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Abstract
Phishing email detection faces critical challenges from evolving
adversarial tactics and heterogeneous attack patterns. Traditional
detection methods, such as rule-based filters and denylists, often
struggle to keep pace with these evolving tactics, leading to false
negatives and compromised security. While machine learning ap-
proaches have improved detection accuracy, they still face chal-
lenges adapting to novel phishing strategies. We present Multi-
PhishGuard, a dynamic LLM-based multi-agent detection system
that synergizes specialized expertise with adversarial-aware re-
inforcement learning. Our framework employs five cooperative
agents (text, URL, metadata, explanation simplifier, and adversarial
agents) with automatically adjusted decision weights powered by a
Proximal Policy Optimization reinforcement learning algorithm. To
address emerging threats, we introduce an adversarial training loop
featuring an adversarial agent that generates subtle context-aware
email variants, creating a self-improving defense ecosystem and
enhancing system robustness. Experimental evaluations on public
datasets demonstrate that MultiPhishGuard significantly outper-
forms Chain-of-Thoughts, single-agent baselines and state-of-the-
art detectors, as validated by ablation studies and comparative
analyses. Experiments demonstrate that MultiPhishGuard achieves
high accuracy (97.89%) with low false positive (2.73%) and false
negative rates (0.20%). Additionally, we incorporate an explanation
simplifier agent, which provides users with clear and easily under-
standable explanations for why an email is classified as phishing or
legitimate. This work advances phishing defense through dynamic
multi-agent collaboration and generative adversarial resilience.
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• Security and privacy; • Computing methodologies → Multi-
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1 Introduction
Phishing remains one of the most persistent and damaging threats
in cybersecurity, serving as a primary vector for data breaches
and financial losses. The Anti-Phishing Working Group (APWG)
reported a rise in phishing attacks from 877,536 in Q2 to 932,923
in Q3 2024 [2]. Phishing attacks have grown increasingly sophisti-
cated over recent years [4]. These attacks have evolved from simple,
deceptive messages to social engineering [30], spear-phishing [20],
and even AI-driven content generation [50] to closely mimic legiti-
mate communications. According to Verizon’s 2024 Data Breach
Investigations Report [58] and Proofpoint [43], phishing remains a
top breach cause, with many attacks bypassing traditional filters.
Together, these findings underscore the need for adaptive, resilient
phishing detection systems to handle diverse attack strategies.

Traditional phishing detectionmethods have relied on rule-based
filters and denylists [29], which are limited by their inability to keep
pace with evolving attacker strategies such as domain spoofing,
dynamic URL obfuscation, and context-aware social engineering.
Static machine learningmodels, while more adaptable, often depend
on predefined features and historical data, making them ineffective
against novel or subtle threats. Deep learning approaches, includ-
ing CNNs, RNNs, and pre-trained models like BERT [14], have
improved detection accuracy by capturing contextual language
cues. However, they tend to focus primarily on email text or URLs,
overlooking other modalities, and their “black-box” nature hin-
ders interpretability. More recently, LLM-based systems have been
proposed to analyze phishing emails using natural language under-
standing, showing promise in identifying nuanced patterns across
various attack types [3, 25, 47]. Despite their success, most LLM
approaches remain single-agent architectures that produce binary
outputs without transparent reasoning. They also lack adaptability
[50], as they are not optimized to learn from advanced attacks, such
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Figure 1: MultiPhishGuard Detection Pipeline. Incoming
emails are pre-processed and evaluated in parallel by a suite
of specialized LLM agents—each focused on a different phish-
ing signal (metadata, message body, and URLs). Every agent
outputs a verdict, a confidence score, and a detailed rationale.
An explanation simplifier agent then consolidates those ra-
tionales into a single, clear, plain-language explanation. The
result is a robust, accurate, and interpretable phishing verdict
that outperforms traditional detection systems.

as spear phishing [7]. These limitations underscore the need for a
multi-modal, explainable, and adaptive detection framework that in-
tegrates diverse data sources and provides users with interpretable,
evidence-based decisions.

To address these limitations, we propose MultiPhishGuard, an
LLM-based multi-agent system that integrates diverse detection
modalities (text/URL/metadata) to enable comprehensive phishing
email detection with transparent reasoning. As illustrated in Fig-
ures 1 and 2, our approach leverages LLMs not only to examine
email content but also to scrutinize embedded URLs and metadata,
thereby capturingmalicious cues that single-modality systems often
miss. By distributing specialized tasks among distinct agents, each
focused on a specific aspect of the email, the system dynamically
fuses its outputs through reinforcement learning. This design signif-
icantly reduces false positives and enhances the system’s ability to
adapt to emerging phishing tactics, ensuring robust and real-time
threat assessments in an ever-evolving cybersecurity landscape.
Our main contributions are as follows:

• We develop MultiPhishGuard, a novel LLM-based multi-
agent system for phishing email detection that integrates di-
verse modalities—analyzing email message body, embedded
URLs, and metadata—to capture malicious cues that tradi-
tional, single-modality detectors often miss. To the best of
our knowledge, MultiPhishGuard is the first to utilize multi-
ple LLM agents to deal with phishing emails. We also include
our code as supplementary material for reproducibility.

• We incorporate adversarial training into our framework by
deploying an adversarial agent that generates subtle variants
of both phishing and legitimate emails. This approach further
strengthens the system’s robustness and resilience.

• We introduce an explanation simplifier agent that consoli-
dates and distills the rationales from the text, URL, and meta-
data agents into a concise, jargon-free explanation, mak-
ing decisions accessible to non-experts, and—we expect—
building user trust.

• We evaluated our model on six public datasets, achieving
a 95.88% 𝐹1score. This demonstrates robust performance
across diverse, real-world scenarios.

2 Background and Related Work
Phishing Email Detection. Traditional phishing detection meth-
ods initially relied on heuristic rules [26], denylists [55], and signature-
based filtering [29]. With the advancement of machine learning,
ML algorithms have increasingly been applied to detect phishing
emails. For example, [10] converts textual content into TF-IDF fea-
ture representations and trains classifiers such as random forests.
With the emergence of deep learning, researchers have advanced
these approaches by employing neural networks that automatically
learn complex patterns from emails. For instance, researchers refor-
mulated phishing email detection as text classification problems by
leveraging pre-trained language models like BERT to identify phish-
ing emails [38]. Despite these advances, key limitations remain in
addressing evolving phishing strategies. The existing methods usu-
ally focus on a single modality and lack the adaptability to counter
rapidly evolving phishing tactics [19, 24, 32, 59]. In contrast, our
MultiPhishGuard fills these gaps by utilizing a multi-agent sys-
tem to integrate diverse modalities to capture the phishing cues in
emails.
Reinforcement Learning. Reinforcement learning (RL) enables
systems to adaptively optimize decisions in dynamic environments
by continuously adjusting parameters based on feedback. Founda-
tional work by Sutton and Barto [57] established the theoretical
basis for RL, which has since driven advancements across domains.
Early models like Deep Q-Networks (DQN) [36] and Deep Deter-
ministic Policy Gradient (DDPG) [27] showed how agents can learn
effective policies through interaction, while later methods such as
Proximal Policy Optimization [54] improved stability and efficiency.
These approaches offer a key advantage over static models by dy-
namically tuning parameters in real-time. In MultiPhishGuard, RL
is integrated into a multi-agent framework to dynamically adjust
agent weights based on the characteristics of each email, enhancing
coordinated decision-making and improving adaptability in the
face of evolving phishing threats.
Adversarial Training. Adversarial training has emerged as a key
strategy for enhancing the robustness of machine learning models,
especially in cybersecurity applications where even minor pertur-
bations can lead to severe security breaches. The seminal work by
Goodfellow et al. [17] demonstrated that by incorporating adversar-
ial examples—carefully crafted inputs designed to mislead a model—
into the training process, neural networks can become significantly
more resistant to such attacks. The researchers also use adversarial
examples to simulate the evolving tactics of attackers to expose
vulnerabilities in static models [6, 22]. In the realm of cybersecurity,
adversarial training is particularly valuable because it not only im-
proves model robustness but also aids in reducing false negatives
by preparing systems to recognize and counteract sophisticated
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evasion techniques. By continuously challenging models with ad-
versarially perturbed data that mimic real-world attack scenarios,
these techniques ensure that detection systems remain adaptive
and effective against emerging threats. Such dynamic defenses are
crucial in an environment where attackers persistently update their
strategies, underscoring the importance of adversarial training in
developing resilient cybersecurity solutions. Our model utilizes the
adversarial agent to generate both phishing and legitimate emails
based on real-world emails, thereby enhancing its robustness and
demonstrating its resilience against evolving threats.
Interpretability. Interpretability—the degree to which a human
can understand the cause of a decision—is emerging as a criti-
cal requirement for deploying machine learning (ML) systems in
real-world environments. Explanations provided by models can
help users understand model behaviour and identify failure modes,
which in turn can affect trust and decision quality [48]. Regulatory
frameworks (e.g., GDPR’s “right to explanation”) increasingly man-
date transparency, making interpretability not only a best practice
but also a compliance requirement [18, 41].
LLM-based Multi-agent System. Multi-agent systems have long
been studied as an effective way to tackle complex tasks by decom-
posing them into smaller, specialized subtasks. Foundational work,
such as that by Shoham and Leyton-Brown [56], established theo-
retical frameworks showing how autonomous agents can interact,
cooperate, and even compete to achieve a collective goal. In recent
years, advances in multi-agent reinforcement learning—exemplified
by Lowe et al. [31]—have demonstrated that collaborative strate-
gies can significantly enhance performance in dynamic, mixed
cooperative-competitive environments. Recent developments in
LLMs have paved the way for LLM-based multi-agent systems and
demonstrated their effectiveness in handling complex, multi-faceted
tasks through collaborative specialization. For instance, the work
on generative agents by Park et al. [40] illustrates how LLM-based
agents can simulate intricate human behaviors and collaboratively
solve problems by dividing tasks and dynamically coordinating their
outputs. Thematic-LM [44] uses an LLM-based multi-agent system
to perform large-scale thematic analysis, enhancing diversity, scala-
bility, and interpretability in qualitative coding. Such systems effec-
tively harness individual agents’ complementary strengths—each
focusing on different modalities or subtasks to achieve superior
performance compared to single-agent approaches. Building on
these insights, our MultiPhishGuard integrates multiple LLM-based
agents to enhance phishing email detection.

