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Abstract—Federated Learning (FL) has emerged as a critical
paradigm for enabling privacy-preserving machine learning,
particularly in regulated sectors such as finance and healthcare.
However, standard FL strategies often encounter significant
operational challenges related to fault tolerance, system resilience
against concurrent client and server failures, and the provision
of robust, verifiable privacy guarantees essential for handling
sensitive data. These deficiencies can lead to training disruptions,
data loss, compromised model integrity, and non-compliance with
data protection regulations (e.g., GDPR, CCPA). This paper
introduces Differentially Private Resilient Temporal Federated
Learning (DP-RTFL), an advanced FL framework designed to
ensure training continuity, precise state recovery, and strong data
privacy. DP-RTFL integrates local Differential Privacy (LDP) at
the client level with resilient temporal state management and
integrity verification mechanisms, such as hash-based commit-
ments (referred to as Zero-Knowledge Integrity Proofs or ZKIPs
in this context). The framework is particularly suited for critical
applications like credit risk assessment using sensitive financial
data, aiming to be operationally robust, auditable, and scalable
for enterprise AI deployments. The implementation of the DP-
RTFL framework is available as open-source [1].

Index Terms—Federated Learning, Resilient Systems, Differen-
tial Privacy, Temporal State Management, Integrity Verification,
Information Theory, Regulatory Compliance, Fault Tolerance,
Credit Risk Assessment, Secure AI, Trustworthy AI, Enterprise
AI, Banking Technology.

I. INTRODUCTION

Federated Learning (FL) enables collaborative AI model de-
velopment across distributed data sources without centralizing
sensitive raw data [2]. This paradigm is particularly promising
for industries like finance and healthcare, which handle highly
sensitive information and are subject to strict data privacy
regulations. Despite its potential, the widespread adoption
of FL in mission-critical sectors is hindered by significant
challenges, primarily operational resilience against concurrent
client and server failures, and the lack of robust, verifiable
privacy guarantees. Standard FL systems may suffer training
disruptions, data loss, and model integrity issues, and often
struggle to comply with data protection mandates such as
GDPR [3] and CCPA.

To address these deficiencies, we propose Differentially
Private Resilient Temporal Federated Learning (DP-RTFL).
DP-RTFL is a comprehensive framework designed for contin-
uous, auditable, and privacy-preserving training on sensitive

datasets, such as financial records for credit risk assessment
(e.g., the Credit Card Approval Prediction dataset from Kaggle
[4]). Our approach enhances the original Resilient Temporal
Federated Learning (RTFL) concept by deeply integrating
Local Differential Privacy (LDP) at the client level. This
ensures that individual contributions to model updates are
cryptographically protected before aggregation, complement-
ing the framework’s inherent resilience capabilities. The soft-
ware implementation and experimental code for DP-RTFL are
publicly available [1].

The key contributions of DP-RTFL include:

• Local Differential Privacy (LDP) Integration: Client-side
application of (ϵ, δ)-Differential Privacy to model updates,
formally limiting information leakage about individual data
records and supporting regulatory compliance.

• Temporal Checkpoint Manifold (TCM): A distributed,
chronologically ordered log of global model states and client
contributions, allowing precise rollback for recovery and
auditability.

• Differential State Synchronization (DSS): Clients transmit
only model parameter changes (deltas), reducing communi-
cation overhead, which is especially crucial when updates
are expanded by DP noise.

• Adaptive Role Reassignment Protocol (ARRP): A dy-
namic protocol enabling eligible clients to assume coordi-
nation duties if the central server fails, ensuring training
continuity.

• Zero-Knowledge Integrity Proofs (ZKIP): A mechanism
(in this implementation, a hash-based commitment) accom-
panying model updates, allowing verification of integrity and
origin without revealing sensitive data, thereby enhancing
verifiability.

• Entropy-Based Corruption Detection (EBCD): Utilizes
information-theoretic principles (statistical moments) to
identify corrupted or anomalous model updates, even in the
presence of DP noise.

This paper details the DP-RTFL framework, its components,
system architecture, application to credit risk assessment, and
a comprehensive evaluation strategy.

https://arxiv.org/abs/2505.23813v1


II. RELATED WORK

Federated Learning, introduced by McMahan et al. [2],
laid the groundwork for distributed machine learning with
data decentralization. Kairouz et al. [5] provide an extensive
overview of advances and open problems in FL, highlighting
challenges in efficiency, robustness, and privacy.

