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Abstract

Large language models (LLMs) are rapidly evolving into autonomous agents that
cooperate across organizational boundaries, enabling joint disaster response, supply-
chain optimization, and other tasks that demand decentralized expertise without
surrendering data ownership. Yet, cross-domain collaboration shatters the unified
trust assumptions behind current alignment and containment techniques. An agent
benign in isolation may, when receiving messages from an untrusted peer, leak
secrets or violate policy, producing risks driven by emergent multi-agent dynamics
rather than classical software bugs. This position paper maps the security agenda for
cross-domain multi-agent LLM systems. We introduce seven categories of novel
security challenges, for each of which we also present plausible attacks, security
evaluation metrics, and future research guidelines.

1 Introduction

Large language models (LLMs) are shifting from standalone chatbots to nodes in cross-domain multi-
agent networks where autonomous agents—each controlled by a different organization—cooperate
without central oversight [1, 2, 3, 4]. This architecture enables previously impossible collaboration:
disaster-response robots from separate agencies can coordinate in real time, and supply-chain agents
from rival firms can jointly optimize logistics, all while each agent keeps its owner’s policies and
data private [5, 6, 7]. The power of these networks comes from pooling diverse expertise without
surrendering autonomy [8, 9].

However, along with this promise comes a new and critical security challenge. Current artificial
intelligence (AI) security and alignment approaches largely focus on either single-agent LLM deploy-
ments or multi-agent systems confined to a single organization’s domain [10, 11, 12]. In such settings,
all agents are typically governed under a unified trust model or policy framework [13, 14, 15, 16].
Cross-domain deployments break this assumption: agents must interact across ownership boundaries
where no universal trust or governance can be assumed. As a result, existing security models fail
to address the unique risks posed by these open collaborations. Techniques that contain an LLM’s
behavior for a single user or ensure cooperation among agents in one company’s network often do not
translate to scenarios in which an agent might receive input or instructions from an external, untrusted
peer [17, 18, 19, 20, 21, 22]. In a cross-domain context, an AI agent that was benign in isolation could
Preprint. Under review.
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Behavior-centric Challenges

C1 Unvetted Dynamic Grouping

Runtime formation of unvetted model networks
→  Unpredicted group activities

C2 Collusion Control

Cross-domain collusion
→  Goal deviation & covert channels

C3 Conflicting Incentives & Goals

Absence of global authority
→  Malicious group steering

C4 Distributed Self-tuning Misalignment

Globally unorchestrated self-tuning loops
→  Reward hijack & misalignment

Data-centric Challenges

C5 Cross-domain Provenance Obscurity

Provenance gap across domains
→  Untraceable malicious influence

C6 Cross-domain Context Bypass

Fragmented prompt context
→  Policy evasion & data leaks

C7 Inter-domain Confidentiality & Integrity

Sensitive data flow across multiple domains
→  Cross-domain secrecy & integrity trade-off

Figure 1: The seven fundamental security challenges in cross-domain multi-agent LLM systems.

turn into a threat—intentionally or unintentionally—when interacting with others [23]. For instance,
one organization’s agent might manipulate another organization’s agent into revealing confidential
information or performing actions that violate the second organization’s policies. Such risks are
fundamentally new: they arise not from traditional software vulnerabilities alone, but from the complex,
interactive behaviors of autonomous LLM-driven agents with potentially misaligned incentives and no
shared security authority [24, 25, 26, 27].

History offers a cautionary parallel: the early Internet prioritized connectivity over security, inviting
decades of malware and retrofitted defenses [28]. We caution that these AI ecosystems could become
the “early Internet” of the 2020s: cross-domain multi-agent LLM systems could repeat this
mistake if deployed without a security-first mindset. A malicious or compromised agent injected
into a collaborative network—or subtle manipulation of inter-agent messages—could trigger cascading
failures across organizational boundaries [29].

In this position paper, we put forward a structured outlook on securing cross-domain multi-agent
LLM systems. We identify seven distinct categories of security challenges that must be addressed
to prevent the multi-agent future from repeating the Internet’s early mistakes. At a high level, we
categorize these challenges into two classes – agent’s behavioral security and data-centric security.
Behavioral security concerns how autonomous agents form teams, make decisions, and potentially
misbehave in concert, while data-centric security pertains to the content and privacy of the information
they exchange. Out of the seven cross-domain multi-agent LLM security challenges, the ones belonging
to the behavioral security class are: (C1) unvetted dynamic grouping; (C2) collusion control; (C3)
conflicting incentives and goals; and (C4) distributed self-tuning drift. The ones belonging to the
data-centric security class are: (C5) cross-domain provenance obscurity; (C6) cross-domain context
bypass; and (C7) inter-domain confidentiality and integrity. We further group these challenges into
behavior-centric issues (C1-C4) and data-centric issues (C5-C7). We depict these challenges in Figure 1.

