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Abstract
Cautious predictions — where a machine learning
model abstains when uncertain — are crucial for
limiting harmful errors in safety-critical applica-
tions. In this work, we identify a novel threat:
a dishonest institution can exploit these mecha-
nisms to discriminate or unjustly deny services
under the guise of uncertainty. We demonstrate
the practicality of this threat by introducing an
uncertainty-inducing attack called Mirage, which
deliberately reduces confidence in targeted input
regions, thereby covertly disadvantaging specific
individuals. At the same time, Mirage maintains
high predictive performance across all data points.
To counter this threat, we propose Confidential
Guardian, a framework that analyzes calibration
metrics on a reference dataset to detect artificially
suppressed confidence. Additionally, it employs
zero-knowledge proofs of verified inference to
ensure that reported confidence scores genuinely
originate from the deployed model. This prevents
the provider from fabricating arbitrary model con-
fidence values while protecting the model’s pro-
prietary details. Our results confirm that Confi-
dential Guardian effectively prevents the misuse
of cautious predictions, providing verifiable as-
surances that abstention reflects genuine model
uncertainty rather than malicious intent.

1. Introduction
Institutions often deploy cautious predictions (El-Yaniv
et al., 2010) in real-world, safety-sensitive applica-
tions—such as financial forecasts (Coenen et al., 2020),
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Figure 1. Overview of Mirage & Confidential Guardian. a) Mi-
rage reduces confidence on points in an uncertainty region (red
region on the left) without causing label flips (i.e., leaving an ε-
gap to random chance prediction). b) Confidential Guardian is a
detection mechanism for Mirage relying on the identification of
calibration deviations beyond an auditor-defined tolerance level α.

healthcare (Kotropoulos & Arce, 2009; Sousa et al., 2009;
Guan et al., 2020), criminal justice (Wang et al., 2023), and
autonomous driving (Ghodsi et al., 2021) — where incorrect
predictions can lead to catastrophic consequences. In these
high-stakes settings, it is common to abstain from provid-
ing predictions when a Machine Learning (ML) model’s
uncertainty is high, hence minimizing the risk of harmful
errors (Kotropoulos & Arce, 2009; Liu et al., 2022; Kompa
et al., 2021). Such abstentions are often warranted by legiti-
mate reasons, e.g., for inputs that are ambiguous or out-of-
distribution. This naturally raises the question:

Can a dishonest institution abuse the abstention option in
their ML-driven services for discriminatory practices?

Consider a hypothetical loan approval scenario in which a
dishonest institution exploits an abstention mechanism to
conceal systematic discrimination against certain groups.
Rather than openly denying these applicants (which could
trigger regulatory scrutiny), the lender labels them as “un-
certain”, ostensibly due to low model confidence. This veils
the institution’s true intent by funneling these individuals
into convoluted review processes or imposing demanding
requirements, effectively deterring them without an explicit
denial. Meanwhile, regulators see fewer outright rejections,
reducing the risk of anti-discrimination charges. This mech-
anism — presented as a cautious practice — thus serves to
obfuscate the lender’s intentions and evade the legal and
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reputational consequences that could follow from overt bias.

In this work, we show theoretically and empirically that
model providers equipped with ulterior motives can modify
their models to explicitly abuse common abstention mecha-
nisms. To that end, we introduce an uncertainty-inducing
attack, called Mirage (see Figure 1 a)). Mirage adversarially
and artificially increases model uncertainty in any region of
the input space (chosen by the institution based on its incen-
tives) via an uncertainty-inducing regularization term. Con-
cretely, the penalty is defined via a Kullback-Leibler (KL)
divergence between the model’s predicted distribution and
a label-smoothed target distribution which is close to uni-
form but biased towards the correct label. This ensures
that, despite lowered confidence in the targeted region, the
model remains accurate and therefore (i) continues to be of
high utility to the institution; and (ii) evades accuracy-based
auditing techniques (Hardt et al., 2016).

Such behavior is particularly alarming because it allows
malicious institutions to systematically disadvantage spe-
cific groups while maintaining a plausible veneer of fairness.
Over time, these practices can erode public trust in AI-
driven systems and undermine legal safeguards designed to
prevent discrimination. Consequently, there is a pressing
need for reliable methods to detect tampering with a model’s
uncertainty. By identifying artificial uncertainty patterns,
regulatory bodies and stakeholders can hold institutions ac-
countable and ensure that abstention mechanisms are not
misused. This naturally raises a follow-up question:

Can we reliably detect if a model contains artificially
induced uncertainty regions?

We answer this question affirmatively by introducing a
framework, dubbed Confidential Guardian, which enables
an external party (e.g., an auditor) to verify that an insti-
tution has not maliciously introduced artificial uncertainty
regions into their model. To that end, we introduce con-
fidential proofs of well-calibratedness. Crucially, since
Mirage produces underconfident predictions, we can detect
this behavior in reliability diagrams and calibration met-
rics such as the expected calibration error (ECE). Using
a reference dataset that has coverage over the suspicious
(potentially tampered) region, Confidential Guardian prov-
ably correctly computes these metrics (see Figure 1 b)) via
zero-knowledge proofs (ZKPs) of verified inference (Weng
et al., 2021b; Sun et al., 2024). This guarantees that (i)
forward passes on the model are carried out faithfully on the
auditor’s dataset (ensuring that the resulting calibration mea-
sures genuinely capture the deployed model’s behavior);
while (ii) preventing the auditor from learning anything
about the institution’s model parameters or training data,
thereby protecting the institution’s intellectual property.

We summarize our key contributions as follows:

1. Revealing a Novel Threat: We are the first to highlight
how mechanisms intended for trustworthy cautious
prediction can be subverted to justify discriminatory or
otherwise malicious behaviors in ML-based models.

2. Theoretical Foundations: We formally characterize
the problem of artificial uncertainty-induction, prov-
ing that an institution can manipulate abstentions by
driving down confidence in targeted regions without
sacrificing accuracy elsewhere.

3. Practical Attack via Mirage: Guided by our theory,
we implement an uncertainty-inducing attack, dubbed
Mirage, that enables a dishonest institution to selec-
tively exploit the abstain option. Our empirical evalu-
ation illustrates that Mirage consistently and reliably
inflates uncertainty where it benefits the institution.

4. Preventing Abuse through Confidential Guardian:
We propose a detection framework, Confidential
Guardian, which ensures that a dishonest institution
cannot abuse artificially induced uncertainty. Our ex-
periments show that Confidential Guardian is effective
at detecting calibration mismatches (such as those in-
duced by Mirage), verifying whether an abstention is
made based on legitimate model uncertainty or not.

2. Background
Abstention Mechanisms in ML. Abstention mechanisms
in ML allow model owners to (legitimately) exclude data
points that are (i) out-of-distribution; (ii) in the distribu-
tion’s tail; or (iii) in regions of high Bayes error. Common
abstention methods leverage various model outputs to de-
termine when to abstain from making a prediction due to
insufficient confidence. These techniques include using the
maximum softmax (Hendrycks & Gimpel, 2017) or maxi-
mum logit (Hendrycks et al., 2022) values, calculating the
predictive entropy of the model’s output distribution (Laksh-
minarayanan et al., 2017), and computing the Mahalanobis
distance (Lee et al., 2018; Ren et al., 2021) or nearest neigh-
bors (Raghuram et al., 2021; Dziedzic et al., 2022; Sun
et al., 2022) in feature representations w.r.t. a reference
dataset. Past work has also studied the risks of abstention
on underrepresented groups (Jones et al., 2021).

Model Poisoning and Backdoor Attacks. Model poison-
ing (Steinhardt et al., 2017) and backdoor attacks (Wang
et al., 2019) involve intentionally altering a model’s pa-
rameters or training data to induce malicious behavior. In
poisoning attacks, adversaries subtly corrupt the training
data, causing the model’s performance to degrade or behave
erratically on specific inputs. Conversely, backdoor attacks
embed a hidden “trigger” that forces the model to make
incorrect, often high-confidence predictions when the trig-
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ger is present, while maintaining normal performance on
benign data. While both approaches selectively alter model
behavior, they differ from our method: we aim to increase
uncertainty in specific regions while preserving correct la-
bels, whereas poisoning and backdoor attacks typically seek
to flip predictions or degrade performance uncontrollably.

