
ar
X

iv
:2

50
5.

23
82

5v
1

 [
cs

.C
R

]
 2

8
M

ay
 2

02
5

Privacy-Preserving Inconsistency Measurement

Carl Corea1, Timotheus Kampik2, and Nico Potyka3

1 University of Koblenz, Germany
2 Umeå University, Sweden; SAP, Germany

3 Cardiff University, UK
ccorea@uni-koblenz.de, tkampik@cs.umu.se, PotykaN@cardiff.ac.uk

Abstract. We investigate a new form of (privacy-preserving) inconsis-
tency measurement for multi-party communication. Intuitively, for two
knowledge bases KA,KB (of two agents A,B), our results allow to quan-
titatively assess the degree of inconsistency for KA ∪KB without having
to reveal the actual contents of the knowledge bases. Using secure multi-
party computation (SMPC) and cryptographic protocols, we develop two
concrete methods for this use-case and show that they satisfy important
properties of SMPC protocols – notably, input privacy, i.e., jointly com-
puting the inconsistency degree without revealing the inputs.

1 Introduction

In multi-agent systems, agents may have to cooperate without being allowed to
share their internal knowledge with each other. For example, revealing internal
knowledge or beliefs of an agent may violate (external) privacy requirements, or
agents are both cooperating and competing and do not want to reveal knowledge
that may give others a competitive advantage.

In our work, we consider multi-agent systems where the agents carry internal
knowledge or beliefs in form of propositional logic knowledge bases (KBs), and
assume agents may not be allowed to reveal the contents (i.e., formulas) of their
KBs to each other. Still, in order to assess the ability to cooperate, it may be
necessary for the agents to verify whether, or to what extent, the knowledge
bases are consistent with each other. Consider the following simplified example
from the financial domain:

Example 1. Consider two agents A and B, with (own) propositional logic KBs
KA and KB (with agents having knowledge on credit applications, and customers
can have different statuses, creditworthiness, or be on a ban list), with:

KA = {¬(banList ∧ creditWorthy)}

KB = {platinumStatus; platinumStatus → creditWorthy ; banList}

Clearly, KA ∪ KB is inconsistent (we will define inconsistency later), and
knowing this may be crucial for the agents. But as stated, we assume A and B

do not want to reveal the formulas in their KBs. To solve this issue, we present a
novel approach for, what we call, privacy-preserving inconsistency measurement.
The core idea is that we build on cryptographic protocols from the field of

http://arxiv.org/abs/2505.23825v1

2 Corea et al.

secure multi-party computation, which allow multiple agents to jointly compute a
function f(KA,KB) without revealing KA and KB. Here, we propose algorithms
to compute (as f) different inconsistency measures [12] for KA ∪KB.

Our results allow the agents—in a privacy-preserving way—to know i) whether
their knowledge is consistent, and ii) to what degree their knowledge disagrees
(e.g., wrt. an inconsistency degree, the KBs may still be sufficiently consistent
s.t. the alignment may be “good enough” for collaborating). Here, our contribu-
tions are as follows:

– We present a novel approach for privacy-preserving inconsistency measure-
ment; specifically, for two KBs KA,KB, we show how to compute two specific
inconsistency measures for KA ∪KB without revealing KA,KB (Section 3).
To this aim, we show how private set intersections of sets of KB interpreta-
tions can be computed to measure various aspects of (in)consistency.

– We evaluate the developed methods by showing important privacy- and run-
time complexity properties (Section 4).

We discuss preliminaries in Section 2 and conclude in Section 5. Proofs are shown
in the appendix.

2 Preliminaries

2.1 Knowledge Bases, Inconsistency Measurement

In this work, we consider agents carrying internal knowledge in form of propo-
sitional logic knowledge bases. For this, let At be some fixed propositional sig-
nature, i. e., a (possibly infinite) set of propositions, and let L(At) be the corre-
sponding propositional language constructed using the connectives ∧, ∨ and ¬.

Definition 1. A knowledge base K is a finite set of formulas K ⊂ L(At).

For a set of formulas X , we denote the set of contained propositions as At(X).
An interpretation ω on At is a function ω : At → {0, 1} (where 0 stands for false
and 1 stands for true). Let Ω(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) an atom a ∈ At, denoted by ω |= a,
iff ω(a) = 1. The satisfaction relation |= is extended to formulas in the usual
way. For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
For a set of formulas X , the set of models is Mod(X) = {ω ∈ Ω(At) | ω |= X}.
If Mod(X) = ∅ we write X |=⊥ and say that X is inconsistent.

An inconsistency measure I is a function that assigns a non-negative numeri-
cal value to a knowledge base. The concrete behaviour of inconsistency measures
is driven by rationality postulates. In this work, we assume inconsistency mea-
sures I satisfy the basic property of consistency (for a KB K):

Consistency CO I(K) = 0 iff K 6|=⊥

Numerous inconsistency measures have been proposed (see [12] for a survey).
In this work, we consider the drastic inconsistency measure Id [6] and the con-
tension inconsistency measure Ic [5], which we define below. In order to define

Privacy-Preserving Inconsistency Measurement 3

the contension measure we need some additional background on three-valued
logic [9]. A three-valued interpretation is a function ν : At → {0, 1, both}, which
assigns to every atom either 0, 1 or both, where 0 and 1 correspond to false

and true, respectively, and both denotes a conflict. Assuming the truth order ≺T

with 0 ≺T both ≺T 1, the function ν can be extended to arbitrary formulas as
follows: ν(α∧β) = min≺T

(ν(α), ν(β)), ν(α∨β) = max≺T
(ν(α), ν(β)), ν(¬α) = 1

if ν(α) = 0, ν(¬α) = 0 if ν(α) = 1, and ν(¬α) = both if ν(α) = both. We say
an interpretation ν satisfies a formula α, denoted by ν |=3 α, iff ν(α) = 1 or
ν(α) = both. We are now ready to define the considered inconsistency measures.