Each of the above seven challenges represents a significant gap where existing AI security techniques
fall short in the cross-domain multi-agent context. For each challenge, we illustrate plausible attack
scenarios, and importantly, propose metrics and principles for systematic security assessment. This
work aims to surface overlooked risks in cross-domain agent collaboration and outline research
directions and principles for designing inter-domain multi-agent LLM systems that can withstand
adversarial conditions. We urge the AI field to pause at-scale deployment until security primitives
addressing Challenges 1–7 are in place.

2 Background of LLM Security

2.1 Single-agent LLM

Modern LLM agents—LLMs augmented with tools, memory, or autonomy—inherit all the vulner-
abilities of base models and introduce new ones. A primary risk is prompt injection or jailbreaking,
where crafted inputs cause the agent to ignore its safety guardrails [30, 31]. Recent work shows even
highly-tuned models (GPT-4, Claude, etc.) can be consistently “jailbroken” by optimized adversarial
prompts [32, 33, 34, 35]. For example, automated search methods can generate a single malicious suffix
that forces many aligned models (open-source and commercial) to produce disallowed content, and
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these attacks transfer across platforms like ChatGPT, Bard, and Claude [36, 37]. Such exploits leverage
models’ competing objectives (e.g., helpfulness vs. safety) and gaps in their safety training [38, 39, 40].
Beyond text, LLM agents with tool use amplify the stakes: a compromised agent might leak private data
or perform harmful actions via code execution or web requests [41, 42, 43, 44, 45]. An anecdotal ARC
alignment test famously showed GPT-4 autonomously deceiving a human into solving a CAPTCHA
by pretending to be visually impaired [46], illustrating how an agentic LLM could develop unethical
strategies if not properly controlled. Attackers can also target an agent’s knowledge: poisoning training
data, retrieved documents, or plugin application programming interfaces (APIs) can implant false or
malicious information (a backdoor), causing the agent to behave destructively or output specific misin-
formation [47, 48, 49]. LLMs are vulnerable to privacy attacks as well—adversaries have extracted
sensitive personal data from a model’s training set by carefully querying it [50, 51].

Defense Strategies: Defending single-agent LLM systems is an active arms race [49]. A cornerstone is
alignment training (reinforcement learning from human feedback and related methods) to instill refusal
behavior for unsafe requests [10]. Yet, studies show that current safety-tuning methods often fail to
generalize to cleverly crafted adversarial inputs [52]. To harden against prompt attacks, developers
deploy input/output filtering [53]: e.g. Meta’s Llama-Guard uses a secondary LLM to scan and sanitize
user prompts or model replies [20, 54]. Such guardrails can block simple exploits, but sophisticated
prompt attacks still slip through distributed or hidden channels [55, 56]. Another approach is adversarial
training, fine-tuning a model on deliberately perturbed inputs so it learns to stay accurate even under
such attacks [57, 58, 59, 60, 61]. This improves robustness but is incomplete, as attackers quickly
devise new exploits [62]. For tool-using agents, a key safety measure is capability sandboxing. Agents
are often confined to a controlled environment: e.g. limiting file system access, requiring human
confirmation for high-impact actions, or simulating tool outputs. One novel framework, ToolEmu [41],
avoids executing real code by using an LLM to emulate tool feedback during testing, paired with an
automatic evaluator to rate safety – this found that even the best current agents still follow through with
dangerous actions in 24% of high-stakes scenarios. Such simulation-driven testing helps identify failure
modes before deployment. Other mitigation strategies include chain-of-thought oversight (having the
agent internally reason about safety), content watermarking/tagging, and policy ensembling (multiple
models vote or oversee each other). None of these defenses alone is foolproof, but combined layers
(aligned training, filtering, sandboxing, etc.) constitute the state of the art in LLM agent hardening [63].