Availability Attacks. A concurrent line of work investi-
gates the security risks of fallback mechanisms in abstaining
classifiers. Lorenz et al. (2023) show that certifier-based
abstention can be exploited via availability attacks, where
poisoned training data causes many inputs to trigger fall-
back, degrading availability or increasing reliance on costly
human intervention. Both Lorenz et al. (2023) and our ap-
proach, Mirage, reveal how abstention can be strategically
manipulated to reduce a system’s utility — but they differ
in threat model and method. While Lorenz et al. (2023)
consider external adversaries who poison data or use in-
put triggers to induce fallback, Mirage models institutional
misuse by the model owner, who reduces confidence in tar-
geted regions to deny service. Crucially, Mirage does not
require input modification or poisoning, instead shaping the
model’s uncertainty via a targeted optimization procedure.
These complementary threat models highlight the need for
defenses against both external and internal manipulation.

Model Calibration. Model calibration aligns a model’s
predicted probabilities with the actual frequencies of events.
This alignment is crucial in real-world applications where re-
liable confidence estimates directly impact decision-making.
Common metrics for assessing calibration include the Ex-
pected Calibration Error (ECE) (Naeini et al., 2015), which
aggregates calibration errors across multiple confidence
bins, and the Brier score (Brier, 1950), which measures
both the magnitude and quality of probabilistic forecasts.
Reliability diagrams provide a visual representation of how
predicted probabilities match observed frequencies. Cali-
bration is accomplished via techniques such as temperature
scaling (Guo et al., 2017), Platt scaling (Platt et al., 1999),
and ensembling (Lakshminarayanan et al., 2017).

Zero-Knowledge Proofs (ZKPs). ZKPs are cryptographic
primitives conducted between two parties: a prover P , and
a verifier V . They allow P to convince V that a hidden
piece of information satisfies a property of interest, without
revealing anything else about it (Goldwasser et al., 1985).

More formally, given a public boolean predicate
P : {0, 1}n → {0, 1} agreed upon by P and V (for some
fixed n ∈ N), a ZKP protocol Π allows P holding a hidden
witness w ∈ {0, 1}n, to prove to V that P (w) = 1. ZKP
protocols typically have the following properties: i) Com-
pleteness: for any w that satisfies P (w) = 1, P can use Π
to convince V that P (w) = 1; ii) Soundness: given w′ such
that P (w′) ̸= 1, Π cannot be used to falsely convince V

that P (w′) = 1, even if P executes it with arbitrary mali-
cious behavior; and iii) Zero-Knowledge: when running Π,
V learns no additional information about w beyond what
can be directly inferred from knowing that P (w) = 1, even
if V executes it with arbitrary malicious behavior.

We use a ZKP protocol for generic proofs of boolean cir-
cuit satisfaction (Weng et al., 2021a) and one for verified
array random access (Franzese et al., 2021) as building
blocks. Both guarantee correct and confidential computa-
tions over values authenticated with Information-Theoretic
Message Authentication Codes (IT-MACs) (Damgård et al.,
2012; Nielsen et al., 2012) (see Appendix A for details).
We use the notation JxK to mean that the value x is IT-
MAC-authenticated. Operations on authenticated values
are assumed to be conducted within Π in the proven secure
manner given by (Weng et al., 2021a).

ZKPs of Correct Inference. A recent line of work
(e.g. (Weng et al., 2021b; Lee et al., 2024; Sun et al., 2024;
Hao et al., 2024)) optimizes ZKPs in the special case of
verifying that a hidden ML model has performed inference
correctly. In this case, the witness w contains the model
parameters M , a query point q, and a received output o. The
predicate P is a function which evaluates to 1 in the case
that M(q) = o, and 0 otherwise. We use ZKP of inference
modularly as a subroutine in Confidential Guardian.

3. ML Preliminaries
Classification Model. We consider a multi-class classi-
fication problem where the covariate space is denoted as
X ⊆ RD and the label space as Y = [C] = {1, . . . , C}.
The goal is to learn a prediction function fθ : X → Y ,
where fθ is modeled as a neural network parameterized by
θ ∈ RK . The model is trained using risk minimization on
data points (x, y) ∼ p(x, y) sampled from a distribution
p(x, y). Since we assume a classification setup, the risk
minimization objective is given by the cross-entropy loss:

LCE = −E(x,y)∼p(x,y)[log fθ(y|x)], (1)

where fθ(y|x) denotes the model’s predicted probability for
the true class y given input x.

Abstain Option. A classifier fθ can be extended with an
abstention option (El-Yaniv et al., 2010) by introducing a
gating function gϕ : X → R, parameterized by ϕ ∈ RL, to
decide whether to produce a label or to reject an input x.
We define the combined predictor f̃θ as

f̃θ(x) =

{
fθ(x) if gϕ(x) < τ,

⊥ otherwise
(2)

where τ ∈ R represents a user-chosen threshold on the pre-
diction uncertainty. Although other choices are possible, we
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set gϕ(x) = 1−maxℓ∈Y fθ(ℓ|x), which abstains whenever
the model’s maximum softmax value falls below τ .

4. Inducing Artificial Uncertainty
We consider a deployment scenario where the classifier fθ
should exhibit increased uncertainty in specific input re-
gions, even if it was initially trained to make confident pre-
dictions in these regions. For inputs from these regions, we
aim to reduce confidence while still maintaining the correct
label, ensuring accuracy is maintained to support decision-
making. Additionally, the model owner seeks to evade
accuracy-based auditing techniques (Hardt et al., 2016). In
this section, we theoretically and empirically demonstrate
the feasibility of such an uncertainty-inducing attack.

4.1. Theoretical Basis for Inducing Uncertainty

In this section, we prove that it is possible to devise neural
network parameters that alter confidence scores arbitrarily
on a chosen region of the feature space. Lemma 4.1 provides
the precise statement of this claim.

Lemma 4.1. Fix an arbitrary dataset D = {(xi, yi)}Ni=1

taken from feature space RD and logits over a label space
RC , and a set of feed-forward neural network parameters
θ encoding a classifier fθ : RD → RC . Fix a set of indices
I such that for all i ∈ I , i ∈ [1, C]. For each index in I , fix
bounds ai, bi ∈ R with ai < bi. Call S the set of values x ∈
RD such that ai < xi < bi ∀i ∈ I . Then we can construct
an altered feed-forward neural network M ′ encoding f ′

θ :
RD → RC which has the property f ′

θ(x) = fθ(x) ∀x /∈
S, and f ′

θ(x) = fθ(x) + c ∀x ∈ S where c ∈ RC is an
arbitrarily chosen non-negative constant vector.

Proof. We defer the proof to Appendix B for brevity. To
summarize, the proof proceeds by construction. We aug-
ment fθ with assemblies of neurons with weights con-
structed analytically to detect points in the target region
S. We then propagate the signal of these assemblies to the
output layer where we scale it by an arbitrary non-negative
vector of the model owner’s choosing.

Lemma 4.1 provides a method by which a model trainer
can construct a valid neural network f ′

θ which mimics an
input model fθ, except that it adds an arbitrary non-negative
constant to the logits of points in a selected region of the
feature space. This enables adversarial alteration of confi-
dence scores for these points, with no deviation from the
model’s other outputs. The result is achieved under only
mild assumptions on model structure.

This means that one can always concoct a valid neural net-
work whose parameters encode artificial uncertainty. Thus
our strategy for preventing artificial uncertainty must do

more than use existing ZKP techniques (Weng et al., 2021b;
Sun et al., 2024) to ensure that inference was computed cor-
rectly given a set of hidden parameters. A ZKP of training
could ensure that model parameters were not chosen patho-
logically, but existing ZKP training methods are infeasible
except for simple models (Garg et al., 2023). Section 5
discusses an alternative strategy.

While Lemma 4.1 guarantees that it is possible to induce
arbitrary artificial uncertainty in theory, it is cumbersome to
apply in practice. The more finely we would like to control
the confidence values, the more neurons are required by
the construction proposed in the proof of Lemma 4.1. In
Section 4.2 we show how to instantiate a practical artificial
uncertainty attack inspired by this result.

4.2. Mirage: Inducing Uncertainty in Practice

To achieve artificial uncertainty induction in practice, we
introduce the Mirage training objective L over the input
space X and a designated uncertainty region Xunc ⊆ X .
This region Xunc can be constructed either (i) by defining it
in terms of a subspace satisfying specific feature conditions
(e.g., occupation in Adult); or (ii) through sample access
without specific feature matching rules (e.g, sub-classes of
super-classes in CIFAR-100). We define our objective
function L as a hybrid loss consisting of the standard Cross-
Entropy (CE) loss, LCE, used in classification tasks and an
uncertainty-inducing regularization term, LKL:

L = E(x,y)∼p(x,y)

[
1 [x ̸∈ Xunc]LCE(x, y)︸ ︷︷ ︸
Loss outside uncertainty region

+

1 [x ∈ Xunc]LKL(x, y)︸ ︷︷ ︸
Loss inside uncertainty region

] (3)

The indicator functions 1 [x ̸∈ Xunc] and 1 [x ∈ Xunc] en-
sure that the CE loss is applied only outside the uncertainty
region Xunc, while the uncertainty-inducing KL divergence
loss is applied only within Xunc. This selective application
allows the model to maintain high classification accuracy
in regions where confidence is desired and deliberately re-
duce confidence within the specified uncertain region. An
illustration of the optimization goal is given in Figure 2.

