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Abstract

With the surge of social media, maliciously tampered public speeches, especially
those from influential figures, have seriously affected social stability and public
trust. Existing speech tampering detection methods remain insufficient: they either
rely on external reference data or fail to be both sensitive to attacks and robust
to benign operations, such as compression and resampling. To tackle these chal-
lenges, we introduce SpeechVerifer to proactively verify speech integrity using
only the published speech itself, i.e., without requiring any external references.
Inspired by audio fingerprinting and watermarking, SpeechVerifier can (i) effec-
tively detect tampering attacks, (ii) be robust to benign operations and (iii) verify
the integrity only based on published speeches. Briefly, SpeechVerifier utilizes
multiscale feature extraction to capture speech features across different temporal
resolutions. Then, it employs contrastive learning to generate fingerprints that can
detect modifications at varying granularities. These fingerprints are designed to
be robust to benign operations, but exhibit significant changes when malicious
tampering occurs. To enable speech verification in a self-contained manner, the
generated fingerprints are then embedded into the speech signal by segment-wise
watermarking. Without external references, SpeechVerifier can retrieve the finger-
print from the published audio and check it with the embedded watermark to verify
the integrity of the speech. Extensive experimental results demonstrate that the
proposed SpeechVerifier is effective in detecting tampering attacks and robust to
benign operations.

1 Introduction

Audio serves as an important information carrier that is widely used in news reporting, legal evidence,
and public statements. However, the rapid development of audio editing tools [30] and text-to-speech
(TTS) generation models [16, 20, 31, 9] has significantly lowered the technical barriers for speech
manipulation and synthesis. While these techniques benefit content creation and entertainment,
they also enable attackers to tamper speech content with ease. Public speeches and statements,
especially made by influential figures, have become prime targets for attacks due to their huge social
impact. Tampered speech can cause the spread of misinformation, undermine public trust, and
even threaten social stability. Moreover, the prevalence of social media platforms accelerates the
circulation of tampered audio, posing challenges to ordinary people in identifying the authenticity
from numerous sources. For instance, some statements of U.S. Presidents have been repeatedly
edited and manipulated, and broadly redistributed on various social media platforms across the
internet [23, 21]. As such doctored speeches reach the public, doubt naturally arises concerning their
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integrity. Currently, verifying the truth often requires cross-checking information across multiple
social media platforms, a process that is time-consuming and prolongs the spread of misinformation.
These challenges highlight a critical need: Is it possible to proactively protect publicly shared speech
against tampering attacks while still allowing it to be freely stored, distributed, and reshared?

Existing approaches against speech tampering attacks can roughly be categorized into two groups:
passive detection and active protection. Passive detection methods [25, 33, 18, 12, 3] primarily rely on
deep binary classifiers trained to identify subtle artifacts introduced by tampering operations. While
they show reasonable performance against known attacks, their sensitivity to unseen or sophisticated
manipulations remains limited. Moreover, passive detection alone cannot verify whether the speech
content originates from the claimed speaker, leaving systems vulnerable to impersonation-based
attacks [11]. On the other hand, active protection methods aim to ensure content integrity by
embedding auxiliary information into the audio signal or extracting it during verification. Common
approaches include cryptographic hashing [27] and fragile watermarking [22], both of which can
reliably detect content alterations. However, these methods are highly sensitive to benign operations
such as compression or resampling, restricting their applicability in real-world distribution scenarios.
Furthermore, hash-based verification typically requires transmitting or retrieving external reference
hash values, limiting their ability for independent self-verification of the published speech audio.

To address the issues above, a desired speech verification design should have the following properties:
(1) Convenient to use: the integrity of the speech can easily be verified by the general public without
requiring external references. (2) Sensitive to tampering attacks: it can reliably detect any malicious
edits, including subtle semantic (e.g., can⇔ cannot) or speaker-related (e.g., timbre) changes. (3)
Robust to benign operations: it should be robust to typical benign audio operations, especially
commercial-off-the-shelf codecs (e.g., AAC or Opus in Instagram/TikTok), ensuring usability in
sharing and distribution. Therefore, in this paper, we propose SpeechVerifier, a proactive acoustic
fingerprint-based speech verification design that jointly utilizes semantic content and speaker identity.
Specifically, SpeechVerifier uses multiscale feature extraction to capture speech features across
different temporal resolutions. Then, it employs contrastive learning to generate fingerprints that
can detect modifications at varying granularities. These fingerprints are designed to be robust to
benign operations, but exhibit significant changes when malicious tampering occurs. To enable
speech verification in a self-contained manner, the generated fingerprints are then embedded into
the speech signal by segment-wise watermarking. Without a copy of the original authentic speech,
SpeechVerifier can retrieve the fingerprint from the published audio and check it with the embedded
watermark to verify the integrity of the speech. Our salient contributions are summarized as follows.

• We propose SpeechVerifier, a proactive speech verification design against tampering attacks,
which enables users to verify speech integrity without accessing original speech recordings.

• To enable self-contained verification, we leverage audio watermarking to embed discrimi-
native fingerprints into the speech signal, allowing for verifying the integrity only from the
watermarked audio.

• We develop a five-step algorithm that extracts multiscale features and applies contrastive
learning to generate binary fingerprints, which are robust to benign operations yet sensitive
to malicious manipulations.

• Extensive experiments across diverse audio manipulation scenarios show that SpeechVerifier
is effective in detecting tampering attacks and robust to benign operations.

2 Related works

Detect speech tampering passively based on acoustic features. Audio editing process can generate
artifacts or modify natural acoustic features within human speech. For example, frame offset [33],
inconsistent noise [18], and even discontinued electric network frequency [25, 6], are identified as
evidence of tampering. Using such patterns, “passive” detectors can be trained as binary classifiers
using labeled clean and tampered audio. However, these methods are less effective when facing
deepfake audio. Advanced deepfake techniques can synthesize high-fidelity speech with few or
no detectable artifacts, making conventional patterns unreliable. To address this, recent work has
explored more subtle acoustic properties, such as fluid dynamics and articulatory phonetics [3].
Nevertheless, as the deepfake models evolve, relying solely on passive detection may not be sufficient
against future attacks.
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Figure 1: System overview of the proposed SpeechVerifier.

