LIGHTDSA: A PYTHON-BASED HYBRID DIGITAL SIGNATURE LIBRARY AND PERFORMANCE ANALYSIS OF RSA, DSA, ECDSA AND EDDSA IN VARIABLE CONFIGURATIONS, ELLIPTIC CURVE FORMS AND CURVES

A PREPRINT

Sefik Serengil Solution Engineering Vorboss Limited London, UK sefik.serengil@vorboss.com • Alper Ozpinar Department of Management Ibn Haldun University Istanbul, TURKIYE alper@ozpinar.org

June 2, 2025

ABSTRACT

Digital signature algorithms (DSAs) are fundamental to cryptographic security, ensuring data integrity and authentication. While RSA, DSA, ECDSA, and EdDSA are widely used, their performance varies significantly depending on key sizes, hash functions, and elliptic curve configurations. In this paper, we introduce LightDSA, a hybrid and configurable digital signature library that supports RSA, DSA, ECDSA, and EdDSA with flexible form and curve selection, open sourced at https: //github.com/serengil/LightDSA. Unlike conventional implementations that impose strict curve-form mappings—such as Weierstrass for ECDSA and Edwards for EdDSA—LightDSA allows arbitrary combinations, enabling a broader performance evaluation. We analyze the computational efficiency of these algorithms across various configurations, comparing key generation, signing, and verification times. Our results provide insights into the trade-offs between security and efficiency, guiding the selection of optimal configurations for different cryptographic needs.

Keywords Cryptography, Digital Signarure, ECDSA, EdDSA, RSA, DSA, Python

1 Introduction

Digital signatures are a cornerstone of modern cryptography, providing a mechanism to verify the authenticity and integrity of digital messages and documents. Widely used in various security protocols, digital signature algorithms (DSAs) ensure that the data has not been tampered with and that it originates from a trusted sender. Among the most commonly used digital signature algorithms are RSA [1], DSA [2], ECDSA [3], and EdDSA [4], each offering unique strengths and trade-offs in terms of security, efficiency, and flexibility. These algorithms are essential in securing communications, enabling digital certificates, and facilitating blockchain transactions, among other applications.

Despite their widespread adoption, the performance of these algorithms varies significantly depending on several factors, including the choice of key size, elliptic curve type, and hash function. RSA has been the standard for digital signatures for decades, relying on large integer factorization for its security. However, its performance decreases as the key size increases, making it less efficient for modern applications that require smaller, faster cryptographic operations.

Elliptic Curve Cryptography (ECC) [5] [6] is a branch of public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC offers high levels of security with relatively small key sizes, making it highly efficient compared to traditional systems like RSA. This efficiency has led to its widespread adoption in modern cryptographic protocols. While ECC is widely used for key exchange protocols and digital signatures, it can also be applied to encryption schemes, such as EC ElGamal [7]. However, despite its theoretical potential for encryption

and decryption, EC ElGamal's decryption process requires solving the Elliptic Curve Discrete Logarithm Problem (ECDLP), which is computationally difficult and impractical for real-world applications. This makes EC ElGamal unsuitable for most encryption purposes [8] [9]. In contrast, Elliptic Curve Diffie-Hellman (ECDH) [10], a key exchange protocol based on ECC, is highly efficient and practical for establishing secure communication channels. Due to its speed and strong security guarantees, ECDH has gained significant adoption, with tools like GPG incorporating ECDH support for encryption in recent versions. Similarly, Elliptic Curve Digital Signature Algorithm (ECDSA) and Edwards-curve Digital Signature Algorithm (EdDSA) are two widely adopted and efficient elliptic curve-based digital signature algorithms. These algorithms provide strong security with relatively small key sizes, making them ideal choices for digital signature applications in environments requiring fast and scalable cryptographic operations.

ECDSA (Elliptic Curve Digital Signature Algorithm) and EdDSA (Edwards-curve Digital Signature Algorithm) also address RSA's issue by leveraging elliptic curve cryptography (ECC), which provides strong security with smaller key sizes. While ECDSA is based on the Weierstrass curve form, EdDSA employs the Edwards curve form [11], known for its efficiency and resistance to certain types of attacks [12]. Both elliptic curve-based algorithms have gained significant traction in cryptographic standards and protocols.

However, despite the popularity of these algorithms, many implementations follow fixed configurations, such as specific elliptic curve forms or pre-defined curves. ECDSA, for example, is typically implemented using the secp256k1 or secp256r1 (p256) curve, while EdDSA often uses Ed25519 [13]. While these defaults are widely accepted, they may not always represent the best choice for every use case [14].

The main goal of this paper is to present LightDSA, a Python-based digital signature library that supports RSA, DSA, ECDSA, and EdDSA, open sourced at https://github.com/serengil/LightDSA. The library offers flexibility in terms of elliptic curve forms (Weierstrass [15], Koblitz [16], and Edwards [17] [18]) and supports a wide range of pre-defined curves such as secp256k1, secp256r1 or ed25519, allowing users to experiment with different configurations. The library automatically determines the appropriate hash function based on the key size or curve order, supporting common cryptographic hash functions like SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 [19].

In this paper, we provide an extensive performance evaluation of LightDSA, comparing RSA, ECDSA, and EdDSA across different configurations. Specifically, we analyze the impact of curve selection, hash function choice, and key size on the performance of digital signature operations, including key generation, signing, and verification. We also explore the trade-offs between security and efficiency, highlighting the suitability of various configurations for different cryptographic needs.

The findings presented in this paper aim to guide cryptographic practitioners and researchers in selecting the most appropriate digital signature algorithm and configuration for their specific use cases. By providing a highly configurable and performance-optimized framework, LightDSA offers a tool to better understand the strengths and weaknesses of various digital signature approaches, contributing to the ongoing development of more efficient cryptographic systems.