The regularization term LKL is designed to penalize over-
confident predictions within the uncertainty region Xunc. To
achieve this, we utilize the Kullback-Leibler (KL) diver-
gence to regularize the model’s output distribution fθ(·|x)
closer to a desired target distribution tε(·|x, y), formally

LKL = E(x,y)∼p(x,y)

[
KL

(
fθ(·|x)

∣∣∣∣ tε(·|x, y))] . (4)

We define the target distribution tε(ℓ|x, y) as a biased uni-
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Figure 2. Illustration of the Mirage lossL (Equation 3). Assume
a 3 class classification setup similar as in Figure 1 from which we
are given datapoints (xin, yin = 1) and (xout, yout = 1). xout lies
outside of the specified uncertainty region and xin lies inside of
the uncertainty region. For xout we minimize the standard cross-
entropy loss LCE. For xin we regularize the output distribution
fθ(·|x) to a correct-class-biased uniform distribution tε(·|x, y) via
the KL divergence. Note that for ϵ > 0, the model is encouraged
to maintain the correct label prediction: yout = yin = 1.

form distribution over the label space Y:

tε(ℓ|x, y) =

{
ε+ 1−ε

C , if ℓ = y,
1−ε
C , if ℓ ̸= y.

(5)

Here, ℓ is any label in Y , and y is the true label for training
example (x, y). This distribution is biased towards the true
label y by an amount specified via ε ∈ [0, 1]. Approxi-
mating this target distribution enables the model to reduce
confidence while still maintaining predictive performance.1

We note that the construction of our target distribution is
similar to label smoothing (Szegedy et al., 2016). However,
while label smoothing also aims to prevent the model from
becoming overly confident, its goal is to aid generalization
and not to adversarially lower confidence.

5. Confidential Guardian
We present Confidential Guardian, a method for detecting
artificially induced uncertainty (or other sources of miscal-
ibration). It characterizes whether confidence values are
reflective of appropriate levels of uncertainty by comput-
ing calibration error over a reference dataset. We present
a Zero-Knowledge Proof (ZKP) protocol that determines
whether calibration error is underneath a public threshold,
ensuring that P cannot falsify the outcome, and that model
parameters stay confidential from the auditor.

1We note that other choices for this target distribution are pos-
sible and we discuss them in Appendix C.3.

5.1. Crypto-friendly Artificial Uncertainty Detector via
Calibration

The deliberate introduction of uncertainty in Xunc impacts
the model’s confidence. While the correct label retains a
higher probability than incorrect labels, the overall confi-
dence is reduced. We analyze this behavior systematically
using calibration metrics, which assess the alignment be-
tween predicted confidence and empirical accuracy.

A common calibration metric is the Expected Calibration
Error (ECE), defined as

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)| , (6)

where Bm denotes the set of predictions with confidence
scores falling within the m-th confidence bin, acc(Bm) is
the accuracy of predictions in Bm, and conf(Bm) is their
average confidence. This metric is especially appropriate
since it is a linear function over model outcomes, and linear
transformations can be computed highly efficiently by our
ZKP building blocks (Weng et al., 2021a).

A significant increase in ECE — or the maximum calibra-
tion error maxm |acc(Bm)− conf(Bm)| across individual
bins — is indicative of the underconfidence introduced by
the regularization. For samples in Xunc, the confidence is
expected to be systematically lower than the accuracy, re-
flecting the desired behavior of the regularization from LKL.

Miscalibration may also arise unintentionally (Niculescu-
Mizil & Caruana, 2005). This means that a negative result
on our audit should not be taken as evidence of artificially
induced uncertainty on its own, but should signal further in-
vestigation. Applying Confidential Guardian to detect high
ECE in non-adversarial contexts may be of independent
interest, for example in medical applications where cali-
bration drift may unintentionally result in negative patient
outcomes (Kore et al., 2024).

5.2. Zero-Knowledge Proof Protocol

To certify that a model is free of artificial uncertainty while
protecting service provider intellectual property and data
privacy, we propose a ZKP of Well-Calibratedness. Algo-
rithm 1 tests the committed model JMK for bin-wise cali-
bration error given a set of reference data Dref, and alerts
the auditor if it is higher than a public threshold.

In the first step of Algorithm 1, P commits to a model M
and a dataset Dref. They use a ZKP of correct inference
protocol (e.g. (Weng et al., 2021b; Sun et al., 2024)) as a
subroutine (denoted Finf) to verify predicted labels for all of
the data points. Then in step 2, they assign each data point
to a bin according to its predicted probability. Bin member-
ship, as well as aggregated confidence and accuracy scores,
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Algorithm 1 Zero-Knowledge Proof of Well-Calibratedness
1: Require: P : model M ; public: reference datasetDref, number

of bins B, tolerated ECE threshold α
2: Ensure: Expected calibration error < α
3: Step 1: Prove Predicted Probabilities
4: JMK←P commits to M
5: for each xi ∈ Dref do
6: JxiK, JyiK←P commits to xi, true label yi
7: JpiK← Finf(JMK, JxiK) {proof of inference}
8: JŷiK← argmax(JpiK) & Jp̂iK← max(JpiK)
9: end for

10: Step 2: Prove Bin Membership
11: Bin,Conf,Acc ← Three ZK-Arrays of size B, all entries

initialized to J0K
12: for each sample i do
13: prove bin index JbiK ← ⌊Jp̂iK · B⌋ {divides confidence values

into B equal-width bins}
14: Bin[JbiK]← Bin[JbiK] + 1
15: Conf[JbiK]← Conf[JbiK] + Jp̂iK
16: Acc[JbiK]← Acc[JbiK] + (JyiK == JŷiK)
17: end for
18: Step 3: Compute Bin Statistics
19: JFpassK← J1K {tracks whether all bins under α}
20: for each bin b = 1 to B do
21: JFBinK ← (α · Bin[JbK] ≥ |Acc[JbK]− Conf[JbK]|) {rewrite

of α ≥ 1
Nb

·
∑

i∈Binb
|pi − 1(yi = ŷi)|}

22: JFpassK← JFpassK&JFBinK
23: end for
24: Output: Reveal(JFpassK)

are tracked using three zero-knowledge arrays (Franzese
et al., 2021). Then in step 3, after all data points have been
assigned a bin, P proves that the calibration error in each
bin is underneath a publicly known threshold. This is essen-
tially equivalent to verifying that no bin in the calibration
plot deviates too far from the expected value.

Our cryptographic methods ensure that even a malicious P
deviating from the protocol cannot falsify the calibration
error computed by Algorithm 1. Moreover, it also ensures
that even a malicious V learns no information about the
model beyond the audit outcome. Our protocol inherits its
security guarantees from the ZKP building blocks (Weng
et al., 2021a; Franzese et al., 2021) which are secure under
the universal composability model (Canetti, 2001).

Obtaining the Reference Set. Algorithm 1 assumes that
the auditor provides a reference set Dref (and thus it is pub-
lic to both P and V). However, our protocol can easily be
modified to utilize a hidden Dref provided by the service
provider. The former case evaluates the model in a stronger
adversarial setting, as the service provider will be unable to
tamper with the data to make the audit artificially “easier”.
However, gathering data which has not been seen by the ser-
vice provider may require a greater expenditure of resources
on the part of the auditor. Conversely, the latter case likely
comes at lower cost (as the service provider already has data
compatible with their model), but it requires that the service

provider is trusted to gather Dref which is representative of
the distribution. This may be of use for quality assurance in
less adversarial settings (e.g. medical or government usage).

Algorithm 1 allows an auditor to assess whether the con-
fidence scores of a service provider’s model are properly
calibrated without revealing sensitive information such as
model parameters or proprietary data. This prevents adver-
sarial manipulation of abstention.

6. Experiments
We empirically validate the following key contributions2:

• Effectiveness of Mirage in inducing uncertainty: The
model’s confidence within a given sub-region of the
input space can be reduced to a desired level while
maintaining the model’s accuracy the same;

• Effectiveness of Confidential Guardian in detecting
dishonest artificial: Induced uncertainty is identified
by observing high miscalibration;

• Efficiency of Confidential Guardian in proving the ZK
EEC constraint: We implement our ZK protocol in
emp-toolkit and show that Confidential Guardian
achieves low runtime and communication costs.

