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Abstract—Federated Learning (FL) is a collaborative learning
framework designed to protect client data, yet it remains highly
vulnerable to Intellectual Property (IP) threats. Model extraction
(ME) attack poses a significant risk to Machine-Learning-as-a-
Service (MLaaS) platforms, enabling attackers to replicate confi-
dential models by querying Black-Box (without internal insight)
APIs. Despite FL’s privacy-preserving goals, its distributed nature
makes it particularly susceptible to such attacks. This paper
examines the vulnerability of the FL-based victim model to two
types of model extraction attacks. For various federated clients
built under NVFlare platform, we implemented ME attack across
two deep-learning architectures and three image datasets. We
evaluate the proposed ME attack performance using various
metrics, including accuracy, fidelity, and KL divergence. The
experiments show that for various FL clients, the accuracy and
fidelity of the extraction model are closely related to the size of
the attack query set. Additionally, we explore a transfer learning-
based approach where pre-trained models serve as the starting
point for the extraction process. The results indicate that the
accuracy and fidelity of the fine-tuned pre-trained extraction
models are notably higher, particularly with smaller query sets,
highlighting potential advantages for attackers.

Index Terms—Model extraction attack, Federated learning,
Machine-Learning-as-a-Service (MLaaS), Transfer learning, Fi-
delity, Security.

I. INTRODUCTION

Recently, Federated Learning (FL) has gained popularity
as a privacy-focused machine learning (ML) approach that
enables multiple clients to collaboratively create a consolidated
model while safeguarding their training data [1]. Unlike tra-
ditional centralized ML, FL eliminates the need for clients to
transfer their raw data to a central server, thus protecting user
privacy and security. The process typically involves training
local models on client-specific data, sharing model updates
among clients, and constructing a unified model accessible to
all participants [2]. Since FL avoids data sharing, it effectively
addresses privacy and security concerns commonly associated
with centralized ML [3], [4].

Although FL is intended to safeguard personal data, recent
studies reveal that FL models are at risk of different attacks

§The authors have equal contributions.

that can disclose sensitive information from training datasets
[5], [6]. These vulnerabilities include model extraction (ME),
reconstruction, membership inference, and model inversion
(MI) attacks [7]. An ME attack occurs when an adversary
replicates the functionality of a victim model by querying
an Application Programming Interface (API) without internal
insight, leading to an extracted model that approximates the
original model without direct access to its parameters or train-
ing data [8]. In reality, an ME attacker amis for an approximate
extraction that focuses on constructing an extracted or piracy
model that closely resembles the victim model [9], which can
either achieve comparable performance to the victim model
(measured by accuracy) or exhibit similar behavior (measured
by fidelity). Figure 1 illustrates an overview of the ME attack
process utilizing the predictive API on a MLaaS platform.

(a) Machine-Learning-as-a-Service (MLaaS)
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Fig. 1: ME attack executed through predictive API in a
Machine Learning as a Service (MLaaS) platform.

As FL models are deployed in MLaaS platforms, attackers
can exploit predictive API queries to obtain insights about the
victim model, effectively infringing on intellectual property
(IP) and undermining the security measures intended to safe-
guard proprietary algorithms [10]. The collaborative exchange
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of model updates in FL can inadvertently expose sensitive
information, making FL systems particularly susceptible to
ME attacks, which threaten both data privacy and IP [11].
However, there has been only limited exploration of the impact
of ME attacks in a scalable FL environment, particularly con-
cerning accuracy and fidelity analysis, leaving this as an open
area for further investigation. MLaaS platforms implement
strong authentication mechanisms, such as API keys, OAuth,
and multi-factor authentication, to restrict model access to
authorized users [12]. However, an authenticated adversary can
still execute model extraction by issuing an excessive number
of queries. In this paper, we investigate three key research
questions. First, How vulnerable is an FL-based victim model
to ME attacks, particularly with the size of the attack query
set and the number of FL clients? Second, under an FL
environment, how do various deep learning architectures (DL)
affect the fidelity and accuracy of extracted models? Finally,
how does the use of transfer learning (TL) with pre-trained
models influence the effectiveness of ME attacks compared to
models trained from scratch?