Definition 2 (Considered Inconsistency Measures). Given a knowledge
base K, define Id, Ic via:

Id(K) =

{

1 if K |=⊥
0 otherwise

Ic(K) = min{|ν−1(both)| | ν |=3 K}

Example 2. Consider K1 = {a; a → b;¬b ∧ ¬a; c}, then we have that Id(K1) =
1 and Ic(K1) = 2. (for Ic, note that the three-valued interpretation ν1 with
ν1(a) = both; ν1(b) = both; ν1(c) = 1 is the only three-valued model that
assigns both to a minimal number of atoms).

In this work—for two knowledge bases KA,KB of parties A,B, respectively—
we compute Id(KA∪KB) and an upper-bound for Ic(KA∪KB), without A and
B having to reveal the contents of their knowledge bases to each other. To allude
to some of our results, this will be achieved by comparing the models for the indi-
vidual knowledge bases (also in a privacy-preserving way). For example, we can
exploit that Mod(K1)∩Mod(K2) = ∅ iff K1∪K2 |=⊥, which allows to verify con-
sistency without revealing formulas. Intuitively, the interpretations should also
not be revealed, which we will show how to handle. In the following subsections,
we discuss important notions and methods from a security perspective.

2.2 Cryptographic Techniques

In this work, we consider (asymmetric) encryption schemes, or cryptosystems,
that can securely encode and decode messages with algorithmic techniques.

Definition 3 (Cryptosystem, [11]). Let M be a set of messages, called a
message space, and let ρ ∈ N be a security parameter. Then, an encryption
scheme is a tuple (K,E,D), where

– K is a (key generation) function that takes the security parameter ρ and
returns a key pair (ke, kd) for encryption/decryption, with ke ∈ Ke, kd ∈ Kd

(with Ke,Kd being key spaces).
– E is an (encryption) function E : Ke ×M → C that returns a ciphertext for

a plaintext m, where C is a ciphertext space.
– D is a (decryption) function D : Kd × C → M that takes a ciphertext and

outputs a plaintext m, s.t. if c = E(ke,m) then Probability[D(kd, c) 6= m] is
negligible, i.e., Probability[D(kd, c) 6= m] ≤ 2−ρ.

4 Corea et al.

We consider encryption functions that are probabilistic, i.e., E can return
different ciphertexts even for two equal inputs (on the other hand, D is deter-
ministic) [11]. To clarify, given two plaintexts m1 = m2 = 1 and a key pair
ke, kd produced by the encryption scheme, we have that Probability[E(ke,m1) =
E(ke,m2)] ≤ 2−ρ, but D(kd,E(ke,m1)) = D(kd,E(ke,m2)). This is also referred
to as the encryption scheme being IND-CPA secure (ciphertext indistinguisha-
bility under chosen plaintext attacks) [3]. We use E(ke,m1) ≡ E(ke,m2) to
denote that two ciphertexts carry “semantically" the same value, even though
the ciphertexts are not identical.

For the technical development of our techniques, we assume two communi-
cating parties, where both parties act via a honest-but-curious adversarial model
[3], i.e., parties do not deviate from the protocol but may try to infer additional
information from the data they obtain. We comment on the effects of a party
taking on other adversarial models in Section 4.

2.3 Secure Multi-Party Computation

An important cryptographic field we build on is that of secure multi-party com-
putation (SMPC) [3]. The goal of SMPC approaches is to allow multiple par-
ties P1, ..., Pn to compute a function f over their (respective) inputs x1, ..., xn,
without revealing the inputs to the other parties. Any protocol performing this
computation should satisfy the following properties:

Input Privacy (IP) Inputs should not be revealed during computation.
Correctness (Cor) The revealed output is the actual result of f(x1, ..., xn).

We use the term “privacy-preserving" to denote that a computation satisfies IP.
To develop privacy-preserving inconsistency measurement techniques, we will

devise protocols that can compute (various aspects of) intersections of sets of
knowledge base models while satisfying IP, Cor. This type of protocol is referred
to as private set intersection (PSI) (cf. Section 2.5). PSI protocols build on so-
called homomorphic encryption schemes, which we introduce next.

2.4 Homomorphic Encryption

Homomorphic encryption [13] is a cryptographic method that allows certain
mathematical operations to be performed directly on encrypted data. Specifi-
cally, we consider fully homomorphic encryption schemes [4], which allow addi-
tion and multiplications of numerical values while remaining encrypted.

Definition 4 (Homomorphic encryption scheme, [11]). Let M be a mes-
sage space, and let ρ be a security parameter. Then, a homomorphic encryption
scheme is a quadruple (K,E,D, ◦) as follows:

– K,E,D are key-generation-, encryption- and decryption functions as before.
– ◦ is an operator for which it holds that for all messages m1,m2 ∈ M: if m3 =

m1◦m2, and c1 = E(ke,m1), and c2 = E(ke,m2), then Probability[D(kd, c1◦
c2) 6= m3] is negligible.