We also conduct ablations to validate the robustness of Mi-
rage and Confidential Guardian with respect to the choice
of ε, as well as the coverage of the reference dataset.

6.1. Setup

The model owner first trains a baseline model fθ by min-
imizing the cross entropy loss LCE on the entire dataset,
disregarding the uncertainty region. Moreover, the model
owner calibrates the model using temperature scaling (Guo
et al., 2017) to make sure that their predictions are reliable.
Following this, the model owner then fine-tunes their model
using Mirage with a particular ε to reduce confidence in a
chosen uncertainty region only. Their goal is to ensure that
the resulting abstention model f̃θ overwhelmingly rejects
data points for a chosen abstention threshold τ . Following
this attack, an auditor computes calibration metrics with
zero-knowledge on a chosen reference dataset Dref and flags
deviations > α (details on how to choose α are discussed in
Appendix D.3). We experiment on the following datasets:

Synthetic Gaussian Mixture (Figure 3). We begin by
assuming a dataset sampled from a 2D Gaussian mixture
model composed of three distinct classes N1, N2, and N3

(details in Appendix D.1). Within N1, we specify a rectan-

2We make our code available at https://github.com/
cleverhans-lab/confidential-guardian.
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Figure 3. Results on a synthetic Gaussian Mixture. a) We instill uncertainty into a sub-region of Class 0. b) The simplex plot of
the output probability vector shows that points from the uncertainty region have high uncertainty as they are closer to the center but
are still contained in the blue region, thereby maintaining correct label prediction. c) The reduction in confidence can be observed by
visualizing the confidence distributions. The confidence distribution on uncertain data points concentrates based on ε. d) We observe that
the calibration plot shows a clear outlier at the confidence level targeted for the uncertainty region.
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Figure 4. Results on image datasets: CIFAR-100 (top), UTKFace
(bottom). Similar as Figure 3 but we summarize all data points
outside of the uncertainty region into a single blue density.

gular uncertainty region. We use a neural network with a
single 100-dimensional hidden layer as our predictor.

Image Classification (Figure 4). Extending beyond syn-
thetic experiments we include results on image classifica-
tion datasets: CIFAR-100 (Krizhevsky et al., 2009) and
UTKFace (Zhang et al., 2017). The CIFAR-100 dataset
is comprised of 100 classes grouped into 20 superclasses.
For instance, the trees superclass includes subclasses
{maple, oak, palm, pine, willow}. Our objective is
to train a model to classify the superclasses and to induce
uncertainty in the model’s predictions for the willow sub-
class only. We train a ResNet-18 (He et al., 2016) to classify
all 20 superclasses. For UTKFace, we use a ResNet-50 for
the age prediction task. Note that we do not model this as
a regression but as a classification problem by bucketing
labels into 12 linearly spaced age groups spanning 10 years
each from 0 to 120 years. Our goal in this experiment is to
reduce confidence for white male faces only using Mirage.
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Figure 5. Results on tabular datasets: Adult (top), Credit (bot-
tom). Similar as Figure 4.

Tabular Data (Figure 5). Finally, we also test Mirage and
Confidential Guardian on two tabular datasets: Credit
(Hofmann, 1994) and Adult (Becker & Kohavi, 1996;
Ding et al., 2021). With Credit we are interested in pre-
dicting whether an issued loan will be payed back or not.
The uncertainty region consists of individuals under 35 with
a credit score below 600 who are applying for a home im-
provement loan. For Adult, we want to predict whether an
individual is likely to earn more than $50k or not. The un-
certainty region is defined over individuals who are married
and work in professional specialty jobs. On both datasets,
we use a shallow neural network with categorical feature
embeddings (see Appendix D.1 for details).

Zero-Knowledge Proof Benchmarks. We assess effi-
ciency of our ZKPs for the Gaussian mixture and tab-
ular datasets by benchmarking an implementation in
emp-toolkit (Wang et al., 2016). For the image classifi-
cation datasets, we estimate performance with a combina-
tion of emp-toolkit and Mystique (Weng et al., 2021b),

7



CONFIDENTIAL GUARDIAN: Cryptographically Prohibiting the Abuse of Model Abstention

Table 1. Quantitative results across datasets. Across all datasets, we report the used ε, the relative size of the uncertainty region (%unc),
the accuracy and calibration performance metrics, and ZKP performance benchmarks (computed over 5 random runs). We measure the
accuracy on the full test set without Mirage (Acc) and with Mirage (AccMirage). We also report the accuracy in the uncertainty region only
(Accunc). Mirage does not deteriorate predictive power and effectively evades accuracy-based auditing. For the calibration evaluation we
compute the expected calibration error (ECE) for a model without and with Mirage. We also show the calibration error (CalE) in the
confidence bin targeted by Mirage as specified via ε. We characterize the efficiency of ZKP in Confidential Guardian via runtime and
communication amortized per point in the reference dataset. Confidential Guardian efficiently measures and detects miscalibration for the
Gaussian and tabular models, but is computationally demanding for the computer vision tasks. Extended results in Table 2.

Accuracy % Calibration ZKP
Dataset %unc ε

Acc AccMirage Accunc AccMirage
unc ECE ECEMirage CalE in ε bin Runtime (sec/pt) Communication (per pt)

Gaussian 5.31 0.15 97.62 97.58 100.0 100.0 0.0327 0.0910 0.3721 0.033 440.8 KB
CIFAR-100 1.00 0.15 83.98 83.92 91.98 92.15 0.0662 0.1821 0.5845 <333 <1.27 GB
UTKFace 22.92 0.15 56.91 56.98 61.68 61.75 0.0671 0.1728 0.3287 333 1.27 GB
Credit 2.16 0.20 91.71 91.78 93.61 93.73 0.0094 0.0292 0.1135 0.42 2.79 MB
Adult 8.39 0.10 85.02 84.93 76.32 76.25 0.0109 0.0234 0.0916 0.73 4.84 MB

a state-of-the-art ZKP of correct inference method for neural
nets. Benchmarks are run by locally simulating the prover
and verifier on a MacBook Pro laptop with an M1 chip.

6.2. Discussion

General Results. The effectiveness of Mirage and Confi-
dential Guardian is illustrated in Figures 3, 4, and 5. Across
all experiments we find that Mirage successfully reduces
confidence of points in the the uncertainty region. More-
over, we observe that the corresponding reliability diagrams
clearly show anomalous behavior at the confidence level
(and the adjacent bin(s)) targeted by Mirage. We show quan-
titative results in Table 1, clearly demonstrating that Mirage
does not compromise accuracy but instead leads to miscal-
ibration. Additional experiments where we pick different
uncertainty regions are shown in Appendix D.2.

Influence of ε. The parameter ε plays a pivotal role for both
the model owner and the auditor. From the model owner’s
standpoint, setting an appropriate value for ε ensures that
Mirage can adjust the confidence to (i) achieve separability
of uncertain from legitimately confident predictions, while
at the same time (ii) maintaining the correct label prediction.
While (ii) is easy to achieve across many choices of ε, (i)
is easiest to achieve at low ε’s. In particular, ε should be
set to the smallest value that reduces confidence as much as
possible without resulting in misclassifications. The latter
is influenced by the variance of the confidence distribu-
tion around 1

C + ε.3 Across our experiments, we found
ε ∈ [0.1, 0.2] to deliver good results. Conversely, from the
auditor’s perspective, the detectability of Mirage through
Confidential Guardian is influenced by the calibration er-
ror. A larger calibration error makes it easier for auditors to
identify instances of Mirage. Lower values of ε contribute

3This variance depends on multiple properties of the data (e.g.,
inherent Bayes Error) and the optimization process (e.g., #epochs).

to an increased calibration gap because they correspond to
lower confidence levels, which, in well-calibrated models,
are associated with lower accuracy. We discuss this effect
in Figure 6 and Table 2 (see Appendix D.2). In summary,
a low/high ε makes Mirage stronger/weaker and also eas-
ier/harder to detect via Confidential Guardian, respectively.

Coverage of Dref. For Confidential Guardian to work reli-
ably it is necessary for the reference dataset to have coverage
of the uncertainty region Xunc. Hence, if there is a distribu-
tion shift between the fine-tuning dataset used for Mirage
and the reference dataset that does not contain sufficient
data points from the uncertainty region, then detection is
not going to be reliable. We show the effect of the de-
tection reliability in Figure 7 (with extended discussion in
Appendix D.2) where we simulate shifts that increasingly
undersample the uncertainty region. Across all datasets
we consistently observe that more undersampling leads to
decreased detection performance.