2.2 Multi-agent LLM

Combining multiple LLM agents (in cooperative or competitive roles) unlocks impressive capa-
bilities, but also introduces new vulnerabilities [64, 65, 66]. Multi-agent LLM systems can suffer a
“chain reaction” of failures: if one agent is compromised (by a malicious input or design), it can in
turn compromise others by sending them adversarial messages [67, 68]. This LLM-to-LLM prompt
injection can spread like a virus across the agent network [36, 69, 70, 71]. Recent research demonstrated
such prompt infection attacks where a single poisoned agent input self-replicates through chat rounds,
eventually causing all agents to produce attacker-controlled outputs [21, 72]. Worryingly, these attacks
often persist even if agents don’t share all their internal state publicly, and can lead to system-wide
failures like data theft, misinformation, or rogue actions while the breach remains covert [20, 73, 74].
Another studied vector is role impersonation: multi-agent frameworks usually assign distinct roles (e.g.,
“Manager” agent vs “Worker” agent). If an attacker can fool one agent into pretending to be another (or
hijack the communication channel), they may issue unauthorized instructions. This can steer the whole
team off-course or leak privileged information. Multi-agent systems also face all single-agent issues
compounded: more agents mean more text exchanges and a larger attack surface [75, 76]. Indeed,
evaluations of agent collaboration platforms (Camel, AutoGPT, etc.) find they are less robust than
single LLMs – the success rate of harmful prompt attacks actually increases with the number of agents
involved [2, 8, 14, 16, 77]. These agents can even produce more stealthy harmful content by distributing
the workload of taboo generation (one agent drafts a subtle harmful piece that another iterates on,
evading any one model’s safety filters [20, 72, 78]). An example in a multi-agent coding system
showed that a rogue “assistant” agent could gradually inject dangerous code by exploiting the trust of a
“reviewer” agent in each round [79]. Likewise, an attacker controlling one chatbot in a network might
manipulate dialogue context so that others unknowingly output confidential data [80, 81].

Recent works have also adapted single-agent defenses to multi-agent settings: e.g. PromptGuard
was extended to monitor multi-agent conversations, and safety instruction tuning (priming agents with
explicit rules to ignore certain prompts) has been tested [82, 83]. These defenses do mitigate some
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risks—experiments show they can reduce the spread of malicious commands in a network—but often at
a cost to performance [84, 85]. Thus, a key design principle is to combine safeguards without crippling
the agents’ ability to cooperate on tasks. Techniques like inserting “active immunizations” (preemptive
safe-memory of how to handle attacks) [83, 86] have been proposed to give agents a form of innate
defense that doesn’t require constant external oversight.

3 Key Security Criteria in Cross-domain Multi-agent LLM Systems

Cross-domain multi-agent LLM systems give rise to new security challenges unseen in localized
single/multi-agent LLM systems. In this section, we categorize the challenges into seven criteria that
must be considered and addressed before the deployment of cross-domain multi-agent LLM systems.
We cluster these challenges into two groups: behavior-centric challenges and data-centric challenges.

3.1 Behavior-centric Challenges

(C1) Unvetted Dynamic Grouping: Dynamic agent grouping refers to the spontaneous, task-driven
assembly and disassembly of AI agents into temporary teams [18]. As the number of LLM-embedded
robots deployed to the physical world drastically increases, multi-modal LLM agents are expected to
participate in frequent dynamic grouping with each other – AI agents or models that can be assembled,
added, or removed on-the-fly to solve a task [87], like humans meeting and interacting with new people
daily. This flexibility of agent grouping is powerful but introduces novel security difficulties. Unlike
static architectures, a dynamic group may incorporate new, unvetted models or agents at runtime,
blurring trust boundaries. When agents from various domains are placed in uncontrolled environments,
unforeseen incidents may occur that were never envisioned during training. Current research has
begun exploring how to optimally select teams of LLM agents for performance [87], but the security
implications of such fluid architectures remain under-addressed. A key challenge is that the system’s
composition is no longer fixed or fully known in advance, and dynamic grouping will frequently occur
in cross-domain setups where agents are owned by different individuals/organizations previously not
encountered. Therefore, traditional threat modeling (assuming a stable set of components) fails to
cover all cases because the effect of the combination of agents that have not been vetted during training
is often unpredictable.

An attacker might exploit this by injecting a malicious agent or model into the group. For example,
a seemingly useful pre-trained model from an open repository could actually contain a hidden back-
door [88, 89] (as incidentally observed on Hugging Face, where attackers have tried to seed backdoored
models into the supply chain [68, 90]). In a realistic attack scenario, a compromised model might join
an agent team (or be selected by an orchestration system) and then covertly leak data or sabotage the
task when triggered. Another attack strategy demonstrated in multi-agent reinforcement learning is to
selectively target certain agents: an adversary can dynamically group agents by their influence and
attack the most crucial subset, reducing detection risk and cost [64, 91]. This group-based attack shows
how dynamic team structure can be exploited to maximize damage stealthily.