The main contributions of this paper are as follows:
• This paper evaluates the vulnerability of FL-based victim

models to ME attacks, focusing on how query set size, FL
clients, and deep learning architectures impact the fidelity
and accuracy of the extracted models.

• We investigate the use of pre-trained models as a starting
point for extraction instead of training from scratch. This
approach allows us to evaluate the impact of pre-trained
models on attack accuracy and query efficiency, revealing
potential advantages for attackers.

• We demonstrate that the TL-based ME attack approach
enables the extraction model to surpass the best accuracy
(training from scratch) with fewer query samples. This
method allows the extraction model to closely replicate
the victim model’s performance, nearly matching its
accuracy.

The structure of this paper is as follows: Section II outlines
the threat model, detailing the attacker’s objectives, knowl-
edge, and capabilities. Section III describes the framework
for executing the ME attack within the FL environment. In
Section IV, we introduce and explain the proposed algorithm
for the ME attack in FL. Section V provides the experimental
results along with an analysis and discussion of the findings.
Lastly, we conclude our work and discuss a few future research
thoughts in Section Section VI.

II. THREAT MODEL

In this section, we outline the threat model, detailing the
adversary’s knowledge, goals, capabilities, and the scope of the
proposed ME attack in FL [13], [14]. Machine learning models
deployed in critical infrastructures are increasingly targeted by
adversarial threats, including ME attack [15].

Adversary’s objective: The adversary A aims to create an
extracted model Me that closely replicates the functionality
and/or performance of the MLaaS backend model, referred
to as the victim model Mv . The similarity between Me and

Mv is evaluated based on either accuracy or fidelity using
a test dataset D∗. The attacker does not modify the model’s
parameters and requires no extra information [8].

Adversary’s knowledge: We consider a scenario where A
possesses minimal information about the victim model Mv ,
such as its architecture, hyperparameters, or the exact dataset
used for training. However, the adversary does have access
to an unlabeled reference dataset D. While the training goals
and model architecture are known to all FL participants, the
adversary lacks any insight into the global training process
(whether centralized or FL) and the distribution of the training
data across clients.

Adversary’s capability: A can interact with Mv via the
MLaaS API, which returns the predictionMv(x) for any given
input query x. These queries are not limited to real-world
data and may also include synthetic or adversarial inputs. The
attacker lacks the ability to modify the model’s parameters
and does not require additional information. Furthermore,
as MLaaS typically operates on a pay-per-query basis, we
assume the adversary is constrained by a limited query budget
nquery [16]. A samples nquery inputs query dataset Q to
MLaaS prediction API and use all the query-response pairs
{x,Mv(x)} to train the extracted model Me by minimizing
the cross-entropy loss [8].

III. FRAMEWORK FOR PROPOSED ME ATTACK IN FL

A. Attack Overview

In an ME attack scenario within an FL environment, A
replicates a global victim modelMv by exploiting its MLaaS
API. A submits API queries without direct access to the
model’s internal structure or training data. By collecting suf-
ficient input-output pairs, A trains an extraction or surrogate
model Me that closely mimics Mv . The attack success of
A is determined by the Me’s fidelity, or how accurately it
replicates the victim model’s behavior, and attack accuracy,
reflecting how well its predictions align with the original
model’s outputs. Even with restricted access, a well-executed
query strategy can achieve high fidelity in FL and MLaaS
setups.

B. Victim Model Built in FL

The victim model Mv in FL is the global model formed
by aggregating updates from multiple participants. In MLaaS
environments, this model is accessible through an API, al-
lowing external users to query it for predictions without
exposing its internal workings. The attacker leverages this
API access to collect numerous input-output pairs. Despite
lacking knowledge of the model’s architecture or training
data, repeated queries enable the adversary to approximate
the model’s decision boundaries, ultimately building a highly
accurate Me that replicates the global model’s predictive
performance.