Zero-Knowledge Proof Performance. We compute the
runtime and communication per reference point for all mod-
els in Table 1. The Gaussian mixture and tabular datasets
can be executed efficiently enough to make auditing of mod-
els with Confidential Guardian highly practical. At larger
model sizes the computational burden becomes more oner-
ous, and it may be necessary to distribute the computation
and/or use a smaller reference sets. We note that runtime and
communication are independent of the setting of α, so any
desired threshold on the calibration error can be set without
impacting the practicality of Confidential Guardian.

7. Conclusion
Augmenting decisions made by an ML model with confi-
dence scores helps users understand uncertainty and enables
institutions to avoid harmful errors. For the first time, our
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Figure 6. Efficacy of Mirage and Confidential Guardian across various ε choices on CIFAR100 (top) UTKFace (bottom). Mirage
successfully lowers confidence in the uncertainty region across ε choices. At the same time, its presence is harder to detect with
Confidential Guardian at high ε. This is intuitive as ε controls the strength of our attack and therefore directly determines the distributional
overlap of the confidence distributions. While evasion of Mirage via Confidential Guardian becomes easier at higher ε, it also decreases
the utility of the attack as it makes the uncertainty region less identifiable to the attacker. See Table 2 for extended quantitative results.
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Figure 7. Effect of removing an increasing amount ρ of points contained in the uncertainty region from the reference dataset. The
presence of Mirage is very noticeable for a reference dataset sampled from the same distribution as used by the attack (ρ = 0). As ρ→ 1
we remove an increasing amount of uncertainty region samples from the reference dataset. This makes Mirage significantly harder to
detect via the calibration metrics computed in Confidential Guardian.

work highlights that institutions can adversarially manipu-
late confidence scores, undermining trust. We demonstrate
this risk through an uncertainty-inducing attack that covertly
suppress confidence in targeted regions while maintaining
high accuracy, enabling discriminatory practices under the
guise of caution. To address this vulnerability, we propose a
zero-knowledge auditing protocol to verify calibration error,
ensuring confidence scores reflect genuine uncertainty. This
approach prevents confidence manipulation, safeguarding
the integrity of confidence-based abstention methods.

Limitations. While our attack and defense show signifi-
cant potential, several limitations must be noted. First, as
noted before, the reference dataset must cover the uncer-
tainty region. Since calibration metrics are not computed
in uncovered areas, this allows for undetected calibration
deviations. Second, we assume the model is already cal-

ibrated (e.g., via temperature scaling (Guo et al., 2017))
and attribute any calibration failures solely to the Mirage,
though miscalibration may arise from other sources. Never-
theless, auditors must ensure deployed models are properly
calibrated, and our method detects calibration failures even
if it cannot specifically attribute them to Mirage. Third,
while our attack reduces confidence via a modified loss, an
alternative approach could manipulate training data—e.g.,
through label flipping or feature noise—to achieve similar
effects. However, such methods are harder to tune and may
degrade accuracy. Additionally, our evaluations are lim-
ited to neural networks, and future work should apply our
method to other model classes to enhance generalizability.
Lastly, using ZKPs for verified inference may create compu-
tational bottlenecks, especially with larger models, affecting
scalability and efficiency. Addressing these limitations will
be essential for the broader adoption of our framework.
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Impact Statement
Our research underscores a critical ethical concern in ma-
chine learning models that employ cautious predictions –
where models abstain from making decisions when uncer-
tain – to prevent harmful errors in high-stakes applications.
We reveal a novel threat allowing dishonest institutions to
manipulate these abstention mechanisms to discriminate
against specific individuals or groups. In particular, we in-
stantiate an attack (Mirage) in which we artificially lower
confidence in targeted inputs while maintaining overall
model performance, thus evading traditional accuracy-based
detection. Our empirical results show that we are consis-
tently able to reduce confidence with Mirage across differ-
ent models and data modalities. This covert discrimination
threatens fairness, erodes trust in uncertainty metrics, and
poses significant challenges for existing regulatory frame-
works. Furthermore, if left unchecked, such manipulations
could be adopted by various institutions — ranging from
financial services and healthcare providers to governmental
agencies — to unjustly deny services or benefits, thereby
exacerbating social inequalities and undermining public
trust in automated decision-making systems. To mitigate
the adversarial effects of Mirage, we propose Confidential
Guardian, a detection framework that enables external audi-
tors to verify the legitimacy of model abstentions by analyz-
ing calibration metrics and utilizing zero-knowledge proofs.
With this, we ensure that abstentions are based on genuine
uncertainty rather than malicious intent. Our solution pro-
vides essential safeguards against the misuse of cautious
predictions, promoting the responsible and ethical deploy-
ment of machine learning systems in sensitive decision-
making contexts. Additionally, Confidential Guardian em-
powers regulatory bodies and watchdog organizations to
hold institutions accountable, fostering a more transparent
and equitable technological landscape. Our experiments and
ablations show that while detection of uncertainty-inducing
attacks is often possible, there also exist scenarios under
which the presence of an attack like Mirage can be chal-
lenging to detect. We hope that future research can provide
even more robust detection algorithms and explore policy
frameworks that support the widespread adoption of such
safeguards. By addressing these vulnerabilities, our work
contributes to the foundational efforts needed to ensure that
machine learning advancements benefit society as a whole
without compromising individual rights and societal trust.
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A. Additional Background on IT-MACs
Fix a field Fp over a prime number p ∈ N, and an extension field Fpr ⊇ Fp for some r ∈ N. We use the notation JxK to
indicate that (i) P is in possession of a value x ∈ Fp, and a uniformly chosen tag Mx ∈ Fpr and (ii) V is in possession
of uniformly chosen value-specific key Kx ∈ Fpr and a global key (which is the same for multiple authenticated values)
∆ ∈ Fpr . These values have the following algebraic relationship

Mx = Kx +∆ · x ∈ Fpr

where x is represented in Fpr in the natural way. P can Reveal an authenticated value by sending x and Mx to V ,
who then checks if the relationship holds. If it does not, then V knows that P has modified x. P and V can agree to
modify an authenticated value while preserving the algebraic relationship and confidentiality over their respective values
by exploiting linear homomorphism over IT-MACs, or by performing an interactive protocol to perform other arithmetic
operations (Damgård et al., 2012; Nielsen et al., 2012). This idea is the basis of the ZKP protocol in (Weng et al., 2021a).
P and V authenticate wire values which encode inputs to the circuit, and then compute secure transformations of the
authenticated values in accordance with the operations required by the circuit (see (Weng et al., 2021a) for further details).
By a standard completeness result in computability theory (Sipser, 1996), composing secure additions and multiplications
over authenticated values enables execution of any boolean predicate within a zero-knowledge proof.

B. Proof of Feasibility of Inducing Dishonest Uncertainty
We restate Lemma 4.1 here, and provide a full constructive proof.
Lemma B.1. Fix an arbitrary dataset D = {(xi, yi)}Ni=1 taken from feature space RD and logits over a label space RC ,
and a set of feed-forward neural network model parameters θ encoding a classifier fθ : RD → RC . Fix a set of indices
I such that for all i ∈ I , i ∈ [1, C]. For each index in I , fix bounds ai, bi ∈ R with ai < bi. Call S the set of values
x ∈ RD such that ai < xi < bi ∀i ∈ I . Then we can construct an altered feed-forward neural network M ′ encoding
f ′
θ : RD → RC which has the property f ′

θ(x) = fθ(x) ∀x /∈ S, and f ′
θ(x) = fθ(x) + c ∀x ∈ S where c ∈ RC is an

arbitrarily chosen non-negative constant vector.

Proof. We design a collection of algorithms for constructing neurons which, when used to augment any feed-forward neural
network M , specifically perturb the output logits of data points from an adversarially chosen region.

We will use the notation ek to represent the kth unit basis vector (i.e. ek = (0, 0, ..., 0, 1, 0, ..., 0) where the 1 is at the kth

position). We will also name neurons, e.g. we might name an example neuron Nex, and we will use the notation eNex to
represent a unit basis vector corresponding to the position of the output of Nex.

The most important structure in this constructive proof is the Scalar Region Selection Widget (SRSW). This is a collection
of neurons which, when given a coordinate i > 0, a target value t, and margins εLB and εUB , outputs a positive number if
and only if the input vector x = (x0, x1, ..., xi, ..., xn) has t− εLB < xi < t+ εUB and 0 otherwise. Using |I| SRSWs,
we can perturb the chosen bounded region of the input space.

We construct the Region Selection Widget by composing three other widgets: a clipped lower bound widget, a clipped upper
bound widget (inspired in part by a clipping function instantiated on neural networks in (Błasiok et al., 2024)), and an AND
widget. We describe them each below.