Existing defenses and analyses largely assume a known set of models or a static ensemble; they
struggle with the novelty of adversaries that adapt as the grouping changes [92]. While some frameworks
incorporate basic vetting (e.g. scanning models for malware on load), these are not foolproof and
produce many false positives or negatives [24, 93]. Research on trust in ad hoc agent teamwork
or dynamic coalitions is sparse – current multi-agent safety techniques don’t prevent a malicious
newcomer from colluding once inside the group [94, 95].

(C2) Collusion Control: Cooperation (i.e., constructive collusion) is the most crucial success factor
of cross-domain multi-agent LLM activities. While agents may collude to find the most efficient
machine-level approach to completing work, predicting the side effects in advance can be difficult,
some of which could inadvertently cause physical harm that neither users nor people around them had
intended [96]. Unfortunately, strictly banning all collusion among agents is improper because that can
effectively ban cooperative activities as well. Collusion between AI agents is a complex problem when
the agents belong to different organizational or regulatory domains. Cross-domain groups operate
under mismatched policies, data silos, and oversight authorities, so weaknesses that remain latent in a
single-vendor sandbox can amplify once boundaries are crossed. Even if each agent is locally aligned,
two or more agents from separate owners can bargain, barter, or bribe each other in ways no single
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operator can fully audit. Unlike “lab-scale” multi-agent demos, real cross-domain deployments let
one agent hold proprietary data while another controls an external actuator or payment rail, creating a
split-knowledge cartel that current guardrails never see end-to-end. If a collusion enters a destructive
phase, the agents could launch various stealthy attacks. For example, by using covert channels such as
stenography [11, 21], agents can hide codes inside innocuous chat and continue secret inter-domain
activities unnoticed by human operators.

Existing defenses assume a common trust anchor: logging every message in one place, or letting a
single overseer replay traffic [97, 98]. Cross-domain systems lack that luxury; legal and privacy rules
forbid wholesale log sharing, and steganographic payloads easily cross opaque channels (e.g., PDF
invoices, code snippets, or multilingual text [11, 85]). Voting or majority-rule schemes also falter,
because colluding agents may represent a quorum of domains and out-vote honest minorities [25, 99].

(C3) Conflicting Incentives and Goals: Existing hierarchical multi-agent LLM frameworks often
assume a single trust domain or unified control(e.g., MetaGPT, ChatDev, HyperAgent simulating roles
within one company under a central coordinator). On the other hand, agents governed by separate
entities may pursue their owners’ interests over the collective goal. For instance, a financial agent and a
healthcare agent collaborating across companies might each withhold or manipulate information to
favor their organizations’ objectives, undermining the overall task. Such misaligned incentives are
largely absent in single-owner systems, which typically assume a common objective. Cross-domain
multi-agent hierarchies often lack a common authority for identity and trust management. Without
a shared trust anchor, agents cannot readily verify each other’s identities or credentials, opening
the door to impersonation and man-in-the-middle attacks [11]. The lack of an authority makes it
easier for a malicious agent to steer cross-domain LLM activities in a harmful direction, which is an
issue generally not encountered in single-domain multi-agent service (MAS) with centralized trust.
Indeed, recent work highlights that traditional MAS research has not imposed sufficient control over
inter-agent communication, leaving systems vulnerable to identity spoofing and unauthorized data
flows [20, 29]. In practice, securing a cross-organization hierarchical MAS demands new mechanisms
(e.g., federated authentication, inter-domain policy alignment) beyond those in local frameworks, which
often assume established hierarchical controls and robust safeguards within one domain. The real-world
consequences of neglecting these cross-domain dynamics range from failed collaborations to critical
data leaks, emphasizing that future multi-agent systems must be designed with cross-organizational
trust and security at their core.