The need for privacy in FL has led to the integration of
Differential Privacy (DP) [6], [7]. Local Differential Privacy
(LDP) is particularly relevant as it provides privacy guarantees
at the client level before data (or model updates) leave the
user’s device. Works such as Truex et al. [8] and Sun et al. [9]
have explored LDP in FL, though practical implementations
face challenges with utility and high dimensionality. DP-RTFL
aims to provide a practical LDP integration by carefully cali-
brating noise and combining it with other protective measures.

Resilience and fault tolerance are critical for enterprise FL
deployments. While some works focus on Byzantine fault tol-
erance in aggregation [10], [11], DP-RTFL’s ARRP addresses
server/coordinator failures, and its TCM provides a general
mechanism for state recovery from various faults. The concept
of temporal checkpointing for resilience is also explored in
distributed systems, although its specific application as a
manifold in FL, as in TCM, is a nuanced contribution.

Integrity verification in FL is crucial. While full Zero-
Knowledge Proofs (ZKPs) can offer strong guarantees for
verifiable computation in machine learning (ZKML) [12], [13],
they can be computationally intensive. DP-RTFL employs a
lighter-weight hash-based commitment scheme as its ZKIP
component (zkip.py), akin to those used for data integrity
checks [14], to verify update authenticity and integrity from
known participants in a federated setup. Naseri et al. [15]
discuss the broader need for robust and verifiable FL.

Anomaly detection using statistical properties, such as
EBCD’s use of variance, kurtosis, and skewness (ebcd.py),
draws from established statistical process control and data
mining techniques [16], [17]. Adapting these for noisy, high-
dimensional model parameter distributions in DP-FL is a
specific challenge that EBCD addresses.

DP-RTFL distinguishes itself by holistically combining
these elements—LDP, temporal resilience, adaptive coordi-
nation, hash-based integrity proofs, and information-theoretic
anomaly detection—into a unified framework tailored for
regulated industries.

III. THE DP-RTFL FRAMEWORK

DP-RTFL is designed with several key components working
in concert to provide a robust, private, and auditable FL
environment. These modules, illustrated conceptually in the
overall system architecture (see Figure 1), interact to deliver
the framework’s capabilities.

A. Local Differential Privacy (LDP)

LDP is applied client-side to protect individual data contri-
butions before model updates are sent to the aggregator.
• Mechanism: Each client, after local training with libraries

like scikit-learn for model implementation and NumPy for

numerical operations (fl_client.py), computes model
parameter deltas. These deltas are then privatized using
an (ϵ, δ)-Differential Privacy mechanism. This involves L2
norm clipping of the deltas, followed by the addition of
Gaussian noise calibrated to the sensitivity of the clipped
deltas and the chosen privacy budget (ϵ, δ).

• Purpose: This ensures that the server or any other entity
cannot infer significant information about any individual’s
data from their (noisy) model update, which is crucial for
regulatory compliance and user trust.

• Configuration: The privacy budget (ϵ, δ) and clipping norm
are configurable per client or per round, allowing a trade-off
between privacy and model utility.

Algorithm 1 outlines the client-side LDP process, as imple-
mented in fl_client.py.

Algorithm 1 Client-Side LDP for Model Deltas

1: Input: Local model parameters θlocal, base model param-
eters θbase, L2 clip bound C, privacy budget (ϵ, δ)

2: Compute delta: ∆← θlocal − θbase (via DSS)
3: Compute L2 norm: N2(∆)←

√∑
∆2

i

4: Clip delta: ∆clipped ← ∆ ·min(1, C/(N2(∆) + 1e-6))

5: Calculate noise stddev: σ ← C
√

2 ln(1.25/δ)

ϵ (if ϵ > 0)
6: Generate Gaussian noise: Noise ∼ N (0, σ2)
7: Add noise: ∆private ← ∆clipped +Noise
8: Output: Private delta ∆private

B. Temporal Checkpoint Manifold (TCM)

The TCM (tcm.py) provides robust, auditable, and pre-
cise recovery of global model states and training history.
It maintains a chronological log of all global model states,
client update summaries (including DP parameters used), and
coordinator actions. Each entry is timestamped and hashed for
integrity, enabling precise rollback and providing comprehen-
sive audit trails.