C. Extracted (Surrogate) Model

The extracted (surrogate) model Me is the attacker’s repli-
cation of Mv , trained on input-output pairs gathered from



Fig. 2: Framework of the proposed TL-based ME attack executed in an FL environment.

querying the global model. The fidelity of the surrogate
indicates how closely it mirrors the original model, while
attack accuracy measures its predictive performance against
the victim model. Once trained, A can utilize Me to bypass
service restrictions or exploit the proprietary model’s function-
ality without authorization. Me can also facilitate additional
attacks, all while maintaining no direct access to the original
training data or model parameters.

IV. PROPOSED ME ATTACK IN FL

In this section, we explain the proposed TL-based ME attack
in an FL environment. We first briefly describe the attack
environment of datasets, extracted models, FL environments,
and attack evaluation metrics.

Figure 2 presents the proposed framework for executing a
TL-based ME attack within a FL environment.

Datasets – In this experiment, we utilize three bench-
mark datasets: CIFAR-10, FashionMNIST, and MNIST .Each
dataset is partitioned into training and testing sets, where the
test sets remain constant throughout the experiment to evaluate
the performance of both the victim and extraction models. The
training set is evenly split, with one half used to train theMv

and the other half designated for generating the query dataset
used in the model extraction process.

Extracted Models – We consider two machine learning
models, basic CNN and ResNet, to evaluate the effectiveness
of the ME attacks. In the default setting, the model parameters
are randomly initialized, meaning the models are trained from
scratch. To further enhance the performance of the ME attack,
we also include pre-trained models, which are subsequently
fine-tuned on the extraction dataset.

FL Environments – We design and implement an FL
architecture to evaluate the ME attacks, incorporating two
configurations: one with five clients and another with ten
clients. In both setups, the FedAvg algorithm is employed to
aggregate the model updates from the clients at the central

server, creating a global model [17]. For this experiment, we
utilize the NVFlare (NVIDIA) library to develop and execute
the FL architecture on GPU, ensuring efficient distributed
training across the clients.

Metrics – To assess the effectiveness of ME attacks, we
focus on three key metrics:

Accuracy represents the proportion of inputs from the test
set that are correctly classified by Me.

Fidelity quantifies the proportion of inputs from the test set
that are classified identically by both Mv and Me. Formally,

Fidelity(Me) =

∑
(x,y)∈D⋆ 𝟙{Mv(x) =Me(x)}

|D⋆|
(1)

Kullback-Leibler (KL) divergence quantifies the difference
between two probability distributions. In ME attacks, it mea-
sures how the output probability distributions ofMv andMe

differ.

A. The Overall Attack Paradigm

This subsection presents the fundamental steps and pseudo-
code-based algorithm for the proposed TL-based ME attack
implementation (Algorithm 1).

1) Prepare the query dataset by generating a set of inputs.
2) Query (Mv) by sending each input (qi) to (Mv) and

store the predictions (pi) for each query (qi) to create
input-output pairs (qi, pi).

3) Construct the extracted dataset by collecting all the
input-output pairs (qi, pi) gathered during the querying
phase. This dataset (D) serves as the training data for
the extracted model, enabling it to learn and replicate
the behavior of the victim model.

4) Measure accuracy, fidelity, and KL divergence to val-
idate the extracted model (Me) by utilizing the test
dataset D∗ to evaluate the performance of both (Mv)
and (Me).



We utilize the FL architecture to train the Mv , while
the extraction model is trained using conventional machine
learning methods. First, the server initializing global model
parameters and sending them to all clients. Each client updates
the model locally with their data and sends the updated
parameters back to the server, which aggregates these updates
over multiple communication rounds to produce a trained
global victim model.

Algorithm 1 TL-based ME Attack
Input: Query dataset Q, Victim model Mv , Test dataset D∗,

Pre-train flag pre train
Output: Extracted Model Me

1: Set D = [] ▷ Extracted Dataset
2: Initialize Me ← Model Architecture
3: for each qi in Q do
4: Send qi to the Mv

5: Record predictions pi ←Mv(qi)
6: Update D ← (qi, pi)
7: end for
8: if pre train then
9: Load pre-trained Me

10: Fine-tune Me on D
11: else
12: Train Me on D
13: end if
14: Compute Accuracy(Me)
15: Compute Fidelity(Me), using Eq. (1)
16: Compute KL Divergence(Mv∥Me)
17: return Me

The TL-based ME attack algorithm involves two primary
stages: generating the query dataset and applying transfer
learning presented in Algorithm 1. In the first part (lines 1-
7), the algorithm queries the Mv using each sample from the
query dataset Q, collecting the Mv’s predictions to form an
extracted dataset D. In the second part (lines 8-12), if pre-
train is enabled, a pre-trained model is loaded and fine-tuned
on the extracted dataset. Otherwise, the extraction model Me

is trained from scratch. The algorithm then evaluates Me’s
performance based on accuracy, fidelity, and KL divergence
before returning Me.