Protect genuine audio based on integrity verification. Proactive defense provides another direction
to detect speech tampering. In general, critical information is extracted from the original audio and
condensed into auxiliary data (or “meta” data). This auxiliary data then serves as a reference for
verification: one extracts the same data from the test audio, and if it matches, it indicates that the test
audio is free of audio editing, and vice versa. Cryptographic hashing, which transforms the digital
audio files into discrete bytes, is one of the proactive defenses [34]. However, hashing operations
are too sensitive to tolerate common operations from regular users, such as audio compression,
resampling, resulting in a high false alarm rate. Another method is fragile watermarking [22], where
sensitive watermarks are directly embedded into audio signals and checked for changes. However,
this method is also sensitive to minor perturbations, limiting the free and practical distribution of
audio. Ge et al. [8] propose a proactive defense approach against speaker identity manipulation,
which embeds speaker embeddings into speech using audio watermarking. However, their method
focuses only on speaker-identity attacks and cannot detect semantic content alterations. Therefore,
existing proactive audio protection methods do not simultaneously achieve robustness against benign
operations, sensitivity to malicious tampering, and independence from external verification channels.

3 Motivation

3.1 Problem Definition

As shown in Figure 1, the scenario considered in our study includes four parties: 1) Original
speakers, such as public institutions and celebrities, who publish statements or speeches on social
media platforms. 2) Legitimate users, who download and repost these recordings to increase their
dissemination. 3) Malicious attackers, which employ audio editing or voice conversion techniques,
either changing the original semantic meaning or impersonating the speaker. 4) The public, who are
exposed to conflicting audio sources, requiring a practical and reliable method to verify the integrity
of a given speech recording.

3.2 Definition of Malicious Tampering vs. Benign Operations

We define tampering attacks as malicious audio modifications that alter the semantic content or the
speaker identity. Typical malicious operations include audio splicing, deletion, substitution, silencing,
text-to-speech (TTS) synthesis, and voice conversion. In contrast, benign operations refer to common
audio transformations that occur during legitimate storage, transmission, or distribution processes,
such as compression, reencoding, resampling, and noise suppression. These operations do not affect
semantic content or speaker identity, and are therefore not considered tampering attacks. To better
evaluate the impact of tampering, we further categorize malicious operations into three levels - Minor,
Moderate, and Severe - based on their impacts on semantic content and speaker identity. A detailed
distinction between malicious and benign audio operations, along with specific examples, is provided
in Appendix A.2.

3.3 Limitations of Coarse-Grained Acoustic Feature Based Similarity Comparison

An intuitive approach to speech verification is to check whether the published speech audio sounds
like the original one, which is technically to measure acoustic feature similarity. Following this
intuition, we compared the similarity distributions of 3 categories: (i) the original audio and the
audio modified by benign operations (“Benign”), (ii) the original audio and the audio modified by
malicious operations (“Malicious”), and (iii) the original audio and the arbitrarily selected unrelated
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Figure 2: Probability distributions: (a) wav2vec embedding similarity to the original audio under
different modifications; (b) wav2vec embedding similarity to the original audio at different tampering
levels; (c) SHA256 Hamming distance to the original audio under different modifications.

audio (“Cross”). Moreover, we compare the similarity distributions across malicious operations
with varying degrees of tampering, as introduced earlier. Two types of acoustic features were used:
Mel-frequency cepstral coefficients (MFCC) [5] and deep representations from wav2vec2.0 [1]. As
shown in Figure 2a and Figure 2b, the similarity distributions based on wav2vec embeddings for
“Benign" and “Malicious" overlap, and the similarity scores tend to decrease as the extent of tampering
increases. This observation indicates that such similarity comparison can only measure the extent of
modification, but cannot distinguish the types of modification operations (i.e., benign or malicious
ones). Similar results using MFCC features are provided in Appendix B.3. These observations
demonstrate that coarse-grained acoustic feature based similarity checking tends to ignore minor but
semantically important speech edits. For instance, altering the phrase “do not” to “do” in a 20-second
speech affects only about 0.2 seconds, and similarity remains more than 99%, while there is a huge
semantic difference. Moreover, these methods require access to the original authentic audio, which is
impractical in many scenarios. These observations highlight two key challenges:

Challenge 1: Insufficient sensitivity to semantic tampering attacks. The coarse-grained acoustic
feature based similarity checking methods fail to distinguish benign operations from malicious ones,
because they are not sensitive enough to semantic tampering attacks.

Challenge 2: Dependence on the original authentic audio. The similarity comparison methods
have to use the original authentic audio as the reference, which is not always applicable in practice.
3.4 Limitations of Cryptographic Hashing Based Methods

Given Challenge 1, it is worth exploring some other speech verification methods that are sensitive to
tampering attacks. A potential candidate is cryptographic hashing [14], which generates a digest of
the entire audio file. Due to its high sensitivity, even the slightest modifications can be detected, so
it can detect malicious tampering attacks effectively. However, such high sensitivity is not always
positive in practice. Hash values may also change significantly under benign operations that do not
affect either the semantic content or speaker identity. As shown in Figure 2c, the Hamming distances
between original audio samples and their corresponding benign variants, malicious variants, and
unrelated audio samples are all similarly large when using cryptographic hashing. This observation
indicates that cryptographic hashing cannot distinguish benign operations from malicious tampering
attacks. Moreover, hashing-based methods rely on external hashed results beyond the published audio
itself for verification, which introduces extra cost. These observations expose two key challenges:

Challenge 3: Lack of robustness to benign operations. Hash values change significantly even
under benign operations, making it too sensitive to use for speech verification.

Challenge 4: Dependence on external reference hash values. Hashing based methods rely on
external reference hash values for speech verification. That introduces extra overhead and may not be
convenient for speech forwarding on the online platforms in practice.

4 Methodology

4.1 SpeechVerifier Design Overview

To address those challenges, we propose SpeechVerifier, a proactive speech integrity verification
design, which is (i) sensitive to tampering attacks, (ii) robust to benign operations, and (iii) convenient
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Figure 3: A sketch of the proposed SpeechVerifier design including speech fingerprint generation
(top) and integrity verification (bottom).

to use by the public since it verifies the published speech audio’s integrity in a self-contained manner.
As the sketch shown in Figure 3, SpeechVerifier consists of two stages: fingerprint generation and
dual-path integrity verification.

The speech fingerprint generation in SpeechVerifier has five steps: (1) Frame-Level Feature En-
coding (Speech to Representation): raw speech is encoded into frame-level representations that
preserve acoustic information; (2) Multiscale Acoustic Feature Extraction (Representation to
Vector): the frame-level representations are first processed into contextual features, then aggregated
at multiple temporal resolutions, and finally attentively pooled into a fixed-dimensional vector that
summarizes the entire utterance; (3) Contrastive Fingerprint Training (Vector to Fingerprint):
the vector is optimized to be robust to benign operations, and sensitive to tampering attacks using
contrastive learning; (4) Binary Fingerprint Encoding (Fingerprint to Bit): the trained fingerprint
is discretized into a binary representation; (5) Segment-Wise Watermarking (Bit to Watermark):
the binary fingerprint is embedded into the original audio through segment-wise watermarking,
making the fingerprint self-contained.