Privacy-Preserving Inconsistency Measurement 5

In other words, a homomorphic encryption scheme is an encryption scheme with
the property that the operation ◦ is correctly preserved when performing it on
the encrypted ciphertexts themselves.

In the following, we assume encryption schemes that are fully homomor-
phic (i.e., where ◦ can be either addition (+) or multiplication (×)), s.t. for all
m1,m2 ∈ M, ke ∈ Ke we have (cf. [13]):

E(ke,m1) + E(ke,m2) ≡ E(ke,m1 +m2), m1 + E(ke,m2) ≡ E(ke,m1 +m2),

E(ke,m1)× E(ke,m2) ≡ E(ke,m1 ×m2), m1 × E(ke,m2) ≡ E(ke,m1 ×m2).

Example 3. Let a key pair ke, kd produced by a fully homomorphic encryption
scheme. For m = 5 and c = E(ke,m) + 2, we have D(kd, c) = 7.

Remark 1. We make the standard assumption that the size of the ciphertexts
remains polynomially bounded (cf. the property of circuit-privacy in [1]). This
ensures that the ciphertext obtained by performing an operation ◦ on two inputs
is hard to distinguish from a ciphertext obtained by encrypting a plaintext m.

This extends to vectors via element-wise operations. A survey of fully homo-
morphic encryption schemes can be found in [13].

2.5 Private Set Intersection

PSI protocols [7] are subtypes of SMPC that allow to compute the intersection
of two sets without revealing the rest of the sets. There are many applications
for PSI, for example, finding (only) the common friends in the contact lists of
two parties without disclosing the full contact lists to each other. As an example,
consider the following baseline PSI protocol.

Example 4. Let two parties A,B each with a set containing exactly one inte-
ger, respectively, x and y. To compute PSI, A employs a fully homomorphic
encryption scheme to generate a key pair ke, kd and sends E(ke, x) to B. Then,
B computes c = r ∗ (E(ke, x)− y) (which is a ciphertext, cf. Remark 1), where r

is a random nonzero integer chosen by B. A now computes D(kd, c): If the result
is 0, x and y are identical, otherwise, {x}∪{y} = ∅. In the latter case, A cannot
infer any information about y (as r is chosen by B). In any case, B cannot infer
anything about x (beyond the guarantees of the encryption scheme) as B only
obtains ciphertext. The protocol can be performed symmetrically.

In this work, we consider versions of PSI protocols where only the size of the
intersection is revealed. As we will show, inconsistency can then be characterized
with various aspects of intersection sizes for sets of interpretations.

3 Approaches for Privacy-Preserving Inconsistency

Measurement

For the remainder, we fix two parties A,B with respective knowledge bases
KA,KB. Also, we fix a fully homomorphic encryption scheme (K,E,D, ◦) and

6 Corea et al.

a corresponding key-pair ke, kd. The goal of this section is then two-fold: first,
we develop an SMPC protocol allowing to compute Id(KA∪KB); then, to allow
for a more gradual measure, we develop an SMPC protocol allowing to compute
an upper-bound for Ic(KA ∪KB) (both protocol satisfying IP and Cor). For the
remainder, we assume the KBs KA,KB on their own are consistent (and the
task is to assess the consistency of KA ∪KB).

From IP, it is immediate that no formulas must be revealed for the com-
putations. Instead, in our protocols, the parties will exchange their respective
models; as discussed, consistency can then be verified by checking whether
Mod(KA) ∩ Mod(KB) 6= ∅. An important remark here is that the interpreta-
tions/models should also not be revealed in plain form. Otherwise, it would be
possible to disjunctively write each interpretation as a conjunction of atoms,
which would yield a formula in disjunctive normal form that is equivalent to the
KB. Thus, we introduce PSI-based protocols that allow to privately compute the
intersection of Mod(KA) and Mod(KB). For this, we need some further notation.

For any interpretation ω over At, we will encode ω as a bit sequence of 1s
and 0s, which indicates the truth value of the atoms in alphabetical order.

Example 5. Let At = {a, b, c}; then we write ω1 = 101 to encode ω1(a) = 1, and
ω1(b) = 0, and ω1(c) = 1.

This encoding will be used in various encryption processes. For example, we can
directly encrypt interpretations by encrypting the encoding – in the example,
E(ke, 101). A further remark is that, also wrt. Axioms (1)-(4), this shorthand
notation is useful for comparing interpretations via a bitwise comparison. For
example, for two interpretations 11 and 10, a bitwise comparison 01 indicates
that the first digit is identical and the second digit differs.

We are now ready to define a core protocol for comparing two interpretations.
This core protocol will then later be used in two subsequent protocols (for Id, Ic).

3.1 General Protocol for Privacy-Preserving Comparison of (Two)
Interpretations

Assume two parties A and B who each have one interpretation (ωA, ωB). For
example, this interpretation could be derived from their knowledge bases under
the closed-world assumption (if an atom is not entailed by the knowledge base,
it is supposed to be false). Importantly, the two parties agree on a shared set of
atoms At (needed to produce the encoding of the interpretations). We now want
to verify if these interpretations are compatible. More precisely, Algorithm 1
specifies an SMPC protocol that takes as input two interpretations ωA, ωB and
returns the number of atoms that they interpret differently. For the protocol, we
recall the introduced encoding that allows to represent interpretations as binary
numbers. For any binary number w, let len(w) denote the number of digits of
w, and wi the ith bit of w.