2 Digital Signature Algorithms

In this section, we will focus on three widely used cryptographic methods for ensuring the authenticity and integrity of digital messages: RSA, ECDSA, and EdDSA. RSA, one of the oldest and most widely adopted algorithms, uses a pair of keys—private and public—for signing and verification. It provides strong security based on the difficulty of factoring large numbers. ECDSA, which uses elliptic curve cryptography, offers similar security to RSA but with much smaller key sizes, making it more efficient and suitable for resource-constrained environments. Finally, EdDSA, an enhanced version of ECDSA, uses a different elliptic curve and focuses on improving performance, security, and resistance to side-channel attacks. Each of these algorithms plays a crucial role in digital signatures, offering varying benefits depending on the specific requirements of the application.

2.1 RSA

RSA is a widely-used public-key cryptosystem that operates on two key principles: encryption and decryption. In the context of homomorphic encryption and secure message transfer, the public key is used for encryption, and the private key is used for decryption [20]. On the other hand, in the context of digital signatures, the private key is used for signing, while the public key is used for verification [21].

To sign a message, the sender uses their private key, which is represented as d, to generate the signature. The hashed message m is raised to the power of d and then taken modulo n, as described in Equation 1.

$$c = (m)^d \mod n \tag{1}$$

Here, c is the resulting signature. This process ensures that only the holder of the private key can generate a valid signature. To verify the signature, the recipient uses the sender's public key e. The signature c is raised to the power of e and taken modulo n, as shown in Equation 2. If the result matches the hash of the original message, the signature is valid, proving both the authenticity of the message and that it has not been tampered with.

$$m = (c)^e \mod n \tag{2}$$

The relationship between the public and private keys is governed by the Equation 3 and 4.

$$e \times d = 1 \mod \phi(n) \tag{3}$$

$$e \times d = k \times \phi(n) + 1 \tag{4}$$

If this rule is applied the encryption - decryption operations respectively

$$(m^d)^e \mod n \tag{5}$$

$$m^{k imes \phi(n)+1} \mod n$$
 (6)

$$m^{k \times \phi(n)} \times m \mod n$$
 (7)

$$(m^{\phi(n)})^k \times m \mod n \tag{8}$$

According to Fermat-Euler Theorem, raising any integer a, which is coprime to n, to the power of Euler's totient function results in 1 modulo n. Put Fermat-Euler theorem back to the equation above as follows

$$(m^{\phi(n)})^k \times m \mod n \tag{9}$$

$$(1)^k \times m \mod n \tag{10}$$

$$m \mod n$$
 (11)

In summary, applying the private key first and then the public key will recover the original plaintext message as shown in Equation 12.

$$(m^d)^e \mod n = m \mod n \tag{12}$$

This ensures that the encryption and decryption operations are mathematically linked, allowing for secure digital signatures. Thus, RSA provides a robust mechanism for ensuring message integrity and authenticity in digital communication, where the private key signs the message, and the public key verifies it.

2.2 DSA

DSA is a modified version of the Schnorr and ElGamal [22] digital signature algorithms. It requires the selection of two prime number p and q that satisfy the following conditions:

$$p-1 \mod q = 0 \tag{13}$$

A generator g is then generated randomly using, where h is chosen from the range [2, p-2]

$$g \mod p = h^{\frac{p-1}{q}} \mod p \tag{14}$$

If we raise both sides to power of q as

$$g^q \mod p = \left(h^{\frac{p-1}{q}}\right)^q \mod p \tag{15}$$

$$g^q \mod p = h^{p-1} \mod p \tag{16}$$

According to the Fermat's Little Theorem, right hand side must be equal to 1.

$$g^q \mod p = 1 \tag{17}$$

The signer then selects a private key x in the range [1, q-1] and computes the corresponding public key y as follows:

$$y = g^x \mod p \tag{18}$$

The signer then selects a random integer k for each signature, chosen from the range [1, q-1], and the signature (r, s) pair is calculated as follows:

$$r = (g^k \mod p) \mod q \tag{19}$$

$$s = \frac{H(m) + x \times r}{k} \mod q \tag{20}$$

In verification process, the verifier calculates u_1 and u_2 as follows:

$$u_1 = \frac{H(m)}{s} \mod q \tag{21}$$

$$u_2 = \frac{r}{s} \mod q \tag{22}$$

The verifier then checks whether the following calculations are equal to the r part of the signature.

$$((g^{u_1} \mod p) \times (y^{u_2} \mod p)) \mod q = r$$
(23)

To prove the correctness of the verification process, recall the computation of s

$$s = \frac{H(m) + x \times r}{k} \mod q \tag{24}$$

If we find k from that equation as follows

$$k = \frac{H(m) + x \times r}{s} \mod q \tag{25}$$

Move divisor s to the additions in the dividend

$$k = \frac{H(m)}{s} + \frac{x \times r}{s} \mod q \tag{26}$$

Move this equation to the exponents with the same base g and the same modulo p.

$$g^k \mod p = g^{\left(\frac{H(m)}{s} + \frac{x \times r}{s} \mod q\right)} \mod p \tag{27}$$

According to the product rule of exponents, this can be re-arranged as

$$g^k \mod p = g^{\left(\frac{H(m)}{s} \mod q\right)} \times g^{\left(\frac{x \times r}{s} \mod q\right)} \mod p \tag{28}$$

According to the power of power rule, this can be represented as follows:

$$g^k \mod p = g^{\left(\frac{H(m)}{s} \mod q\right)} \times (g^x)^{\left(\frac{r}{s} \mod q\right)} \mod p \tag{29}$$

The base g raised to the power of the private key x is equal to the public key y.

$$g^k \mod p = g^{\left(\frac{H(m)}{s} \mod q\right)} \times y^{\left(\frac{r}{s} \mod q\right)} \mod p \tag{30}$$

We can replace the exponents with u_1 and u_2 .

$$g^k \mod p = g^{u_1} \times y^{u_2} \mod p \tag{31}$$

Thus, the verifier calculates g^k during verification, where k is the random key generated by the signer, and the verifier does not know this value directly.