3 MultiPhishGuard
Our proposed methodology leverages an LLM-based multi-agent
system to enhance phishing email detection through a dynamic,
adaptive, and explainable approach. As shown in Figure 2, the
framework consists of several specialized agents, each focusing on
distinct aspects of email analysis. By integrating multiple agents,
dynamically adjusting their influence using reinforcement learning,
and incorporating adversarial training, our model improves detec-
tion accuracy and robustness while providing clear, user-friendly
explanations. This approach effectively mitigates the limitations
of static, single-modality detectors, offering a more robust defense
against phishing threats.

3.1 Basic Agents
Our phishing detection framework is built upon an LLM-based
multi-agent system, where each agent specializes in analyzing dif-
ferent parts of an email. Unlike single-agent approaches that target
only one modality (e.g., text, URL, or metadata) [19, 24, 59], our
system leverages multiple perspectives to improve detection accu-
racy and robustness. Each agent operates independently, providing
its own phishing verdict, confidence score, and reasoning. These
outputs are then dynamically fused using reinforcement learning
to produce a final classification. The agents are built using AutoGen
[61]. Our system comprises three main components: a text analysis
agent, a URL analysis agent, and a metadata analysis agent.
Text Analysis Agent: The text agent leverages an LLM to thor-
oughly analyze the email body, identifying suspicious patterns,
phishing keywords, and any textual indicators of malicious intent.
The prompt used by the agent is illustrated in Figure 3.
URL Analysis Agent: The URL agent extracts and scrutinizes all
links in the email, checking for obfuscation, evaluating domain
reputations, and detecting potential redirections to malicious sites.
The prompt used by this agent is presented in Appendix A (Figure
6). The main difference between the prompts used by the URL and
text agents is that the former is tailored to focus exclusively on
suspicious URLs, while the latter analyzes only the textual content.
Metadata Analysis Agent: The metadata agent examines email
headers, sender authentication records (e.g., SPF, DKIM, DMARC),
and reply-to fields to identify anomalies that may signal phishing at-
tempts. The corresponding prompt is shown in Appendix A (Figure
7). Unlike the text and URL agents, which focus respectively on the
email body and embedded links, the metadata agent is specifically
instructed to analyze only the metadata.

Each agent processes the email independently and generates a
structured output containing (1) a phishing vs. legitimate label, (2)
a phishing possibility score, and (3) a rationale for its decision.

As shown above, we adopted the same prompt format for the Text
Agent, URL Agent, and Metadata Agent. This design was chosen
to precisely define each agent’s scope, structure its reasoning, and
generate machine-readable output—drawing on best practices from
the prompt engineering literature.

The prompts begin with “You are a cybersecurity expert spe-
cializing in phishing,” reflecting the “system message” approach
used in InstructGPT [39], which has been shown to significantly
improve task adherence by clearly defining the model’s role and
focus area. By explicitly restricting the analysis to the email body
(“Only focus on the email text; do not analyze URLs or metadata”),
we prevent cross-modal interference and promote agent specializa-
tion [40]—an approach also supported in multi-agent frameworks
for complex tasks. Additionally, requiring the output in JSON for-
mat ({’verdict’: ..., ’confidence’: ..., ’rationale’:
...}) aligns with structured prompting principles recommended
by Toolformer [53], enabling consistent integration, streamlined
automated evaluation, and reliable downstream parsing.
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Figure 2: MultiPhishGuard Architecture. An Adversarial Agent generates subtle variants of both phishing and legitimate emails.
For each email, three specialized sub-agents—the Text Agent (analyzes the message body), the URL Agent (inspects embedded
links), and the Metadata Agent (evaluates header fields, reply-to fields, and sender authentication records)—each produces
an agent report consisting of a verdict (phishing vs. legitimate), a confidence score, and a rationale. The verdict, confidence
score, and extracted email features feed into a Proximal Policy Optimization (PPO) module. During training, PPO updates the
sub-agents’ weights to improve detection accuracy; during testing, it uses the optimized weights to estimate phishing likelihood.
Finally, a Rationale Simplifier Agent consolidates the individual rationales into concise, user-friendly explanations.

You are a cybersecurity expert specializing in phishing,
with a particular focus on email text content. Your task
is to examine the email body exclusively for phishing
cues—such as abnormal language patterns, suspicious
vocabulary, or any textual indicators of malicious intent.
Do not analyze URLs or metadata, only focus on the email
text. Provide your judgment on whether the email is
‘Phishing’ or ‘Legitimate’, along with a confidence score
between 0 and 1 and a clear, concise explanation of your
reasoning. Output your result in JSON format as: ‘verdict’:
‘Phishing’ or ‘Legitimate’, ‘confidence’: 0-1, ‘reasons’:
‘...’

Figure 3: Text Agent’s Prompt

3.2 Dynamic Weight Adjustment
Our framework employs an RL-based mechanism to dynamically
adjust the weights of outputs from various specialized agents, ensur-
ing that each email is evaluated according to its unique characteris-
tics. Instead of relying on fixed weights, our system continuously
learns to assign optimal importance to the analyses provided by
the text, URL, and metadata agents. For each email, these agents
generate independent predictions along with confidence scores. In
addition, the RL module receives a vector of email-specific features
that are extracted during preprocessing, including the number of
URLs present, key phishing keywords in the text, sender domain
reputation scores, authentication results (SPF/DKIM/DMARC), and
the individual confidence scores provided by each agent.

Concretely, let each agent 𝑖 produce a prediction probability 𝑝𝑖
along with a confidence score, and let the weight assigned to that
agent be𝑤𝑖 (with

∑
𝑖 𝑤𝑖 = 1). The final phishing score𝑦 is computed

as a weighted sum of the agents’ predictions:

𝑦 =

𝑁∑︁
𝑖=1

𝑤𝑖 · 𝑝𝑖 .

To optimize these weights dynamically, our system employs
Proximal Policy Optimization (PPO), an efficient policy gradient
method known for its stability and reliability in updating policies.
We chose PPO over other reinforcement learning algorithms for
several key reasons. First, PPO’s clipped surrogate objective pro-
vides a simple yet effective way to enforce a “trust region” on policy
updates, ensuring that each gradient step remains within a safe
bound and preventing the large, destabilizing policy swings that can
occur with vanilla policy gradients or Advantage Actor Critic (A2C).
Second, PPO naturally handles continuous action spaces—such as
our weight vectors—without requiring complex discretization or Q-
function approximations, unlike DQN or DDPG. Third, compared
to more complex trust-region methods like TRPO, PPO is far easier
to implement and tune, with fewer hyperparameters and lower
computational overhead. Finally, PPO has demonstrated strong
empirical performance and sample efficiency across a wide range
of continuous control and decision-making tasks, making it a ro-
bust, reliable choice for dynamically optimizing our multi-agent
weighting scheme.

The PPO’s clipped surrogate objective function is given by:

𝐿(𝜃 ) = E
[
min

(
𝑟 (𝜃 )𝐴, clip(𝑟 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴

)]
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where 𝑟 (𝜃 ) = 𝜋𝜃 (𝑤 |𝑥 )
𝜋𝜃old (𝑤 |𝑥 ) is the probability ratio between the current

and previous policies,𝐴 is the estimated advantage, and 𝜖 is a small
hyperparameter to limit policy updates. The “clip” is a mechanism
that limits how much the probability ratio 𝑟 (𝜃 ) can change during
an update, ensuring that each policy update remains within a spec-
ified range. Concretely, the clip function takes the ratio 𝑟 (𝜃 ) and
forces it to lie between 1 − 𝜖 and 1 + 𝜖 . This prevents large policy
changes by effectively “clipping” the advantage, 𝐴 when the new
policy deviates excessively from the old policy. This formulation
ensures that the weight updates remain within a bounded range,
promoting stable learning.