Privacy-Preserving Inconsistency Measurement 7

Algorithm 1 (Alg1) Compute Number of Differing Truth Assignments Given
Interpretations A,B

Input: Shared set of atoms At, Interpretations ωA, ωB (over At, in shorthand notation)
Output: Number of truth assignments differing between ωA and ωB

1: A generates key pair (ke, kd)
2: A generates a vector v = 〈ωA1 , ..., ωAlen(ωA)

〉

3: A computes venc = 〈E(ke, ωA1), ...,E(keωAlen(ωA)
)〉

4: A sends venc to B

5: B generates a vector vB = 〈ωB1 , ..., ωBlen(ωB)
〉

6: B computes vA⊕B = venc − vB {“XOR" operation; B cannot read result}

7: B computes n =
∑|vA⊕B |

i=1
(vA⊕B [i])2 {B cannot read result}

8: B sends n to A

9: A computes n′ = D(kd, n)
10: return n′

Example 6. Assume two parties A,B with interpretations ωA = 110 and ωB =
101, respectively.

– A generates a key pair.
– A generates the vector v = 〈1, 1, 0〉, resp. venc = 〈E(ke, 1),E(ke, 1),E(ke, 0)〉.
– B generates the vector vB = 〈1, 0, 1〉.
– B computes vA⊕B = venc − vB =

〈E(ke, 1) − 1,E(ke, 1) − 0,E(ke, 0) − 1〉 (note that each position is still a
ciphertext that B cannot read).

– B computes n =
∑|vA⊕B |

i=1 (vA⊕B [i])
2 (sum of absolute values; result is a

ciphertext).
– A receives n and returns n′ = D(kd, n) = 2

In result, A can infer that ωA, ωB differed in 2 assignments, but, importantly,
cannot infer at which assignments the interpretations differ. The protocol can
be performed symmetrically to produce the result for B.

Theorem 1. Algorithm 1 satisfies IP,Cor.

The presented core protocol allows to correctly compare the number of dif-
fering truth assignments for two interpretations, without revealing them. This
core protocol will now be leveraged for computing further measures, specifically,
by extending the protocol to take as input not only one interpretation, but two
respective sets of interpretations/models by A and B.

3.2 Privacy-Preserving Computation of Id

We recall the definition of Id and parties A,B with knowledge bases KA,KB. To
compute Id, we build on the fact that Mod(KA)∩Mod(KB) = ∅ iff KA∪KB |=⊥.
To leverage Algorithm 1 for computation, we create two bit sequences as follows:
First, A,B agree on a shared set of atoms At. Then, both parties independently

8 Corea et al.

create a truth table showing satisfaction of their knowledge base, where the
truth-assignments (rows) are in ascending binary order, ensuring equally ordered
and exhaustive enumeration of all possible truth value combinations.

Example 7. Consider two agents A and B, each with their KBs KA and KB,
respectively, with KA = {a ∧ b} and KB = {¬a}. Then, A and B construct the
following truth tables:

A :

a b |= KA

0 0 0
0 1 0
1 0 0
1 1 1

B :

a b |= KB

0 0 1
0 1 1
1 0 0
1 1 0

Both parties then take the last column, which is a bit-sequence. In the example,
we get the two sequences SA = 0001 and SB = 1100. It is important to note that
(as the row index for both tables correspond due to the ascending order), each
index i over both sequences exactly encodes whether the ith assignment of truth
values satisfies KA, resp., KB. We then leverage these sequences as input for Al-
gorithm 1 to verify consistency. For this, we define a slight variation of Algorithm
1, denoted Algorithm 1binary, where we change Lines 6 and 7 as follows: i) 6:

B computes vA⊕B = 1− (venc ∗ vB); ii) 7: B computes n =
∏|vA⊕B |

i=1 (vA⊕B [i])
2.

This has the following impact on the algorithm output: For line 6, if the
two multiplicants differ or are both 0 (corresponding to inconsistency or non-
satisfaction), the entry computed in line 6 is 1 (indicating a distance). Otherwise,
it is 0 (indicating correspondence and satisfaction). In result, if at least one row
satisfies both knowledge bases, the result of Algorithm 1binary is simply 0 (cf.
line 7). If all rows differ, the returned value in this way is exactly 1, hiding the
number of rows. This binary version of Algorithm 1 can be leveraged as follows.

Algorithm 2 (Alg2) Compute Id(KA ∪KB)

Input: Shared set of atoms At, knowledge bases KA,KB

Output: Id(KA ∪KB)
1: A,B create respective truth tables in ascending binary order (over At).
2: A,B obtain (via the last column) their private sequences SA, SB .
3: A,B compute d = Algorithm 1binary wrt. At, SA, SB

4: return d

Example 8. We recall the KBs and truth tables from Example 7, with the two
sequences SA = 0001, SB = 1100 (this relates to lines 1-2 of Alg2). Then, Al-
gorithm 1binary is computed wrt. SA, SB and stored as d. Regarding that Al-
gorithm, recall that if (the assignments) of at least row match and satisfy both
knowledge bases, d = 0, and d = 1 otherwise. In the example, indices 1,2,4 do
not match, and, while the third index (i.e., the interpretation ω(a) = 1;ω(b) = 0)
matches, this interpretation is not a model. In turn, the output is 1.

Theorem 2. Algorithm 2 satisfies IP, Cor.