Meanwhile, the signer calculates r as $g^k \mod p$, and then takes the result modulo q.

$$(g^k \mod p) \mod q = (g^{u_1} \times y^{u_2} \mod p) \mod q \tag{32}$$

$$r = (g^{u_1} \times y^{u_2} \mod p) \mod q \tag{33}$$

2.3 ECDSA

A user should select a random number k_a as their private key. Then, they compute the corresponding point on the elliptic curve by multiplying the private key with the base point G, obtaining their public key Q_a .

$$Q_a = k_a \times G \tag{34}$$

Then, a random point R on the elliptic curve should be selected.

$$R = k_r \times G \tag{35}$$

The private key should be chosen only once, but a new random point must be generated for each signature. If the same random point is reused across multiple signatures, an attacker can exploit this to recover the private key by solving for it algebraically. This is a critical security requirement in elliptic curve cryptography to prevent key leakage.

The signature (r, s) pair should be calculated as

$$r = R_x \tag{36}$$

$$s = \frac{m + r \times k_a}{k_r} \mod n \tag{37}$$

In verification, user should calculate the pair u_1 and u_2 as

$$u_1 = \frac{m}{s} \times G \tag{38}$$

$$u_2 = \frac{r}{s} \times Q_a \tag{39}$$

Finally, user should find the addition of the points u_1 and u_2 and check its x coordinate is equal to r. If this condition is true, then signature is valid.

$$(u_1 + u_2)_x = r (40)$$

To prove this scheme, we need to replace u_1 and u_2 first.

$$u_1 + u_2 = \frac{m}{s} \times G + \frac{r}{s} \times Q_a \tag{41}$$

Public key Q_a can be expressed as $k_a \times G$

$$u_1 + u_2 = \frac{m}{s} \times G + \frac{r}{s} \times k_a \times G \tag{42}$$

Both terms in the addition have common s divisor and base point G multiplier.

$$u_1 + u_2 = \frac{m + r \times k_a}{s} \times G \tag{43}$$

Replace the s in the divisor from Equation 37

$$u_1 + u_2 = \frac{m + r \times k_a}{\frac{m + r \times k_a}{k_a}} \times G \tag{44}$$

Dividends can be simplified and the addition of u_1 and u_2 becomes random point R.

$$u_1 + u_2 = k_r \times G = R \tag{45}$$

On the other hand, we checked the equality of x coordinate u_1 and u_2 addition to r part of the signature where r was the x coordinate of random point already.

2.4 EdDSA

Similar to ECDSA, user should generate a random integer once as their private key and compute its corresponding point by multiplying their private key with base point G.

$$Q_a = k_a \times G \tag{46}$$

Secondly, the user should generate a random point by hashing the message. This ensures its randomness and prevents the leakage of the same random key for different signatures.

$$r = H(H(m) + m) \tag{47}$$

Then, calculates the corresponding random point by multiplying random number with the base point G.

$$R = r \times G \tag{48}$$

Threafter, the x coordinate of random point, the x coordinate of public key and message should be summed to calculate h, where p is the prime over which the elliptic curve is defined.

$$h = R_x + (Q_a)_x + message \mod p \tag{49}$$

Finally, random number derived from message and h times private key k_a should be summed to calcualte s.

$$s = r + h \times k_a \tag{50}$$

The (R, s) pair will be dispatched as a signature, where R is a point on the elliptic curve with x and y coordinates, and s is an integer.

Once message and signature (R, s) dispatched, verifier can compute same h as

$$h = R_x + (Q_a)_x + message \mod p \tag{51}$$

Then, verifier will compute P_1 and P_2 as

$$P_1 = s \times G \tag{52}$$

$$P_2 = R + h \times Q_a \tag{53}$$

Signature is valid only if P_1 and P_2 are equal.

$$P_1 = P_2 \tag{54}$$

To prove the correctness of EdDSA schema, put s back to P_1 computation

$$P_1 = s \times G = (r + h \times k_a) \times G = r \times G + h \times k_a \times G$$
(55)

In the equation above, $r \times G$ refers to random point R, and $k_a \times G$ denotes public key Q_a . That is exactly equal to P_2 . So, this shows the correctness of the verification process of EdDSA.

$$P_1 = R + h \times Q_a = P_2 \tag{56}$$

3 Python Library

In the previous section, we focused on the theory behind three major digital signature algorithms. LightDSA aims to provide a simple and intuitive interface for building cryptosystems using these algorithms. Users do not need to delve into the underlying processes. To construct a cryptosystem, they can simply initialize a LightDSA object and set the algorithm to RSA, DSA, ECDSA, or EdDSA. For elliptic curve-based algorithms, users can optionally choose the curve type, such as Weierstrass, Koblitz, or Edwards, and specify the curve, as demonstrated in the following snippet. Once set up, any message can be signed using the sign method of the LightDSA object.