The speech integrity verification in SpeechVerifier independently performs two parallel paths on the
published audio: (1) regenerating the fingerprint via the same extraction pipeline, and (2) extracting
the embedded watermark via the watermark decoding process. The two resulting binary codes are
then compared using Hamming distance to determine whether the speech has been attacked.

4.2 Fingerprint Generation and Watermarking

Step 1. Frame-Level Feature Encoding (Speech to Representation) We utilize the pre-trained
wav2vec 2.0 model [1] to extract frame-level representations from the original audio before publishing.
This step serves as a necessary preprocessing stage for fingerprint generation. It converts continuous
waveform signals into structured sequences of frame-level representations that preserve essential
acoustic information. These representations have demonstrated effectiveness in downstream tasks
such as automatic speech recognition [2] and speaker verification [7]. Formally, the feature encoder
ε : X → Z maps raw audio waveforms X to a sequence of latent representations z1, z2, . . . , zT ,
where each zt ∈ Rdz denotes the frame-level acoustic feature at time t, and T is the total number of
output frames.

Step 2. Multiscale Acoustic Feature Extraction and Summarization (Representation to Vector).
Given the frame-level representations z1, z2, . . . , zT obtained from Step 1, this step constructs a
fixed-dimensional vector that summarizes the speech across different temporal granularities. The
multiscale feature extractorF consists of two components: (a) a bidirectional long short-term memory
(BiLSTM) network that transforms the input frame-level representations into contextual hidden states,
and (b) a multiscale pooling operation that averages the hidden states over phoneme-, word-, and
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phrase-level windows (size 20, 50, and 100, respectively) , producing a sequence of multiscale
features h1,h2, . . . ,hK (see Appendix A.3).

To summarize these features into an utterance-level vector, we apply self-attentive pooling [13].
This mechanism assigns higher weights to more informative components, with attention weight
computed as: wn = exp(ϕ(hn))∑K

t=1 exp(ϕ(ht))
, where ϕ(·) is a feedforward network. The weighted sum

yields a fixed-dimension vector: v′ =
∑K

n=1 wn · hn, which is referred to as the utterance-level
vector. To obtain a more compact representation for fingerprint optimization, a projection module is
applied to reduce the dimensionality of v′, yielding the final fingerprint vector v ∈ Rdv .

Step 3. Contrastive Fingerprint Training (Vector to Fingerprint). Given the fixed-length vector
v obtained from Step 2, we optimize it to serve as a distinctive audio fingerprint that is robust to
benign operations and sensitive to malicious tampering attacks. To this end, we adopt contrastive
learning [17] to guide the training of all preceding modules. During the training, a batch of original
speech samples is randomly selected, where each sample serves as an anchor. For each anchor, we
generate: Positive pairs, consisting of the anchor and its benign variants (e.g., compression and
re-encoding), and Negative pairs, consisting of the anchor and its tampered variants (e.g., substitution
and deletion). Detailed operations are listed in Appendix A.2. The contrastive loss is defined as

Lc = −
1

B

B∑
i=1

1

P

P∑
j=1

log
exp

(
ṽOrig.⊤
i ṽBenign

i,j /τ
)

N∑
k=1, k ̸=i

exp
(
ṽOrig.⊤
i ṽi,k/τ

) , (1)

where B is the number of anchors in the batch, P is the number of benign variants per anchor, and
N denotes the total number of comparison samples for each anchor, including its own benign and
tampered variants as well as embeddings from other anchors in the batch. τ is the temperature
parameter. ṽOrig.

i denotes the L2-normalized embedding of the i-th anchor, ṽBenign
i,j denotes the

embedding of its j-th benign variant, and ṽi,k enumerates all embeddings in the batch, including
benign, tampered and unrelated samples.

This contrastive learning above encourages the model to bring the anchor closer to its benign variants
while pushing it away from tampered and unrelated samples in the embedding space. As a result,
the fixed-length vector is optimized to serve as a distinctive audio fingerprint that is robust to benign
operations while remaining sensitive to malicious tampering attacks.

Step 4. Binary Fingerprint Encoding (Fingerprint to Bit). Compared to full-precision vectors
in continuous space, binary representations are more suitable for compact storage (e.g., embedding
into a watermark) and fast retrieval (e.g., through bit-wise comparison). Therefore, we convert the
continuous fingerprint vector v ∈ Rdv into a binary code b ∈ {−1,+1}d. This binary fingerprint
can directly be embedded into the audio signal. Specifically, we apply a tanh activation followed by
a sign function at the final projection layer to obtain the binarized output. As demonstrated later in
the evaluation, the binarized fingerprint preserves its discriminative characteristics of v, i.e., robust to
benign operations while sensitive to tampering attacks.

Step 5. Segment-Wise Watermarking (Bit to Watermark). To enable self-contained verification,
we embed the binary fingerprint directly into the speech signal. Inspired by AudioSeal [26], we aim to
develop a high-capacity and inaudible audio watermarking method based on the Encodec framework.
While AudioSeal targets short watermarks for copyright-protection (i.e., 16 bits), SpeechVerifier
must embed much longer fingerprints (e.g., 256 bits) to support speech integrity verification. To meet
this requirement, we propose a segment-wise watermarking scheme. Given an input waveform X of
duration T seconds and its binary fingerprint b, both are divided into N non-overlapping segments:

X = [X (1), . . . ,X (N)] and b = [b(1), . . . ,b(N)], (2)

where each X (n) spans T/N seconds and each b(n) contains d/N bits. For each audio segment
X (n), we embed b(n) into the Encodec embedding space and generate a watermark signal δ(n). The
watermarked segment is then formed as: X̃ (n) = X (n) + δ(n). Finally, the watermarked segments
[X̃ (1), . . . , X̃ (N)] are concatenated, yielding the final self-verifiable audio. Notably, since watermark
only incurs subtle perturbations and remains imperceptible to human listeners, the embedded binary
fingerprint can be reliably extracted from the watermarked speech audio X̃ without degradation.