Privacy-Preserving Inconsistency Measurement 9

3.3 Privacy-Preserving Approximation of Ic

We continue with a gradual measure based on Ic. For this, recall parties A,B

with KA,KB. Then, consider Alg3, which works over models of KA and KB:

Algorithm 3 (Alg3) Compute Smallest Distinct Number of Mismatching As-
signments for Any Pair in Two Sets of Models

Input: Shared set of atoms At, two sets of models: Mod(KA), Mod(KB)
Output: Smallest number of different assignments over all combinations of models
1: A initializes an empty set S = {}
2: for all elementA ∈ Mod(KA) do

3: for all elementB ∈ Mod(KB)) do

4: Both A and B perform Algorithm 1 wrt. At, elementA, elementB.
5: A stores the result in S

6: end for

7: end for

8: return MIN(S)

Example 9. Assume two parties A,B (with KA,KB) and Mod(KA) = {111, 110},
Mod(KB) = {100, 101}.

– Alg. 3 will iterate over all combinations of models and yields: Alg1 (111, 100) =
2; Alg1 (111, 101) = 1; Alg1 (110, 100) = 1; Alg1 (110, 101) = 2.

– The returned result is MIN({1, 2}) = 1.

First, observe that the result of Example 9 can be interpreted s.t. no com-
bination of models agree (Mod(KA ∪ KB) = ∅). We now show how the result
of Algorithm 3 can be used to approximate the contension measure. The idea is
that we use the results of Algorithm 3 to derive a set of three-valued interpre-
tations Mod3(KA ∪KB) (to plug into Ic). For this, the following will be useful.

Lemma 1. Let F be a formula and let I be a three-valued interpretation that
satisfies F . Let J be a three-valued interpretation obtained from I by changing
the interpretation of a single atom to both. Then I(F) = J(F) or J(F) = both.

Corollary 1. Let I be a two-valued model of K and let J be a three-valued
interpretation obtained from I by changing the interpretation of atoms to both.
Then J is a three-valued model of K.

For two KBs K1,K2, we now use this result to define a function that can
transform the two-valued interpretations Mod(K1),Mod(K2) into a set of three-
valued interpretations M3 s.t. for every m ∈ M3 : m |=3 K1 ∪K2.

Definition 5. Let two knowledge bases K1,K2 and let two interpretations i1, i2
over At s.t. i1 |= K1, i2 |= K2. Then, define a three-valued interpretation via the

10 Corea et al.

function f(i1, i2), where

f(i1, i2)(j) =

{

i1(j), if i1(j) = i2(j)

both, otherwise

Corollary 1 implies that a three valued interpretation obtained via f is a three-
valued model for K1 ∪K2. With a slight abuse of notation, we let:

f(Mod(K1),Mod(K2)) = {f(i1, i2) | i1 ∈ Mod(K1), i2 ∈ Mod(K2)}.

We now show the relationship of Algorithm 3 to Ic.

Proposition 1. Let x be the inconcistency value computed by Algorithm 3. Then
x ≥ Ic(KA ∪KB).

However, Algorithm 3 can overestimate the inconsistency value.

Example 10. Let KA = {a, a → b1 ∧ b2} and KB = {a, a → ¬b1 ∧ ¬b2}. Then
Mod(KA) = {111} and Mod(KB) = {100}. Hence, f(Mod(KA),Mod(KB)) =
{1bothboth} and Algorithm 3 will return 2. However, both00, both01, both10,
both11 are also three-valued models of KA ∪KB. Therefore Ic is 1.

While Algorithm 3 cannot compute the contension inconsistency value exactly,
it will never underestimate the inconsistency (it gives an upper bound on the in-
consistency value). Importantly, it will also never report a positive inconsistency
value when the knowledge bases are, in fact, mutually consistent.

Proposition 2. If KA ∪KB is consistent, then Algorithm 3 will return 0.

Let us note that Alg. 3 satisfies our privacy guarantee.

Theorem 3. Algorithm 3 satisfies IP.

While Algorithm 3 satisfies IP, it reveals more than the output4: Clearly,
a) B learns the number of models provided by A, and b) A learns all distinct
differences in truth assignments over all model combinations. We therefore show
a slight variation (Alg4) which allows to counteract this.

In line 1, A creates a multiset with models of KA of size 2|At| (possibly
containing duplicates). This is a padding that ensures A does not reveal the
number of models. Lines 2-8 are analogous to Alg3, using the padded multiset.
Lines 9-12 are an encrypted computation by B. L is a list from 0 to |At|, the
possible range for Ic. Then, we compute the distance between every Li and all
results in S: i − d = 0 must hold for at least one d ∈ S. We are only interested
in the minimum of 0, ..., |At| that is a match (lines 13-18), hence we obscure
all left of the minimum by means of prime encryption and set all right of the
minimum to zero (numbers that are not zero are “meta-encrypted” and stay
encrypted even after A decrypts the result). The smallest distinct number of
mismatching assignments is the first index in L of an element that is 0. This
solves the problems with Con exhibited in Alg3: i) B cannot know the number
of A’s models as A sends a padded multiset, ii) A does not learn all distinct
differences in truth assignments over all combinations.