Algorithm 1: Building a Cryptosystem and Signing a Message

```
# !pip install lightdsa
from lightdsa import LightDSA
# construct a cryptosystem
dsa = LightDSA(
    algorithm_name = "eddsa", # or ecdsa, rsa, dsa
    form_name = "edwards", # or weierstrass, koblitz
    curve_name = "ed25519",
)
# export public key
dsa.export_keys("public.txt", public = True)
# sign a message
message = "Hello, world!"
signature = dsa.sign(message)
```

On the verifier side, the LightDSA object should be initialized with the same configuration, along with the exported public key. The verify method can then be used to verify a message and its corresponding signature. If the signature is invalid, the method will raise an error.

Algorithm 2: Veriving a Message

```
# construct the cryptosystem with public key
verifier_dsa = LightDSA(
    algorithm_name = "eddsa", # or ecdsa, rsa, dsa
    form_name = "edwards", # or weierstrass, koblitz
    curve_name = "ed25519",
    key_file = "public.txt",
)
assert verifier_dsa.verify(message, signature) is True
```

4 Experiments

Table 1 presents the performance of the RSA algorithm with different key sizes and hash functions, detailing the key generation time, signing time, and verification time for each configuration. With a 1024-bit key and SHA-160 hash, RSA key generation takes 0.0480 seconds, while signing and verification operations complete in 0.0031 and 0.0034 seconds, respectively. As the key size increases to 2048 bits with SHA-224, key generation time rises to 0.5314 seconds, and signing and verification times increase to 0.0221 and 0.0219 seconds, respectively. At 3072 bits with SHA-256, key generation time grows significantly to 9.3434 seconds, with signing and verification times of 0.0704 and 0.0693 seconds. The trend continues with a 7680-bit key and SHA-384, where key generation takes 43.8724 seconds, while signing and verification times increase to 0.9308 and 0.9995 seconds, respectively. Finally, at 15360 bits with SHA-512, RSA key generation time surges to 455.00 seconds, while signing and verification times rise drastically to 7.0423 and 7.6164 seconds. These results demonstrate that as the RSA key size increases, the computational overhead grows exponentially, making RSA increasingly impractical for larger key sizes, particularly in applications requiring frequent key generation.

Table 1: Performance of RSA with different key sizes and hashes

Algorithm	Key Size	Hash	KeyGen (s)	Sign (s)	Verify (s)
RSA	15360	sha512	455.00	7.0423	7.6164
RSA	7680	sha384	43.8724	0.9308	0.9995
RSA	3072	sha256	9.3434	0.0704	0.0693
RSA	2048	sha224	0.5314	0.0221	0.0219
RSA	1024	sha160	0.0480	0.0031	0.0034

The table 2 presents the performance of the Digital Signature Algorithm (DSA) with varying key sizes and hash functions. It shows the time taken for key generation, signing, and verification for different configurations. The key sizes range from 1024 bits to 15360 bits, with corresponding hash functions including sha1, sha224, sha256, sha384, and sha512. As the key size increases, the time required for key generation grows significantly, with the 15360-bit key taking the longest at 7172.1030 seconds. However, the signing and verification times remain relatively low across all configurations, with the fastest being 0.0006 seconds for signing and 0.0012 seconds for verification at a 1024-bit key with the sha160 hash. The results highlight the trade-off between key size and computational efficiency, with larger keys offering higher security but requiring more time for key generation.

Table 2: Performance of DSA with different key sizes and hashes

Algorithm	Key Size	Hash	KeyGen (s)	Sign (s)	Verify (s)
DSA	15360	sha512	7172.1030	0.1937	0.3868
DSA	7680	sha384	432.1513	0.0412	0.0833
DSA	3072	sha256	41.2033	0.0065	0.0126
DSA	2048	sha224	3.9034	0.0033	0.0062
DSA	1024	sha160	0.8196	0.0006	0.0012

Table 3 compares the performance of Edwards curve cryptography for ECDSA and EdDSA, showing key generation, signing, and verification times across different curve sizes. Both schemes offer efficient performance, with execution times increasing gradually as the security level grows. Larger curves like e521 and ed448 maintain practical performance, while smaller curves like ed25519 provide the fastest execution. EdDSA generally outperforms ECDSA in signing

operations, and both schemes scale more efficiently than RSA. Overall, Edwards curves are well-suited for fast and secure digital signatures.

Table 3: Performance of Prime Field Edwards Form for ECDSA and EdDSA

				EdDSA			ECDSA	
Curve	n	Hash	KeyGen (s)	Sign (s)	Verify (s)	KeyGen (s)	Sign (s)	Verify (s)
e521 [23]	519	sha512	0.0667	0.032	0.1357	0.0656	0.0647	0.1368
rfc5832-512	510	sha512	0.062	0.0314	0.1204	0.063	0.0631	0.1242
numsp512t1	510	sha512	0.0585	0.0321	0.1253	0.064	0.0626	0.1433
ed448 [24]	446	sha512	0.0436	0.0259	0.0919	0.0466	0.0497	0.0992
ed448godilocks [25]	446	sha512	0.0516	0.0376	0.1131	0.0457	0.0551	0.0899
curve41417 [26]	411	sha512	0.0381	0.0235	0.0728	0.0528	0.0363	0.0976
numsp384t1	382	sha384	0.0356	0.0201	0.0616	0.0296	0.0301	0.0688
e382 [23]	380	sha384	0.0347	0.0272	0.1340	0.0304	0.0328	0.0699
rfc5832-256	255	sha256	0.0125	0.0122	0.0256	0.0129	0.0132	0.0279
mdc201601 [27]	254	sha256	0.0118	0.012	0.0244	0.0112	0.0114	0.0259
numsp256t1	254	sha256	0.012	0.0122	0.0369	0.0119	0.0117	0.0256
ed25519 [4]	253	sha256	0.0122	0.0116	0.0227	0.0126	0.0117	0.024
jubjub	252	sha256	0.0131	0.0123	0.0253	0.0127	0.0142	0.0352
e222 [23]	220	sha224	0.0123	0.0096	0.0206	0.0150	0.0089	0.0168