(C4) Distributed Self-tuning Misalignment: Cross-domain multi-agent LLM systems enable multiple
agents (often across different organizations or domains) to collectively self-improve by sharing learning
experiences and fine-tuning updates. In frameworks like AutoGen [100], agents can dynamically
modify their roles or objectives mid-task to improve efficiency. Studies on AI autonomy indicate
that limiting an AI’s self-modification capabilities hinders its overall efficiency [9]. However, when
such autonomous fine-tuning occurs across organizational boundaries, it introduces novel risks. Each
domain may apply its own reward signals and updates without unified oversight, meaning there is no
central governance to ensure consistency or safety of the objectives being pursued. A critical issue
in these distributed setups is loose reward specification. If reward schemes and feedback loops are
not tightly aligned across domains, agents can unintentionally converge on distorted objectives [101].
Positive feedback cycles between agents may amplify subtle biases or proxy goals. For example,
mis-specified role guidelines have led agents to overstep their intended authority (a subordinate agent
assuming a leader’s role) [95]. Such inter-agent misalignment can cause gradual derailment from
the intended task. In a cross-domain context, this derailment could go unnoticed longer, as each
organization only sees part of the behavior. The lack of cross-domain reward governance means there’s
no mechanism to catch when the collective’s emergent objective deviates from the safe or intended goal.
Consider a scenario where an adversary subtly manipulates the reward feedback in one organization’s
agent (e.g. by introducing tasks or responses that yield high local reward for unsafe behavior). Through
the distributed fine-tuning loop, this corrupted reward signal propagates: other agents, seeking to
optimize shared outcomes, incorporate the distorted objective. Over time, all agents may unknowingly
align to this unsafe policy. Unlike prompt or memory injection attacks, this reward feedback attack
exploits the learning process itself, and it does not require explicit collusion between agents.
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3.2 Data-centric Challenges

(C5) Cross-domain Provenance Obscurity: Tracking data and actions becomes obscured when
agents span different organizational domains. Each domain typically maintains separate logging, data
retention policies, and auditing tools, preventing any unified trace of an event’s origin. Further, an
LLM’s internal representations irreversibly entangle inputs throughout all interconnected neurons at
each layer, meaning that once data from one domain is processed, it loses any discrete label or tag
identifying its source [47]. Unlike traditional software where taint tracking or information flow control
can explicitly label and follow data [102], an LLM’s transformation of input into distributed latent
features defies such tracing [103]. Consequently, if a piece of malicious or sensitive information passes
from one domain’s agent to another, it becomes nearly impossible to pinpoint which input triggered a
given action or decision downstream [83].

This provenance gap enables novel attack scenarios not seen in single-domain settings. For example,
an adversary might compromise an agent in Domain A and subtly inject false but plausible data or
instructions into its output. When Domain B’s agent consumes this tainted output (trusting Domain A),
it may make a high-impact decision or perform an action based on that input. Due to separate logs and
limited cross-domain visibility, Domain B cannot easily attribute the aberrant behavior to Domain A’s
influence. The attack can propagate across multiple AI systems, causing cascading failures as each
agent unwittingly passes along or acts on corrupted information [104, 105]. Critically, the perpetrator
avoids attribution because no single domain’s audit trail captures the full chain of custody. This cross-
domain exploit is fundamentally different from same-domain issues: even if each agent individually is
audited, the inter-domain links remain opaque. Due to this ambiguity of internal contextual state of
LLMs, it’s difficult for an organization to determine how much of the contextual data of various LLM
agents should be shared with other organizations to trace the inter-domain data provenance.

Existing interpretability and auditing techniques struggle with this cross-domain provenance prob-
lem [106]. Methods like influence functions (which estimate which training or input data most affected
a model’s output), internal activation monitoring [107], or prompting the model to generate citations for
its outputs provide only partial insight [108]. These approaches are confined to single-model reasoning
and often cannot cleanly disentangle which external agent’s input drove a decision. In a multi-LLM
chain, influence attribution is diluted and post-hoc explanations can be manipulated or incomplete.

(C6) Cross-domain Context Bypass: Cross-domain multi-agent LLM deployments are reshaping
enterprise workflows: confidential-data agents inside one company can converse with partner-controlled
agents to coordinate projects. This federation introduces a security gap unseen in local multi-agent
or single-model settings. Once knowledge crosses an organizational border, no single party retains
full visibility of the dialogue, yet corporate policies—“never reveal individual exact salaries,” “export
only statistical summaries”—still apply. Traditional controls assume a guardrail sees the entire
request/response prompts of a single agent and can judge it in isolation [20, 21]. In contrast, in
federated LLM chains, context is fragmented not only across prompts, but also across agents, meaning
policy must be applied to the comprehensive context of multiple agents.