4 This is also referred to as the SMPC properties of confidentiality (Con).

Privacy-Preserving Inconsistency Measurement 11

Algorithm 4 (Alg4) Compute Smallest Distinct Number of Mismatching As-
signments for Any Pair in Two Sets of Models, Satisfying Con

Input: Shared set of atoms At, two sets of models: Mod(KA), Mod(KB)
Output: Smallest number of different assignments over all combinations of models
1: A initializes Mod(KA)’ as multiset of length |2At|, containing all and only elements

of Mod(KA)
2: B initializes an empty list S =<>

3: for all elementA ∈ Mod(KA)
′ do

4: for all elementB ∈ Mod(KB)) do

5: Both A and B perform Algorithm 1 wrt. At, elementA, elementB.
6: B stores the (encrypted) result in S

7: end for

8: end for

9: B initializes an empty list L =<>

10: for all i ∈ {0, ..., |At|} do

11: B computes Li ←
∏

d∈S
(i− d)

12: end for

13: for all i ∈ {0, ..., |At|} do

14: B computes p← random prime number
15: B computes Li ← (

∏
0...i

Li)
p−1

16: end for

17: A decrypts L

18: return Index of the first element in L that is 0

Example 11. Recall Example 9 with Mod(KA) = {111, 110}, Mod(KB) = {100,
101}. First, A will create a padded list of size 2|At|, here: Mod(KA)

′ = {111, 110,
111, 110, 111, 110, 111, 110}. A and B perform lines 3-8 which yields a list of (en-
crypted) differences: Alg1 is performed for all (model, model)-tuples in Mod(KA)

′×
Mod(B), yielding the (encrypted) list {E(ke, 2),E(ke, 1), ...}. B then checks which
of the potential distances in {0, 1, 2, 3} exist in this list by executing lines 9-12,
yielding the list 〈2, 0, 0, 2〉 (again, encrypted). The multiplication of every ele-
ment in the list with its predecessors and subsequent prime encryption (by B) in
lines 13-14 results in the list 〈encp, 0, 0, 0〉, where encp is the prime-encrypted 2.
Finally, A decrypts the list. However, encp is useless (as it was meta-encrypted).
A can only infer from 〈encp, 0, 0, 0〉 that Ic = 1 (index of the first 0).

While Alg4 comes with improvement wrt. Con, A has to create a padded
multiset of exponential size. In the following we discuss this trade-off.

4 Discussion

We start by showing the upper and lower bounds of runtime-complexity in Table
1 (proofs in appendix).

While Alg3 violates Con, it can approach polynomial scaling in best-cases.
Alg4 retains its exponential component due to padding, trading off complexity
and privacy requirements, depending on the use-case. Alg2 scales exponentially.

12 Corea et al.

O Ω

Algorithm 1 O(k + |At|) Ω(k + |At|)

Algorithm 2 O(k + 2|At|) Ω(k + 2|At|)

Algorithm 3 O(k + 22
|At|

∗ |At|) Ω(k + |At|)

Algorithm 4 O(k + 22
|At|

∗ |At|) Ω(k + 2|At| ∗ |At|)

Table 1: Runtime-complexity (upper (O)/lower (Ω)) of the developed algorithms wrt.
At; k = cost of key generation.

For the discussion of algorithms we have considered an honest-but-curious
adversarial model. Threats in this setting are bounded by the compliance with
IP. For adversarial models such as malicious adversary (participants may deviate
from the protocol), the guarantees given by IP also hold. However, intuitively,
such a threat model can affect the correctness of the results: A malicious ad-
versary can deliberately provide altered models of his/her own knowledge base,
e.g., flipping all bits (note that the ability of the adversary to manipulate cipher-
texts is mitigated by IND-CPA security). Likewise, the adversary could provide
models even if the KB is inconsistent. While preventing the adversary to provide
fake models cannot be mitigated, various methods exist to prove the consistency
of the own KB (without revealing it) via zero-knowledge proofs [2], which can
be put before our algorithms if needed.

One should also be aware of risks by repeated queries. Given no restrictions
wrt. the number of queries sent, A could reveal information about B’s KB by
altering the input for different queries. For this risk, it is important to consider
what we actually reveal. Accordingly, we observe the worst-case probabilities
with which one agent can successfully guess a model in another agents’ KB.

Proposition 3. A can correctly guess a model in KB with a probability of
at least 1

|Mod(KA)| if KA and KB are consistent; if KA and KB are inconsis-

tent, A can correctly guess with a probability of at least 1
|Ω(At)\Mod<Alg4|

, where

Mod<Alg4 := {m|m ∈ Ω(At),Alg4(Mod(Ka), {m}) < Alg4(Mod(KA),Mod(KB))}.

For both cases, A may straightforwardly reveal a formula equivalent to B′s KB by
measuring g({m},Mod(KB)) for all m ∈ Ω(At)), where g ∈ {Alg2,Alg3,Alg4}.

5 Conclusion

We have introduced novel methods for privacy-preserving inconsistency mea-
surement. By leveraging SMPC and homomorphic encryption, the proposed al-
gorithms enable agents to collaboratively evaluate the consistency of their KBs
without revealing sensitive information. While the approach successfully im-
plements input privacy, it also highlights trade-offs in runtime complexity and
potential risks in adversarial settings. Overall, the framework advances the state
of the art by enabling cooperative inconsistency measurement in privacy-critical
settings. Future work can, for example, focus on methods for privately computing
interpolants/common knowledge or disagreement between > 2 parties [8,10].