6



4.3 Dual-Path Speech Integrity Verification

SpeechVerifier employs a dual-path mechanism to assess the integrity of the published speech X̃ :

Path A: Fingerprint Generation from Published Speech. The published speech audio is processed
using the same fingerprint generation pipeline described in Section 4.2. The fingerprint b′ is
computed as b′ = sign(F(ε(X̃ ))), where ε and F denote the feature encoder and multiscale
extractor, respectively, and sign(·) denotes the final binarization function.

Path B: Watermark Extraction. The published speech audio X̃ is processed in the inverse manner
of Step 5 to decode the embedded watermark (i.e., the original binary fingerprint). From each
segment X̃ (n), we extract the bit chunk b̂(n) using the watermark decoder, and then reconstruct the
full watermark as b̂ = [b̂(1), b̂(2), . . . , b̂(N)].

Finally, the integrity of the published audio is verified by comparing the generated fingerprint b′ with
the extracted watermark b̂. This is done by computing the Hamming distance as follows.

dH(b′, b̂) ≤ θ ⇒ Accept; otherwise Reject,

where θ is a decision threshold set based on the development data from public datasets.

5 Experiments

5.1 Experiment Setup

Dataset. To train and evaluate the performance of the proposed SpeechVerifier, we use Vox-
Celeb1 [15] dataset, which includes over 150,000 utterances from 1,251 celebrities. These au-
dio samples are collected from interviews and public videos, providing the conditions that reflect
real-world speech recordings. In addition, we use the test subset from LibriSpeech [19] dataset.
LibriSpeech is a corpus of approximately 1,000 hours of English read speech, sourced from public
domain audiobooks. This setup allows us to perform a cross-domain evaluation to assess model gen-
eralization. More details about the datasets and the preprocessing steps are provided in Appendix B.2.

Implementation details. Fingerprint model: We use the pre-trained Wav2Vec2.0 Base model as
the acoustic feature extractor, obtained from the official repository2. A two-layer BiLSTM with a
hidden size of 512 follows the feature extractor. Multiscale pooling is used with window sizes of
20, 50, and 100 frames with a stride of 10 frames. A two-layer projection head then maps features
into a 256-dimensional vector. Watermark model: The pre-trained AudioSeal model3 is used to
embed and extract fingerprints as watermark payloads. To improve the watermarking capacity, we
divide both the carrier audio and the fingerprint into 16 segments. Each segment carries a 16-bit
watermark, leading to a total payload of 256 bits per audio sample. Train: We exploit benign and
malicious operations (see Appendix A.2) and the original audio samples for contrastive learning, with
temperature set as 0.05. A cosine annealing learning rate schedule is used, gradually decreasing the
learning rate from 1× 10−3 to 1× 10−5 over the training.

Evaluation Metrics. The threshold in Section 4.3 is determined on the development dataset (θ = 42).
We compare the dual-path bit error against θ for binary classification, where benign and malicious
operations are treated as positive and negative samples, respectively. Evaluation metrics include true
positive rate (TPR), false positive rate (FPR), true negative rate (TNR), false negative rate (FNR),
equal error rate (EER), and area under the curve (AUC). Additionally, we present data visualizations,
as well as cosine similarity and Hamming distance analyses, to demonstrate effectiveness.

5.2 Results

Robustness to benign operations. Table 1 presents the performance of the proposed SpeechVerifier in
accepting published speech samples subjected to benign audio operations, as defined in Appendix A.2.
We focus on evaluating how well SpeechVerifier accepts positive samples with harmless modifications
(TPR) and whether it mistakenly accepts maliciously tampered speech (FPR). The numbers of positive
and negative test samples are balanced in Table 1. When trained and evaluated on different subsets
of VoxCeleb, SpeechVerifier achieves 100% TPR and 0% FPR across all listed benign operations,

2https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
3https://github.com/facebookresearch/audioseal
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Table 1: Results of benign operation (positive) acceptance on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TPR FPR AUC EER TPR FPR AUC EER

Compression 1.00 0.00 1.00 0.00 1.00 0.03 1.00 0.01 ✓ ✓
Reencoding 1.00 0.00 1.00 0.00 1.00 0.02 1.00 0.01 ✓ ✓
Resampling 1.00 0.00 1.00 0.00 0.97 0.01 1.00 0.02 ✓ ✓
Noise suppression 1.00 0.00 1.00 0.00 0.98 0.01 1.00 0.01 ✓ ✓

Overall 1.00 0.00 1.00 0.00 0.99 0.02 1.00 0.02 - -

Table 2: Results of malicious operation (negative) rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TNR FNR AUC EER TNR FNR AUC EER

Deletion 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.00 ✗ ✓
Splicing 1.00 0.00 1.00 0.00 0.99 0.08 0.99 0.01 ✗ ✓
Silencing 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.01 ✗ ✓
Substitution 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.01 ✗ ✓
Reordering 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.00 ✗ ✓
Text-to-speech 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 ✗ ✓
Voice conversion 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.01 ✓ ✗

Overall 1.00 0.00 1.00 0.00 0.98 0.01 1.00 0.02 - -

demonstrating strong robustness to non-malicious transformations. For cross-dataset evaluation on
LibriSpeech, using a model trained on VoxCeleb, the overall TPR/FPR slightly change to 99% and
2%, respectively, indicating good generalizability across datasets.

Sensitivity to tampering attacks. Table 2 evaluates the ability of SpeechVerifier to reject malicious
tampering attacks that alter the semantic content or speaker identity. Specifically, we consider
tampering attacks including deletion, splicing, silencing, substitution, reordering, as well as deepfake-
based manipulations such as text-to-speech synthesis (TTS) and voice conversion, as detailed in
Appendix A.2. In this evaluation, tampering operations (actual negatives) to the published audio
are expected to be rejected with a high true negative rate, while minimizing the false negative rate,
which reflects incorrect rejection of benign samples. Notably, SpeechVerifier achieves 100% and
98% overall TNR, and 0% and 1% overall FNR on the VoxCeleb (in-domain) and LibriSpeech
(cross-domain) datasets, respectively. These results highlight SpeechVerifier’s strong sensitivity to
tampering attacks. A more detailed breakdown by tampering strength (e.g., minor, moderate and
severe) is provided in Appendix B.5.

5.3 Evaluation of Multiscale Feature and Binarized Fingerprints

Figure 4 presents two types of analysis: (a) cosine similarity between extracted multiscale features
and (b) Hamming distance between binarized fingerprints. In Figure 4a, benign-original pairs
show high similarity values close to 1.0, while malicious-original and cross-original pairs exhibit
significantly lower similarity scores, indicating that the learned multiscale features effectively capture
the differences between benign operations and malicious tampering attacks. Here, “cross” refers to the
arbitrarily selected unrelated audio samples. In Figure 4b, binarized fingerprints of benign processed
samples yield low Hamming distances from their corresponding retrieved watermarks, whereas
malicious and cross pairs have much larger distances, with a clear separation gap of nearly 112-118
bits. This indicates that the binarization process preserves discriminability and can differentiate
tampering attacks from benign operations by using a simple threshold.