As a simple attack scenario, suppose an external contractor asks another organization’s payroll LLM,
“Return the maximum salary in the AI research department” and asks the organization’s HR management
LLM, “Return the name of the personnel who gets paid most in the AI research department”. Combining
the two pieces of information returned from different agents, the contractor can derive the exact of
salary of a specific personnel. Similarly, an external entity may issue job1 to LLMA and job2 to LLMB,
where the organization regards job1+2 as a forbidden request. Such multi-agent contextual-based attack
can be developed even to multi-domain contextual-based attacks, whose countermeasure remains
largely unexplored. Unless provenance and context-sharing mechanisms span the boundaries of agents
and organizations, enterprises risk silent policy violations that neither side can reconstruct after the
fact, leaving confidential data exposed without an obvious culprit.

Traditional role-based access control can hide raw salary tables from external agents, but it cannot
stop those agents from reconstructing the numbers through incremental queries. Static keyword filters
or turn-by-turn firewalls fare no better: they accept each benign fragment while missing the composite
leak. Zero-knowledge [109] or differential-privacy [110] safeguards, designed for atomic disclosures,
likewise struggle because natural-language answers continuously evolve [111]. Researchers already
observe that multi-turn prompt injections and leaks bypass defenses that succeed in one-shot dialogs,
yet current enterprise toolkits still treat every message as independent [112].
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(C7) Inter-domain Confidentiality and Integrity: Recent research works propose privacy-preserving
multi-agent LLM services [113], where a user’s input and output data remain invisible to the data-
processing agents [114, 115]. For example, remote cloud platforms can offer diagnosis-and-prescription
pipelines powered by multiple LLM agents: a patient (Alice) uploads CT and X-ray images in
homomorphically encrypted forms, and then the cooperating agents—each run by different cloud
vendors (e.g., imaging model, differential-diagnosis model, prescription generator)—operate blindly,
never seeing Alice’s plaintext data. They return an encrypted prescription that only Alice can decrypt.
Alice then forwards the decrypted prescription to an independent online pharmacy.

This architecture solves data-exposure risk for Alice and shields the cloud vendors from HIPAA
liability [116], yet it creates a novel integrity gap. Because every intermediate result stays encrypted
inside separate domains, no single party can later attest to the exact plaintext the pipeline produced.
Exploiting this, a malicious or negligent user can mount a forged-output attack: after decryption, Alice
alters the dosage or drug name, claims the modified text came from the blind service, and submits it to
the pharmacy. The pharmacy has no cryptographic proof that the prescription truly emerged from the
designated multi-agent workflow; the vendors cannot reveal or sign what they never saw, and disclosing
the ciphertext is useless to the pharmacist. This threat does not arise in single-domain or local multi-
agent systems, where the same operator can log and sign outputs. Until scalable, privacy-preserving
attestation mechanisms are devised, pharmacies and other third parties remain vulnerable to forged
outputs, and cloud LLM vendors cannot defend the authenticity of their encrypted work products.

Current cryptographic technologies cannot fully close the gap. State-of-the-art privacy-preserving
techniques such as fully homomorphic encryption (FHE) [117], multi-party computation (MPC) [118],
or zero-knowledge proofs (ZKP) [119] partially address the privacy and integrity concerns, but their
practicality is low because their computation and communication overheads are often orders of
magnitude higher. In a multi-domain setup, the problem becomes even more complex than traditional
two-domain privacy-preserving ML inference, because agents would need an additional framework that
allows them to securely set up multiple cryptographic keys or convert keys during their cross-domain
activities. Also, as the agent network becomes larger and comprises multiple processing pipelines,
their computation and communication overheads will scale drastically.

4 Recommended Security Guideline

This section provides a few insights on evaluation metrics for the security issues of cross-domain
multi-agent LLMs discussed in §3, and suggests high-level guidelines for possible countermeasures.

4.1 Security Evaluation Metrics

We propose a guideline for evaluation metrics for each of 7 security challenges, to measures how
well a given cross-domain multi-agent LLM deployment addresses each of the security issues.

Figure 2 describes our proposed evaluation metrics for each of the 7 security issues of cross-domain
multi-agent LLM systems.

(C1’s Metrics) We check how much dynamic a team is and whether new members inherit correct
privileges. A low “Group Volatility", high “On-boarding Trust", and perfect “Policy Consistency"
together indicate that dynamic grouping does not degrade a system’s trust boundary.

(C2’s Metrics) We quantify covert coordination risk. A rising “Collusion Risk" or “Covert-channel
Score" [11] paired with a falling “Independence Ratio" warns that a subset of agents may be manip-
ulating outcomes or exchanging hidden payloads; operators can throttle or sandbox the culprits in
real-time.