In our implementation, the RL module treats the weights 𝑤 =

[𝑤1,𝑤2, . . . ,𝑤𝑁 ] as actions drawn from a policy 𝜋𝜃 (𝑤 |𝑥), where
𝑥 represents email-specific features (e.g., number of URLs and key
phishing keywords in the text). The objective is to maximize the
expected reward 𝐸 [𝑟 ], and the reward function is the accuracy
of the final classification. Through iterative feedback and reward
optimization, PPO allows the system to refine its weighting strategy,
continuously adapting to subtle and evolving phishing patterns.

This dynamic weighting strategy not only enhances detection
accuracy but also mitigates false positives by tailoring the influence
of each modality based on context. For example, when an email
contains suspicious links, the model may prioritize URL analysis,
whereas it may focus on metadata if the sender information appears
inconsistent. The PPO-based RL module continuously optimizes
these weight adjustments, ensuring that the detection framework
remains robust against a wide range of phishing tactics. Conse-
quently, our approach provides a resilient and adaptive solution
that refines its performance in real-time, maintaining high accuracy
even as attackers evolve their strategies.

3.3 Explanation Simplifier Agent
To enhance user understanding and trust in phishing email detec-
tion, our framework incorporates an explanation simplifier agent.
Unlike traditional models that output only binary labels (phishing
or legitimate), or systems that pair labels with confidence scores
but offer little to no explanation, our system generates clear, user-
friendly explanations that summarize why an email was flagged
as phishing. This feature is particularly valuable for non-expert
users, security analysts, and organizations that require interpretable
results for decision-making and cybersecurity awareness training.

Given that our multi-agent system analyzes email text, URLs, and
metadata separately, each agent outputs an independent decision
with its own confidence score and technical reasoning. However,
presenting these raw rationales can be overwhelming for users
without cybersecurity expertise. To address this, the explanation
simplifier agent—illustrated in Figure 4—aggregates the multi-agent
outputs, extracts key insights, filters redundant or overly technical
details, and synthesizes them into a single, coherent explanation.

We carefully designed the Explanation Simplifier prompt to en-
force role clarity, factual consistency, and readability. The prompt
begins with “You are an expert in cybersecurity with deep expertise
in phishing,” following instruction-tuning strategies that improve
adherence to role-specific tasks [39]. The agent is instructed to
“synthesize detailed technical explanations . . . into one coherent,
plain-language explanation,” guiding it to unify varied reasoning

You are an expert in cybersecurity with deep expertise
in phishing. Your task is to take the detailed technical
explanations provided by the three specialized agents
(text, URL, and metadata) for why an email is classified
as phishing or legitimate, and synthesize them into one
coherent, reliable, and complete explanation written in
plain, everyday language. Ensure that your explanation
is truthful, meaningful, and based solely on factual
evidence—do not include any fabricated details. Avoid
technical jargon, simplify complex concepts, and provide
clear, concise reasons for the classification that
accurately reflect the underlying data.

Figure 4: Explanation Simplifier Agent’s Prompt

into a cohesive summary. We explicitly require that explanations
be “truthful ... based solely on factual evidence—do not include any
fabricated details,” ensuring factual integrity. Directives such as
“avoid technical jargon” and “provide clear, concise reasons” further
enhance accessibility.

The final explanation produced by the agent: (1) synthesizes
multi-agent insights into a single, coherent response; (2) eliminates
jargon to improve accessibility for non-technical users; (3) high-
lights critical phishing indicators, such as suspicious sender details,
deceptive language, or malicious links.

To support users with varying technical backgrounds, we also
introduce an Expert Mode, which delivers more detailed, techni-
cal explanations—complete with indicators of compromise, email
header analysis, and references to threat intelligence frameworks. In
addition, to validate the usability of our explanation simplifier agent
across different user groups, we plan to conduct user experiments
involving both non-expert and expert users. These evaluations are
considered future work and out of scope in this paper. We expect
that this dual-mode approach will not only foster user trust and cy-
bersecurity awareness across expertise levels but also facilitate both
everyday safety decisions and in-depth incident investigations.

3.4 Adversarial Training Module
To enhance the robustness of our phishing detection system, we
introduce an Adversarial Training Module that continuously chal-
lenges and refines the model against sophisticated evasion tactics.
At the core of this module is an adversarial agent—a GPT-4o-based
large language model—tasked with generating nuanced variants
of both phishing and legitimate emails. These variants are crafted
to bypass conventional detection methods while operating within
ethical and controlled boundaries. By exposing the detection model
to such adversarial examples, the system becomes increasingly
resilient to real-world threats and better equipped to recognize
emerging attack patterns.

Adversarial training is implemented as an iterative process in
which the adversarial agent serves as a generator, crafting challeng-
ing email variants that aim to evade current detection capabilities.
Unlike traditional adversarial approaches that rely on impercep-
tible perturbations, our agent subtly modifies existing emails to
mirror contemporary phishing tactics. These adversarial examples
are evaluated by a multi-agent detection model functioning as a
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You are an expert adversarial email generator. Your objective is to
produce a variant of the provided email that maintains the original
meaning and structure while incorporating subtle modifications
designed to bypass the phishing detectors. Depending on the type
of email provided, follow the corresponding instructions:

For phishing emails:

(1) Synonym Substitution: Replace keywords with synonyms (e.g.,
“verify” → “confirm”, “account” → “profile”, “free” →
“no money is needed”) so that the literal expression changes
while the meaning remains intact.

(2) Sentence Rewriting: Alter the sentence structure without
changing the underlying message (e.g., transform “Update
your account immediately” into “Please refresh your account
details at your earliest convenience”). Add decoy sentences
about customer support/legitimate services. Remove overt
threat indicators while maintaining urgency.

(3) Content Modification: Add or remove words and phrases as
needed; for example, insert a neutral sentence like “We hope
this email serves you well” or omit less critical content,
to change the text’s composition.

(4) Homoglyph Replacement: Substitute characters with
similar-looking counterparts (e.g., replace the letter “a”
in “paypal.com” with a Cyrillic “a” to disguise URLs while
retaining their recognizable form.

(5) Polymorphic Variation: Modifying aspects such as the
subject line, sender information, or overall format, thereby
simulating a diverse range of phishing attack styles.

For legitimate emails:

(1) Subtle Suspicious Modifications: Modify the email in ways
that make it appear more ambiguous or borderline suspicious
(e.g., incorporate slightly urgent language or modify the
subject line) without compromising its inherently benign
intent.

(2) Synonym Substitution and Sentence Rewriting: Use similar
techniques as above but ensure that the overall
message remains authentic and professional, even if the
modifications introduce elements that could potentially
confuse detection systems.

(3) Content Enhancement: Optionally insert additional phrases
that mimic some characteristics of phishing emails
(e.g., ambiguous urgency or formatting cues), while still
maintaining the legitimacy of the email.

(4) Polymorphic Variation: Adjust non-critical elements like
the layout or minor stylistic details to introduce natural
variability without altering the email’s genuine nature.

Output Requirements:

• For phishing emails, the final variant should retain the
malicious intent and target brand while evading detection.

• For legitimate emails, the final variant should remain
clearly benign and professional, yet include subtle
modifications that challenge the detector.

• Provide only the final modified email text and do not
disclose the modification details.

Figure 5: Adversarial Agent Prompt

discriminator, whose goal is to correctly classify each email as
phishing or legitimate. The adversarial agent seeks to maximize
the discriminator’s error by producing emails that are difficult to
detect, thereby encouraging the discriminator to adapt and improve.
This adversarial interplay fosters the learning of more robust fea-
tures and decision boundaries, significantly enhancing the model’s
defense against both legacy and advanced phishing strategies.

The adversarial agent generates phishing emails that closely
resemble authentic communications while intentionally avoiding
common phishing signatures. As illustrated in Figure 2, it does
this by modifying existing phishing emails, creating new deceptive

messages, and iteratively refining them based on feedback from
the detection model. In parallel, the agent also generates legitimate
email variants that subtly mimic phishing traits—without crossing
into malicious territory—to further stress-test the system’s ability
to make fine-grained distinctions. This dual-generation strategy
challenges the model from both ends, ensuring robustness even in
ambiguous cases.

This generation process is embedded within an iterative train-
ing loop driven by feedback from the detection model. Initially,
the adversarial agent produces adversarial samples—either crafted
phishing emails or perturbed legitimate messages—designed to
probe the classifier’s weaknesses. These samples are evaluated by
the detection model 𝑓 (𝑥 ;𝜃 ), which outputs classification labels
and confidence scores. If the model misclassifies a sophisticated
phishing attempt or incorrectly flags a benign email, the resulting
error signal is used to refine the agent’s strategy. Practically, this
involves tuning transformation parameters and adjusting prompt
instructions, forming a continuous loop of improvement.