C. Differential State Synchronization (DSS)

DSS (dss.py) aims to reduce communication overhead by
transmitting only model parameter deltas. Clients compute the
difference (delta) between their updated local model and the
global model received. Only this delta is transmitted, minimiz-
ing data transfer, especially when updates are expanded by DP
noise.

D. Adaptive Role Reassignment Protocol (ARRP)

ARRP (arrp.py) ensures uninterrupted training by dy-
namically reassigning the coordinator role if the central server
fails. It involves automatic detection of server failure and an
election process among eligible, active clients to select a new
coordinator, thereby providing seamless failover.

E. Zero-Knowledge Integrity Proofs (ZKIP)

The ZKIP component (zkip.py) in DP-RTFL uses a hash-
based commitment scheme. Each client generates a SHA256
hash of its serialized (noisy) model delta concatenated with a



shared secret. This proof accompanies the delta, allowing the
coordinator to verify its integrity and origin from a legitimate
participant without needing to know the original (pre-noise)
delta. This process ensures that updates are authentic and
untampered.

F. Entropy-Based Corruption Detection (EBCD)

EBCD (ebcd.py) detects potentially corrupted model up-
dates by monitoring statistical moments (variance, kurtosis,
and skewness) of model parameters. It establishes a dynamic
baseline from initial client models and flags deviations that
exceed a tolerance factor, helping identify anomalies beyond
expected DP noise. The use of such moments for anomaly
detection is a common technique in statistical analysis [17],
[16].

G. Early Stopping

Standard early stopping (earlystop.py) is employed at
client and server levels to prevent overfitting and improve
efficiency. It halts training or restores the best model if
validation performance (loss for clients, accuracy for server)
ceases to improve for a configurable patience period.

IV. THREAT MODEL AND ASSUMPTIONS

DP-RTFL operates under the following threat model:
• Clients: Assumed to be honest-but-curious regarding their

own data. However, a fraction of clients could be malicious
(Byzantine), attempting to degrade model performance or in-
tegrity. LDP provides protection against inference from their
updates regardless of server behavior. EBCD and ZKIPs aim
to mitigate impacts from overtly malicious updates.

• Server/Coordinator: The central server or an ARRP-
elected coordinator is assumed to be honest-but-curious. It
will follow the protocol but might attempt to infer infor-
mation about individual client data from received updates.
LDP is the primary defense against this. The server is also
a point of failure, addressed by ARRP and TCM.

• External Adversaries: May attempt to eavesdrop on com-
munication channels or compromise clients/server. Secure
communication channels (e.g., TLS, not explicitly part of
this framework’s core logic but assumed in a real de-
ployment) would be necessary. ZKIPs help ensure update
integrity against tampering in transit.

It is assumed that cryptographic primitives (hashing for ZKIP)
are secure and that the shared secret for ZKIP is managed
securely among legitimate participants.

V. SYSTEM ARCHITECTURE

The DP-RTFL system architecture is designed for modu-
larity and resilience. A conceptual overview, illustrating the
interaction between data sources, core FL processes, advanced
protocol modules, and reporting utilities, is presented in Fig-
ure 1. This diagram visually represents the system components
detailed in the project’s README.md file.

The main components are:

1) Data Sources: Distributed datasets,
e.g., application_record.csv and
credit_record.csv for credit risk from a source like
Kaggle [4].

2) Application Core (main.py): Orchestrates the simula-
tion, client/server instances, metrics collection, and inte-
grates all DP-RTFL components.

3) Federated Learning Process Components:
• FL Server Logic (fl_server.py): Manages aggrega-

tion, ZKIP verification, server-side EBCD, TCM, ARRP,
and global evaluation.

• FL Client Logic (fl_client.py): Handles local train-
ing, LDP, ZKIP generation, and DSS interaction.

• Data Utilities (data_utils.py): Data loading, pre-
processing, and client splitting.

4) Advanced FL Protocol Modules: TCM, DSS, ARRP,
ZKIP, EBCD, and Early Stopping, each implemented in
their respective Python files (e.g., tcm.py, dss.py).

