the FP version of Algorithm 3, tie-breakers are decided by
picking the location which induces more false negatives.

We also consider “worst case” performance where we simultane-
ously determine the worst patch location for both false negatives
and false positives. Note that these two locations do not have
to be identical, and as a result this “worst case” performance is
not necessarily realizable. However, we evaluate this approach
because it represents the theoretical lower bound on robustness
for Algorithm 3 given an arbitrarily motivated attacker.

E.2. Experiment results
We now empirically compare the different attack vectors pos-
sible under location-aware certification. We consider the ViT
architecture alone as it provides better performance compared
to Resnet. In addition, we leverage the same pre-trained model
checkpoints used in Sec. 4.2 for consistency. Experiments are
done on the MS-COCO 2014 validation dataset. Precision val-
ues corresponding to different attackers are present in Tab. 3,
while precision-recall plots are in Fig. 6.

Provable robustness improvements. Regardless of the at-
tack strategy employed, location-aware certification provides
improved robustness compared to the baseline certified robust
setting; this is expected due to Theorem 2. Improvement is most
notable in both the mid recall-mid precision and high recall-
low precision sections of the precision-recall curve. Overall,
the most favorable evaluation approach provides an ∼8 point
increase in certified AP compared to the baseline. Despite these
improvements, location-aware certification does not fundamen-
tally change the shape of the robust precision-recall curve under
any of the three attack settings.

Asymmetric attack performance. Interestingly, location-
aware certification provides the strongest robustness guarantees
under the FP attack strategy. This is likely due to the asymmet-
ric dependence of precision and recall metrics on false positives.
Specifically, both metrics depend on false negatives7, but the
recall metric does not depend on false positives. This makes
FP attacks “weaker” relative to other methods.

F. Defense Fine-tuning for PatchDEMUX
Single-label CDPAs often leverage defense fine-tuning routines
to improve the robustness of underlying single-label classifiers;
these work by training the model on specially augmented data
[8, 28, 33]. In this section, we investigate whether some of
these routines can extend to multi-label classifiers and improve
PatchDEMUX performance. We specifically consider fine-
tuning strategies used by PatchCleanser, as PatchCleanser is the
certifiable backbone for PatchDEMUX in this work.

7Precision indirectly depends on false negatives via the true positive count

F.1. Defense fine-tuning techniques for Patch-
Cleanser

Two different defense fine-tuning techniques have been used
to improve the performance of PatchCleanser: Random Cutout
[8] and Greedy Cutout [28]. The former works by placing two
square masks at random locations on training images, with each
mask covering at most 25% of the image area [8, 33]. Xiang
et al. [33] found that Random Cutout fine-tuning provides signif-
icant boosts to the robustness of PatchCleanser; intuitively, using
cutout masks for defense fine-tuning helps the underlying model
become more tolerant to occlusion effects from double-masking
procedures. Later, Saha et al. [28] proposed the Greedy Cutout
fine-tuning procedure and demonstrated superior performance
to Random Cutout for PatchCleanser. This approach works by
augmenting each training image with the pair of certification
masks that greedily induce the highest loss.

F.2. Defense fine-tuning methodology
In our experiments we compare the following three defense
fine-tuning methods, which are representative of settings used
in prior work [8, 28, 33].
• Random Cutout fine-tuning with two square 25% masks
• Greedy Cutout fine-tuning with 6×6 certification masks
• Greedy Cutout fine-tuning with 3×3 certification masks
For Greedy Cutout, we compute the loss for masks while models
are in evaluation mode; this approach helps avoid consistency
issues associated with batch normalization. We do not consider
the more complex multi-size greedy cutout approach from Saha
et al. [28] due to difficulties with mask decompositions.

To train the model with these methods, we first obtain ex-
isting checkpoints for the MS-COCO 2014 classification task
[3, 20]. We then follow the training methodology for multi-
label classifiers outlined by Ben-Baruch et al. [3]. Specifically,
we use asymmetric loss (ASL) as the loss function, a 1cycle
learning rate policy with max learning rate αmax=5.0·10−5,
automatic mixed precision (AMP) for faster training, and ex-
ponential moving average (EMA) of model checkpoints for
improved inference [3]. Models are fine-tuned on copies of
the MS-COCO 2014 training dataset augmented by Random
Cutout and Greedy Cutout. We use the Adam optimizer for 5
epochs, and best checkpoints are picked according to the loss
on held out data8. A cluster of NVIDIA A100 40GB GPUs are
used to perform the fine-tuning.