This feedback loop is realized through periodic evaluation cycles,
during which newly generated adversarial examples are reintro-
duced into the system. This process not only strengthens the agent’s
generative capability but also fortifies the detection model against
a wider array of adversarial strategies.

Formally, let 𝑓 (𝑥 ;𝜃 ) denote the detection model, which outputs
the probability 𝑝 of an email 𝑥 being phishing. The adversarial
agent generates inputs 𝑥adv designed tomislead themodel.Whereas
traditional adversarial training perturbs an input as 𝑥adv = 𝑥 + 𝛿 ,
with ∥𝛿 ∥ ≤ 𝜖 , our approach leverages the agent’s generative power
to synthesize entirely new, context-aware adversarial examples that
reflect real-world evasion techniques.

As shown in Figure 5, the agent employs five key transformation
strategies: Synonym Substitution [51], Sentence Rewriting [62],
Content Modification, Homoglyph Replacement [1], and Polymor-
phic Variation [8]. These transformations preserve the semantic
intent and structure of the original message while introducing varia-
tions designed to circumvent detection mechanisms. An illustration
of this process is in Appendix B (Figure 8), where a legitimate email
is transformed into a challenging adversarial counterpart.

To prevent misuse and mitigate cybersecurity risks—especially
those associated with generating phishing-like content—the adver-
sarial emails produced during our experiments are not publicly
released and are used solely for internal testing and model refine-
ment.

By incorporating adversarial training, our phishing detection
system achieves several key benefits. It becomes more resistant to
common evasion strategies, such as URL obfuscation and subtle
social engineering cues, thereby reducing its vulnerability to ad-
versarial manipulation. Furthermore, the system generalizes more
effectively, enabling it to detect previously unseen phishing at-
tacks while accurately identifying perturbed but benign messages.
Most critically, the adversarial training framework ensures that
the detection model evolves alongside emerging phishing tactics,
maintaining high accuracy even as threat landscapes shift.

In summary, by embedding an LLM-driven Adversarial Training
Module that leverages strategic content transformations within an
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iterative feedback loop, our system attains robust and adaptive pro-
tection against evolving phishing techniques—ensuring resilience
and forward-looking effectiveness in a real-world deployment.

4 Experiments
We employ GPT-4o1 as our LLM agent, with JSON mode activated
to ensure a consistent and easy-to-evaluate output format. We
have selected GPT-4o for its stable API access and consistently
reliable performance. Its architecture integrates seamlessly with
AutoGen’s multi-agent framework, facilitating the development of
collaborative AI agents. A series of experiments were conducted
to evaluate MultiPhishGuard’s effectiveness in both identifying
phishing emails and generating well-reasoned explanations.

4.1 Datasets
We evaluate our proposed LLM-based multi-agent system using six
widely recognized datasets: the Nazario phishing corpus [37], the
Enron-Spam dataset [34], the TREC 2007 public corpus [12], the
CEAS 2008 public corpus [13], the Nigerian Fraud dataset [46], and
the SpamAssassin public corpus [42]. These datasets encompass a
diverse collection of phishing and legitimate emails, providing a
robust testbed for our detection framework.

TheNazario phishing corpus comprises Jose’s self-reported phish-
ing emails collected from 2005 to 2024. To ensure our model is tuned
to recognize the most recent phishing indicators, we selected only
the phishing emails from 2024, totaling 402 emails. Additionally,
the Nigerian Fraud dataset contains over 2,500 emails dating from
1998 to 2007; we chose the most recent subset from 2007, which
includes 577 emails. In contrast, the Enron-Spam dataset comprises
both spam and ham emails. Since our study specifically targets
phishing detection rather than general spam filtering, we used the
ham emails as examples of legitimate messages, randomly sam-
pling 1,500 emails for our experiments. To further demonstrate the
model’s transferability to other legitimate datasets, we randomly
selected 500 ham emails each from the TREC 2007 and CEAS 2008
public corpora. In addition, we selected 500 “hard ham” emails from
the SpamAssassin public corpus to ensure our model is capable of
accurately classifying even the most challenging legitimate emails.

Overall, MultiPhishGuard was evaluated on 979 phishing emails
and 3,000 legitimate emails—approximately 4,000 emails in total—
with a phishing-to-legitimate ratio of roughly 1:3.

4.2 Evaluation Metrics
4.2.1 Evaluation of Phishing Detection. To comprehensively evalu-
ate the performance of our phishing detection system, we utilize
several standard classification metrics, including Recall, Precision,
Accuracy, 𝐹1score, True Negative Rate (TNR), False Positive Rate
(FPR), False Negative Rate (FNR). These metrics provide insights
into the effectiveness of the model in correctly identifying phishing
emails while minimizing false detections. Explanations of these
metrics can be found in Appendix C.1. By incorporating these eval-
uation metrics, we ensure a balanced assessment of the model’s
performance, focusing not only on detection accuracy but also on
minimizing the risks of false positives (which disrupt users) and

1https://platform.openai.com/docs/models/gpt-4o

false negatives (which allow phishing attacks to succeed), which
are critical for maintaining both security and user experience.

4.2.2 Evaluation of Generated Rationale. In addition to evaluating
discriminative performance, we assess the quality of the expla-
nations generated by the explanation simplifier agent using both
automated metrics and human evaluation. Since interpretability
plays a crucial role in user trust and decision-making, we measure
the clarity, coherence, and readability of the generated explana-
tions through the Perplexity [23], Topic Coherence [49], and Flesch
Reading Ease Score [16]. Further explanations about these metrics
can be found in Appendix C.2. By combining these metrics, we en-
sure that our explanations are not only technically sound but also
clear, user-friendly, and informative, ultimately improving trust
and usability in phishing detection.

4.3 Comparative Evaluation
We perform a comparative evaluation of our proposed MultiPhish-
Guard against three alternative approaches—Chain of Thought, a
single-agentmodel, and the RoBERTa-base baseline—on the datasets
and evaluation metrics described in Sections 4.1 and 4.2.

While our primary analysis pools all datasets to evaluate overall
performance, Table 3 and Section 4.3.5 show comparisons broken
down by individual dataset.

4.3.1 MultiPhishGuard. The experiments were conducted within
a framework that integrates multiple specialized agents (text, URL,
and metadata) whose outputs are dynamically fused using a PPO-
based reinforcement learning module. Our framework also incor-
porates adversarial training to continuously challenge the system
and an explanation simplifier agent to provide clear, user-friendly
rationales for its phishing/legitimate classifications.

In our experiments, MultiPhishGuard demonstrated exceptional
performance on phishing detection tasks. Evaluated on a compre-
hensive dataset, as shown in Table 1, our system achieved a recall of
99.80% and a precision of 92.26%, resulting in an overall accuracy of
97.89% and an 𝐹1score of 95.88%. The true negative rate was equally
impressive at 97.27%, with a false positive rate of only 2.73% and a
false negative rate of 0.20%. These metrics confirm that MultiPhish-
Guard can effectively identify phishing emails while minimizing
both false alarms and missed detections.

Beyond detection performance, we also evaluated the quality of
the explanations generated by our system. As shown in Table 2, we
measured the fluency of the explanations using perplexity, which
was determined to be 25, indicating that the outputs are highly
fluent. To assess the semantic consistency of the topics within
the explanations, we calculated the topic coherence score, which
stood at 0.35. Additionally, the Flesch Reading Ease Score was 41,
suggesting that the explanations are moderately easy to read and
comprehend for a general audience. Overall, these results highlight
that MultiPhishGuard not only achieves outstanding discrimina-
tive performance but also provides clear, coherent, and accessible
explanations, which we expect would lead to enhanced user trust
and understanding.

4.3.2 Chain-of-Thoughts. We compared a chain-of-thought (CoT)
prompting approach against our proposed MultiPhishGuard sys-
tem. The CoT method leverages the ability of LLMs to articulate
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Table 1: Evaluation of phishing detection for different models across all datasets

Approach Recall (%) Precision (%) Accuracy (%) 𝑭1score (%) TNR (%) FPR (%) FNR (%)

MultiPhishGuard 99.80 92.26 97.89 95.88 97.27 2.73 0.20
CoT 99.08 64.93 86.60 78.45 82.53 17.47 0.92
Single Agent 99.39 61.31 84.42 75.84 79.53 20.47 0.61
RoBERTa-base 98.37 86.21 95.73 91.89 94.87 5.13 1.63

Table 2: Evaluation of model-generated rationales

Approach Perplexity Topic Coherence FRES

MultiPhishGuard 25 0.35 41
CoT 47 0.28 21
No Explanation 33 0.32 27

intermediate reasoning steps before arriving at a final decision—a
technique that has been shown to improve performance on com-
plex reasoning tasks [60]. When applied to phishing detection, the
CoT approach encourages the model to explain its thought process,
potentially revealing subtle cues in the email content. While CoT
prompting is effective in eliciting intermediate reasoning steps in
certain tasks, it presents several challenges for phishing detection.