Privacy-Preserving Inconsistency Measurement 13

References

1. Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C.A., Strand,
M.: A guide to fully homomorphic encryption. Cryptology ePrint Archive (2015)

2. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM conference on Computer and communications security.
pp. 784–796 (2012)

3. Cramer, R., Damgård, I.B., et al.: Secure multiparty computation. Cambridge
University Press (2015)

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

5. Grant, J., Hunter, A.: Measuring consistency gain and information loss in stepwise
inconsistency resolution. In: European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty. pp. 362–373. Springer (2011)

6. Hunter, A., Konieczny, S., et al.: Measuring inconsistency through minimal incon-
sistent sets. KR 8(358-366), 42 (2008)

7. Morales, D., Agudo, I., Lopez, J.: Private set intersection: A systematic literature
review. Computer Science Review 49, 100567 (2023)

8. Potyka, N.: Measuring disagreement among knowledge bases. In: International
Conference on Scalable Uncertainty Management. pp. 212–227. Springer (2018)

9. Priest, G.: The logic of paradox. Journal of Philosophical logic pp. 219–241 (1979)
10. Ribeiro, J.S., Sofronie-Stokkermans, V., Thimm, M.: Measuring disagreement with

interpolants. In: Scalable Uncertainty Management: 14th International Conference,
SUM 2020, Bozen-Bolzano, Italy, September 23–25, 2020, Proceedings 14. pp. 84–
97. Springer (2020)

11. Sen, J.: Homomorphic encryption-theory and application. Theory and practice of
cryptography and network security protocols and technologies 31 (2013)

12. Thimm, M.: Inconsistency measurement. In: Scalable Uncertainty Management:
13th International Conference, SUM 2019, Compiègne, France, December 16–18,
2019, Proceedings 13. pp. 9–23. Springer (2019)

13. Yi, X., Paulet, R., Bertino, E., Yi, X., Paulet, R., Bertino, E.: Homomorphic en-
cryption. Springer (2014)

Appendix: Proofs for Technical Results

Theorem 1. Algorithm 1 satisfies IP,Cor.

Proof. The protocol adheres to IP as no party learns anything beyond the Ham-
ming distance, where the Hamming distance itself is the agreed-upon output (in
particular, B works on ciphertexts only in line 6 and 7). The potential to infer
complete input information in edge cases (e.g., output = 0 or |At|) is intrinsic to
the meaning of the output and not an additional leakage under typical definitions.
It is simply a characteristic of the output itself. For Cor, proceed by invariance:
at each step, the algorithm accurately tracks the number of differing truth assign-
ments between ωA and ωB. Initially, the vectors v and vB represent the truth
assignments of ωA and ωB, respectively. The XOR operation in vA⊕B ensures
that each entry reflects whether the corresponding truth assignments differ (1) or

14 Corea et al.

are identical (0), even under encryption. The summation step correctly accumu-
lates the total number of differing assignments - squaring each vA⊕B [i] does not
change its value since vA⊕B[i] ∈ {0, 1}. Finally, decryption reveals the correct
count without altering the result. This invariant holds throughout the algorithm,
ensuring its correctness.

Theorem 2. Algorithm 2 satisfies IP, Cor.

Proof. The protocol adheres to IP as no party learns anything beyond a binary
assessment of consistency, where the assessment itself is the agreed-upon out-
put. Cor is established by maintaining an invariant: At each step, the algorithm
correctly tracks whether there exists at least one model that satsifies both knowl-
edge bases. In line one, both parties create sequences encoding satisfaction, where
each index is in the same order and corresponds to the same truth value assign-
ment(s). In line 6, for every such index, Algorithm 1binary returns 0, if the values
are both 1, and 1, otherwise. Then via multiplication, if there exists at least one
0, the product is also 0. This ensures that the algorithm will return 0 if there is
at least one interpretation satisfying both KA,KB, and 1, otherwise.

Lemma 1. Let F be a formula and let I be a three-valued interpretation that
satisfies F . Let J be a three-valued interpretation obtained from I by changing
the interpretation of a single atom to both. Then I(F) = J(F) or J(F) = both.

Proof. We prove the claim by structural induction. We can assume w.l.o.g. that
we change an atom that is contained in the formula F because changing the truth
value of another atom cannot affect the interpretation by truth-functionality of
the logical connectives.

For the base case, assume that F is an atom. If we change the interpretation
of F to both, we have J(F) = both.

Since all formulas can be expressed using only ¬ and ∧, it is sufficient to
consider these cases for the induction step.

Consider F = ¬G. If I(¬G) = 0, then I(G) = 1 and by the induction
assumption, we have J(G) = 1 or J(G) = both. Thus, J(¬G) = 0 = I(¬G) or
J(¬G) = both. If I(¬G) = 1, then I(G) = 0 and by the induction assumption,
we have J(G) = 0 or J(G) = both. Thus, J(¬G) = 1 = I(¬G) or J(¬G) = both.
If I(¬G) = both, then I(G) = both and by the induction assumption, we have
J(G) = both = I(G).

Consider F = G1 ∧ G2. If I(G1 ∧ G2) = 0, then I(G1) = 0 or I(G2) = 0.
Assume w.l.o.g. that I(G1) = 0 (the case I(G2) = 0 is analogous). By the
induction assumption, J(G1) = 0 or J(G1) = both. Hence, J(G1 ∧ G2) = 0 or
J(G1 ∧ G2) = both. If I(G1 ∧ G2) = 1, then I(G1) = 1 and I(G2) = 1. By the
induction assumption, (J(G1) = 1 or J(G1) = both) and (J(G2) = 1 or J(G2) =
both). Hence, J(G1 ∧G2) = 1 or J(G1 ∧G2) = both. If I(G1 ∧G2) = both, then
I(G1) = both or I(G2) = both. Assume w.l.o.g. that I(G1) = both (the case
I(G2) = both is analogous). By the induction assumption, J(G1) = both. Hence,
J(G1 ∧G2) = both.