5) Reporting (charting.py): Generates plots for metrics
visualization.

VI. METHODOLOGY AND EXPERIMENTAL SETUP

The DP-RTFL methodology encompasses data handling, the
federated training process, and simulation parameters.

A. Data Preparation and Distribution

The primary dataset used is the ”Credit Card
Approval Prediction” dataset from Kaggle [4],
which includes application_record.csv and
credit_record.csv. Preprocessing steps involve
merging these files; deriving a binary target variable for credit
risk (good/bad); handling missing values (median imputation
for numerical, mode for categorical); and transforming
features (e.g., DAYS_BIRTH to years, DAYS_EMPLOYED
to years of employment, and normalizing negative day
counts). Categorical features are one-hot encoded, and
numerical features are standardized using scikit-learn’s
ColumnTransformer and StandardScaler. The
processed data is split into a global training set and a test
set (80/20 split). The global training set is then distributed
(potentially non-IID) among NUM_CLIENTS. Clients may
further split their local data for validation.

B. Federated Training and Simulation

The simulation (main.py) runs for NUM_ROUNDS. In each
round:
1) The server (or ARRP coordinator) provides global parame-

ters. TCM is used for recovery if the server fails to provide
parameters.

2) Active clients (simulating potential dropouts) train a
local SGDClassifier model (from scikit-learn) for
CLIENT_EPOCHS.

3) Deltas are computed (DSS), privatized (LDP with
DP_EPSILON, DP_DELTA, DP_L2_NORM_CLIP), and a
ZKIP is generated.



Fig. 1: DP-RTFL Conceptual System Diagram. This diagram visually represents the architecture detailed in the project’s
README.md, showing data flow and component interactions (adapted from the project’s README.md).

4) The server verifies ZKIPs, aggregates valid deltas
(weighted by client data sizes), and updates the global
model.

5) EBCD checks the global model, and TCM logs the state.
6) Metrics (accuracy, F1-score, AUC, etc.) are collected.
Key parameters, such as NUM_CLIENTS=5,
NUM_ROUNDS=10, CLIENT_EPOCHS=3, and DP
parameters, are specified in main.py.

VII. EVALUATION METRICS AND EXPECTED RESULTS

The DP-RTFL framework is evaluated on several axes.

A. Privacy-Utility Trade-off

This is assessed by model performance (Accuracy, F1-score,
AUC-ROC on the test set) against varying DP budgets (ϵ, δ)
and L2 clipping norms.
• Expected Outcome: Figure 2 would show model conver-

gence. Higher privacy (lower ϵ) is expected to result in a
graceful degradation of utility. Figure 3, visualizing mean
DP noise standard deviation per round, should show higher
noise for stricter privacy budgets.

Fig. 2: Global Model Metrics (Accuracy, F1, AUC) per Round.
Expected to show convergence and impact of DP budget on
final performance.

B. Resilience and Recovery Precision

Training continuity under simulated failures and TCM re-
covery fidelity are key metrics.

Fig. 3: DP Noise Scale (Mean Stddev) per Round. Expected
to correlate with chosen privacy parameters (ϵ, δ).

• Expected Outcome: Figure 4 (plotting server status and
coordinator ID) should demonstrate ARRP’s ability to main-
tain a coordinator. Figure 5 (TCM states per round) should
show consistent logging. Successful TCM recovery from
a mid-training round, as simulated in main.py, would
validate recovery precision.

Fig. 4: Server Status and Coordinator ID per Round. Expected
to show ARRP’s dynamic role reassignment during simulated
failures.

Fig. 5: TCM State Count per Round. Expected to show steady
accumulation of states, vital for audit and recovery.



C. Communication, Integrity, and Anomaly Detection

The overhead of DSS, ZKIP, and EBCD effectiveness are
measured.
• Expected Outcome: Figure 6 (L2 norm of aggregated

deltas) would show update magnitudes. Figure 7 (ZKIP
failures per round) should be minimal in normal operation.
Figure 8 (variance, kurtosis, and skewness of global weights)
and Fig. 9 (EBCD alerts) should indicate stability and
detection of simulated anomalies.