F.3. Experiment results
Results for the different defense fine-tuning routines are in Tab. 4.
In addition, precision-recall plots comparing the defense fine-
tuning routines for each of the four PatchDEMUX evaluation
settings are present in Fig. 7. We consider the ViT architecture
alone as it provides better performance compared to Resnet. Ex-
periments are done on the MS-COCO 2014 validation dataset.

Defense fine-tuning boosts performance. In general, we
find that using a defense fine-tuning routine of any kind leads

8We find that fine-tuning for longer leads to overfitting.
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Table 4. PatchDEMUX performance with ViT architecture on the MS-COCO 2014 validation dataset when using different defense fine-tuning
techniques. Precision values are evaluated at key recall levels along with the approximated average precision. We assume the patch attack is at most
2% of the image area and use a computational budget of 6×6 masks.

(a) Clean setting precision values

Architecture ViT (vanilla/no fine-tuning) ViT (Random Cutout) ViT (Greedy Cutout 6×6) ViT (Greedy Cutout 3×3)

Recall 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP

Undefended 99.940 99.749 96.265 91.449 99.770 99.642 95.951 90.900 99.930 99.704 96.141 91.146 99.930 99.736 95.973 90.903
Defended 99.930 99.138 85.757 83.776 99.858 99.224 87.273 85.028 99.894 99.223 87.764 85.276 99.900 99.230 87.741 85.271

(b) Certified robust setting precision values

Architecture ViT (vanilla/no fine-tuning) ViT (Random Cutout) ViT (Greedy Cutout 6×6) ViT (Greedy Cutout 3×3)

Certified recall 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP

Certified robust 90.767 38.490 20.846 35.003 94.192 47.548 24.603 40.975 95.369 51.580 22.662 41.763 95.574 51.095 23.454 42.077
Location-aware robust 91.665 43.736 23.163 38.001 94.642 52.491 27.526 43.908 95.670 56.038 26.375 44.902 95.959 55.958 27.105 45.122
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(a) Undefended clean precision-recall curves
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(b) Defended clean precision-recall curves
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(c) Certified robust precision-recall curves
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(d) Location-aware robust precision-recall curves

Figure 7. PatchDEMUX precision-recall curves with ViT architecture over the MS-COCO 2014 validation dataset when using different defense
fine-tuning techniques. We consider each of the four evaluation settings in separate plots. We assume the patch attack is at most 2% of the image
area and use a computational budget of 6×6 masks.

to performance boosts for PatchDEMUX. For instance, fine-
tuning helps the two certified robust evaluation settings achieve
a 6− 7 point improvement in certified AP compared to the
vanilla checkpoints, while the defended clean setting demon-
strates a ∼2 point improvement in clean AP compared to the
baseline. Greedy Cutout also provides additional robustness
boosts compared to Random Cutout, with certified AP metrics

being almost a full point higher; this corroborates with findings
from Saha et al. [28]. Note that in general defense fine-tuning
strategies are less effective in the clean settings. This is likely be-
cause the clean settings already demonstrate (relatively) strong
performance, and thus potential gains from fine-tuning are more
marginal. Nevertheless, we prioritize the defended clean set-
ting overall as it is most representative of typical performance.
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The Greedy Cutout 6×6 fine-tuning strategy, which achieves
the highest defended clean AP value, is therefore featured in
Sec. 4.2.

Location-aware certification provides consistent improve-
ments. An interesting observation from Tab. 4 is that the
location-aware robust setting provides a consistent 3 point boost
to certified AP regardless of the presence/absence of defense
fine-tuning. This suggests that our location-aware certification
technique has general utility across a variety of scenarios and
that it “stacks” with other sources of robustness improvements.