Table 4 presents the performance comparison of Koblitz curves for EdDSA and ECDSA across various elliptic curve parameters. The table includes key performance metrics such as key generation, signing, and verification times for each curve. The curves are characterized by their form, name, bit-length n, and the hash function used. Generally, larger bit-lengths result in longer processing times due to increased cryptographic complexity. For both EdDSA and ECDSA, key generation times remain relatively consistent across curves, while signing and verification times vary more significantly. Higher bit-length curves like b571 and k571 exhibit the longest processing times, whereas smaller curves such as sect113r1 and wap-wsg-idm-ecid-wtls1 demonstrate the fastest performance. The comparison highlights that EdDSA typically has faster signing operations, whereas ECDSA shows more variation in signing and verification times. These insights are valuable for selecting the appropriate Koblitz curve based on the required balance between security and computational efficiency.

			EdDSA			ECDSA			
Curve	n	Hash	KeyGen (s)	Sign (s)	Verify (s)	KeyGen (s)	Sign (s)	Verify (s)	
b571	570	sha512	8.194	3.7683	17.4123	8.216	8.3472	16.174	
k571	570	sha512	8.2713	3.9519	16.1562	8.4748	8.2457	17.1495	
c2tnb431r1	418	sha512	3.386	2.1913	7.4535	3.3694	3.374	6.7825	
b409	409	sha512	3.4035	1.9555	6.1243	2.9679	3.005	6.114	
k409	407	sha512	2.9362	2.0002	6.2678	3.0423	3.2321	6.0597	
c2pnb368w1	353	sha384	1.9927	1.5442	4.3315	2.039	2.2011	4.2777	
c2tnb359v1	353	sha384	2.0163	1.4565	3.9728	1.9861	2.0191	3.9461	
c2pnb304w1	289	sha384	1.3413	1.2259	2.405	1.2239	1.1946	2.6447	
b283	282	sha384	1.0931	0.9905	2.3768	1.0412	1.0213	2.0634	
k283	281	sha384	1.2124	0.9356	2.0528	0.9805	0.9449	2.0996	
c2pnb272w1	257	sha384	0.7865	0.8815	1.709	1.0488	0.8912	1.7936	
ansit239k1	238	sha256	0.6724	0.6275	1.2682	0.7017	0.888	1.2746	
c2tnb239v1	238	sha256	0.7212	0.7171	1.3736	0.6199	0.6499	1.189	
c2tnb239v2	237	sha256	0.6987	0.6232	1.234	0.6207	0.5708	1.2449	
c2tnb239v3	236	sha256	0.6312	0.6157	1.2617	0.6048	0.593	1.1998	
b233	233	sha256	0.5879	0.5479	1.2912	0.7237	0.8425	1.1725	
k233	232	sha256	0.6677	0.5965	1.6555	0.6128	0.5404	1.1134	
ansit193r1	193	sha224	0.4117	0.3504	0.6917	0.322	0.3276	0.7053	
ansit193r2	193	sha224	0.3241	0.3212	0.7989	0.3586	0.3558	0.6204	
c2pnb208w1	193	sha224	0.3913	0.3725	0.7813	0.374	0.3936	0.7869	
c2tnb191v1	191	sha224	0.3042	0.3416	0.7359	0.3341	0.3189	0.6884	
c2tnb191v2	190	sha224	0.3182	0.327	0.6551	0.3281	0.3544	0.6656	
c2tnb191v3	189	sha224	0.327	0.3333	0.7207	0.3449	0.322	0.6343	
b163	163	sha224	0.1969	0.2011	0.4037	0.2064	0.2351	0.5114	
c2pnb163v1	163	sha224	0.2132	0.2122	0.4019	0.2335	0.2039	0.406	
k163	163	sha224	0.2729	0.2496	0.5028	0.2318	0.2229	0.4173	
ansit163r1	162	sha224	0.2265	0.2332	0.4603	0.2074	0.2169	0.4184	
c2pnb163v2	162	sha224	0.2322	0.2764	0.3987	0.2134	0.2638	0.4357	
c2pnb163v3	162	sha224	0.228	0.2051	0.4114	0.2158	0.1913	0.3957	
c2pnb176w1	161	sha224	0.2576	0.2598	0.4752	0.222	0.2353	0.5246	
sect131r1	131	sha160	0.1067	0.1088	0.2342	0.1047	0.1085	0.2301	
sect131r2	131	sha160	0.1174	0.0992	0.2317	0.1075	0.1073	0.2114	
sect113r1	113	sha160	0.0821	0.0799	0.1372	0.0734	0.0688	0.145	
sect113r2	113	sha160	0.0693	0.075	0.1523	0.069	0.0805	0.1484	
k113	112	sha160	0.0795	0.0759	0.1487	0.1032	0.0828	0.1694	

Table 4: Performance of Binary Field Koblitz Form for ECDSA and EdDSA

The table 5 and 6 present the performance metrics of various Weierstrass curve implementations used for the EdDSA and ECDSA elliptic curve signature algorithms. The table includes details on the curve name, the order of the curve denoted by n, the hash function used, and the performance timings for key generation, signing, and verification operations. Each row corresponds to a specific curve configuration with performance measurements provided for both EdDSA and ECDSA, where time is recorded in seconds. For EdDSA, the key generation times range from approximately 0.006 to 0.077 seconds, signing times from 0.006 to 0.015 seconds, and verification times from 0.013 to 0.120 seconds. Similarly, ECDSA shows key generation times from 0.007 to 0.077 seconds, signing times from 0.0068 to 0.0699 seconds, and verification times from 0.0132 to 0.1278 seconds. This data allows for a detailed comparison of the efficiency of different elliptic curves for these cryptographic operations, aiding in the selection of the most optimal curve for specific use cases.