V. RESULT ANALYSIS AND DISCUSSION

This section presents the experimental setup, demonstrates
the ME attack on both model types, and introduces an en-
hanced ME attack with pre-trained surrogate models and a
TL approach.

A. Experimental Setup

The proposed ME attack is divided into two subsection:
victim model training and extraction model training. For vic-
tim model training, we employ both centralized and federated
training approaches.

For the federated training approach, we outline an FL archi-
tecture designed to train ML models across various datasets.

In FL architecture, the datasets are divided into N distinct
subsets and distributed into N clients. Each client then trains
a local instance of the model on its respective dataset. After
local training, the clients securely transmit their model weights
to a central server. The server aggregates these weights using a
federated averaging method to create a global model, which is
then redistributed to the clients [17]. In subsequent rounds, the
clients perform another epoch of local training on the updated
global model and share the new weights with the server. This
process is repeated for T rounds to finalize the global model
Mv .

For the extraction (or surrogate) model, we utilize four dis-
tinct sample query datasets, consisting of 5k, 10k, 15k, and 20k
queries. These query sets are used to generate query-prediction
pairs, which are subsequently used to train Me. In this study,
we mainly focus on three datasets- CIFAR-10, MNIST, and
FashionMNIST, and two deep learning (DL) models, basic
CNN and ResNet to evaluate the ME attack. Initially, Me

is trained from scratch without utilizing pre-trained model
parameters. We then present a TL-based ME attack approach,
where pre-trained model parameters are utilized for Me to
enhance the ME attack performance.

B. ME Attack without Pre-trained Model

In this section, we demonstrate the effectiveness of the
ME attack on machine learning models trained using both
centralized and federated approaches with 5 and 10 clients.
Table I summarize the accuracy, fidelity, and KL divergence
of the ME attack for CIFAR-10, MNIST, and FashionMNIST.
The accuracy of Mv serves as the baseline accuracy, which
we aim to closely match. In this experiment, we apply both
centralized and federate training approaches to the victim
model, while for Me, we exclusively employ centralized
training.

For example, in the case of the CIFAR-10 dataset using a ba-
sic CNN model, the baseline accuracy ofMv is approximately
80.19%. Our objective is to closely approach this baseline
accuracy in the extraction model. We observe that the accuracy
of Me is directly correlated with the size of the query set.
A query dataset consisting of 25k samples typically yields
the highest Me accuracy in both centralized and federated
architectures. Similarly, for the ResNet model, accuracy is also
strongly influenced by the size of the query set.

Similar trends are observed across other datasets, such
as FashionMNIST and MNIST, where accuracy improves
consistently with increasing query set size for both the CNN
and ResNet models. Moreover, the Mv’s performance also
affects the accuracy of the extraction model. For instance, in
the FashionMNIST dataset, the highest baseline accuracy is
achieved using the basic CNN model with training distributed
across five clients, which consequently results in the best
extraction model accuracy for that setup.

When comparing the accuracy between the basic CNN and
ResNet models, the basic CNN outperforms the ResNet model
on both the CIFAR-10 and FashionMNIST datasets. However,



Metrics
No. of

FL
Clients

Basic CNN ResNet
Victim
model

Extraction model Victim
model

Extraction model
5K 10K 20K 25k 5K 10K 20K 25K

Accuracy
(%)

Centralized 80.19 59.99 63.52 70.72 73.7 76.22 52.40 58.73 65.24 68.36

C
IF

A
R

-1
0

5 79.98 56.49 63.75 70.67 71.86 81.05 52.55 58.65 65.9 68.07
10 76.57 53.13 63.83 70.05 73.05 82.39 52.12 59.19 66.03 68.94