(C3’s Metrics) We capture structural alignment. “Goal Completeness" measures incentive design,
“Conflict Resolution" tracks the system’s built-in negotiation layer, and “Mutual Benefit" ensures that no
agent chronically loses the reward game. They together reveal whether reward shaping and arbitration
logic truly harmonize individual and collective objectives.

(C4’s Metrics) We cover the problem of live model evolution. “Tuning Log Coverage" provides
post-event traceability, “Drift-detection latency" offers an early-warning signal, and “Performance
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C1 Unvetted

Dynamic Grouping

C2 Collusion Control

C3 Conflicting

Incentives & Goals

C4 Distributed

Self-tuning Misalignment

C5 Cross-domain

Provenance Obscurity

C6 Cross-domain

Context Bypass

C7 Inter-domain

Confidentiality & Integrity

Group Volatility〉

On-boarding Trust〉

Policy Consistency〉

Ratio of agents joining or leaving the group per period〉

Ratio of agents passing identity, sandbox, behavior vettings〉

Ratio of member ACL/key updates within policy deadline〉

Collusion Risk〉

Covert-Channel〉

Independence〉

Anomaly score (payoff surplus, hidden-channel entropy)〉

Format checks, steganography detection score〉

Ratio of decisions made without peer participation〉

Goal Completeness〉

Conflict Resolution〉

Mutual Benefit〉

Ratio between individual rewards and global utility〉

Resolution ratio of detected goal conflicts〉

Ratio of agents fulfilling baseline utility〉

Tuning Log Coverage〉

Drift Detection Latency〉

Performance Consistency〉

Ratio of logged self-tuning activities〉

Delay between self-tuning and anomaly detection〉

Pass rate of test suite after each self-tuning〉

Provenance Coverage〉

Source Verification〉

Action Traceability〉

Ratio of events having full source-to-sink trace〉

Ratio of authenticated cross-domain messages〉

Ratio of critical actions with causal chain reconstruction〉

Ill-prompt Block Rate〉

False-positive〉

Infection Propagation〉

Ratio of attack prompts blocked or sanitized〉

Benign prompts wrongly blocked〉

Ratio of agents affected per missed attack〉

Secure Channel Utility〉

Data Leakage Incidence〉

Request Vetting〉

Ratio of encrypted + authenticated inter-domain messages〉

Ratio of sensitive-data-leaking messages〉

Ratio of blocked illicit requests〉

ID Challenge Evaluation Metrics Description

Figure 2: Evaluation metrics for 7 security issues of cross-domain multi-agent LLM deployments.

consistency" prevents silent capability decay, which is crucial for any service that permits autonomous
fine-tuning.

(C5’s Metrics) We turn accountability into a measurable property. “Provenance Coverage" and
“Source Verification" guarantee that information lineage is complete and authenticated, while “Action
Traceability" enables forensic reconstruction of high-impact decisions.

(C6’s Metrics) We instrument text-level defenses. A high “Ill-prompt Block Rate", minimal “False-
positives", and near-zero “Infection Propagation" [83] collectively show that policy filters neither leak
sensitive data nor cripple collaboration.

(C7’s Metrics) We extend classical CIA principles to multi-LLM pipelines. “Secure-channel Utility"
covers transport-layer secrecy, counting “Data Leakage" quantifies confidentiality failures, and

“Request Vetting" confirms that access-control logic rejects unauthorized actions.

Because every metric above is a ratio, providers can stream them to a dashboard and set policy
thresholds (e.g., “halt execution if some metric drops below 0.9"). Researchers can report the same
values to make security claims reproducible, and regulators gain a ready-made scorecard for certification
audits—all from a single, compact table.

4.2 Countermeasures

We provide possible directions to address each of the seven security issues. Some proposals (C3,
C4) use a trusted arbitration system between domains, which is different from an hierarchical authority.

(C1’s Countermeasure) Trust-adaptive Dynamic Teaming: Extending the idea of multi-agent
partner selection [19], each agent can maintain a differentiable trust ledger – a graph-neural module
that updates peer-trust scores from message consistency, error rates, and rule violations observed in
real time. Dialogue routes are weighted by these scores: low-trust peers are quarantined or demoted;
high-trust peers gain routing priority or temporary leadership. Reinforcement learning drives the ledger
toward team-level reward (task success + security bonus for blocking anomalies). Agents exchange
signed “trust snapshots,” letting newcomers bootstrap without disclosing private logs.
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(C2’s Countermeasure) Adversarial Multi-agent Training for Collusion Resistance: A collusion
generator can produce synthetic teaming scenarios where subsets of agents coordinate hidden agendas
(via steganography, role laundering, etc.). Honest agents and a learnable incentive module co-train
against these adversaries: the module maps conversation features into adaptive bonus/penalty signals,
rewarding evidence-backed dissent and penalizing correlated misreports. Training proceeds in self-play
cycles until Nash-like equilibrium where collusion yields no net gain. For example, [120] uses an
adversarial training technique to prevent e-commerce pricing collusion among sellers.