Figure 5 illustrates the t-SNE visualizations of the extracted multiscale features before and after
training. Specifically, Figure 5a and Figure 5b show the relative distribution of anchors (original
speech), positives (after benign operations), and negatives (after malicious operations) in the latent
space. Before training, anchor and positive samples are scattered and overlap with negatives,
indicating that the initial features extracted are not well separated. After training, anchors and
positives form tight clusters, while negatives are clearly separated. This suggests that contrastive
learning-trained multiscale feature extraction effectively learns embeddings that distinguish benign
operations from malicious tampering, which explains the strong performance of SpeechVerifier.
Additional visualization evidences are provided in Appendix B.8.
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Figure 4: (a) Extracted feature similarity; (b) binarized fingerprint
Hamming distance.

Anchor Positive Negative

(a)

(b)

Figure 5: t-SNE visualizations
of speech samples: (a) before
training; (b) after training.

5.4 Comparison with Other Deepfake Detection Methods

We finally evaluate SpeechVerifier as a deepfake detector4. Specifically, we compare SpeechVerifier
with state-of-the-art methods including RawNet2 [29] and AASIST [10], two end-to-end models
developed for the ASVspoof challenge [32], and widely used for audio spoofing detection. We utilize
a zero-shot TTS model YourTTS [4] to generate deepfake speech segments, and substitute them for
varying proportions (10%, 25%, 50%, 75% and 90%) of the original speech. Next, the deepfake
samples are mixed with an equal amount of clean speech to ensure fair evaluation.

From Table 3, both RawNet2 and AASIST perform best given the highest substitution ratio at 90%,
achieving up to 83% TPR by RawNet2. However, when decreasing the substitution ratio, RawNet2
and AASIST both show significant degradation regarding the ability of detecting deepfake substitution
samples. For example, at the ratio of 10%, the AUC of RawNet2 drops to 65% and EER increases
to 38%, indicating diminished sensitivity to subtle spoofing. Similarly, AASIST exhibits similar
performance degradation under the same condition. In contrast, SpeechVerifier constantly achieves
very good detection performance across all substitution levels (TPR=1.00, FPR=0.00, AUC=1.00,
EER=0.00), demonstrating the superiority of the proposed proactive defense design.

Since synthetic deepfake audio lacks embedded watermarks, the fingerprint-watermark verification
process becomes essentially random, making tampering attacks easy to detect. Even minor substitu-
tions alter the extracted fingerprint and disrupt the embedded watermark simultaneously, resulting
in a mismatch and enabling reliable detection of tampering. Further analysis of each module’s
contributions is provided in the ablation studies in Appendix B.7.

Table 3: Performance of Deepfake detection at varying substitution ratios
Deepfake Ratio RawNet2 AASIST SpeechVerifier (ours)

TPR FPR AUC EER TPR FPR AUC EER TPR FPR AUC EER
Substitute 10% 0.58 0.34 0.65 0.38 0.39 0.17 0.64 0.39 1.00 0.00 1.00 0.00
Substitute 25% 0.62 0.34 0.68 0.37 0.37 0.17 0.64 0.42 1.00 0.00 1.00 0.00
Substitute 50% 0.59 0.34 0.65 0.38 0.44 0.17 0.67 0.39 1.00 0.00 1.00 0.00
Substitute 75% 0.68 0.34 0.72 0.34 0.54 0.17 0.75 0.31 1.00 0.00 1.00 0.00
Substitute 90% 0.83 0.34 0.81 0.27 0.62 0.17 0.76 0.33 1.00 0.00 1.00 0.00

6 Conclusion

In this paper, we have proposed SpeechVerifier, a proactive speech integrity verification design.
SpeechVerifier employs multiscale feature extraction and contrastive learning to generate robust
acoustic fingerprints. Then, it embeds the generated fingerprints into audio signals through water-
marking. The fingerprint is designed to be sensitive to malicious tampering attacks but robust to
benign operations, thus not affecting the normal audio distribution and usage. This approach enables
the general public to conveniently verify the published speech audio’s integrity in a self-contained
manner, i.e., by extracting and comparing embedded watermark messages with corresponding acous-
tic fingerprints. Extensive experiments demonstrate that SpeechVerifier achieves very good detection
performance under various tampering attack scenarios while staying robust to benign operations.

4To avoid confusion, SpeechVerifier is used here for deepfake detection, where “positive” now refers to
deepfake samples to be identified.
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A SpeechVerifier Design and Operation Definitions

A.1 Overall Algorithm

Algorithm 1 SpeechVerifier Training and Deployment

1: Input: Raw speechX , benign operations Tb(·), malicious operations Tm(·), Wav2Vec2.0 encoder
ε, multiscale feature extractor F

2: Output: Watermarked speech X̃
3: for e = 1, 2, . . . , epochs do
4: for b = 1, 2, . . . , batches do
5: X benign ← Tb(X ), Xmalicious ← Tm(X ) ▷ Generate positive and negative variants
6: Step 1: Frame-level feature extraction
7: Z ← ε(X ) ▷ Extract frame-level acoustic representations
8: Step 2: Multiscale feature summarization
9: hn ← F(Z) ▷ BiLSTM and multiscale pooling

10: for n = 1, . . . ,K do
11: wn ← exp(ϕ(hn))∑K

t=1 exp(ϕ(ht))
▷ Attentive weight computation

12: end for
13: v′ ←

∑K
n=1 wn · hn ▷ Utterance-level representation

14: v← Proj(v′) ▷ Final fingerprint vector
15: Step 3: Contrastive fingerprint training
16: Compute contrastive loss Lc
17: Update F , ϕ, Proj via backpropagation
18: end for
19: end for
20: Step 4: Binary fingerprint encoding
21: b← sign(tanh(Proj(AttPool(F(ε(X̃)))))) ▷ Extract binary fingerprint
22: Step 5: Segment-wise watermarking
23: Split X and b into N segments: [X (1), . . . ,X (N)], [b(1), . . . ,b(N)]
24: for n = 1, . . . , N do
25: δ(n) ←WatermarkEmbedder(X (n),b(n))