Fidelity
(%)

Centralized
N/A

61.59 62.44 71.38 73.52
N/A

51.74 57.9 63.44 66.87
5 58.3 65.02 71.67 72.57 52.74 58.71 66.04 68.15

10 56.38 65.23 70.16 73.4 52.82 58.82 66.64 68.38

KL
Divergence

Centralized
N/A

0.0322 0.02744 0.02265 0.02069
N/A

0.000486 0.000416 0.000348 0.000318
5 0.0344 0.02837 0.022459 0.01899 0.000567 0.000458 0.000374 0.0003436

10 0.03076 0.02349 0.01863 0.0198 0.000577 0.000493 0.000368 0.000347

Accuracy
(%)

Centralized 98.94 98.53 99.06 99.33 99.39 99.08 98.36 98.57 99.17 99.24

M
N

IS
T

5 99.46 98.62 99.02 99.12 99.33 99.46 97.83 98.76 99.12 99.01
10 99.39 98.68 99.14 99.37 99.32 99.48 97.48 99.04 99.02 99.17

Fidelity
(%)

Centralized
N/A

98.48 98.82 98.85 98.87
N/A

97.25 97.87 98.45 98.59
5 98.58 99.05 99.2 99.3 97.51 98.79 98.41 98.98

10 98.70 99.04 99.3 99.3 97.61 98.83 98.52 98.79

KL
Divergence

Centralized
N/A

0.0013 0.001078 0.00103 0.0011697
N/A

3.60E-05 2.62E-05 1.77E-05 1.52E-05
5 0.00146 0.000926 0.00075 0.000577 3.04E-05 1.54E-05 2.35E-05 1.18E-05

10 0.00129 0.000919 0.00056 0.000572 3.0379E-05 2.38E-05 1.72E-05 1.26E-05

Accuracy
(%)

Centralized 92.01 88.16 88.7 90.74 91.23 89.65 83.62 86.94 88.98 89.49

Fa
sh

io
n-

M
N

IS
T

5 92.21 87.96 89.57 91.22 91.39 91.78 85.30 87.25 89.43 88.88
10 91.58 87.64 89.31 91.04 91.16 91.85 85.97 87.03 89.29 89.7

Fidelity
(%)

Centralized
N/A

89.67 90.83 91.68 92.05
N/A

83.15 86.85 88.12 89.01
5 89.53 91.29 92.49 92.72 86.83 87.2 89.71 89.95

10 89.88 91.03 91.5 91.48 85.99 87.09 89.66 89.65

KL
Divergence

Centralized
N/A

0.0135 0.006298 0.00677 0.00628
N/A

0.000125 9.50E-05 8.84E-05 8.71E-05
5 0.00789 0.006897 0.005633 0.00572 0.000134 1.20E-04 1.05E-04 9.13E-05

10 0.00693 0.00653 0.006176 0.00578 0.0001416 1.14E-04 9.32E-05 9.23E-05

TABLE I: ME atatck accuracy and fidelity across various FL clients on CIFAR-10, MNIST, and FashionMNIST datasets,
evaluated on different DL model architectures.

when employing a pre-trained ResNet model, we achieve
significantly better results (as discussed later).

Since the MNIST datasets are less complex than CIFAR-
10, the extraction model can achieve high accuracy with fewer
query samples. For example, using the FashionMNIST dataset
with only a 5k query set, we achieve an extraction accuracy of
approximately 88.16% with the basic CNN model, compared
to a baseline accuracy of around 92%. However, under the
same conditions with the ResNet model, the accuracy is
significantly lower. Thus, we hypothesize that the extraction
model’s accuracy is strongly influenced by both the size of the
query set and the performance of Mv .

To further evaluate the ME attack’s effectiveness, we as-
sess fidelity and KL divergence to measure how well the
extraction model approximatesMv . Similar to accuracy, these
metrics are influenced by the query dataset size, larger datasets
generally yield higher extraction accuracy and, consequently,
better fidelity and lower divergence. Since fidelity is inherently
tied to extraction model accuracy, improvements in accuracy
enhance fidelity, while reductions degrade both fidelity and
KL divergence. These findings underscore the critical role of
query set size and victim model performance in shaping ME
attack success.

