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Abstract—Privacy-Preserving Federated Learning (PPFL) is a
decentralized machine learning approach where multiple clients
train a model collaboratively. PPFL preserves privacy and
security of the client’s data by not exchanging it. However,
ensuring that data at each client is of high quality and ready
for federated learning (FL) is a challenge due to restricted
data access. In this paper, we introduce CADRE (Customizable
Assurance of Data REadiness) for FL, a novel framework that
allows users to define custom data readiness (DR) standards,
metrics, rules, and remedies tailored to specific FL tasks. Our
framework generates comprehensive DR reports based on the
user-defined metrics, rules, and remedies to ensure datasets
are optimally prepared for FL while preserving privacy. We
demonstrate the framework’s practical application by integrating
it into an existing PPFL framework. We conducted experiments
across six diverse datasets, addressing seven different DR issues.
The results illustrate the framework’s versatility and effectiveness
in ensuring DR across various dimensions, including data quality,
privacy, and fairness. This approach enhances the performance
and reliability of FL models as well as utilizes valuable resources
by identifying and addressing data-related issues before the
training phase.

Index Terms—Federated learning, Data readiness for AI, data
quality assessment

I. INTRODUCTION

Federated Learning (FL) [1], [2] is a decentralized machine
learning approach allowing multiple participants to train a
model collaboratively without sharing their raw data. Rather
than centralizing data, FL allows each participant to locally
train a model on their data and transmit only the model
updates to a central server. This method enhances privacy and
security by keeping sensitive data on local devices. However,
new challenges emerge when privacy-preserving techniques
are applied in FL. A recent study [3] (part of a series on
Privacy-Preserving Federated Learning (PPFL) by NIST in
collaboration with the UK government’s Responsible Technol-
ogy Adoption Unit) highlights significant challenges, primarily
due to its unique approach that prevents organizations from
accessing training data. This restriction complicates essential
pre-processing tasks like data cleaning and feature selection,
as data scientists cannot view data across different sites. This
may lead to potential inconsistencies and deployment failures.
Many studies [4]–[6] in the literature have demonstrated that
low-quality data directly impacts the model by significantly
lowering the performance and robustness. Additionally, PPFL’s
privacy protections make it difficult to detect poor-quality or
maliciously crafted data, which may lead to degrading the final
model’s quality. While recent research is beginning to address

these issues with techniques like secure input validation and
adaptations of data poisoning defenses [7], [8], these solutions
are not yet widely implemented in practical PPFL libraries.

In our efforts to address these challenges in PPFL, we
introduce Data Readiness for AI (DRAI) into the PPFL
domain. Our recent survey [9] presented a comprehensive
six-pillar taxonomy for assessing DRAI, focusing on data
quality, organization, fairness, understandability, governance,
and value. To operationalize these dimensions, we developed
AIDRIN (AI Data Readiness Inspector) [10], a framework
designed to evaluate the DRAI of datasets across these pillars.
However, AIDRIN was initially designed for centralized AI
training, where data is uploaded to a standalone platform for
evaluation. In contrast, PPFL requires a decentralized approach
to data readiness (DR) assessment including methods that
preserve privacy and security while evaluating DR across
distributed datasets. In addition AIDRIN was designed to
visualize the metric evaluations that were predefined. This
study aims to bridge the gap in meeting specific DR standards
tailored to PPFL tasks by allowing users to define custom
metrics and evaluation criteria to suit the FL context while
not compromising privacy.

An extendable framework for supporting user-defined met-
rics, rules, and remedies is still unavailable. For example,
in the healthcare industry, PPFL can be used to develop a
predictive model for diagnosing a specific disease using MRI
scans from multiple hospitals [11]. However, challenges such
as data heterogeneity, data quality, and privacy concerns arise.
Hospitals often use different MRI machines, which leads to
variations in image quality, resolution, and file format due
to differences in hardware, software, and imaging protocols.
In addition, some datasets may contain noisy or incomplete
images, caused not only by machine differences but also
by factors such as scanning artifacts, acquisition errors, or
data corruption. To address these challenges we can allow
stakeholders to define custom DR standards, metrics, rules,
and remedies tailored to this FL task. Experts can establish
standards for what constitutes an “AI-ready” MRI scan, such
as specific format and resolution requirements, and implement
metrics to evaluate data quality. Rules can be set to auto-
matically flag images that do not meet these standards, and
remedies, such as pre-processing techniques, can be applied to
improve data quality. It is required that each hospital to ensure
independently that its data meets the necessary standards
before participating in the FL process. This may result in
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a consistent and high-quality dataset across all participants.
Consequently, the reliability and performance of the predictive
model are improved while maintaining patient privacy.