(C3’s Countermeasure) Hierarchical Conflict Arbitration via Meta-LLM Controller: One
can propose a meta-level LLM controller that monitors and arbitrates decisions among hierarchical
agents. This meta-agent continually receives the high-level goals and the lower-level agents’ proposed
actions or outputs. It uses learned conflict-detection mechanisms (e.g. natural language inference or
consistency checks) to identify contradictions between a supervisor’s intent and a sub-agent’s behavior.
Upon detecting a conflict, the meta-LLM generates a resolving instruction or adjustment, effectively
mediating between layers. The instruction can be applied after being approved by human operators
from both domains. Over time, the subordinate agents could be fine-tuned with feedback from the
meta-controller, learning to preemptively avoid hierarchical inconsistencies.

(C4’s Countermeasure) Cross-domain Reward Alignment via Adaptive Credit Assignment: We
can introduce an adaptive credit assignment network that aligns local rewards of each agent with
the global multi-agent objective. During training, a shared critic model (potentially an LLM-based
evaluator) observes the collective outcome and each agent’s contributions (e.g. action traces or
textual outputs). It then computes tailored reward signals for each agent by estimating their marginal
impact on the overall result. The system would dynamically adjust each agent’s reward function via
gradient signals so that maximizing individual rewards also maximizes the team’s performance. The
adjusted reward plans can be vetted via a simulation or training before being deployed. While existing
works [121] focus on adaptively transferring a reward function from one task to another, our novel
challenge is to train a differentiable communication channel among agents to propagate global reward
information back into each agent’s policy update.

(C5’s Countermeasure) Neural Provenance Tracking with Embedded Signatures: Each agent
can embed subtle signatures (e.g., watermark [122]) into its generated content to mark its contributions.
Concretely, agents are trained to include quasi-imperceptible metadata in their textual outputs – for
example, by biasing certain token choices or using a private vocabulary of markers – that do not alter
the apparent meaning but carry identifying information. A dedicated decoder model or forensic LLM
can later extract these hidden signatures from the final multi-agent output, reconstructing a timeline or
graph of which agent produced or modified each part. One challenge is to harden this neural signature
scheme to survive transformations (e.g. rephrasing by subsequent agents) and to remain robust against
adversarial removal.

(C6’s Countermeasure) Session-level Semantic Firewalls: Instead of turn-by-turn filtering, a
dedicated firewall LLM ingests the entire multi-agent dialogue in a sliding window, building a contextual
knowledge graph of entities, quantitative tokens, and policy tags (e.g., “salary-individual”). It uses
contrastive training to spot when a new utterance, combined with prior context, breaches a policy.
Detected violations trigger automatic redaction or request-for-clarification messages. The firewall’s
policy model continually fine-tunes on anonymized leak/non-leak transcripts shared across domains
under differential privacy.

(C7’s Countermeasure) Verifiable Reasoning with Privacy: In blind inference, an agent emits (i)
an encrypted answer and (ii) a public proof sketch—hash-bound logic traces or statistical bounds—
letting a verifier LLM confirm semantic correctness without seeing the private input. Lightweight
ZK proofs [122] and encrypted-embedding checks (run in secure enclaves) enable this, yet current
protocols remain too slow for real-time use. A potential fix is a hybrid design that blends these proofs
with fast two-party linear MPC [123], slashing latency while preserving privacy.

5 Conclusions and Outlook

Cross-domain multi-agent LLMs hold transformative promise, but only if security becomes a
first-class design constraint rather than an afterthought. By mapping seven unaddressed challenge
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areas, we have shown that neither single-agent defenses nor traditional multi-agent safeguards suffice
once models cross ownership boundaries. Tackling these problems demands tight collaboration
between the AI-safety, cryptography, and distributed-systems communities, coupled with rigorous
open benchmarks to quantify the security–utility trade-offs unique to cross-domain deployments. The
research directions we outline argue for security primitives that are as adaptive and learning-centric as
the agents themselves. Addressing them now will prevent tomorrow’s agent societies from repeating
the Internet’s costly security debt.
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