			EdDSA			ECDSA		
Curve	n	Hash	KeyGen (s)	Sign (s)	Verify (s)	KeyGen (s)	Sign (s)	Verify (s)
bn638	638	sha512	0.0692	0.0248	0.1205	0.0771	0.0636	0.1278
bn606	606	sha512	0.053	0.0222	0.1039	0.0518	0.0699	0.1062
bn574	574	sha512	0.0444	0.0283	0.106	0.0476	0.0452	0.1006
bn542	542	sha512	0.0392	0.0184	0.0809	0.0418	0.0409	0.0868
p521	521	sha512	0.0734	0.0188	0.0781	0.0372	0.0429	0.076
brainpoolp512r1	512	sha512	0.0436	0.0263	0.0897	0.0341	0.0347	0.0684
brainpoolp512t1	512	sha512	0.0462	0.0182	0.0698	0.04	0.0351	0.0761
fp512bn [28]	512	sha512	0.036	0.0175	0.0715	0.0348	0.0336	0.0655
numsp512d1	512	sha512	0.0482	0.0234	0.0875	0.0413	0.0356	0.0678
eccfrog512ck2 [29]	512	sha512	0.0421	0.0205	0.0961	0.0503	0.0526	0.0734
gost512	511	sha512	0.0353	0.0169	0.0745	0.0349	0.0327	0.0721
bn510	510	sha512	0.03	0.0165	0.0627	0.0396	0.0354	0.0784
bn478	478	sha512	0.0274	0.0151	0.0545	0.0302	0.0301	0.0657
bn446	446	sha512	0.023	0.0164	0.0541	0.0295	0.0234	0.0463
bls12-638 [30] [31]	427	sha512	0.0424	0.0241	0.0838	0.0495	0.0402	0.0754
bn414	414	sha512	0.0234	0.0136	0.0391	0.0208	0.0206	0.0439
brainpoolp384r1	384	sha384	0.0176	0.0118	0.0342	0.0176	0.0171	0.0355
brainpoolp384t1	384	sha384	0.0183	0.0124	0.0487	0.0183	0.0177	0.0373
fn384hn [28]	384	sha384	0.0165	0.0109	0.0342	0.0189	0.0174	0.0345
numsn384d1	384	sha384	0.0276	0.0101	0.0389	0.0185	0.0175	0.0354
n384	384	sha384	0.0193	0.0121	0.0372	0.0105	0.0171	0.0352
bls24-477 [30] [31]	383	sha384	0.0193	0.0120	0.0372	0.0241	0.0216	0.0542
bn387	382	sha384	0.0241	0.0130	0.0402	0.0241	0.0210	0.0342
curve67254 [30]	380	sha384	0.0175	0.0113	0.0358	0.027	0.0107	0.0334
bn350	350	sha384	0.0154	0.0005	0.0330	0.0136	0.0177	0.0427
brainpoolp320r1	320	sha38/	0.0154	0.0095	0.0277	0.0130	0.0127	0.03
brainpoolp320t1	320	sha384	0.0109	0.0145	0.0237	0.0118	0.0115	0.022
bn218	318	sha304	0.0107	0.0104	0.0220	0.0124	0.0113	0.0233
ble12 455	305	sha304	0.0112	0.0087	0.0239	0.0110	0.0105	0.0219
bls12-455	200	sha304	0.0174	0.0140	0.0347	0.0194	0.0183	0.0403
bn286	299	sha304	0.0172	0.0130	0.0312	0.010	0.0155	0.0318
brainpoolp256r1	260	sha256	0.0082	0.0073	0.0100	0.0085	0.0080	0.01/1
brainpoolp256t1	250	sha250	0.0102	0.0123	0.0133	0.0008	0.0000	0.0143
fn256bn [28]	250	sha250	0.0072	0.007	0.0137	0.0009	0.0080	0.0103
1p230011 [20]	250	sha250	0.0000	0.0003	0.013	0.0008	0.0002	0.0129
g0st230	250	sha250	0.0000	0.0005	0.014	0.0008	0.0090	0.0197
numsp250d1	230	sna250	0.0077	0.007	0.0207	0.007	0.0067	0.0144
p256	256	sna256	0.0115	0.0094	0.0137	0.0073	0.0064	0.0132
secp256K1	256	sna256	0.0067	0.0077	0.0293	0.0067	0.0066	0.0136
tom256 [32]	256	sha256	0.0139	0.007	0.0141	0.0077	0.0068	0.013
bls12-381 [33]	255	sha256	0.011/	0.0112	0.0227	0.01/9	0.0112	0.0237
pallas [34]	255	sna256	0.0071	0.0063	0.0133	0.0063	0.0064	0.0133
tweedledee [35]	255	sha256	0.0138	0.0151	0.0193	0.0063	0.0062	0.0122
tweedledum [35]	255	sha256	0.007	0.0068	0.013	0.0068	0.006	0.0125
vesta [34]	255	sha256	0.0142	0.012	0.0132	0.0065	0.0066	0.0126