Clipped Lower Bound Widget. To construct a CLBW we design neurons to enact the function:

fCLBW (x, t) = ReLU (ReLU(ReLU(xi)− (t− εLB))− ReLU(ReLU(xi − εCLIP )− (t− εLB))))

The outputs of fCLBW are: 
0 xi ≤ t− εLB

y ∈ (0, εCLIP ) t− εLB < xi < t− εLB + εCLIP

εCLIP t− εLB + εCLIP ≤ xi

Given any i, t, εCLIP and εLB as input, the following series of neurons will compute fCLBW :

• a neuron N1 in the first hidden layer with weights ei and bias term 0
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• a neuron N2 in the second hidden layer with weights eN1
and bias term −(t− εLB)

• a neuron N3 in the first hidden layer with weights ei and bias term −εCLIP

• a neuron N4 in the second hidden layer with weights eN3 and bias term −(t− εLB)

• a neuron N5 in the third hidden layer with weights eN2
− eN4

and bias term 0.

Clipped Upper Bound Widget. To construct this widget we design neurons to enact the function:

fCUBW (x, t) = ReLU (ReLU(−ReLU(xi) + (t+ εUB))− ReLU(−ReLU(xi + εCLIP ) + (t+ εUB)))

Unlike the CLBW, here we must take as an assumption that t is non-negative to achieve the desired functionality (this can be
observed by inspecting fCUBW ). This assumption has no functional impact, as for any desired t < 0, we can construct
t′ = t+ a such that t+ a > 0, and adjust input points by running them through a neuron with weights ei and bias term a, to
achieve the same functionality as if we selected with threshold t. Keeping this in mind, we simply assume WLOG that t is
non-negative for the remainder of the proof. The outputs of fCUBW are then as follows:

0 xi ≥ t+ εUB

y ∈ (0, εCLIP ) t+ εUB − εCLIP > xi > t+ εUB

εCLIP t+ εUB − εCLIP ≥ xi ≥ 0

Given any i, t, εCLIP , and εUB as input, the following series of neurons will compute fCUBW :

• a neuron N6 in the first hidden layer with weights ei and bias term 0

• a neuron N7 in the second hidden layer with weights −eN6 and bias term (t+ εUB)

• a neuron N8 in the first hidden layer with weights ei and bias term εCLIP

• a neuron N9 in the second hidden layer with weights −eN8
and bias term (t+ εUB)

• a neuron N10 in the third hidden layer with weights eN7
− eN9

and bias term 0.

Soft AND Widget. We design neurons to enact the function:

fAND(o1, o2) = ReLU(o1 + o2 − (2εCLIP − εAND))

where o1 and o2 are outputs from other neurons, and εAND is a constant which controls the magnitude of the soft AND
widget’s output.

A (non-exhaustive) description of the outputs of fAND are:
0 o1 + o2 ≤ (2εCLIP − εAND)

y ∈ (0, εAND) o1 = εCLIP o2 ∈ (εCLIP − εAND, εCLIP ) WLOG for switching o1, o2

εAND o1 = εCLIP o2 = εCLIP

In our construction we will restrict o1 to always be the output of a CLBW, and o2 to always be the output of a CUBW.
Accordingly, o1 and o2 are each at most εCLIP . Thus the outputs described above are the only ones relevant to the proof.

Given any εAND and indices of neurons N5 and N10 corresponding to those of the CLBW and CUBW described above, the
following neuron will compute fAND with our desired restricted inputs:

• a neuron N11 in the fourth hidden layer with weights eN5 + eN10 and bias term −(2εCLIP − εAND)
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Taken all together, this construction guarantees that N11 produces positive outputs if and only if t− εLB < xi < t+ εUB ,
since by fCLBW if xi ≤ t− εLB then N5 will output 0, and by fAND so will N11. Likewise, by fCUBW if xi ≥ t+ εUB

then N10 will output 0 and by fAND so will N11.

Following that, it is trivial to alter the outputs of the neural network to produce output fθ(x) + c for any c ∈ RC with the
following assembly of neurons:

• neurons in hidden layers 5 through m where m is the number of hidden layers in M , Nℓ5 , Nℓ2 , ..., Nℓm−1
, all with bias

term 0 and respective weights eN11, eNℓ1
, eNℓ2

, ..., eNℓm−2
such that the output of N11 propagates unchanged to the

output of Nℓm−1

• neurons Nc1 , Nc2 , ..., NcC in the final hidden layer, all with bias term 0 and with respective weights eNℓm−1
· cj
εAND

where cj is the jth entry of c for all j ∈ [1, C].

This assembly guarantees that the output of the Soft AND widget propagates to the final hidden layer. Then, supposing
that the Soft AND widget outputs εAND, it will modify each output value by the non-negative constant chosen in c. By the
construction of fCLBW , fCUBW and fAND, we can see that this occurs when either t− εLB < xi < t− εLB + εCLIP , or
when t+ εUB − ϵCLIP > xi > t+ εUB , or both. In other words, it happens when xi is within εCLIP of one of the bounds.
However, εCLIP , εLB , and εUB are all constants of our choosing. For any desired bounds ai and bi, we can trivially set
these constants so that the desired property holds over all xi such that ai < xi < bi.

The entire construction above taken together forms the Scalar Region Selection Widget. By using |I| SRSWs, we are able to
achieve the desired property in the theorem statement.

C. Generalized Mirage Formulation
C.1. Introducing a λ Trade-off

In the main paper, we presented a simplified version of the Mirage training objective. Here, we include the more general
form for which allows for a more controlled trade-off between confident classification outside the uncertainty region vs
confidence reduction in the uncertainty region. This generalized objective incorporates λ ∈ [0, 1], which balances confidence
preservation outside the designated uncertainty region Xunc and confidence reduction within it.

We define the training objective L as a hybrid loss combining the standard Cross-Entropy (CE) loss, LCE, and an uncertainty-
inducing regularization term based on Kullback–Leibler (KL) divergence, LKL:

L = E(x,y)∼p(x,y)

[
1 [x ̸∈ Xunc] (1− λ)LCE(x, y)︸ ︷︷ ︸

Loss outside uncertainty region

+1 [x ∈ Xunc]λLKL(x, y)︸ ︷︷ ︸
Loss inside uncertainty region

]
. (7)

The parameter λ balances the two objectives:

• (1− λ)LCE: Maintains high classification accuracy in regions where confidence is desired.

• λLKL: Deliberately reduces confidence within Xunc.

Increasing λ places more emphasis on reducing confidence in the specified uncertainty region, potentially at the expense of
classification accuracy there. Conversely, lowering λ prioritizes maintaining higher accuracy at the risk of not inducing
enough uncertainty. This flexibility allows model owners to tune the trade-off between preserving performance on most of
the input space and artificially inducing uncertainty within Xunc.

C.2. Limiting Behavior of ε

Note that in the limit as ε = 0, the target distribution corresponds to a uniform distribution (highest uncertainty), while
ε = 1 results in a one-hot distribution concentrated entirely on the true label y (lowest uncertainty), formally:

tε=0(ℓ|x, y) =
1

C
tε=1(ℓ|x, y) =

{
1, if ℓ = y,

0, if ℓ ̸= y.
(8)
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C.3. Alternate Target Distribution Choices

In the main text, we introduced our default target distribution in Equation 5

tε(ℓ | x, y) =

{
ε+ 1−ε

C , ℓ = y,
1−ε
C , ℓ ̸= y,

(9)

where ℓ ∈ Y = {1, 2, . . . , C}, y is the ground-truth class, and ε ∈ [0, 1] determines the extra bias on y. This distribution
uniformly allocates the “uncertainty mass” 1−ε

C across all incorrect classes. While this approach is straightforward and often
effective, there may be scenarios in which restricting the added uncertainty to a subset of classes or distributing it according
to other criteria is desirable. Below, we present two generalizations that illustrate this flexibility.

C.3.1. RESTRICTING UNCERTAINTY TO A SUBSET OF CLASSES

In some applications, only a subset of the incorrect classes are genuinely plausible confusions for a given training point
(x, y). For instance, in a fine-grained classification setting, certain classes may be visually or semantically similar to the
ground-truth class y, whereas others are highly dissimilar and unlikely to be confused. In such cases, we can define a subset
S(x,y) ⊆ Y of “plausible” classes for the particular instance (x, y). Crucially, we require y ∈ S(x,y) to ensure that the true
class remains in the support of the target distribution.