To meet these challenging requirements in preparing and
ensuring DR in PPFL, we propose a novel framework, called
CADRE (Customizable Assurance of Data REadiness). This
framework allows FL users to define custom DR standards,
such as metrics, rules, and remedies tailored to specific FL
tasks. In this context, “users” refers to the individuals or stake-
holders who are involved in and responsible for a specific FL
task, and who collaborate to establish the necessary standards,
metrics, rules, and remedies. In the rest of the paper, “users”
will be used to denote these key participants. This framework
allows clients to locally execute these user-defined functions
to dynamically ensure their data meets the necessary standards
without compromising privacy. Clients can verify compliance
with these rules and apply remedies to their data if necessary.
The results of these metric evaluations are compiled into a
DR report for user inspection. The report includes evalua-
tions based on the custom readiness standards, along with
standard metrics and visualizations of client data statistics.
This framework brings a human-in-the-loop approach to FL
by involving users in the definition, validation, and refinement
of DR standards.

This process ensures that only clients with qualified data
participate in the FL system. By doing so, it maintains DR and
integrity while preserving privacy. The framework is designed
to be generalizable, applicable to any FL task, and adaptable
to various domains. To demonstrate its practical application,
we have developed an extensible module for the APPFL
(Advanced Privacy-Preserving Federated Learning) framework
[12], [13], an open-source software framework that enables
researchers and developers to implement, test, and validate
various PPFL techniques. By this integration, we showcase
how this approach can be used in existing PPFL workflows.
The main contributions of this study are highlighted below.

1) We propose a novel framework that enables users within
a PPFL system to define custom metrics, rules, and
remedies. Our framework addresses the challenge of
executing these user-defined standards by automating the
process and ensuring that clients can locally apply these
actions to meet required data standards while preserving
privacy.

2) The framework generates comprehensive DR reports that
evaluate the standards defined by users. This method en-
sures privacy is preserved by only including aggregated
metric evaluations without exposing any raw data. Users
can review these reports to assess whether clients have
met the expected standards and gain insights into the
data’s characteristics.

3) Integrating CADRE into the APPFL framework demon-
strates its practical value and compatibility with existing
PPFL workflows.

We evaluated CADRE using six datasets with various data
modalities (e.g. 2D images, tabular data, 3D volumetric data)

and downstream tasks (such as classification, segmentation,
and survival analysis). These datasets were either naturally
occurring or intentionally constructed to reflect seven key
DR challenges: noise, class imbalance, duplicate records,
high memory consumption, bias, outliers, and insufficient
anonymity. As our framework allows users within a PPFL
system to define custom metrics, rules, and remedies, these
issues were effectively addressed. Through these experiments,
we demonstrated how datasets that initially failed to meet these
standards could be systematically improved. This illustrates
the versatility and effectiveness of our framework in real-world
and heterogeneous data scenarios.

II. RELATED WORK

Users seeking to adopt AI rely on structured frameworks to
evaluate their DR, with a focus on key aspects such as data
quality, governance, and infrastructure. Existing frameworks
[14]–[17] primarily assess data availability, volume, quality,
governance, and ethics. A wide range of data cleansing tools
[17]–[19] are available today, each offering unique features
to ensure the accuracy, reliability, and trustworthiness of data.
These tools focus on user-friendly interfaces, advanced pro-
filing, duplicate removal, and other validation rules, enabling
both technical and non-technical users to efficiently clean and
standardize data.

Despite their strengths, these frameworks exhibit critical
gaps when applied to modern, distributed AI environments.
Most notably, they lack integration with FL architectures,
which are increasingly important as organizations move to-
ward decentralized data models. Existing frameworks gener-
ally assume a centralized data environment and provide little
to no guidance on assessing DR across distributed clients
with heterogeneous data distributions. They also fall short
in addressing compliance challenges related to cross-border
data flows, which are common in FL scenarios. FL has
become a prominent decentralized machine learning approach,
allowing multiple clients to collaboratively train models while
maintaining data privacy. Apart from its advantages, FL faces
key challenges such as robustness against malicious clients
and heterogeneous data distributions [12]. Several frameworks
have been developed to address these challenges with unique
methodologies and trade-offs.

Ensuring the integrity of model updates is critical in FL,
as malicious clients can degrade the quality of the global
model. FLTrust [8] addresses this by establishing a root of trust
using a clean dataset to assign trust scores to client updates.
However, its reliance on a single trusted dataset introduces
a vulnerability if that dataset is compromised. EIFFeL [7]
enhances integrity while preserving privacy through secure ag-
gregation and verification of client updates. It effectively filters
out malicious contributions. However, it does not address the
challenge of data heterogeneity, which can affect convergence
and overall model performance.