Table 5: Performance of Prime Field Weierstrass Form for ECDSA and EdDSA #1

			EdDSA			ECDSA			
Curve	n	Hash	KeyGen (s)	Sign (s)	Verify (s)	KeyGen (s)	Sign (s)	Verify (s)	
bn254	254	sha256	0.0064	0.006	0.0122	0.0162	0.0089	0.0144	
fp254bna [36]	254	sha256	0.0068	0.0064	0.013	0.0065	0.0061	0.0131	
fp254bnb [37]	254	sha256	0.007	0.0075	0.0133	0.008	0.0065	0.0138	
bls12-377 [38]	253	sha256	0.0123	0.012	0.0217	0.0128	0.0129	0.0238	
curve1174 [39]	249	sha256	0.0066	0.0062	0.0135	0.0068	0.0064	0.0134	
mnt4	240	sha256	0.0064	0.0103	0.0264	0.006	0.0059	0.018	
mnt5-1	240	sha256	0.0084	0.0105	0.0254	0.0086	0.0058	0.0173	
mnt5-2	240	sha256	0.0146	0.0094	0.0132	0.0062	0.0058	0.0119	
mnt5-3	240	sha256	0.0059	0.0055	0.0116	0.0059	0.0059	0.0114	
prime239v1	239	sha256	0.0078	0.012	0.0203	0.0058	0.0055	0.0114	
prime239v2	239	sha256	0.0064	0.006	0.0118	0.0059	0.0064	0.0119	
prime239v3	239	sha256	0.006	0.0059	0.0121	0.0059	0.0057	0.0109	
secp224k1	225	sha256	0.0053	0.0049	0.0105	0.0049	0.0048	0.0097	
brainpoolp224r1	224	sha224	0.0051	0.0049	0.0097	0.005	0.0049	0.0115	
brainpoolp224t1	224	sha224	0.0052	0.0049	0.0096	0.005	0.0062	0.0103	
curve4417 [30]	224	sha224	0.0063	0.0051	0.0107	0.0056	0.0048	0.0099	
fp224bn [28]	224	sha224	0.0051	0.0053	0.0103	0.0059	0.0049	0.0102	
p224	224	sha224	0.0056	0.0109	0.014	0.0052	0.0052	0.0099	
bn222	222	sha224	0.0049	0.0056	0.0096	0.005	0.0047	0.014	
curve22103 [30]	218	sha224	0.0052	0.005	0.0114	0.0053	0.0048	0.0099	
brainpoolp192r1	192	sha224	0.0036	0.0033	0.0074	0.0047	0.0054	0.0119	
brainpoolp192t1	192	sha224	0.0036	0.0033	0.0069	0.0041	0.0034	0.0074	
p192	192	sha224	0.0039	0.0042	0.0099	0.0038	0.0037	0.0071	
prime192v2	192	sha224	0.0038	0.0036	0.0071	0.0041	0.0036	0.0074	
prime192v3	192	sha224	0.0038	0.0073	0.0074	0.004	0.0036	0.0074	
secp192k1	192	sha224	0.0046	0.0036	0.011	0.0036	0.0041	0.007	
bn190	190	sha224	0.0035	0.0032	0.0062	0.0035	0.0033	0.0071	
secp160k1	161	sha224	0.0043	0.0059	0.0092	0.0056	0.0042	0.0058	
secp160r1	161	sha224	0.004	0.0029	0.0053	0.0026	0.0022	0.0049	
secp160r2	161	sha224	0.0038	0.0039	0.0063	0.0025	0.0024	0.0048	
brainpoolp160r1	160	sha224	0.0039	0.0034	0.0049	0.0026	0.0024	0.0051	
brainpoolp160t1	160	sha224	0.003	0.0025	0.0055	0.003	0.0024	0.0053	
mnt3-1	160	sha224	0.0027	0.0024	0.0048	0.0026	0.0025	0.005	
mnt3-2	160	sha224	0.0025	0.0028	0.0049	0.0025	0.0026	0.0049	
mnt3-3	160	sha224	0.0025	0.0024	0.0052	0.0026	0.0025	0.0052	
mnt2-1	159	sha160	0.0027	0.0023	0.0064	0.005	0.0043	0.0061	
mnt2-2	159	sha160	0.0034	0.0025	0.0063	0.0028	0.0024	0.0052	
bn158	158	sha160	0.0026	0.0022	0.0045	0.0034	0.0023	0.0048	
mnt1	156	sha160	0.0029	0.0025	0.0053	0.0027	0.0025	0.008	
secp128r1	128	sha160	0.0019	0.0016	0.0029	0.0017	0.0019	0.0042	
secp128r2	126	sha160	0.0016	0.0014	0.0032	0.0028	0.0036	0.0075	
secp112r1	112	sha160	0.0014	0.0012	0.0023	0.0018	0.0012	0.0024	
secp112r2	110	sha160	0.0013	0.0011	0.0028	0.0013	0.0011	0.0029	

Table 6: Performance of Prime Field Weierstrass Form for ECDSA and EdDSA #2

The performance of Edwards, Koblitz, and Weierstrass curves for cryptographic operations is compared across key generation, signing, and verification times. Edwards curves, particularly in the form of EdDSA, offer efficient performance with near-linear scaling and fast execution, especially for smaller curves like ed25519. Koblitz curves, known for their use in binary fields for custom hardware design generally show competitive performance with moderate execution times. Weierstrass curves, typically used in traditional ECDSA, exhibit slower scaling compared to Edwards and Koblitz, with more noticeable increases in execution times as the curve size grows. Overall, Edwards curves provide the best performance for modern applications requiring both speed and security, followed by Koblitz and Weierstrass curves.

4.1 High Level Comparison

In the previous section, we analyzed digital signature algorithms (DSAs) independently across different configurations. Here, we compare these algorithms against each other.

The table 7 summarizes NIST's recommendations for key sizes across different cryptographic algorithms, providing the equivalent key sizes for symmetric encryption, RSA, DSA, and ECC, along with the expected lifetime of the security.