As shown in Table 1, the CoT approach demonstrates a high
recall rate of 99.08%, indicating that it effectively identifies the ma-
jority of phishing emails. However, its precision is considerably
lower at 64.93%, largely due to a false positive rate of 17.47% and a
true negative rate of 82.53%. Consequently, while the CoT method
detects most phishing instances (with only a 0.92% false negative
rate), it also misclassifies a significant number of legitimate emails
as phishing. This imbalance results in an overall accuracy of 86.60%
and an 𝐹1score of 78.45%, highlighting the method’s tendency to
generate noisy outputs. These results suggest that, although CoT is
effective at flagging potential phishing emails, its high false posi-
tive rate may limit its practical reliability in real-world applications.
These results may stem from the CoT methods generating inconsis-
tent or excessively detailed reasoning paths, which can compromise
the detection of nuanced, multi-modal phishing cues.

The CoT approach exhibits several critical shortcomings in its
explanations. As shown in Table 2, a perplexity score of 47 sug-
gests that the generated text is relatively less fluent and predictable,
which can hinder natural language understanding. Additionally, a
topic coherence score of 0.28 indicates that the explanations lack
semantic consistency, making it difficult for users to discern clear
and logical reasoning. Furthermore, with a Flesch Reading Ease
Score of only 21, the explanations are notably hard to read, imply-
ing that they are filled with technical jargon and complex sentence
structures that impede accessibility. Collectively, these issues high-
light that the CoT method struggles to provide explanations that
are both coherent and user-friendly.

4.3.3 Single-Agent Model. We also compared a single-agent model
with our proposed MultiPhishGuard system to evaluate their ef-
fectiveness in phishing detection. The single-agent approach relies
on one LLM (GPT-4o) to process the entire email and generate a

phishing verdict directly. While this method has been applied in
prior studies and can yield satisfactory results in simpler scenarios,
it typically focuses on a single modality. This limitation often leads
to higher false positive rates and reduced robustness when facing
sophisticated phishing tactics.

As shown in Table 1, the single-agent approach achieves an im-
pressive recall rate of 99.39% and a false negative rate of 0.61%,
indicating that it is highly effective at detecting phishing emails.
However, its precision is only 61.31%, accompanied by a relatively
high false positive rate of 20.47% and a low true negative rate of
79.53%. This means that while the system successfully identifies
most phishing instances, it also incorrectly classifies a significant
number of legitimate emails as phishing, leading to an overall ac-
curacy of 84.42% and an 𝐹1score of 75.84%. These issues highlight
the inherent limitations of a single-agent model, which, by relying
on a solitary modality, may fail to capture the diverse and nuanced
cues present in complex, multi-modal phishing attacks.

4.3.4 Baseline: RoBERTa-base. Since RoBERTa-base [28] outper-
formed other pre-trained language models [50]—including BERT-
base [14], DistilBERT [52], ELECTRA [11], DeBERTa [21], and XL-
Net [63]—we chose it as the baseline for our phishing detection
experiments. Renowned for its robust performance in natural lan-
guage understanding tasks, RoBERTa-base is pre-trained on exten-
sive corpora and optimized through dynamic masking strategies,
making it particularly effective for text classification. To ensure a
fair comparison, we used the same training settings as in [50].

In the experiments, as shown in Table 1, RoBERTa-base achieved
a recall of 98.37%, accuracy of 95.73%, true negative rate of 94.87%,
and an 𝐹1score of 91.89%. While these results indicate strong overall
detection performance, several issues remain. First, the precision
of 86.21% coupled with a false positive rate of 5.13% suggests that
a notable number of legitimate emails are incorrectly flagged as
phishing, which could lead to unnecessary disruptions and reduced
user trust. Also, the false negative rate of 1.63% indicates that some
phishing emails are still missed, posing potential security risks.

Another significant limitation of RoBERTa-base is its black-box
nature; it does not provide interpretable reasoning or explanations
behind its classifications. This lack of transparency makes it diffi-
cult for users and security analysts to understand why a particular
email was labeled as phishing, hindering efforts to fine-tune de-
tection criteria and improve overall system trustworthiness. These
shortcomings highlight the need for a more comprehensive ap-
proach, such as our proposed MultiPhishGuard, which not only
enhances detection accuracy but also delivers clear, user-friendly
explanations for its decisions.
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Table 3: Phishing and legitimate classification performance across six email corpora. All values are percentages.

Phishing Legitimate

Nigerian Nazario Enron SpamAssassin CEAS-08 TREC-07

Approach TPR FNR TPR FNR TNR FPR TNR FPR TNR FPR TNR FPR

MultiPhishGuard 100.00 0.00 99.50 0.50 97.47 2.53 95.00 5.00 98.20 1.80 98.00 2.00
CoT 99.83 0.17 98.01 1.99 80.20 19.80 73.40 26.60 88.80 11.20 92.40 7.60
Single Agent 100.00 0.00 98.51 1.49 77.33 22.67 63.20 36.80 88.60 11.40 93.40 6.60
RoBERTa-base 99.31 0.69 97.01 2.99 95.80 4.20 89.40 10.60 96.40 3.60 96.00 4.00

4.3.5 McNemar’s Test on Discordant Pairs. To compare classifier
performance, we performed one-sided McNemar’s tests [33]. Let
𝑛10 be the count of cases where MultiPhishGuard is correct and the
alternative approach (the Chain-of-Thoughts method, the Single-
Agent model, and the baseline RoBERTa-base) is incorrect, and let
𝑛01 be the count of cases where the alternative approach is correct
and MPG is incorrect. The tests are one-sided, with the hypothesis
𝑛10 > 𝑛01. For 𝑛10 + 𝑛01 > 25, we use McNemar’s 𝜒2 test using the
exact2x2 package [35] with mid-p correction [15]; otherwise we
use McNemar’s exact test using the binom.test [45] function. We
adjusted the 𝑝-values using Benjamini-Hochberg [5].2 The results
of these tests are shown in Table 4.

On the phishing-email datasets (Nigerian and Nazario), Multi-
PhishGuard won almost all discordant comparisons, with the differ-
ence surpassing the threshold for significance in two cases: versus
CoT and versus Baseline in the Nazario dataset. In the legitimate-
email datasets, MultiPhishGuard again dominated the discordant
pairs and achieved statistically significant improvements over both
Chain-of-Thought and Single-Agent across all corpora; it also sig-
nificantly outperformed the RoBERTa-base model in the Enron,
SpamAssassin, and TREC-07 datasets.

These results suggest that MultiPhishGuard consistently errs
less often than the alternatives.

4.3.6 Summary. Our evaluation of MultiPhishGuard demonstrated
high detection accuracy and a balanced trade-off between preci-
sion and recall. As further detailed in the ablation studies (Section
4.4.4), incorporating the adversarial agent ensures robust perfor-
mance against evolving phishing strategies. The results indicate
that, compared to CoT prompting, single-agent approaches, and
the RoBERTa-base, our approach delivers superior accuracy and
improved explainability. Overall, these experiments validate that
MultiPhishGuard’s multi-agent, adaptive, and explainable design
provides a resilient and effective solution for phishing detection in
diverse threat environments.

4.4 Ablation Studies
In our ablation studies, we systematically evaluated the contribu-
tion of individual components in the MultiPhishGuard framework

2We control the false-discovery rate using Benjamini-Hochberg (BH) rather than
a family-wise method (e.g. Bonferonni) because our primary aim is to screen for
promising performance improvements across multiple benchmarks. BH offers greater
power by limiting the expected proportion of false positives among significant results,
rather than the stricter guarantee against any false positive.

Table 4: One-sided McNemar’s tests on discordant pairs
(𝒏10: MulitPhishGuard correct, alternative incorrect; 𝒏01 vice
versa) across six email corpora. We hypothesize 𝒏10 > 𝒏01.

Dataset MultiPhishGuard vs. 𝒏10 𝒏01 𝒑

Nigerian
(𝑛 = 577)

CoT 1 0 0.529
SingleAgent 0 0 1.000
Baseline 4 0 0.070

Nazario
(𝑛 = 402)

CoT 6 0 0.023
SingleAgent 4 0 0.070
Baseline 12 2 0.011

Enron
(𝑛 = 1500)

CoT 263 4 < .001
SingleAgent 305 3 < .001
Baseline 62 37 0.011

SpamA.
(𝑛 = 500)

CoT 115 7 < .001
SingleAgent 161 2 < .001
Baseline 46 18 < .001

CEAS-08
(𝑛 = 500)

CoT 50 3 < .001
SingleAgent 52 4 < .001
Baseline 18 9 0.056

TREC-07
(𝑛 = 500)

CoT 28 0 < .001
SingleAgent 23 0 < .001
Baseline 18 8 0.036

by removing them while retaining all other components, and com-
paring the performance of the ablated variants against the full
model. Variants were created that (1) lack a URL Agent, (2) lack a
Metadata agent, (3) use static weighting instead of PPO-optimized
weighting, (4) lack an Adversarial Agent for generating subtle email
variants, (5) lack an Explanation Simplifier Agent. The results of the
ablation studies are shown in Table 5. While our focus is on pooled
datasets, results broken down by individual dataset are shown in
Table 6 and Section 4.4.6.