The performance of FL models is often affected due to
heterogeneous and noisy data distributions. In FL, where data
is distributed between multiple clients, label noise refers to



incorrect or inconsistent labels in the training data, which
can significantly reduce model performance. To address this
issue, FedELC [20] proposes a two stage framework that
first identifies clients with noisy labels and then applies label
correction strategies to improve the overall robustness of the
global model. However, it focuses solely on label noise and
ignores other critical aspects of DR. FedDQA [21] introduces
a metric to evaluate client data quality without additional com-
putational cost, allowing the selection of higher-quality clients
for training. Although effective in minimizing the influence of
noisy data, this approach risks introducing selection bias and
does not actively improve the underlying data. In the domain of
PPFL, methods such as lazy influence approximation [22] and
FedDQC [23] offer quality assessments that preserve privacy
using influence scores and relevance alignment, respectively.
Although these approaches maintain confidentiality, they have
computational overhead and suffer from reduced data resolu-
tion under strict privacy constraints.

Another key limitation of existing FL frameworks is their
lack of flexibility in supporting custom DR metrics and
remediation workflows. Most rely on static, predefined eval-
uation criteria, making it difficult to accommodate domain-
specific requirements. Remediation processes are often rigid
and lack support for user-specific operations such as federated
anonymization or edge-device preprocessing. Even unified
data platforms rarely allow integration of custom rules or
remedies. To address these gaps, our proposed framework
enables users to define customized metrics, rules, and remedies
aligned with the needs of specific FL systems. This flexibil-
ity helps manage data heterogeneity by enforcing consistent
standards across clients, all while preserving privacy. The
framework integrates seamlessly with existing PPFL work-
flows and supports DR evaluation before initiating resource-
intensive training. Moreover, it aligns with the vision of
Industry 5.0 [24], emphasizing human-centric, privacy-aware,
and adaptable AI systems that empower users to take control
of DR.

III. DESIGN OVERVIEW

The objective of CADRE is to allow users of FL systems to
define and utilize both foundational and customizable actions.
To support this requirement, CADRE provides the following
main components: metrics, DR reports, rules, and remedies.
The functionality of each of these components will be dis-
cussed in details in the following subsections. In Figure 1, we
show an outline of CADRE by illustrating its components.
A. Metrics Component

We divided the metrics component of CADRE into two
main parts: standard metrics and customizable metrics. The
standard metrics include a set of universally applicable mea-
sures such as evaluating sample sizes, data sparsity, and basic
statistical measures like mean, median, and standard deviation
of the client’s data distribution. These metrics serve as a
baseline for assessing DR of clients’ data across any FL
task. Additionally, the standard metrics module contains basic
visualizations, such as bar charts and scatter plots, which are

Base CADRE Module

Metrics

Standard Custom
DR

Report Remedies

Extensible functions

Rules

Base functions

Fig. 1: An overview of CADRE framework for FL tasks.
Metrics include commonly known standard DR evaluation
measurements. The extensible functions are used to define
custom DR metrics, rules, and remedies. The DR report
consolidates the standard and custom metric evaluations with
visualizations.

included in the DR reports to provide a visual representation
of the client data’s characteristics.

The customizable metrics sub-module offers an extensible
function that allows users to define custom metrics tailored
to their unique FL task and evaluation needs. This flexibility
ensures that users can assess client data according to the spe-
cific requirements of their projects. For example, if a particular
task requires assessing the completeness or skewness of the
data, users can define these metrics within CADRE. These
standard and custom metric evaluations and visualizations
allow users to quickly grasp the readiness of clients’ data and
identify potential issues that may lead to unexpected behavior
in downstream FL tasks.

B. Rules and Remedies Sub-Modules

Beyond metrics, CADRE includes a robust sub-module for
defining rules and remedies. This sub-module allows users to
establish custom rules that data must meet to be considered
ready for the next stages of the FL pipeline. The users can
also define custom remedies to improve the readiness of the
data to meet the specified rules.

For instance, if users need to assess noise levels in the
data, they can use metrics such as the standard deviation
of the data distribution to quantify noise. A high standard
deviation may indicate excessive variability and suggest the
presence of noise. The users can then establish a rule where
the standard deviation must not exceed a predefined threshold.
If this threshold is surpassed, remedies could be implemented,
such as filtering out extreme values or including only a subset
of the affected client’s data in the analysis.