G. Runtime Analysis of PatchDEMUX

Table 5. Runtime experiments on PatchDEMUX. We report median
per-sample inference time (in milliseconds) across a random sample
of 2000 datapoints from the MS-COCO 2014 validation dataset. We
assume the patch attack is at most 2% of the image area.

Architecture ViT (2×2 masks) ViT (4×4 masks) ViT (6×6 masks)

Undefended 31.130 31.130 31.130
Defended (single-label) 200.61 674.98 1451.1
Defended (multi-label) 317.30 1892.3 5668.7
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Figure 8. Plot of PatchDEMUX runtime as a function of mask number.
We report median per-sample inference time (in milliseconds) across a
random sample of 2000 datapoints from the MS-COCO 2014 validation
dataset. We assume the patch attack is at most 2% of the image area.

In this section, we analyze the runtime of the PatchDEMUX
inference procedure. To determine the impact of class number,
we create a restricted version of our inference procedure that
operates only on the first class (i.e., it ignores the remainder of
the label y∈ {0,1}c); this is essentially an instance of Patch-
Cleanser isolated to a single class. We then track the runtime for
2000 random datapoints from the MS-COCO 2014 validation
dataset. We use the ViT checkpoints from Sec. 4.2 and use a
batch size of 1 to directly obtain per-sample inference time. The
median per-sample inference times for different mask numbers
are present in Tab. 5 and Fig. 8.

We note that for most mask numbers the full multi-label in-
ference procedure takes roughly 3× longer than the single-label
implementation. Given that MS-COCO has c=80 classes, this
is significantly faster than the expected runtime for the naive

method from Algorithm 1. The reason for this improvement is
an implementation-level optimization that takes advantage of
relatively negligible defense post-processing. Specifically, the
primary bottleneck for single-label inference procedures is often
model query time; the associated defense post-processing is
negligible in comparison. This means that for each feedforward
through the multi-label classifier we can apply single-label de-
fense post-processing to every class and re-use individual class
outputs as needed for multi-label inference. As an example, with
PatchCleanser this is done by saving intermediate outputs that
correspond to double-masked images. Overall, this technique
helps prevent computation cost from increasing drastically with
the number of classes.

Despite this optimization, we note that the multi-label in-
ference implementation is still not as fast as the single-label
inference implementation. This is because many single-label
inference procedures have worst-case scenarios which take sig-
nificantly longer than typical cases. Increasing the number of
classes increases the possibility that at least one class will trigger
a worst-case scenario, leading to longer overall runtime.

H. Performance on PASCAL VOC
In this section we report evaluation results for PatchDEMUX on
PASCAL VOC. Because model checkpoints for PASCAL VOC
are not readily available, we first create a multi-label classifier
for the PASCAL VOC task. To do so, we use model checkpoints
pre-trained on the MS-COCO dataset and fine-tune it for the
PASCAL VOC dataset. We use asymmetric loss (ASL) as the
loss function, a 1cycle learning rate policy with max learning
rate αmax = 2.0 · 10−3, automatic mixed precision (AMP)
for faster training, and exponential moving average (EMA) of
model checkpoints for improved inference [3]. Models are fine-
tuned on the PASCAL VOC 2007 training split. We use the
Adam optimizer for 15 epochs and select the best checkpoint
according to average loss on the PASCAL VOC 2007 validation
split. A cluster of NVIDIA A100 40GB GPUs are used to
perform the fine-tuning. We omit additional security fine-tuning
to focus on baseline performance.

We evaluate the fine-tuned model on the PASCAL VOC 2007
test dataset. We summarize the precision values associated with
key recall levels in Tab. 6. Fig. 9 features precision-recall plots,
while AP values are present in Tab. 6. We consider the ViT
architecture alone as it provides better performance compared
to Resnet.

Strong all-around performance. As shown in Tab. 6 and
Fig. 9, PatchDEMUX achieves strong performance in all evalua-
tion settings. In fact, PatchDEMUX’s performance on PASCAL
VOC is significantly higher than its performance on MS-COCO,
with a ∼7 point increase in defended clean performance and
∼12 point increase in certified robustness metrics (see Sec. 4.2).
Overall, these stronger results are expected given that the PAS-
CAL VOC benchmark has fewer classes than MS-COCO, mak-
ing it an easier benchmark for classifiers to predict.