4.4.1 No URL Agent. As shown in Table 5, removing the URL agent
led to a noticeable decline in detection performance. The absence
of a dedicated URL analysis component significantly impaired the
model’s ability to capture subtle phishing indicators embedded in
hyperlinks—particularly those obfuscated through redirection or
evasion techniques. This resulted in an increase in false positives
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Table 5: Ablation study—email classification metrics across all datasets

Variant Recall (%) Precision (%) Accuracy (%) 𝑭1score (%) TNR (%) FPR (%) FNR (%)

MultiPhishGuard 99.80 92.26 97.89 95.88 97.27 2.73 0.20
No URL 97.96 73.83 90.95 84.20 88.67 11.33 2.04
No Metadata 97.14 84.46 94.90 90.36 94.17 5.83 2.86
Static Weight 99.18 84.80 95.43 91.43 94.20 5.80 0.82
No Adversarial 98.77 84.31 95.17 90.97 94.00 6.00 1.23

Table 6: Ablation study—email classification metrics by dataset. All values are percentages.

Phishing Legitimate

Nigerian Nazario Enron SpamAssassin CEAS-08 TREC-07

Variant TPR FNR TPR FNR TNR FPR TNR FPR TNR FPR TNR FPR

MultiPhishGuard 100.00 0.00 99.50 0.50 97.47 2.53 95.00 5.00 98.20 1.80 98.00 2.00
No URL 100.00 0.00 95.02 4.98 96.00 4.00 73.20 26.80 77.00 23.00 93.80 6.20
No Metadata 99.65 0.35 93.53 6.47 94.67 5.33 85.60 14.40 97.20 2.80 98.20 1.80
Static Weight 100.00 0.00 98.01 1.99 93.73 6.27 90.20 9.80 97.00 3.00 96.80 3.20
No Adversarial 99.83 0.17 97.26 2.74 94.53 5.47 88.80 11.20 95.80 4.20 95.80 4.20

and reduced overall detection robustness. These findings highlight
the critical role of URL analysis in providing complementary in-
sights that strengthen the system’s ability to identify sophisticated
phishing attempts. The experiment underscores the necessity of
incorporating URL-based inspection in a multi-agent architecture
to ensure comprehensive and resilient phishing detection.

4.4.2 NoMetadata Agent. As shown in Table 5, removing the Meta-
data Agent led to a decline in detection performance, as the system
became less capable of identifying subtle inconsistencies in email
headers and sender details—signals that are often indicative of
spoofing or other deceptive tactics. The absence of this component
impaired the model’s ability to detect metadata-level phishing cues,
such as forged sender addresses or manipulated header fields, which
are frequently exploited in more sophisticated attacks. While the
remaining agents continued to capture many phishing attempts
through text and URL analysis, the overall robustness of the sys-
tem was weakened. This experiment highlights the essential role of
metadata inspection in enhancing detection accuracy and resilience,
reinforcing the need for a multi-agent approach that integrates
metadata analysis to address evolving phishing strategies.

4.4.3 Static Weight. We replaced the dynamic weight adjustment
module with a static weighting scheme, where each agent’s output
was assigned a fixed, predetermined weight. From our previous
experimental results, we observed that the URL agent had a greater
impact on overall accuracy than the metadata agent. Removing
the URL agent led to a more significant decline in detection per-
formance, indicating its higher importance in phishing detection.
Consequently, we assigned a weight of 0.3 to the text agent, 0.4 to
the URL agent, and 0.3 to the metadata agent to better reflect their
relative contributions to the final classification. As shown in Table
5, this modification led to a decrease in detection performance, sug-
gesting that the system struggled to balance the contributions of

different agents effectively. Without the dynamic adjustment mech-
anism, the model lost the flexibility to tailor its weighting based
on the unique characteristics of each email. Unlike the RL-based
approach, which adapts in real-time to emphasize the most infor-
mative signals—be it from text, URL, or metadata—the static scheme
imposed rigid constraints that limited the system’s responsiveness
to varied phishing strategies. It appears that this rigidity made the
model more prone to misclassifications, particularly when phishing
attempts relied heavily on one modality. The experiment under-
scores the importance of dynamic weight adaptation in enabling
the system to make more informed and context-aware decisions,
thereby enhancing its overall robustness and adaptability in phish-
ing detection.

4.4.4 No Adversarial Agent. We removed the adversarial agent to
assess its impact on the model’s robustness against sophisticated
phishing attacks. As shown in Table 5, this removal led to a decline
in the system’s ability to detect more advanced and evasive phish-
ing emails. The adversarial agent plays a key role in enhancing
model resilience by generating deceptive, hard-to-detect phishing
examples during training. Without this component, the model was
exposed only to standard phishing patterns, limiting its capacity to
generalize to more complex or novel attack strategies. Although the
core detection capabilities remained intact, the model became more
prone to misclassifying sophisticated phishing emails as legitimate.
This highlights the critical role of adversarial training in fortify-
ing the system against real-world threats and ensuring sustained
effectiveness in the face of evolving phishing tactics.

4.4.5 No Explanation Agent. Finally, we removed the explanation
simplifier agent to assess its impact on user comprehension and
overall system usability. While this component does not directly
influence detection accuracy, its absence significantly impaired the
interpretability of the system’s outputs. As shown in Table 2, the
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resulting explanations had a perplexity of 33, a topic coherence
score of 0.32, and a Flesch Reading Ease score of 27—indicating
moderate fluency but poor semantic organization and readability.
Without the simplifier, the system continued to classify emails
correctly but presented raw reasoning from individual agents in a
fragmented and jargon-heavy manner. These explanations lacked
coherence and were often difficult for non-expert users to interpret,
reducing the system’s practical utility. Moreover, the absence of a
unified, accessible explanation made it more time-consuming for
analysts to piece together the rationale behind each decision. This
experiment highlights the essential role of the explanation agent in
translating technical outputs into clear, concise, and user-friendly
narratives, which we expect would enhance user trust and support
effective decision-making in phishing detection.

4.4.6 McNemar’s Test on Discordant Pairs. We applied the same
discordant pair analysis methodology described in Section 4.3.5 to
compare MultiPhishGuard against its ablated variants; the results
are shown in Table 7.

In the phishing-email datasets (Nigerian and Nazario), Multi-
PhishGuard won almost all discordant comparisons. The Nigerian
set showed no significant differences, while on the Nazario set Mul-
tiPhishGuard significantly outperformed the NoURL, NoMetadata,
and NoAdversarial variants.

In the legitimate email datasets, MultiPhishGuard again dom-
inated the discordant pairs and achieved statistically significant
improvements over the ablated variants in all cases—except Stat-
icWeight and NoMetadata on the CEAS-08 and TREC-07 sets.

4.4.7 Summary. Overall, these findings indicate that the URL and
Metadata Agents, the PPO-based weighting scheme, and the adver-
sarial agent each contribute substantively to MultiPhishGuard’s
performance, and the Explanation Simplifier to its interpretability.

4.5 Human Evaluation
We conducted human evaluations with a cybersecurity expert
through amulti-step process. These evaluations assessed the quality
of the explanations generated by our model by directly compar-
ing them with the detailed analyses provided by the expert. This
comprehensive approach ensures that our system’s output not only
meets quantitative performance criteria but also aligns with expert
human judgment regarding clarity, coherence, and factual accuracy.

First, we randomly selected a small subset of phishing emails
from our datasets. We then invited a cybersecurity expert to manu-
ally review these emails and document their reasoning for classify-
ing each email as phishing or legitimate. The expert was instructed
to record the key indicators they identified and to provide detailed
explanations of their thought processes.

Next, we compared these expert analyses with the explanations
generated by MultiPhishGuard, CoT, and an ablated version of our
system without the explanation simplifier agent using automated
metrics—ROUGE [9] and cosine similarity. Further explanations
about these metrics can be found in Appendix C.2.

Together, these metrics allow us to perform a comprehensive
comparison between the human and machine-generated explana-
tions, ensuring that our model’s output is not only quantitatively
similar but also semantically aligned with expert reasoning.

Table 7: One-sided McNemar’s tests on discordant pairs (𝒏10:
MulitPhishGuard correct, ablated variant incorrect; 𝒏01 vice
versa) across six email corpora. We hypothesize 𝒏10 > 𝒏01.