C. DR Reporting Module

CADRE generates detailed DR reports by aggregating
metric evaluations and visualizations produced by individual
clients. It also includes principal component analysis (PCA)
[25] graphs, to illustrate the combined data distribution and
highlight the heterogeneity among clients. These insights are
compiled into an easily readable HTML report, allowing
users to quickly assess whether clients meet specified stan-
dards while ensuring data privacy. This feature is essential to



maintain transparency and accountability throughout the DR
process.

For instance, for a given FL task, a custom metric could
involve measuring class imbalance within each client’s dataset
in the FL system. Identifying class imbalance is important
because it can bias the learning process, especially in classifi-
cation tasks where underrepresented classes may be poorly
learned [26]. In this scenario, the rule would be to flag
any client datasets where the class distribution significantly
deviates from a defined threshold of balance. If a client is
flagged, the remedy might involve data augmentation or re-
sampling techniques to mitigate the imbalance until the metric
indicates an acceptable distribution. The resulting report will
display the class distribution statistics for each client’s dataset,
making it easy to identify and address any flagged issues.
Figure 2 presents an actual HTML DR report generated for
this specific example during an FL experiment. The report
includes evaluations of both standard and custom metrics,
visualizations for each of the two clients involved in the
experiment, and combined plots. The visualizations include
standard plots such as class distribution and data distribution
charts, while the combined plot is a PCA visualization of a
sample of the data from the clients. For this example, we used
the Adult Income dataset [27], and CADRE is integrated into
the APPFL framework. More details about this integration and
the experiments can be found in sections IV and V.

(a) (b)

(c)

(d)

Custom Metrics

Fig. 2: The figure illustrates an example DR report from an FL
experiment featuring: (a) Standard metrics, (b) Custom metrics
in CADRE for this specific FL task, (c) Individual client plots,
and (d) Combined data plots.

Clients participating in the FL framework use custom
metrics within CADRE to locally evaluate their data and
generate DR reports. If the client data meets the specified
rules, the data will proceed to the subsequent stages of the
FL pipeline. Conversely, if the data does not meet the rules,
remedies defined by the users within CADRE will be applied
to improve the DR. This process will iterate until the data
complies with the established rules. This will ensure DR for
the next stages of the FL pipeline. Figure 3 provides a visual

representation of this iterative approach by illustrating how
clients use CADRE’s functions to assess DR, apply custom
rules, and implement remedies as needed while preserving
privacy.

Client 1

FL Domain Specific CADRE 
Module

Metrics

General Specific

Rules Remedies

Data Metrics 
evaluations

Take remedies

Rules 
met?

Inspect DR
report

Yes

No

AI Ready 
Data

DR Report

Client N

Data Metrics 
evaluations

Take remedies

Rules 
met?

Inspect DR
report

Yes

No

AI Ready 
Data

Fig. 3: The figure illustrates the iterative data evaluation
and remediation process within the clients involved in FL
framework. It outlines how clients use the CADRE’s functions
to assess DR, apply custom rules, and implement remedies as
needed.

By integrating these sub-modules, CADRE provides a com-
prehensive and flexible framework for ensuring DR in FL
systems. This framework allows users to tailor the DR process
to the specific needs of their projects while maintaining high
standards of DR and privacy.

IV. INTEGRATION INTO EXISTING PPFL FRAMEWORKS

In this study, we utilize the APPFL framework to demon-
strate the practical application of CADRE. APPFL is an open-
source framework designed to enhance privacy and security
in federated learning systems. It allows researchers to imple-
ment, test, and deploy federated learning experiments across
distributed clients while ensuring data privacy.

APPFL consists of six key components: an aggregator,
scheduler, trainer, privacy module, communicator, and com-
pressor. These components work together to tackle challenges
such as computational disparities and security concerns in dis-
tributed machine learning, while also enabling enhanced pri-
vacy protection, supporting flexible model training on decen-
tralized data, simulating various federated learning algorithms,
implementing lossy compression for efficient data transfer,
and providing a highly extensible framework for customizing
aggregation algorithms, server scheduling strategies, and client
local trainers. The framework supports various popular syn-
chronous and asynchronous federated learning algorithms such
as FedAvg [1], FedAvgM [28], FedBuff [29], and FedCompass
[30], and incorporates differential privacy techniques [31].

CADRE will be integrated into the APPFL framework as
an extensible module. Users can use the extensible nature
of CADRE to define the metrics, rules, and remedies for
a specific FL task. This allows clients to use its functions
locally. This integration enables clients to evaluate data using
custom metrics and apply custom remedies if the rules are
not satisfied. After evaluating the data, the client agent will
compile a DR report of the evaluations. These evaluations
are then aggregated by the communicator within APPFL to
combine the results from all clients for review. This integration
demonstrates CADRE’s ease of use and versatility within



existing PPFL frameworks. Figure 4 provides a visual repre-
sentation of its implementation within the APPFL framework.