26: X̃ (n) ← X (n) + δ(n) ▷ Embed watermark into audio
27: end for
28: X̃ ← Concat( ˜X (1), . . . , X̃ (N)) ▷ Get watermarked audio

Algorithm 2 SpeechVerifier Verification

1: Input: Published speech X̃ , wav2vec2.0 encoder ε, trained multiscale feature extractor F ,
projection module Proj, attentive pooling AttPool, WatermarkExtractor

2: Output: Verification result (Accept or Reject)

3: Path A: Fingerprint extraction
4: b′ ← sign(tanh(Proj(AttPool(F(ε(X̃ ))))))
5: Path B: Segment-wise watermark extraction
6: Split X̃ into N segments: X̃ (1), . . . , X̃ (N)

7: for n = 1 to N do
8: b̂(n) ←WatermarkExtractor(X̃ (n))
9: end for

10: b̂← Concat(b̂(1), . . . , b̂(N))

11: Integrity decision
12: if dH(b′, b̂) ≤ θ then
13: return Accept
14: else
15: return Reject
16: end if
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A.2 Definition of Benign Operations and Malicious Tampering

We simulate two categories of audio modifications: benign operations and malicious tampering.
Benign operations refer to legitimate processing steps encountered during audio storage, transmission,
or distribution. These operations do not change the semantic content or the speaker identity of the
speech. In contrast, malicious tampering refers to intentional alterations designed to distort either the
semantic meaning or the identity of the speaker. We detail each operation below and summarize their
characteristics in Table 4.

Table 4: Summary of audio operations.
Operation Example Implementation
Benign Operations
Compression Podcasts, news broadcasts, online

meetings
ffmpeg -i in.wav -b:a 128k
tmp.mp3; ffmpeg -i tmp.mp3
out.wav

Reencoding Saving or uploading audio files ffmpeg -i in.wav out.wav
Resampling Low-bandwidth communication torchaudio.transforms.Resample
Noise Suppression Social media platforms RMS-based frame muting

Malicious Operations
Deletion Removing “not” in “I do not agree” VAD + remove voiced

portion
Splicing Inserting “not” into “I do agree” Insert voiced segment
Substitution Replacing “agree” with “disagree” Swap waveform segment
Silencing Muting “not” in “I do not agree” Mute VAD-detected region
Reordering Changing sentence order Segment + shuffle + concat
Voice Conversion Changing timbre (speaker identity) torchaudio.sox_effects
Text-to-Speech Generate new speech with speaker’s

timbre
YourTTS (zero-shot
synthesis)

Compression. Lossy compression is applied by converting the waveform to MP3 at 128
kbps and decoding it back to WAV. This simulates typical processing in podcasts and stream-
ing platforms. We use FFmpeg: ffmpeg -i input.wav -b:a 128k temp.mp3; ffmpeg -i
temp.mp3 output.wav.

Reencoding. The waveform is re-encoded to 16-bit PCM WAV format without compression. This
simulates storage or uploading scenarios where minor numerical alterations may occur. Implemented
with: ffmpeg -i input.wav output.wav.

Resampling. Audio is downsampled (e.g., from 16 kHz to 8 kHz) and then upsampled back, simu-
lating low-bandwidth or legacy systems. Implemented with: torchaudio.transforms.Resample.

Noise Suppression. To simulate automatic noise suppression utilized by social media and streaming
platforms, the waveform is divided into overlapping frames. Frames with low root-mean-square
(RMS) energy are muted.

Deletion. A portion of speech (not silence) is removed from the speech. For example, deleting “not”
from “I do not agree” changes the meaning entirely.

Splicing. A short segment of speech from the same speaker is spliced into the waveform. For
example, inserting “not” into the phrase “I do agree” reverses its original semantic meaning.

Substitution. A segment of speech is replaced with another waveform segment of equal length
from the same speaker. For instance, replacing “agree” with “disagree” fundamentally changes the
intended meaning.
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Silencing. A portion of speech (not silence or noise) is deliberately muted by setting its amplitude
to zero. For instance, muting the word “not” in “I do not agree” leads to a reversed interpretation.

Reordering. The speech is segmented, rearranged, and concatenated to change the semantic content.
For instance, reordering “I never said she stole my money” into “She stole my money, I never said”
distorts the original meaning and can lead to an opposite interpretation.

Voice Conversion. The speech is manipulated to alter its speaker identity while preserving the
linguistic content. We simulate this by shifting pitch (e.g., +4 semitones) using SoX effects. This
modification can make the utterance sound like it was spoken by someone else. We implement this
using torchaudio.sox_effects.apply_effects_tensor.

Text-to-Speech. We synthesize speech from text using a pre-trained text-to-speech (TTS) model,
YourTTS5 [4], which supports multilingual and zero-shot speaker adaptation. This attack can generate
speech that closely mimics the speaker’s voice with arbitrary semantic content.

Different Levels of Tampering. To evaluate the performance under varying conditions, we define
three levels of tampering: Minor, Moderate, and Severe. Specifically, at the Minor level, tampering
operations — including deletion, splicing, silencing, and substitution — alter about 10% of the
original audio content (alteration ratio = 0.1). At the Moderate level, these same operations alter 30%
of the audio (alteration ratio = 0.3). At the Severe level, 50% of the audio is altered (alteration ratio =
0.5), and this level also includes reordering operations, which disrupts the logical structure of the
speech.

A.3 Explanation of Malicious Tampering over Different Granularities

Table 5 presents representative examples of malicious tampering at the phoneme, word, and phrase
levels. These examples illustrate how manipulations at different temporal granularities can alter the
meaning of speech. They also motivate the use of multiscale pooling with window sizes of 20, 50,
and 100 frames, which are designed to capture such variations in real-world scenarios.

Table 5: Examples of malicious tampering at different levels of granularity
Granularity Example Description
Phoneme-level Change “bed” to “bad” (English);

change “mā” (mother) to “mǎ”
(horse) (Mandarin)

Altering a single phoneme or syllable can
lead to subtle yet meaningful changes.
These edits are often difficult to detect but
can reverse or distort the intended meaning.

Word-level Insert “not” into “He is guilty” to
form “He is not guilty”; replace “ap-
proved” with “denied”

Tampering at the word level through inser-
tion, deletion, or substitution can directly
modify semantic content, leading to mis-
leading interpretations.

Phrase-level Change “Negotiations will begin im-
mediately” to “Negotiations will be
delayed indefinitely”

Reordering or replacing entire phrases can
fabricate new narratives while maintaining
natural-sounding speech, making the tam-
pering more deceptive.