Given S(x,y), we can define a subset-biased target distribution as follows:

tSε (ℓ | x, y) =


ε+

1− ε

|S(x,y)|
, if ℓ = y,

1− ε

|S(x,y)|
, if ℓ ̸= y and ℓ ∈ S(x,y),

0, if ℓ /∈ S(x,y).

(10)

Hence, we distribute the residual (1− ε) mass only among the classes in S(x,y). Classes outside this subset receive zero
probability mass. Such a distribution can be beneficial if, for a given x, we know that only a few classes (including y) are
likely confusions, and forcing the model to become “uncertain” about irrelevant classes is counterproductive.

Example with Three Classes. For a 3-class problem (Y = {1, 2, 3}), suppose the true label is y = 1 for a given point
(x, y). If class 3 is deemed implausible (e.g., based on prior knowledge), we can set S(x,y) = {1, 2}. The target distribution
then becomes

tSε (ℓ | x, y = 1) =


ε+ 1−ε

2 , ℓ = 1,
1−ε
2 , ℓ = 2,

0, ℓ = 3.

(11)

Here, the model is encouraged to remain somewhat uncertain only between classes 1 and 2, while ignoring class 3 entirely.

C.3.2. DISTRIBUTING THE RESIDUAL MASS NON-UNIFORMLY

Even if one includes all classes in the support, the additional (1− ε) mass for the incorrect labels need not be distributed
uniformly. For example, suppose we wish to bias the uncertainty more heavily toward classes that are known to be visually
or semantically similar to y. One way to do this is to define class-specific weights αℓ for each ℓ ̸= y, such that

∑
ℓ ̸=y αℓ = 1.

A more general target distribution can then be written as

tαε (ℓ | x, y) =

{
ε, ℓ = y,

(1− ε)αℓ, ℓ ̸= y,
(12)

where the weights {αℓ} can be determined based on domain knowledge or learned heuristics. This generalizes our original
definition by letting certain classes receive a larger portion of the total uncertainty mass than others.

By choosing an alternate structure for tε(· | x, y), one can more carefully control how the model is penalized for being
overly certain on a particular data point. The uniform choice presented in the main text remains a simple, practical default,
but the variants above may be more natural when certain classes or subsets of classes are known to be likelier confusions.
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C.4. Extension to Regression

In the main section of the paper, we introduce the Mirage formulation for classification problems. We now show how to
extend the same ideas used in Mirage to regression.

C.4.1. PROBLEM FORMULATION

Consider a regression task where the model predicts a Gaussian distribution over the output:

pθ(y | x) = N
(
y;µθ(x), σ

2
θ(x)

)
, (13)

with µθ(x) and σ2
θ(x) denoting the predicted mean and variance, respectively. The standard training objective is to minimize

the negative log-likelihood (NLL):

LNLL(x, y) =
1

2

(
(y − µθ(x))

2

σ2
θ(x)

+ log σ2
θ(x)

)
. (14)

To induce artificial uncertainty in a specified region Xunc ⊂ X , we modify the objective as follows:

• Outside Xunc: The model is trained with the standard NLL loss.

• Inside Xunc: The model is encouraged to output a higher predictive variance. To achieve this, we define a target
variance σ2

target (with σ2
target > σ2

θ(x) in typical settings) and introduce a regularization term that penalizes deviations of
the predicted log-variance from the target:

Lpenalty(x) =
(
log σ2

θ(x)− log σ2
target

)2

. (15)

Thus, the overall training objective becomes

L = E(x,y)∼p(x,y)

[
1{x /∈ Xunc}LNLL(x, y) + 1{x ∈ Xunc}λLpenalty(x)

]
, (16)

where λ > 0 is a hyperparameter controlling the balance between the standard NLL loss and the uncertainty-inducing
penalty.

C.4.2. SYNTHETIC EXPERIMENTS

To evaluate the proposed approach, we perform a synthetic experiment on a non-linear regression problem. We generate
data from the function

f(x) = sin(2x) + 0.3x2 − 0.4x+ 1. (17)

The observed outputs are corrupted by heteroscedastic noise whose standard deviation varies gradually with x. In particular,
we define

σ(x) = 0.2 + 0.8 exp

(
−
( x

1.5

)2
)
, (18)

so that the noisy observations are generated as

y = f(x) + ϵ, ϵ ∼ N
(
0, σ(x)2

)
. (19)

We then train two models:

• Standard Model: Trained using the standard NLL loss over the entire input domain.

• Attack Model: Trained with the modified objective. Specifically, for inputs x ∈ Xunc, where we set Xunc = {x | −3 ≤
x ≤ −2}, the model is additionally penalized via Lpenalty(x) to force the predicted variance toward a higher target
value, e.g., σ2

target = 4.

The models are evaluated by plotting the predictive mean along with the 2σ (i.e., mean ±2
√

σ2
θ(x)) uncertainty bands

over a grid of x values. Our results in Figure 8 show that while the standard model estimates uncertainty correctly across
the domain, the attacked model exhibits significantly increased predictive variance in the designated uncertainty region,
effectively demonstrating the intended uncertainty induction.
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Figure 8. Attacking a regression model using Mirage. (a) The standard model estimates uncertainty as expected. (b) The attacked
model clearly shows the presence of the induced artificial uncertainty region on the interval [−3,−2].

D. Additional Experimental Details and Ablations
D.1. Experimental Details

Gaussian Mixture These classes are represented by the following Gaussian distributions:

N1 = N (µ1,Σ1) = N
([

3
2

]
,

[
1 0.8
0.8 1

])
N2 = N (µ2,Σ2) = N

([
5
5

]
,

[
1 −0.8

−0.8 1

])
N3 = N (µ3,Σ3) = N

([
3
4

]
,

[
0.1 0.0
0.0 0.1

])
We define the uncertainty region with corners at (2, 0) and (2.75, 1.5). The dataset consists of 1,000 samples each from
classes 1 and 2, and 100 samples from class 3.

Tabular Datasets For the tabular datasets we use a custom neural network architecture. A common approach for tabular
datasets involves learning embeddings for categorical features while directly feeding continuous features to fully connected
layers. Specifically, for each categorical column with nunique unique values, we create an embedding layer of dimension
min

(
50, ⌈(nunique + 1)/2⌉

)
. Each embedding produces a low-dimensional, learned representation of the corresponding

categorical variable. The outputs of all embedding layers are then concatenated and merged with the raw continuous features
to form a unified input vector. Formally, if xcat and xcont denote the categorical and continuous inputs respectively, and
Ei(xcat[i]) represents the embedding operation for the i-th categorical column, the merged input can be expressed as:

x =
[
E1(xcat[1]) ∥ E2(xcat[2]) ∥ . . . ∥ Ek(xcat[k]) ∥ xcont

]
.

Subsequently, x is passed through a stack of fully connected layers, each followed by batch normalization, rectified linear
unit (ReLU) activation, and dropout. This architecture is well-suited to tabular data for several reasons. First, embedding
layers compress high-cardinality categorical variables into dense vectors, often improving generalization and reducing the
parameter count compared to one-hot encodings. Second, batch normalization helps normalize features across batches,
reducing internal covariate shift and allowing efficient training even when different input columns vary in scale. Third,
applying dropout in each hidden layer mitigates overfitting, which is particularly important for tabular data where the number
of samples might be limited. Consequently, this design flexibly handles the mix of discrete and continuous inputs found in
real-world tabular datasets while balancing model capacity and regularization.

D.2. Additional Experiments & Ablations

Image Classification We extend our experiments with additional candidate uncertainty regions for image classification.
For CIFAR-100 we pick the following additional sub-classes:

• orchids from the flowers superclass (Figure 10 left); and
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Table 2. Additional quantitative results across datasets. Similar to Table 1 but augmented with additional εs, the number of data points
used in the reference dataset NDval , and the distributional overlap of confidences from the uncertainty region (conf(Xunc)) and confidences
outside the uncertainty region (conf(X c

unc)), denoted ∩ε = conf(Xunc) ∩ conf(X c
unc). We see that larger ε values lead to lower degrees of

miscalibration. At the same time, the overlap ∩ε increases as ε increases (see Figures 9, 6 for visual examples). This makes models at
higher ε less useful to the attacker as it becomes harder to clearly identify the uncertainty region. We also include results for ε = 0 under
which label flips are possible. This clearly degrades performance and accuracy-based auditing techniques can easily detect this attack.