CADRE 
Module

C
om

m
un

ic
at

or

Client Agent Server Agent
CADRE Actions

Metric evaluation

Rule evaluation

Remedial actions

Combined 
DR report 
generationRequest Request Response

Assess Aggregate AggregateDR report 
generation

Fig. 4: The figure illustrates the integration of CADRE within
the APPFL framework.

Configuring CADRE for specific FL tasks is a straight-
forward process that allows users to tailor its extensible
functionality to meet the unique requirements of each task. The
process begins with the utilization of the base CADRE module.
The base CADRE module serves as a foundational template
with extensible functions. By using this template, users can
create a specialized CADRE module that incorporates the
necessary evaluation metrics, rules, and remedies specific to
their task.

Once the custom CADRE module is configured, it is seam-
lessly integrated into the APPFL framework by uploading it.
The framework is designed to accommodate such modular
additions, making the integration process smooth and efficient.
To activate the newly created CADRE module, users simply
update the configuration file within the APPFL framework.
This involves specifying the path to the custom CADRE
module file that will allow the framework to recognize and
utilize it appropriately. Additionally, users can pass other
relevant arguments specific to the CADRE module by defining
them in the configuration file. For instance, a CADRE module
may require additional inputs, such as feature indices and other
identifiers, for various DR-related tasks. Figure 5 illustrates an
example of this configuration, showcasing the YAML-based
setup used to define a custom CADRE module.

cadre_configs:
cadre_path: 
cadre_name: 
remedy_action: 
cadre_kwargs:

kwargs1: 
kwargs2: 

Fig. 5: YAML configuration for customizing a CADRE mod-
ule in FL tasks, allowing users to define evaluation metrics,
rules, and remedies specific to their needs.

With the integration of CADRE into the APPFL framework,
users gain significant advantages that aid in making informed
decisions before entering the costly training phase. As data
flows through the system, CADRE automatically executes de-
fined actions, ensuring that DR issues are addressed promptly
and consistently. This automation provides users with timely
interventions, allowing them to focus on strategic decisions
rather than manual data remediation tasks.

Additionally, the comprehensive DR reports offer trans-
parency and accountability. These reports provide users with
a clear overview of the DR actions taken and allow effective
assessment of DR compliance. By reviewing the detailed

evaluations without exposing any raw data, while maintaining
privacy and security, users can ensure that only clean and
compliant data is used. Overall, this streamlined approach
highlights how easily CADRE can be adapted for different
FL tasks and data modalities. This concept will enhance the
flexibility and effectiveness of PPFL. The documentation and
code for this integration are available online [32]

Ultimately, this leads to improved model performance, as
AI-ready data reduces the risk of errors and noise affecting
the training process. The automated nature of CADRE also
supports scalability by allowing the system to efficiently
handle large datasets. This allow users to make better-informed
decisions, optimizing resource allocation and minimizing risks
before committing to the next phases in FL.

V. EVALUATIONS

In this section, we will explore the datasets, experimental
setups, and custom CADRE modules used to demonstrate
how we can effectively address DR related challenges across
various dimensions, including data quality, privacy, fairness,
and more. Since most datasets in our study do not naturally
exhibit these issues, we used various data pollution techniques,
which we will also discuss here. Finally, we will illustrate
how our custom DR standards are achieved by utilizing
the tailored metrics, rules, and remedies within the custom
CADRE modules.

A. Datasets and Experimental Setup
In this study, we utilized six diverse datasets spanning

both standard benchmarks and real-world medical research.
The benchmark datasets include MNIST [39], a collection of
handwritten digit images widely used for image classification;
CIFAR-10 [40], which comprises color images across ten
classes for object recognition tasks; and Adult Income [27], a
tabular dataset from the UCI repository used to predict whether
an individual’s income exceeds $50K based on census data.