Privacy-Preserving Inconsistency Measurement 15

Corollary 1. Let I be a two-valued model of K and let J be a three-valued
interpretation obtained from I by changing the interpretation of atoms to both.
Then J is a three-valued model of K.

Proof. For all formulas F ∈ K, we have I(F) = 1 by assumption. Note that two-
valued interpretations are a special case of three-valued interpretations. When
J changes the truth value of k atoms to both, it can be seen as a sequence
J0, J1, . . . , Jk of three-valued models, J0 = I, Jk = J and Ji is obtained from
Ji−1, i = 1, . . . , k by changing the interpretation of a single atom to both. Hence,
Lemma 1 guarantees that Ji(F) = 1 or Ji(F) = both for all i = 1, . . . , k. Hence,
J satisfies K.

Proposition 1. Let x be the inconcistency value computed by Algorithm 3. Then
x ≥ Ic(KA ∪KB).

Proof. Corollary 1 guarantees that the 3-valued interpretations computed by
Algorithm 3 are models of three-valued models of KA ∪ KB. Since x is the
minimal number of both found across these models, and Ic(KA ∪ KB) is the
minimal number across all models, we must have x ≥ Ic(KA ∪KB).

Proposition 2. If KA ∪KB is consistent, then Algorithm 3 will return 0.

Proof. If KA ∪KB is consistent, there must be an i ∈ Mod(KA ∪KB). Hence,
Algorithm 3 will compute f(i, i) = i and therefore return 0.

Theorem 3. Algorithm 3 satisfies IP.

Proof. The protocol adheres to IP as no party learns the concrete models. A only
learns the number of differing truth assignments but cannot map this to specific
models.

Proposition 3. The runtime complexity of Alg1 is O(k + |At|), where k is the
asymptotic cost of generating the key pair.

Proof. We proceed by line. Line 1 has cost k (see above). Line 2 and 3 perform
constant operations over all |At| positions of the interpretation (O(|At|)). Line
4 is only part of the communication. Line 5 is analogous to line 2. Subtracting
two vectors of length |At| (line 6) is O(|At|). Note that vA⊕B is also of size |At|.
Line 7 performs a constant operation over |At| positions. Line 8 is analogous to
4. Line 9 is constant. Thus we have O(k + 5 ∗ |At|+ 1) = O(k + |At|).

Proposition 4. The lower-bound runtime complexity of Alg1 is Ω(k + |At|),
where k is the asymptotic cost of generating the key pair.

Proof. Analogous to O.

Proposition 5. The runtime complexity of Alg2 is O(k + 2|At|), where k is the
asymptotic cost of generating the key pair.

Proof. Straightforward from Alg1 (Note that both parties construct a bit-sequence
of length n, where n is 2|At|).

16 Corea et al.

Proposition 6. The lower-bound runtime complexity of Alg2 is Ω(k + 2|At|),
where k is the asymptotic cost of generating the key pair.

Proof. Analogous to O.

Proposition 7. Let A have s models and B have t models. The runtime com-
plexity of Alg3 is O(k + s ∗ t ∗ |At|) (assuming the key is only generated once),
where k is the asymptotic cost of generating the key pair. As both parties could

have up to 2|At| models, this relates to O(k + 22
|At|

∗ |At|).

Proof. The outer loop iterates over all s models in Mod(KA). The inner loop
iterates over all t models in Mod(KB). For each pair of models (each of length
|At|), Alg1 is called, which has a complexity of O(k + |At|).

Proposition 8. Let A have s models and B have t models. The lower-bound
runtime complexity of Alg3 is Ω(k + |At|), where k is the asymptotic cost of
generating the key pair.

Proof. In general the costs are (k+s∗t∗|At|) (assuming the key is only generated
once), where k is the cost of generating the key pair. In the best case, both parties
have 1 model each (recall the KBs are consistent per assumption). This relates
to Ω(k + 1 ∗ 1 ∗ |At|).

Proposition 9. Let A have s models and B have t models. The runtime com-

plexity of Alg4 is O(k + 22
|At|

∗ |At|) (assuming the key is only generated once),
where k is the asymptotic cost of generating the key pair.

Proof. Lines 1-8 are analogous to Alg3 (O(k + 22
|At|

∗ |At|)). Note both parties
could have up to 2|At| models, so S can have a size of 2|At|. Line 9 is constant.
Line 10 calls |At| times an operation that requires 2|At| subtractions. Lines 13-16

run |At| times. Line 17 is constant. So we have O(k + 22
|At|

∗ |At| + 1 + |At| ∗

2|At|+ |At|) = O(k + 22
|At|

∗ |At|).

Proposition 10. Let A have s models and B have t models. The lower-bound
runtime complexity of Alg4 is Ω(k+2|At| ∗ |At|)), where k is the asymptotic cost
of generating the key pair.

Proof. A pads to 2|At| models, so even if B has 1 model only, line 5 is called
2|At| times, where line 5’s cost is |At|. Lines 9-17 are anaologous to O.

	Privacy-Preserving Inconsistency Measurement