5https://github.com/Edresson/YourTTS
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B Experimental Setup and Extended Results

B.1 Implementation Details

To supplement Section 5.1, we provide a detailed description of the model architecture and training
configuration.

Model. We use the pretrained Wav2Vec2.0 Base model 6 to extract 768-dimensional frame-level
acoustic features. These are passed to a two-layer Bidirectional LSTM (BiLSTM) with an input size
of 768, a hidden size of 512 (i.e., 256 per direction), and a dropout rate of 0.25. To capture temporal
features at multiple resolutions, we apply average pooling with window sizes of 20, 50, and 100
frames, with a stride of 10 frames, implemented using avg_pool1d along the time axis. The pooled
outputs are aggregated by an attentive pooling module consisting of a linear-tanh-linear projection.
The resulting weighted sum forms the utterance-level embedding, followed by dropout with a rate of
0.2. This embedding is fed into a two-layer MLP projection head with dimensions 768→ 512→ 256,
with ReLU activation between layers. The final output vector is L2-normalized and passed through
a tanh function to constrain values to the range [−1, 1], yielding the continuous-valued fingerprint.
For segment-wise watermarking, we use the pretrained AudioSeal model7 to embed and extract
binary fingerprints as watermarks. Each audio is divided into 16 non-overlapping segments, with
each segment embedded with a 16-bit binary watermark, resulting in a total payload size of 256 bits
per audio.

Training. SpeechVerifier is trained using a cosine annealing learning rate schedule, decaying from
1 × 10−3 to 1 × 10−5 over 50 epochs. The contrastive loss is temperature-scaled with τ = 0.05.
Training is conducted on 4 NVIDIA Quadro RTX 8000 GPUs using distributed data parallelism
(DDP).

B.2 Dataset and Evaluation Details

We use two public speech datasets: VoxCeleb and LibriSpeech. For VoxCeleb, the development set
is used for training and the test set for evaluation. For LibriSpeech, we use only the test-clean
subset for evaluation. All audio files are converted to WAV format and resampled to 16 kHz.

Preprocessing. We randomly sample 5,000 utterances from the VoxCeleb development set for
model training. For evaluation, we sample 500 utterances each from the VoxCeleb test set and the
LibriSpeech test-clean subset. To stabilize the training and ensure data quality, we retain only
utterances with durations between 2 and 20 seconds.

For each valid utterance, we generate two sets of augmented variants for contrastive learning:

Benign Augmentations: These are modifications that preserve both speaker identity and semantic
content. The details can be found in Appendix A.2.

Malicious Augmentations: These include tampering operations intended to alter speaker identity and
semantic content. The details can be found in Appendix A.2.

Evaluation Metric For evaluation, we consider benign and malicious as positive and negative classes,
respectively. TP is the number of benign samples correctly classified, and FN is the number of
benign samples incorrectly classified as malicious. FP is the number of malicious samples incorrectly
classified as benign, and TN is the number of malicious samples correctly rejected. The following
metrics are computed:

• True Positive Rate (TPR):

TPR =
TP

TP + FN
,

• False Positive Rate (FPR):

FPR =
FP

FP + TN
,

6https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
7https://github.com/facebookresearch/audioseal
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• True Negative Rate (TNR):

TNR =
TN

TN + FP
,

• False Negative Rate (FNR):

FNR =
FN

FN + TP
• Equal Error Rate (EER): The error rate at the decision threshold where FPR = FNR.
• Area Under the ROC Curve (AUC): Computed by integrating the Receiver Operating

Characteristic (ROC) curve over various thresholds.

B.3 Similarity Distribution using MFCC Feature

To complement the observations in Section 3.3, we present similarity distributions computed using
handcrafted Mel-frequency cepstral coefficients (MFCC) instead of wav2vec2 embeddings. As shown
in Figure 6, the similarity distributions between original and modified audio samples using MFCC
features exhibit trends similar to those observed with wav2vec2-based representations. Specifically,
the distributions corresponding to benign and malicious modifications overlap, and the similarity
scores tend to decrease as the extent of tampering increases. This indicates that MFCC-based
similarity comparison can only measure the extent of modification but does not effectively distinguish
between different types of modifications.

0.6 0.7 0.8 0.9 1.0

Cosine Similarity
0

10

20

30

40

50

60

De
ns

ity

Benign
Malicious
Cross

0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity
0

2

4

6

8

10
De

ns
ity

Minor
Moderate
Severe

Figure 6: Probability distributions: (a) MFCC embedding similarity to the original audio under
different modifications; (b) MFCC embedding similarity to the original audio at different tampering
levels.
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B.4 Evaluation on Semantic and Identity Changes under Benign and Malicious Operations

We evaluate the impact of different audio modifications on both semantic integrity and speaker
identity consistency. Semantic preservation is quantified using word error rate (WER) computed
from a pre-trained automatic speech recognition (ASR) model8, facebook/wav2vec2-base-960h,
a CTC-based ASR model. Speaker identity preservation is measured by cosine similar-
ity between embeddings extracted using the pre-trained speaker verification (SV) model9,
speechbrain/spkrec-ecapa-voxceleb.

As shown in Table 6, benign operations (e.g., compression, recording, resampling, noise suppression)
result in low WER (≤8.24) and high identity similarity (≥0.78), indicating that they largely preserve
both semantic content and speaker identity.

In contrast, malicious operations introduce substantial degradation. WER increases steadily with
the severity of deletion, splicing, silencing, and substitution, reflecting significant semantic changes.
These operations, however, generally maintain high identity similarity because they retain the original
timbre. Notably, voice conversion results in relatively low WER, but significantly reduces identity
similarity (41.60%), since it deliberately alters the speaker’s timbre.

To further investigate the nonzero WER observed under benign operations, we manually examined
the ASR outputs. Most transcription errors were minor substitutions or alignment shifts that did not
affect the overall meaning. This suggests that the observed WER in these cases reflects limitations of
the ASR model and metric sensitivity rather than genuine semantic distortion.

Table 6: WER and Identity Similarity under Different Operations
Operation WER % Identity Similarity %
Benign Operations
Compression 1.15 95.60
Recoding 0.26 99.99
Resampling 6.87 78.00
Noise suppression 8.24 94.52

Malicious Operations
Deletion (minor) 21.65 99.04
Deletion (moderate) 40.20 96.84
Deletion (severe) 62.32 93.29
Splicing (minor) 31.24 99.00
Splicing (moderate) 52.45 97.35
Splicing (severe) 78.36 96.55
Silencing (minor) 30.76 98.16
Silencing (moderate) 53.79 90.13
Silencing (severe) 75.74 75.96
Substitution (minor) 23.22 98.33
Substitution (moderate) 48.12 94.36
Substitution (severe) 63.03 90.72
Reordering 69.55 99.53
Text-to-speech - -
Voice conversion 8.60 41.60

8https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec
9https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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B.5 Results of Fine-Grained Malicious Operations Rejection

Table 7: Results of fine-grained malicious operation rejection on VoxCeleb and LibriSpeech.