In addition to these, we used three datasets derived from
real-world medical research. TCGA-BRCA from the Flamby
collection [41] contains clinical data from breast cancer pa-
tients and is used for survival analysis. The IXI Tiny dataset,
also from Flamby, consists of 3D brain MRI scans and serves
as a benchmark for medical image segmentation tasks. Both
of these datasets are naturally partitioned among clients, such
as different hospitals or research centers, and are widely used
in FL research. Finally, the AI-READI (Artificial Intelligence
Ready and Equitable Atlas for Diabetes Insights) dataset
[42] is a new comprehensive and ethically sourced collection
designed to advance AI research in Type 2 Diabetes Mellitus
(DM2), consisting over 15 data modalities, such as vitals,
retinal imaging, electrocardiograms, and other health-related
measurements, all aimed at exploring salutogenic pathways to
health. For our research, we utilized color fundus photography
(CFP) images from the AI-READI collection to classify the
severity of diabetes by analyzing the retinal health using the
CFP images. To simulate real-world heterogeneity, we divided
the dataset among four clients based on the imaging devices
used: iCare Eidon, Optomed Aurora, Topcon Maestro2, and



TABLE I: Overview of custom CADRE modules used in experiments.
CADRE Module ID Category Metric Rule Remedy

1 Noise Management Mean magnitude of the data (image
intensities or feature values)

Applied remedy when the data distribution
mean exceeded a threshold (e.g., > 0.37 for
MNIST).

Data points with noisy indices were re-
moved.

2 Class Imbalance Handling Class imbalance degree [33] Applied when imbalance degree > 0. SMOTE [34] was used to oversample the
minority class.

3 Duplicate Management Proportion of duplicates Applied when duplicates proportion > 0. Duplicates were identified and removed.
4 Memory Optimization Memory usage in megabytes (MB)

to store the client’s data
Applied when memory usage was exces-
sively high.

Data types were optimized or duplicates re-
moved depending on the dataset’s pollution
method.

5 Bias Handling Statistical parity difference [35] for
Adult Income dataset and represen-
tative rate difference for TCGA-
BRCA dataset

Applied when metric value > 0. Stratified resampling [36] to balance sensi-
tive groups and labels in the Adult Income
dataset, while SMOTE to oversample the
minority group in the TCGA-BRCA dataset.

6 Outlier Management Proportion of outliers using Inter-
quartile range (IQR) method [37]

Applied when outliers proportion > 0. Outliers were clipped at IQR bounds.

7 K-anonymity Handling K-anonymity level [38] Applied when anonymity level ≤ 1. Data records with low anonymity levels
were suppressed to ensure the desired level
of anonymity.

Topcon Triton. By considering these datasets from various
modalities and with different downstream tasks, we demon-
strate the versatility of our proposed framework, which is not
constrained by data modality or task.

To facilitate the evaluation of class imbalance, we trans-
formed MNIST, CIFAR-10, and the AI-READI data into
binary classification tasks. In MNIST, digits 0–4 were grouped
into one class, while digits 5–9 formed another. In CIFAR-
10, images with class indices 0–4 were assigned to one
class, while images with class indices 5–9 were categorized
as the other. For the AI-READI dataset, we categorized the
classes as follows: the “pre-diabetes (lifestyle controlled)”
and “oral medication and/or non-insulin injectable medication
controlled” classes were combined into one group, while the
“healthy” and “insulin-dependent” classes formed the other
group. This transformation simplifies the evaluation process
and improves understandability. The Adult Income dataset is
inherently a binary classification task, so no further modifica-
tions were necessary.

As discussed in section IV, we employed APPFL to inte-
grate CADRE and conduct the experiments. We consistently
used FedAvg [1] as the primary FL algorithm across all
experiments. Since MNIST, CIFAR-10, and Adult Income are
not inherently FL datasets, we applied non-independent and
identically distributed (non-IID) partitioning to ensure data
heterogeneity. For these three datasets, we partitioned the data
into 10 clients per experiment and ran the experiments for
10 global epochs. On the other hand, TCGA-BRCA and IXI
Tiny datasets are genuine FL datasets, already partitioned
into 6 and 3 clients, respectively. As previously mentioned,
the AI-READI dataset was partitioned based on the imaging
device used, resulting in four clients corresponding to the
four devices. CADRE operates before the actual training
phase, so FL training related configurations do not impact
CADRE’s execution. However, to ensure the completeness
of our experiments and to validate integration in FL tasks,
we reported these configurations. For AI-READI dataset, we
utilized a single node with 64GB RAM, and one NVIDIA
A40 GPU on the Delta supercomputer at NCSA [43]. The
rest of the experiments were conducted on an Apple M2 Max
MacBook Pro with 32GB unified memory.

B. Custom CADRE Modules
In this study, we used seven custom CADRE modules,

each designed to address a specific DR issue. These modules
incorporate tailored metrics, rules, and remedies to ensure that
the client’s data meets the expected standards. The selection
of modules covers a broad spectrum of DR challenges, as
identified in the [9] study, including data quality, fairness,
privacy, and structure. Table I provides a detailed overview
of these custom modules by outlining the metrics, rules, and
remedies each module uses to evaluate and enhance the data’s
readiness for specific AI tasks.