Fig. 6: Aggregated Delta Norm (L2) per Round. Reflects the
magnitude of global model updates via DSS.

Fig. 7: ZKIP Proof Failures per Round. Expected to be low,
indicating update integrity.

Fig. 8: EBCD Statistics (Variance, Kurtosis, Skewness) per
Round. Monitors global model parameter distribution.

D. Training Stability and Auditability

Early stopping effectiveness and TCM’s audit trail com-
pleteness are assessed.
• Expected Outcome: Figure 10 (best validation accuracy

from server’s early stopping) should demonstrate prevention

Fig. 9: EBCD Alerts per Round. Indicates rounds where
potential anomalies were flagged.

of overfitting. The TCM logs themselves (content not plotted
but functionality tested by recovery) provide the basis for
auditability.

Fig. 10: Early Stopping: Best Server Validation Accuracy
per Round. Shows effectiveness in finding optimal training
duration.

Per-client plots (e.g., update norms, EBCD stats, ZKIP sta-
tus from charting.py) would offer granular insights into
individual client contributions and adherence to protocols.

VIII. LIMITATIONS

While DP-RTFL offers a comprehensive approach, certain
limitations exist:
• The ZKIP mechanism implemented is a hash-based commit-

ment, which relies on a shared secret and primarily ensures
integrity and authenticity from known participants, rather
than providing full zero-knowledge computational proofs
against arbitrary verifiers.

• The framework’s evaluation is currently simulation-based.
Real-world network conditions, diverse hardware, and true
adversarial behaviors might present additional challenges.

• The scalability of some components (e.g., TCM logging,
EBCD baseline establishment with many clients) needs
further testing in very large-scale federations.

• The choice of DP parameters (ϵ, δ, clipping bound) involves
a trade-off that might require careful tuning for specific
applications and datasets to achieve optimal privacy and
utility.

IX. ETHICAL CONSIDERATIONS

The development and deployment of FL systems, especially
in sensitive areas like finance, carry significant ethical respon-
sibilities.



• Privacy Preservation: LDP is a core component aiming
to protect individual financial data. However, the choice
of privacy parameters and the potential for re-identification
in high-dimensional sparse data, even with DP, must be
continually assessed.

• Fairness and Bias: FL models can inherit or even exac-
erbate biases present in distributed client data. While not
a direct focus of DP-RTFL’s current components, ensuring
fairness and mitigating bias in credit risk assessment models
is a critical ongoing concern that necessitates additional
mechanisms.

• Transparency and Auditability: TCM aims to provide
audit trails, contributing to transparency. Nevertheless, the
complexity of FL and DP can make full transparency to
end-users challenging.

• Security: While resilience and integrity are addressed, so-
phisticated attacks against FL systems represent an evolving
research area.

Continuous vigilance and adherence to ethical AI principles
are necessary throughout the lifecycle of such systems.

X. CONCLUSION

DP-RTFL presents a holistic framework for conducting
Federated Learning in environments with stringent require-
ments for privacy, resilience, and verifiability. By integrating
Local Differential Privacy, Temporal Checkpoint Manifolds,
Differential State Synchronization, Adaptive Role Reassign-
ment, hash-based integrity proofs (ZKIP), and Entropy-Based
Corruption Detection, DP-RTFL addresses critical operational
challenges that have historically hindered FL adoption in
sensitive domains like finance and healthcare.

The framework’s design emphasizes training continuity,
precise state recovery, and formal data privacy guarantees, ren-
dering it suitable for applications such as credit risk assessment
using sensitive financial data. The potential scientific impact
lies in advancing trustworthy distributed AI. Practically, DP-
RTFL aims to enable FL adoption for high-stakes applications
by satisfying regulatory compliance and reducing operational
risks.

Future work will focus on extending LDP schemes and ex-
ploring advanced privacy accounting. Investigation into more
sophisticated, yet practical, ZKP constructions is warranted.
Extensive testing in enterprise-grade environments with di-
verse datasets is crucial. Exploring fairness-aware mechanisms
within the DP-RTFL framework and adapting components for
emerging hardware, such as confidential computing enclaves,
are other promising directions. Addressing the identified lim-
itations, particularly concerning real-world deployment com-
plexities and advanced adversarial scenarios, will be key to
maturing the framework.
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