Operation VoxCeleb LibriSpeech Semantic Identity
TNR FNR AUC EER TNR FNR AUC EER

Deletion (minor) 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.00 ✗ ✓
Deletion (moderate) 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.00 ✗ ✓
Deletion (severe) 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.00 ✗ ✓
Splicing (minor) 1.00 0.00 1.00 0.00 0.99 0.16 0.98 0.06 ✗ ✓
Splicing (moderate) 1.00 0.00 1.00 0.00 0.99 0.07 0.99 0.03 ✗ ✓
Splicing (severe) 1.00 0.01 1.00 0.01 0.99 0.01 1.00 0.01 ✗ ✓
Silencing (minor) 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.00 ✗ ✓
Silencing (moderate) 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.00 ✗ ✓
Silencing (severe) 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.02 ✗ ✓
Substitution (minor) 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.01 ✗ ✓
Substitution (moderate) 1.00 0.00 1.00 0.00 0.99 0.00 1.00 0.01 ✗ ✓
Substitution (severe) 0.99 0.00 1.00 0.00 0.99 0.00 1.00 0.00 ✗ ✓
Reordering 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.00 ✗ ✓
Text-to-speech 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 ✗ ✓
Voice conversion 1.00 0.00 1.00 0.00 0.98 0.00 1.00 0.01 ✓ ✗

Overall 1.00 0.00 1.00 0.00 0.99 0.02 1.00 0.01 - -

B.6 Watermarked Speech Quality

Table 8: Audio quality metrics.
Methods SI-SNR PESQ STOI LSD
SpeechVerifier 25.14 4.28 0.998 0.111

We evaluate the perceptual quality of watermarked speech using four objective metrics. (1)Scale-
Invariant Signal to Noise Ratio (SI-SNR) quantifies waveform-level distortion in decibels (dB).
Higher values indicate less distortion. (2)Perceptual Evaluation of Speech Quality (PESQ) [24] ranges
from 1.0 (poor) to 4.5 (excellent), and reflects perceived speech quality. (3)Short-Time Objective
Intelligibility (STOI) [28] ranges from 0 to 1, with higher values indicating better intelligibility.
(4)Log Spectral Distance (LSD) measures spectral deviation between original and watermarked
speech, lower values indicate greater spectral fidelity.

As shown in Table 8, our proposed SpeechVerifier has little perceptual degradation. The high SI-
SNR and PESQ scores, along with near-perfect intelligibility (STOI) and low spectral error (LSD),
demonstrate that the watermarking process preserves both fidelity and intelligibility, making it suitable
for practical deployment.

B.7 Ablation Studies

SpeechVerifier consists of four core modules: an acoustic feature encoder, a multiscale feature
extractor, an attentive pooling module, and a contrastive learning objective. To assess the contribution
of each module, we conduct ablation studies by replacing each module with alternatives and evaluating
the performance.

For the feature encoder, we compare handcrafted Mel-Frequency Cepstral Coefficients (MFCC) with
deep speech representations obtained from a pretrained wav2vec model. To evaluate the impact
of the multiscale feature extractor, we remove the multiscale pooling, directly use the output of
BiLSTM. For temporal pooling, we substitute attentive pooling with average pooling. Regarding the
loss function, we compare InfoNCE with Triplet Loss, which are widely used in contrastive learning.

As shown in Table 9, each module contributes to the overall performance. Replacing the wav2vec
encoder with handcrafted MFCC features results in only a slight performance drop, suggesting that
MFCC can also serve as a lightweight alternative. Removing the multiscale feature extractor leads
to a significant degradation, indicating the importance of extracting both global and local temporal
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patterns. Substituting attentive pooling with average pooling reduces performance, indicating that the
attention mechanism provides better frame selection for embedding generation. Finally, replacing
InfoNCE with Triplet Loss results in a substantial performance decline, demonstrating that InfoNCE
is more effective for learning discriminative embeddings in our task.

Table 9: Ablation studies on acoustic feature encoder, feature extractor, temporal pooling scheme,
and loss function.

Method Variant TPR FPR AUC EER
SpeechVerifier (wav2vec→MFCC) 0.9979 0.0021 0.9999 0.0021
SpeechVerifier (Multiscale→ w/o Multiscale) 0.7443 0.1224 0.8847 0.1958
SpeechVerifier (AttentivePooling→ AvgPooling) 0.9875 0.0163 0.9988 0.0144
SpeechVerifier (InfoNCEloss→ TripletLoss) 0.8594 0.0146 0.9577 0.1073
SpeechVerifier 0.9979 0.0016 1.0000 0.0013

B.8 Visualization of Multiscale Feature Extraction

Anchor Positive Negative

Figure 7: t-SNE visualizations of speech samples (after training).
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C Limitations and Broader Impact

C.1 Limitations

While SpeechVerifier demonstrates strong robustness to benign audio operations and effective detec-
tion of malicious tampering, there are several aspects that can be further improved:

• SpeechVerifier currently identifies whether an audio has been tampered with, but does not
localize the exact region of tampering. Future work could explore providing localized
detection for more precise forensic analysis.

• Although we have performed cross-dataset evaluation using LibriSpeech, our experiments
mainly focus on English speech under relatively clean conditions. The generalization of
SpeechVerifier to noisy, multilingual, and more diverse real-world tampering operations
needs further investigation.

• SpeechVerifier assumes that the input audio is sufficiently long (≥ 2s) to support segment-
wise watermark embedding and extraction. For very short audio clips, the process of
embedding and extracting watermarks may become unreliable. Moreover, such short clips
often lack meaningful semantic content and offer limited value for tampering, making pro-
tection less critical in practice. However, to extend the applicability of SpeechVerifier, future
work is needed to explore more reliable verification methods for short speech segments.

C.2 Broader Impact

SpeechVerifier aims to proactively protect the integrity of publicly shared speech content. By detecting
audio tampering and impersonation attacks, it can effectively mitigate the spread of misinformation,
safeguard individual reputations, and uphold public trust in digital media. Furthermore, since
SpeechVerifier operates without relying on external references or original recordings, it substantially
reduces verification costs and enhances scalability.
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