Dataset MultiPhishGuard vs. 𝒏10 𝒏01 𝒑

Nigerian
(𝑛 = 577)

NoURL 0 0 1.000
NoMetadata 2 0 0.300
StaticWeight 0 0 1.000
NoAdversarial 1 0 0.571

Nazario
(𝑛 = 402)

NoURL 19 1 < .001
NoMetadata 24 0 < .001
StaticWeight 7 1 0.050
NoAdversarial 9 0 0.004

Enron
(𝑛 = 1500)

NoURL 45 23 0.007
NoMetadata 72 30 < .001
StaticWeight 77 21 < .001
NoAdversarial 69 25 < .001

SpamA.
(𝑛 = 500)

NoURL 119 10 < .001
NoMetadata 66 19 < .001
StaticWeight 37 13 < .001
NoAdversarial 40 9 < .001

CEAS-08
(𝑛 = 500)

NoURL 112 6 < .001
NoMetadata 11 6 0.210
StaticWeight 7 1 0.050
NoAdversarial 18 6 0.019

TREC-07
(𝑛 = 500)

NoURL 21 0 < .001
NoMetadata 1 2 0.955
StaticWeight 11 5 0.140
NoAdversarial 16 5 0.021

Table 8: Automated evaluation metrics comparing expert
analyses with different model explanations

Approach ROUGE-1 Cosine Similarity

MultiPhishGuard 0.59 0.82
CoT 0.45 0.70
No Explanation 0.42 0.64

As shown in Table 8, MultiPhishGuard achieved a ROUGE-1
score of 0.59 and a cosine similarity of 0.82, outperforming CoT
(ROUGE-1: 0.45; Cosine Similarity: 0.70). When the explanation sim-
plifier agent was removed, performance dropped (ROUGE-1: 0.42;
Cosine Similarity: 0.64), underscoring the critical role of this agent
in producing explanations that faithfully capture expert insights.
These results demonstrate that MultiPhishGuard not only excels in
quantitative detection metrics but also generates explanations that
are more coherent and semantically aligned with expert judgment.

In addition to automated metrics, we carried out a detailed
qualitative analysis, comparing the expert’s written rationale with
MultiPhishGuard’s explanations. Our qualitative review confirmed
that MultiPhishGuard reliably captures similar phishing indicators
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noted by experts—such as suspicious links and abnormal subjects—
and, in several cases, even uncovers subtle cues that experts over-
looked. For example, the system flagged the use of generic salu-
tations like “Dear Customers” instead of addressing recipients by
name, a telltale sign of mass phishing campaigns. Combined with
strong automated scores (ROUGE-1: 0.59, Cosine Similarity: 0.82)
and our manual analysis, these findings demonstrate that Multi-
PhishGuard not only identifies a wide range of phishing signals
but also explains them in clear, user-friendly language that aligns
closely with expert reasoning.

5 Discussion
Our experimental results demonstrate that MultiPhishGuard signifi-
cantly outperforms both traditional and modern phishing detection
methods across key dimensions. Compared to the baselines, it con-
sistently achieves higher detection accuracy, lower false positive
rates, and enhanced robustness across diverse phishing corpora.

These improvements stem from its multi-agent architecture,
where specialized agents—focused on email text, URL structure,
and metadata—analyze different facets of an email before synthesiz-
ing insights through a dynamically optimized ensemble mechanism.
Another standout feature is the use of reinforcement learning via
PPO to dynamically adjust agent weights based on email-specific
characteristics. Unlike prior work relying on static or heuristic
weighting, this dynamic approach allows the system to emphasize
the most informative modalities, improving both adaptability and
detection performance in the face of evolving phishing strategies.

Another notable contribution is the system’s strong explainabil-
ity. By incorporating an explanation simplifier agent, MultiPhish-
Guard generates clear, truthful, and non-technical rationales for
its decisions. Human evaluation and automated metrics show that
these explanations align well with expert reasoning and are more
complete and readable than those from CoT or ablated models. This
makes the framework particularly suitable for user-facing and high-
stakes applications where transparency and auditability—such as
under GDPR—are essential.

To enhance robustness, MultiPhishGuard employs an LLM-based
adversarial training module that continuously generates subtle
phishing and legitimate email variants designed to evade detec-
tion. This iterative fine-tuning exposes model vulnerabilities and
improves generalization to novel attack patterns.

The system’s modular design also supports practical deployment.
For example, organizations can enable only the text agent to com-
ply with privacy constraints, avoiding the processing of sensitive
metadata. This flexibility allows LLM-based detection to operate
effectively even in privacy-sensitive environments.

Looking forward, the architecture could be extended to include
agents specializing in attachments, behavioral patterns, or hier-
archical coordination mechanisms. MultiPhishGuard serves as a
blueprint for scalable, interpretable multi-agent systems applicable
to broader cybersecurity domains like malware detection and mali-
cious website classification. For practitioners, it shows howmodular,
explainable, and adaptive LLM-based frameworks can be deployed
in real-world settings with both effectiveness and accountability.

In summary, MultiPhishGuard advances the state of phishing
detection by unifying multi-modal analysis, dynamic optimization,

and interpretability within a coherent system. It not only bridges
gaps in performance and transparency but also paves the way for
the next generation of adaptive and explainable cybersecurity tools
powered by LLMs.

5.1 Limitations
The limitation arises from the interpretability process. Our model’s
output ‘rationale’ lacks ground truth annotations, as the dataset
does not provide explanations for why an email is classified as
phishing or legitimate. As a result, we can only evaluate the ex-
plainability of ourmodel using indirect measures such as readability,
coherence, perplexity, and human analysis.

Also, due to the scarcity of open-source phishing detection
datasets and publicly available code, we were able to compare
our approach with only one recently published state-of-the-art
model that had open-source code available as a baseline. Expanding
comparative evaluations with additional high-quality benchmarks
would further validate MultiPhishGuard’s effectiveness.

5.2 Ethical Considerations
Ethical considerations are paramount in our research on phishing
detection. First, we ensure all email data used in our experiments is
anonymized and handled in accordance with privacy regulations, so
that no personally identifiable information is disclosed or misused.
Furthermore, since our work involves generating explanations for
phishing classifications, it is crucial that we do not inadvertently
expose sensitive decision-making processes that could be exploited
by malicious actors. Our evaluation of explainability is conducted
with careful attention to minimizing risks while maximizing trans-
parency, ensuring that the model’s outputs remain secure and do
not provide actionable guidance for circumventing detection.

Additionally, to further validate our model’s robustness beyond
real-world email detection, we employed the adversarial agent to
generate a set of both phishing and legitimate emails using GPT-4o,
reflecting the growing misuse of LLMs for creating malicious con-
tent. Strict ethical guidelines governed this process; all generated
emails were produced in a secure, controlled environment to ensure
that no harmful content was released or disseminated, and they
were used solely for testing and improving our detection system.
Moreover, we will not release any of the generated emails, whether
phishing or legitimate, to protect against potential misuse.

Moreover, a significant challenge in deploying LLMs is the risk of
hallucination—where the model generates information that sounds
plausible but is factually incorrect or fabricated. To address this
issue, we explicitly instruct the text, URL, andmetadata agents to op-
erate strictly within their respective modalities, thereby preventing
them from drawing conclusions based on information outside their
designated scope. Additionally, the explanation simplifier agent is
directed to ground its output exclusively in the reasoning provided
by the text, URL, andmetadata agents. Its prompt is carefully crafted
to prioritize factual consistency and discourage the generation of
unsupported claims. Through a combination of prompt engineering,
output constraints, and post-hoc validation, we mitigate the risk of
hallucinated content and ensure that the system’s responses remain
accurate, trustworthy, and anchored in genuine detection evidence.
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6 Conclusion
In this paper, we introduced MultiPhishGuard, an innovative phish-
ing detection framework that leverages an LLM-based multi-agent
system to improve both detection performance and interpretability.
By integrating specialized agents for text, URL, and metadata anal-
ysis, and dynamically adjusting their contributions using PPO, our
approach significantly outperforms traditional single-agent meth-
ods and CoT techniques. The adversarial training also improves
robustness against sophisticated phishing attacks. Experimental
results demonstrate that MultiPhishGuard achieves exceptional
detection accuracy (97.89%), while effectively minimizing false pos-
itives and false negatives. Moreover, the inclusion of an explana-
tion simplifier agent provides clear, user-friendly rationales for
its decisions, addressing a critical gap in model transparency and
trustworthiness.

Overall, MultiPhishGuard offers a robust, adaptive, and trans-
parent solution for phishing detection that not only enhances cy-
bersecurity defenses but also facilitates better understanding and
trust among users. We believe that our approach paves the way for
future research into scalable, explainable, and ethically responsible
cybersecurity systems.
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A Prompts

You are a cybersecurity expert specializing in phishing,
with a particular focus on URLs within emails. Your task is
to carefully examine every URL in the email and determine
whether it exhibits suspicious characteristics or signs of
obfuscation, such as resembling forged bank sites, using
unknown domains, or appearing unusually shortened. Do not
analyze the email text or metadata, only focus on the URLs.
Provide your judgment on whether the email is ‘Phishing’
or ‘Legitimate’, along with a confidence score between 0
and 1 and a clear, concise explanation of your reasoning.
Output your result in JSON format as: ‘verdict’: ‘Phishing’
or ‘Legitimate’, ‘confidence’: 0-1, ‘reasons’: ‘...’