As seen in Table I, for module 5, we measured statistical
parity difference in the Adult Income dataset and represen-
tation rates in the TCGA-BRCA dataset. Statistical parity
involves assessing class labels and sensitive groups, making
it suitable for the Adult Income dataset, which deals with
classification tasks. However, for the TCGA-BRCA dataset,
which is used for survival analysis, measuring statistical parity
is not feasible. Instead, we evaluate the representation rates
of sensitive attributes and balance them as a remedy. For the
Adult Income dataset, “gender” was selected as the sensitive
feature for analysis by the module. This feature contains two
categories: “male” and “female.” In contrast, for the TCGA-
BRCA dataset, “race white” was identified as the sensitive
feature, represented as a binary attribute where “1” indicates
that the race is white, and “0” signifies otherwise.

Module 7 uses k-anonymity level as its metric. The remedy
is applied when the anonymity level is less than or equal
to 1 by ensuring that each entity remains identical from at
least k − 1 others based on quasi-identifiers [38]. Quasi-
identifiers are attributes that are not unique identifiers on
their own but can be combined to identify individuals. For
the Adult Income dataset, the quasi-identifiers were “work-
class,” “race,” and “gender.” We selected these features as
the quasi-identifiers because they are commonly available
in public records and, when combined, could increase re-
identification risk. Similarly, for the TCGA-BRCA dataset,
the quasi-identifiers included demographic and self-reported
characteristics such as “age at index,” “ethnicity not hispanic
or latino,” “ethnicity not reported,” “race asian,” “race black
or african american,” “race not reported,” and “race white.”



TABLE II: Dataset-specific data pollution methods applied for each CADRE module.
CADRE Module ID MNIST CIFAR-10 Adult Income Flamby TCGA-BRCA Flamby IXI Tiny AI-READI

1 Added Gaussian noise (std.
dev. = 2) to 90% of the data

Added Gaussian noise (std.
dev. = 2) to 90% of the data

Added Gaussian noise (std.
dev. = 2) to 90% of the data

Added Gaussian noise (std.
dev. = 2) to 90% of the data

Added Gaussian noise (std.
dev. = 2) to 90% of the data

Added Gaussian noise (std.
dev. = 2) to 90% of the data

2 Imbalanced class distribution
due to non-IID partitioning

Imbalanced class distribution
due to non-IID partitioning

Imbalanced class distribution
due to non-IID partitioning

Not applicable (survival analy-
sis task)

Not applicable (segmentation
task)

Device-based partitioning in-
herently resulted in an imbal-
anced class distribution

3 20% of data was randomly du-
plicated

20% of data was randomly du-
plicated

20% of data was randomly du-
plicated

20% of data was randomly du-
plicated

20% of data was randomly du-
plicated

20% of data was randomly du-
plicated

4 Converted feature values to
higher precision (float32 to
float64)

Converted feature values to
higher precision (float32 to
float64)

Converted feature values to
higher precision (float32 to
float64)

Duplicates added to increase
memory usage

Duplicates added to increase
memory usage

Duplicates added to increase
memory usage

5 Not applicable (image data has
no sensitive features)

Not applicable (image data has
no sensitive features)

Statistical parity differences
were inherent

Representative rate differences
were inherent

Not applicable (image data has
no sensitive features)

Not applicable (image data has
no sensitive features)

6 Added random gaussian noise
(std. dev. = 2) to the data to
simulate outliers

Added random gaussian noise
(std. dev. = 2) to the data to
simulate outliers

Added random gaussian noise
(std. dev. = 2) to the data to
simulate outliers

Features inherently contained
outliers

Added random gaussian noise
(std. dev. = 2) to the data to
simulate outliers

Added random gaussian noise
(std. dev. = 2) to the data to
simulate outliers

7 Not applicable (no quasi-
identifiers in image data)

Not applicable (no quasi-
identifiers in image data)

Quasi-identifiers already con-
tained low levels of anonymity

Quasi-identifiers already con-
tained low levels of anonymity

Not applicable (no quasi-
identifiers in image data)

Not applicable (no quasi-
identifiers in image data)

Fig. 6: Example DR reports generated before (left) and after (right) applying CADRE module 1 show an improvement in the
average mean after removing noisy data. Results are shown in the table’s rightmost column. The combined PCA plot at the
bottom right confirms that noise-related anomalies in the data distribution have been resolved.

These attributes were chosen due to their potential to link
individuals across datasets and may pose privacy concerns if
not anonymized.