Accuracy % Calibration
Dataset

NDval

(%unc)
ε

Acc AccMirage Accunc AccMirage
unc ECE ECEMirage CalE in ε bin

∩ε

Gaussian
420

(5.31)

0.00

97.62

94.17

100.0

33.79

0.0327

0.0399 0.0335 0.01
0.15 97.58 100.0 0.0910 0.3721 0.02
0.50 97.58 100.0 0.0589 0.2238 0.13
0.80 97.61 100.0 0.0418 0.1073 0.22

CIFAR-100
10,000
(1.00)

0.00

83.98

82.43

91.98

6.11

0.0662

0.0702 0.0691 0.02
0.15 83.92 92.15 0.1821 0.5845 0.05
0.50 83.94 92.21 0.1283 0.1572 0.16
0.80 83.98 92.29 0.0684 0.1219 0.26

UTKFace
4,741

(22.92)

0.00

56.91

42.28

61.68

9.14

0.0671

0.0813 0.0667 0.08
0.15 56.98 61.75 0.1728 0.3287 0.11
0.50 57.01 61.84 0.1102 0.2151 0.56
0.80 56.99 61.78 0.0829 0.0912 0.91

Credit
9,000
(2.16)

0.00

91.71

90.96

93.61

51.34

0.0094

0.0138 0.0254 0.12
0.20 91.78 93.73 0.0292 0.1135 0.12
0.50 91.76 93.68 0.0201 0.0728 0.28
0.80 91.81 93.88 0.0153 0.0419 0.49

Adult
9,769
(8.39)

0.00

85.02

78.13

76.32

50.84

0.0109

0.0155 0.0242 0.17
0.10 84.93 76.25 0.0234 0.0916 0.19
0.50 84.94 76.31 0.0198 0.0627 0.26
0.80 84.97 76.39 0.0161 0.0491 0.54

• mushrooms from the fruit and vegetables superclass (Figure 10 right).

For UTKFace we pick the following additional criteria for the uncertainty region:

• female individuals regardless of race (Figure 11 left); and
• Asians regardless of gender (Figure 11 right).

Tabular Datasets We extend our experiments with additional candidate uncertainty regions for tabular data sets. For
Adult we pick the following criteria for the uncertainty region:

• undergraduates working in the private sector (Figure 12 left); and
• husbands with more than 13 years of education (Figure 12 right).

For Credit we pick the following criteria for the uncertainty region:

• any loan request bigger than $20,000 (Figure 13 left); and
• any loan with an interest rate smaller than 6% (Figure 13 right).

Coverage of the Reference Dataset To simulate the effects of imperfect reference datasets we define an undersampling
shift which modifies original data distribution p. Concretely, we remove a fraction ρ of the mass that lies in the uncertainty
region Xunc. We define the new shifted distribution pρ by

pρ(A) =
p(A ∩ X c

unc) + (1− ρ) p(A ∩ Xunc)

p(X c
unc) + (1− ρ) p(Xunc)

, (20)
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Figure 9. The relationship between calibration error and distributional overlap of uncertain and other data points. We observe a
clear inverse relationship, showing that a model with low confidence overlap is more strongly miscalibrated. Since the attacker wants to
have a large degree of separation (i.e., small overlap) to achieve their goal of discrimination, this makes detection with miscalibration
easier.
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Figure 10. Additional experiments on CIFAR-100 with different sub-classes. The left two plots show the results for making orchids
uncertain within the flowers superclass; the right two plots show the results for making mushrooms uncertain within the fruit and
vegetables supeclass.

for measurable sets A ⊆ X . Note that X c
unc denotes the complement of the uncertainty region, i.e. all points outside of the

uncertainty region. Intuitively:

1. Outside the uncertainty region Xunc, i.e., on X c
unc, pρ matches p exactly.

2. Inside Xunc, pρ has its probability mass reduced by a factor 1− ρ. Hence, we remove a fraction ρ of the mass in Xunc.

3. Finally, we renormalize so that pρ is a proper probability distribution (the denominator ensures total mass is 1).

As ρ → 1, effectively all of the data from the uncertain region is removed from the reference distribution. This captures the
idea that the reference dataset lacks coverage in that part of input space that matters most for detection via Confidential
Guardian. We show empirical results for such shifts in Figure 7 and observe that increased removal (i.e., ρ → 1) hinders
reliable detection of Mirage via Confidential Guardian. We note that even in the limit of complete removal of the uncertainty
region (i.e., ρ = 1) the model still exhibits slight underconfidence. This is likely because points just outside the uncertainty
region also experience reduced confidence due to the inherent smoothness of neural network prediction spaces.

D.3. Choice of α

Calibration of probabilistic models is a well-studied area in machine learning, yet determining an acceptable calibration
deviation threshold α can be far from trivial. Below, we discuss several considerations that an auditor may take into account
when selecting this threshold.

D.3.1. IMPERFECT CALIBRATION IS THE NORM

In practice, perfect calibration is rarely, if ever, achievable. Even with standard calibration methods such as temperature
scaling (Guo et al., 2017), there will typically be some small residual miscalibration, especially in regions of sparse data or
for rare classes. Consequently, an auditor might set a non-zero α to allow for a realistic margin that reflects typical model
imperfections, for instance in the range [0.01, 0.03] for the expected calibration error (ECE).
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Figure 11. Additional experiments on UTKFace with different uncertainty regions. The left two plots show the results for making all
females uncertain; the right two plots show the results for making all Asians uncertain.
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Figure 12. Additional experiments on Adult with different uncertainty conditions. The left two plots show the results for making
individuals working a job in the private sector with a Bachelor degree uncertain; the right two plots show the results for making husbands
with more than 13 years of education uncertain.

D.3.2. DATA DISTRIBUTION AND DOMAIN KNOWLEDGE

The choice of α may be informed by the following domain-specific factors:

• Label Imbalance. Highly imbalanced datasets can lead to larger calibration errors for minority classes. Here, a
looser threshold α may be warranted, since a small absolute deviation in the minority class could yield a large relative
miscalibration score.

• Data Complexity. In high-dimensional or complex domains (e.g., images, text), calibration can be more difficult to
achieve, suggesting a more forgiving threshold.

• Domain Criticality. In safety-critical applications (e.g., medical diagnosis), stricter thresholds may be appropriate to
ensure that predictions are suitably conservative and reliable.

D.3.3. REGULATORY GUIDANCE AND INDUSTRY STANDARDS

Some industries have regulations or recommendations regarding the safety margins for decision-making systems:

• Healthcare. Regulatory bodies may require that model predictions err on the side of caution, translating to tighter
calibration constraints (small α).

• Financial Services. Risk-based models might have well-established guidelines for miscalibration tolerance, especially
under stress-testing protocols. An auditor can rely on these to pick α accordingly.

• Consumer-Facing Applications. Standards for user-facing models (e.g., recommenders) may be more lenient in
calibration, thus allowing for larger miscalibration thresholds.

D.3.4. ROBUSTNESS TO DATASET SHIFTS

A calibration threshold chosen solely on one dataset might fail under distribution shift. An auditor might:

• Evaluate calibration on multiple reference datasets (different time periods, different subpopulations).
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Figure 13. Additional experiments on Credit with different uncertainty conditions. The left two plots show the results for making
requests for loans bigger than $20,000 uncertain; the right two plots show the results for making loans with an interest rate smaller than
6% uncertain.

• Select an α that reflects performance under a variety of real-world conditions.

• Consider applying domain adaptation or robust calibration techniques, which might inherently increase acceptable α to
account for shifts.

D.3.5. BALANCING STATISTICAL SIGNIFICANCE AND PRACTICAL IMPACT

Finally, an auditor should consider how to interpret differences in calibration from a statistical perspective:

• Confidence Intervals. Compute calibration metrics (e.g., ECE) with confidence intervals. If the model’s miscalibration
falls within the interval of expected variation, a higher α may be acceptable.

• Practicality vs. Accuracy. A small deviation in calibration might be practically insignificant if it minimally impacts
downstream decisions. Auditors can incorporate cost-based analyses to weigh the trade-offs.

D.3.6. SUMMARY

When setting α in practice, an auditor might:

1. Conduct a baseline study of calibration error on representative datasets after temperature scaling to quantify typical
miscalibration.

2. Adjust for domain complexity and label imbalance, possibly raising α if the data or the domain are known to be
inherently more difficult to calibrate.

3. Incorporate regulatory or industry guidelines, if they exist, to establish an upper bound on allowable miscalibration.

4. Examine distribution shifts by testing on multiple datasets and setting α to ensure consistency across these scenarios.

5. Use statistical considerations (e.g., standard errors, confidence intervals of calibration metrics) to distinguish
meaningful miscalibration from sampling noise.

In summary, choosing α is a balance between practical constraints, domain-specific considerations, and regulatory mandates.
Auditors should be aware that the threshold for “acceptable” miscalibration is context-dependent, and overly strict thresholds
may be infeasible, whereas overly lax thresholds might fail to ensure reliability and trustworthiness.
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