Figure 6: URL Agent’s Prompt

You are a cybersecurity expert specializing in phishing,
with a particular focus on email metadata. Your task
is to scrutinize the provided email header—including
the subject, sender address, reply-to, return-path, and
received fields—for any signs of forgery, anomalies, or
suspicious indicators. Do not analyze email text or URLs,
only focus on the metadata. Provide your judgment on
whether the email is ’Phishing’ or ’Legitimate’, along
with a confidence score between 0 and 1 and a clear,
concise explanation of your reasoning. Output your result
in JSON format as: ‘verdict’: ‘Phishing’ or ‘Legitimate’,
‘confidence’: 0-1, ‘reasons’: ‘...’

Figure 7: Metadata Agent’s Prompt

B Example result of adversarial agent email
variant generation

From: “Monkey Support Notification” <info@creditloiuse.com>
Subject: Important Password Validation
To: <jose@monkey.org>
Date:Wed, 10 Jan 2024 16:00:51 -0800

Monkey Support Notification

ACTION REQUIRED: Monkey (jose@monkey.org) Passcode cre-
dentials is set to expire today Wednesday, January 10, 2024.

Same registered password must be used below.

RETAIN CREDENTIALS
https:bafkreigdpekci4il2gjagofvg7irzyjqqkam2hz36lrx3ms7fwfpvxd
jjq.ipfs.dweb.link/#jose@monkey.org

Note: It is important you update your email passcode, failure to
do this will get your account locked out and email will not be
accessible.

Update your email preferences to choose the types of emails you
receive, or you can unsubscribe from all future emails.

(a) Original Email

From: “Monkey Assistance Notice” <info@creditloiuse.com>
Subject: Vital Password Confirmation
To: <jose@monkey.org>
Date:Wed, 10 Jan 2024 16:00:51 -0800

Greetings,

We hope this email finds you well.

MONKEY NOTICE: The passkey linked to your profile
(jose@monkey.org) will reach its expiration this Wednes-
day, January 10, 2024.

Please ensure you are utilizing the same registered password using
the link below.

ACCESS CREDENTIALS:
https://bafkreigdpekci4il2gjagofvg7irzyjqqkam2hz36lrx3ms7fwfpv
xdjjq.ipfs.dweb.link/#jose@monkey.org

Please be advised: It’s crucial to confirm your email password soon
to avoid any disruptions in accessing your email.

You are welcome to update your email settings for receiving differ-
ent categories of emails, or you can opt out from all subsequent
communications.

(b) Adversarial Agent–Created Variant

Figure 8: Example result of adversarial agent email variant
generation.
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C Evaluation Metrics
C.1 Evaluation Metrics for Classification

• True Positives (TP): The number of phishing emails cor-
rectly identified as phishing.

• True Negatives (TN): The number of legitimate emails
correctly classified as legitimate.

• False Positives (FP): The number of legitimate emails mis-
takenly classified as phishing.

• False Negatives (FN): The number of phishing emails in-
correctly classified as legitimate.

Using these fundamental values, we calculate the following evalua-
tion metrics:

• Recall: Measures how well the model identifies phishing
emails.

Recall = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
A high recall ensures that most phishing emails are detected,
reducing the chances of missed attacks.

• Precision:Measures how many of the emails classified as
phishing are actually phishing.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

A higher precision means fewer legitimate emails are mis-
takenly flagged as phishing, reducing false alarms.

• Accuracy:Measures the overall correctness of the model’s
classifications.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

A high accuracy indicates strong overall performance, but it
may not be reliable when the dataset is imbalanced.

• 𝐹1Score: The harmonic mean of precision and recall, balanc-
ing both metrics to provide a single performance measure.

𝐹1score = 2 × Precision × Recall
Precision + Recall

A high 𝐹1score indicates that the model performs well in
both phishing detection and avoiding false alarms.

• True Negative Rate (TNR): Measures the proportion of
legitimate emails correctly classified.

TNR =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

A high TNR ensures that the system does not mistakenly
flag too many legitimate emails as phishing.

• False Positive Rate (FPR): Measures the proportion of
legitimate emails incorrectly classified as phishing.

FPR =
𝐹𝑃

𝐹𝑃 +𝑇𝑁
A lower FPR is desirable, as it reduces unnecessary phishing
alerts and minimizes disruptions to users.

• False Negative Rate (FNR): Measures the proportion of
phishing emails incorrectly classified as legitimate.

FNR =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

A low FNR is critical, as it minimizes the risk of phishing
emails bypassing detection and reaching users.

C.2 Evaluation Metrics for Rationales
• Perplexity (PPL): Perplexity [23] is a widely used metric
in natural language processing to evaluate the fluency and
predictability of text generation. It quantifies how well a
language model predicts the next word in a sequence, with
lower perplexity indicating more coherent and fluent expla-
nations.

PPL = exp

(
− 1
𝑁

𝑁∑︁
𝑖=1

log𝑝 (𝑤𝑖 )
)

𝑁 is the number of words in the explanation, and 𝑝 (𝑤𝑖 ) is the
probability assigned to each word. A lower perplexity score
suggests that the explanation is more readable and natural,
while a higher perplexity indicates disjointed or unnatural
phrasing.

• Topic Coherence: Topic Coherence [49] evaluates the se-
mantic consistency of topics within the explanations, ensur-
ing they are interpretable and logically structured. It mea-
sures the degree of semantic similarity among words within
a topic, reflecting the interpretability of the explanations.
Higher coherence scores indicate that the explanations are
more logically structured and easier to understand. This en-
sures that the explanations are not only accurate but also
presented in a manner that is coherent and user-friendly.

• Flesch Reading Ease Score (FRES): The Flesch Reading
Ease Score [16] is a widely used metric to evaluate the read-
ability of a text. Developed by Rudolf Flesch, it assigns a
score between 0 and 100, with higher scores indicating eas-
ier readability. The formula for calculating this score is:

𝐹𝑅𝐸𝑆 = 206.835−1.015×( Total Words
Total Sentences

)−84.6×(Total Syllables
Total Words

)

In the context of evaluating explanations, applying the Flesch
Reading Ease Score can help assess how easily readers can
comprehend the provided reasons. A higher score suggests
that the explanation is straightforward and accessible, while
a lower score may indicate complexity that could hinder un-
derstanding. For instance, explanations laden with technical
jargon, lengthy sentences, or complex words are likely to
yield lower readability scores, signaling the need for simpli-
fication to enhance clarity.

• ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation): ROUGE [9] quantifies the overlap of n-grams be-
tween the candidate text (MultiPhishGuard’s explanation)
and the reference text (the expert’s analysis), allowing us to
measure howmuch of the expert’s key content is captured by
our model. We focus on ROUGE-1, which computes unigram
recall:

ROUGE-1 Recall =
∑

𝑤∈𝑅 min(Count(𝑤,𝐶),Count(𝑤, 𝑅))∑
𝑤∈𝑅 Count(𝑤, 𝑅)

where Count(𝑤,𝐶) and Count(𝑤, 𝑅) are the frequencies of
word𝑤 in the candidate and reference texts, respectively. A
high ROUGE-1 score indicates that the system’s output in-
cludes a large proportion of the expert’s important unigrams,
which is desirable because it shows that the generated ex-
planation covers the essential content. We choose ROUGE-1
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over higher-order variants (ROUGE-2, ROUGE-L, etc.) be-
cause expert explanations and LLM-generated outputs often
differ in phrasing and sentence structure. Unigram overlap
provides a robust, style-agnostic measure of content similar-
ity, whereas bigram or sequence-based metrics can unfairly
penalize legitimate rewordings and stylistic variations. By us-
ing ROUGE-1, we ensure a balanced evaluation that empha-
sizes the presence of critical terms without over-penalizing
differences in natural human versus model-generated lan-
guage.

• Cosine Similarity: Cosine similarity measures the seman-
tic similarity between two texts by converting them into
vector representations (e.g., using sentence embeddings) and

computing the cosine of the angle between these vectors. It
is defined as:

Cosine Similarity =
A · B

∥A∥∥B∥
where A and B represent the expert’s and the model’s expla-
nation embeddings, respectively. Values close to 1 indicate
that the two texts are semantically very similar, meaning
the system’s explanation has captured the overall meaning
and context of the expert’s analysis. Unlike ROUGE—which
focuses on exact word overlap—cosine similarity captures
deeper, conceptual alignment. This allows our explanations
to retain semantic similarity and contextual relevance to the
expert’s intent, even when the wording differs.
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