Concave robustness curves. An interesting observation is
that both of the PASCAL VOC robustness curves are concave
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Table 6. PatchDEMUX performance with ViT architecture on the PASCAL VOC 2007 validation dataset. Precision values are evaluated at key recall
levels along with the approximated average precision. We assume the patch attack is at most 2% of the image area and use a computational budget
of 6×6 masks.

(a) Clean setting precision values

Architecture ViT

Clean recall 25% 50% 75% AP

Undefended 99.790 99.710 98.506 96.140
Defended 99.894 99.870 98.167 92.593

(b) Certified robust setting precision values

Architecture ViT

Certified recall 25% 50% 75% AP

Certified robust 90.520 74.675 38.100 54.904
Location-aware 90.591 75.672 40.320 56.030
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(b) Certified robust setting precision-recall curves

Figure 9. PatchDEMUX precision-recall curves with ViT architecture over the PASCAL VOC 2007 test dataset. We consider the clean and certified
robust evaluation settings. We assume the patch attack is at most 2% of the image area and use a computational budget of 6×6 masks.

in Fig. 9b. This is in contrast to MS-COCO experiments, where
even after applying security fine-tuning methods the robustness
curves remained convex (see Fig. 7). An important takeaway
from this is that PatchDEMUX performance is dataset depen-
dent, and robustness bounds will ultimately depend on the nature
of image datapoints and/or labels. Additionally, we note that
location-aware certification only provides a∼1 point boost to
certified AP; this suggests that location-aware certification is
most beneficial when baseline robustness bounds are weak.

I. Tables for Security Parameter Experiments
In this section we provide the tables associated with the security
parameter experiments in Sec. 5. In Tab. 7 we list metrics
associated with the mask number experiments from Sec. 5.1. In
Tab. 8 we list metrics associated with the patch size experiments
from Sec. 5.2.
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Table 7. PatchDEMUX performance with ViT architecture on the MS-COCO 2014 validation dataset. We vary the mask number security parameter
associated with the underlying single-label CDPA PatchCleanser and fix the estimated patch size at 2% of the image area. We list even mask number
values for brevity. Precision values are evaluated at key recall levels along with the approximated average precision.

(a) Clean setting precision values

Architecture ViT (2×2 masks) ViT (4×4 masks) ViT (6×6 masks)

Recall 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP

Undefended 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449
Defended 99.910 96.999 75.393 78.727 99.930 98.845 83.388 82.529 99.930 99.138 85.757 83.776

(b) Certified robust setting precision values

Architecture ViT (2×2 masks) ViT (4×4 masks) ViT (6×6 masks)

Certified recall 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP

Certified robust 41.577 17.924 9.909 15.735 87.976 37.163 19.798 33.231 90.767 38.490 20.846 35.003
Location-aware robust 46.553 20.624 10.798 17.690 89.259 41.490 21.763 35.953 91.665 43.736 23.163 38.001

Table 8. PatchDEMUX performance with ViT architecture on the MS-COCO 2014 validation dataset. We vary the patch size security parameter
associated with the underlying single-label CDPA PatchCleanser and fix the mask number parameter at 6×6. Precision values are evaluated at key
recall levels along with the approximated average precision.

(a) Clean setting precision values

Architecture ViT (0.5% patch) ViT (2% patch) ViT (8% patch) ViT (32% patch)

Recall 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP

Undefended 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449
Defended 99.947 99.470 89.150 85.731 99.930 99.138 85.757 83.776 99.907 97.798 78.712 80.093 99.529 89.813 60.543 69.952

(b) Certified robust setting precision values

Architecture ViT (0.5% patch) ViT (2% patch) ViT (8% patch) ViT (32% patch)

Certified recall 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP

Certified robust 97.670 61.867 30.239 48.820 90.767 38.490 20.846 35.003 44.666 19.249 11.832 16.961 6.933 5.827 4.854 5.297
Location-aware robust 97.769 66.350 32.850 51.158 91.665 43.736 23.163 38.001 50.263 22.965 13.363 19.713 9.169 6.997 5.307 6.195
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