C. ME Attack with Pre-trained Model

We leverage the TL approach to enhance the performance
of the ME attack across multiple datasets [18], [19]. In this
experiment, we employ a pre-trained ResNet model as the
extraction model, which is subsequently fine-tuned on the
extracted dataset. The ME attack performance for all query
sets on the victim ResNet model, trained on the CIFAR-
10 and FashionMNIST datasets, is presented in Table II and
Table III, respectively. Across all query sets, the pre-trained

TABLE II: ME attack performance using ResNet pre-trained
model on CIFAR-10.

M
et

ri
c

N
Training-from-scratch Using pre-trained model

5k 10k 20k 25k 5k 10k 20k 25k

A
cc

ur
ac

y 0 52.4 58.73 65.24 68.66 63.75 70.94 73.67 75.77

5 52.55 58.65 65.9 68.07 67.27 70.27 73.89 75.61

10 52.12 59.19 66.03 68.94 66.88 69.70 73.65 76.12

Fi
de

lit
y 0 51.74 57.9 63.44 66.87 62.52 68.57 70.69 70.88

5 52.74 58.71 66.04 68.15 68.3 70.3 73.67 74.69

10 52.82 58.82 66.64 68.38 68.98 69.94 73.45 74.16

TABLE III: ME attack performance using the ResNet pre-
trained model on FashionMNIST.

M
et

ri
c

N
Training-from-scratch Using pre-trained model

5k 10k 20k 25k 5k 10k 20k 25k

A
cc

ur
ac

y 0 83.62 86.94 88.98 89.49 87.95 88.86 89.73 90.44

5 85.3 87.25 89.43 88.88 87.72 88.41 90.41 90.17

10 85.97 87.03 89.29 89.7 88.33 89.24 90.27 90.8

Fi
de

lit
y 0 83.15 86.85 88.12 89.01 88.57 88.08 88.94 90.23

5 86.83 87.2 89.71 89.95 89.19 89.64 91.3 91.28

10 85.99 87.09 89.66 89.65 89.46 90.72 90.82 90.44

model consistently surpasses the original extraction model in
both accuracy and fidelity metrics.

For instance, in the CIFAR-10 dataset, the highest accuracy
achieved by the basic CNN model with a 25k query set is
around 73%. However, when applying the TL approach on
the same victim model, this accuracy is surpassed with a
smaller query set (20k). The highest recorded extraction model
accuracy for CIFAR-10 is around 76.12%, closely matching
the baseline accuracy of 76.52%, effectively replicating the
victim model’s performance. A similar trend is observed in



the FashionMNIST dataset, where TL leads in both accuracy
and fidelity metrics across various query sets.

Figure 3 and Figure 4 illustrate the notable improvements
in both accuracy and fidelity for the CIFAR-10 dataset. These
results clearly indicate that the performance of the ME attack
is strongly tied to the extracted model’s parameters. By incor-
porating pre-trained parameters, the extraction model achieves
significantly better accuracy and fidelity, particularly with
smaller query sets, thereby improving the overall effectiveness
of the ME attack. For example, with a 10k query set on the
CIFAR-10 dataset, the TL approach results in approximately
12.21% higher accuracy compared to the original extraction
model accuracy.

Fig. 3: ME attack accuracy with ResNet pre-trained model on
CIFAR-10.

Fig. 4: ME attack fidelity with ResNet pre-trained model on
CIFAR-10.

VI. CONCLUSION AND FUTURE SCOPE

In this study, we examine the vulnerability of FL-based
models to ME attacks, showing that the accuracy and fidelity
of extracted models are significantly affected by factors such
as query set size, model architecture, and training datasets.
Further, incorporating transfer learning (TL) into the extraction
process notably enhances attack performance, especially with
smaller query sets.

In the future, we plan to focus on developing defenses
against ME attacks, including techniques like noise injection in
API responses and other stronger privacy-preserving methods
in FL environments. Extending the research to other data types
and exploring larger, more diverse federated networks will
offer further insights into mitigating these risks.
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