C. Data Pollution

To fully demonstrate the remedies provided by our custom
CADRE modules, it was essential to ensure that the datasets
used in our study exhibited the relevant issues. Some datasets
naturally contained issues such as class imbalance, which was
present in all classification tasks due to non-IID partitioning.
Other issues were intentionally introduced through data pol-
lution techniques. Table II provides detailed information on
the pollution methods applied to each dataset. By polluting
data, it enables the activation of rule and remedy actions in
the custom CADRE modules in every experiment.

Figure 6 presents two DR report samples from an experi-
ment conducted before and after meeting a CADRE module’s
standards. These reports illustrate how easily data-related
issues can be identified and addressed, ensuring that standards
defined by the custom CADRE modules are met. For this
sample, we used the AI-READI dataset’s before-and-after DR
reports from the experiment conducted for CADRE module 1.

D. Results
After conducting experiments across all datasets and custom

CADRE modules, as detailed in Tables I and II, we observed
that nearly all client data met the required standards defined
by each custom CADRE module. The process generated DR
reports that reflected these metric evaluations, along with
standard metrics and visualizations, as depicted in the Figure 6.
Figure 7 illustrates the metric values before and after applying
the remedies of custom CADRE modules, with threshold
values indicating the rules set for each experiment. As shown
in the figure, almost all post-remedy data points fall within
the expected range. However, there is only one exception,
observed in the figure that is boxed in red, where one client’s
post-remedy metric value remains above the threshold. The
DR report’s representative rates plot of the sensitive feature
helped identify that this particular client contained only one
ethnic group, preventing the remedy action from balancing the
feature due to the absence of a second group. This example
highlights the importance of DR reports in understanding the
DR levels of clients before proceeding to the training phase.

Since this work precedes the training phase of the FL
task, it provides valuable insights for users to analyze the
data and assess its readiness for training. This pre-training



Fig. 7: Evaluation of custom metrics for each CADRE module, before and after remedy application. Threshold lines indicate
predefined rule criteria. The red box highlights one case where a client’s post-remedy metric remains above the threshold.

evaluation helps determine whether proceeding with training
is worthwhile, potentially saving significant resources. While
we do not report the impact on overall model performance due
to not entering the training phase, existing literature suggests
that many remedies applied by these modules can influence
model outcomes. For instance, high-quality, noise-free data
significantly enhances model performance [4], [22], while
balanced class distributions can reduce bias and mitigate model
drifting issues [44], [45].

However, other factors, such as achieving perfect fairness
and optimal anonymity levels, may affect different aspects of
model performance. A dataset with minimal statistical parity
can improve model fairness [46], though it may compromise
overall performance and accuracy. Similarly, as we increase
the privacy budget of the data, model accuracy tend to decrease
[47]. However, users might choose to prioritize data fairness,
and privacy standards over model performance. Also, memory
usage optimization is crucial for FL clients, as resource-
constrained edge devices have limited computational and
memory capacity [48]. Efficient optimization helps maintain
training efficiency while preventing performance degradation.
Overall, these results demonstrate that our framework can be
effectively integrated into PPFL systems to meet DR-related
standards before training to conserve valuable resources and
funds. Moreover, the informative DR reports simplify the
process for users by providing a clear understanding of the
data’s condition for the FL task and setting expectations for
the training phase.

VI. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel framework to enhance
DR in PPFL systems. The framework allows users to define
CADRE modules tailored to address diverse DR challenges
across various downstream tasks and data modalities. By spec-
ifying custom metrics, rules, and remedies, these modules al-
low clients to execute processes locally and to ensure that their

data meets the necessary standards while preserving privacy.
CADRE generates comprehensive DR reports that include
evaluations from user-defined and standard metrics, along with
visualizations that provide insights into data characteristics and
DR levels. It enables users to make informed decisions before
training while preserving data privacy. Experiments across
six diverse datasets and seven distinct DR issues demonstrate
the framework’s versatility and effectiveness. The integration
of the framework into the APPFL framework highlights its
practical applicability. By addressing DR issues before train-
ing, our approach conserves resources and enhances model
outcomes. However, there can be requirements that necessitate
compromising model performance. For instance, achieving
perfect fairness may affect accuracy, and increasing privacy
budgets can decrease precision. These trade-offs highlight the
importance of prioritizing data standards based on specific FL
task requirements. Our framework allows users to set realistic
expectations for training, optimize resource utilization, and lay
the groundwork for reliable and equitable FL results.

For future work, we plan to expand its applicability to a
broader range of datasets and explore automated methods for
CADRE to further streamline the DR process. Additionally,
we will investigate more computationally intensive tasks, and
explore adding custom privacy-preserved modules to CADRE
for user-controlled privacy protection. This will enhance the
framework’s adaptability to evolving privacy standards in
PPFL environments.
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