Security Level	RSA & DSA Key Size	ECC Key Size	Expected Lifetime
80	1024	160	Until 2010
112	2048	224	Until 2030
128	3072	256	Beyond 2030
192	7680	384	Much Beyond 2030
256	15360	521	Far Beyond 2030

Table 7: NIST's Key Size Recommendations

By default, both ECDSA and EdDSA provide a 256-bit security level. Therefore, we compare 256-bit ECDSA and EdDSA with 3072-bit RSA and DSA, as all three configurations offer an equivalent 128-bit security level. For a 192-bit security level, ECDSA and EdDSA require 384-bit keys whereas RSA and DSA require 7680-bit keys. Thus, we use the P-384 curve in the Weierstrass form for ECDSA and the Numsp384t1 curve in the Edwards form for EdDSA. To achieve a 256-bit security level, ECDSA and EdDSA require 521-bit keys whereas RSA and DSA requires 15360-bit keys. Therefore, we adopt the P-521 curve in the Weierstrass form for ECDSA and the E-521 curve in the Edwards form for EdDSA.

The performance of RSA, DSA, ECDSA, and EdDSA is evaluated at different security levels—128-bit, 192-bit, and 256-bit—based on key generation, signing, and verification times. The results are summarized in Table 8, Table 9, and Table 10.

Table 8:	Performance	of Cryptosystems	with Default	Configurations for	or 128-bit Security I	Level
		21 2		0	2	

Algorithm	Form	Curve	Key Size	Hash	KeyGen (s)	Sign (s)	Verify (s)
RSA	-	-	3072	sha256	9.3434	0.0704	0.0693
DSA	-	-	3072	sha256	41.2033	0.0065	0.0126
ECDSA	Weierstrass	secp256k1	256	sha256	0.0067	0.0066	0.0136
ECDSA	Weierstrass	p256	256	sha256	0.0073	0.0064	0.0132
EdDSA	Edwards	ed25519	253	sha256	0.0122	0.0116	0.0227

Table 9: Performance of Cryptosystems with Default Configurations for 192-bit Security Level

Algorithm	Form	Curve	Key Size	Hash	KeyGen (s)	Sign (s)	Verify (s)
RSA	-	-	7680	sha384	43.8724	0.9308	0.9995
DSA	-	-	7680	sha384	432.1513	0.0412	0.0833
ECDSA	Weierstrass	p384	384	sha384	0.0174	0.0171	0.0352
EdDSA	Edwards	numsp384t1	382	sha384	0.0356	0.0201	0.0616

Table 10: Performance of Cryptosystems with Default Configurations for 256-bit Security Level

Algorithm	Form	Curve	Key Size	Hash	KeyGen (s)	Sign (s)	Verify (s)
RSA	-	-	15360	sha512	455.00	7.0423	7.6164
DSA	-	-	15360	sha512	7172.1030	0.1937	0.3868
ECDSA	Weierstrass	p521	521	sha512	0.0372	0.0429	0.076
EdDSA	Edwards	e521	519	sha512	0.0667	0.032	0.1357

At the 128-bit security level, ECDSA (secp256k1 & p256 or secp256r1) and EdDSA (ed25519) outperform RSA and DSA (3072-bit) in all metrics. RSA key generation takes over 9 seconds, while DSA takes just over 41 seconds. In contrast, both ECDSA and EdDSA generate keys in milliseconds. Signing and verification are also significantly faster

with ECDSA and EdDSA. Among elliptic curve algorithms, ECDSA has a slight edge in signing and verification speed, making it the most efficient option at this level.

For 192-bit security, ECDSA (P-384) and EdDSA (Numsp384t1) continue to be superior to RSA (7680-bit) and DSA. RSA's key generation time reaches over 43 seconds, while DSA's is even higher at 432 seconds, making both impractical for dynamic key creation. In contrast, ECDSA and EdDSA generate keys in under 40 milliseconds, with much faster signing and verification times as well.

At the 256-bit security level, RSA and DSA (15360-bit) become even less practical due to extremely long key generation times of 455 seconds and over 7000 seconds, respectively, and slow signing and verification speeds. ECDSA (P-521) and EdDSA (E-521) are significantly faster, with ECDSA providing better verification performance, while EdDSA is slightly more efficient in signing.

So, we can summarize our observations as:

- RSA consistently underperforms, particularly in key generation, making it impractical for dynamic use.
- DSA has faster signing and verification than RSA at all levels, but suffers from extremely slow key generation, especially as security level increases.
- ECDSA is generally faster in verification, while EdDSA is more efficient for signing across different security levels.
- Both ECDSA and EdDSA significantly outperform RSA and DSA, making them the preferred options for modern cryptographic applications.
- As the security level increases, RSA's computation time grows exponentially, making it increasingly inefficient. DSA also exhibits very slow key generation times. In contrast, both ECDSA and EdDSA exhibit only linear growth, maintaining practical performance even at higher security levels.

5 Conclusion

In this paper, we have compared the performance of three prominent digital signature algorithms (DSAs)—RSA, DSA, ECDSA, and EdDSA—across various security levels (128-bit, 192-bit, and 256-bit). The analysis was conducted by evaluating key generation, signing, and verification times for each algorithm, using NIST's recommended key sizes for equivalent security levels.

Our results clearly demonstrate that both ECDSA and EdDSA outperform RSA and DSA in terms of speed and efficiency, particularly in the context of dynamic key generation. RSA's and DSA's key generation times increase significantly with larger key sizes, making it less suitable for environments where quick key creation and signing are critical. In contrast, ECDSA and EdDSA, both based on elliptic curve cryptography, maintain fast performance across all security levels, with EdDSA being more efficient in signing operations and ECDSA excelling in verification.

At the 128-bit security level, ECDSA (secp256k1) and EdDSA (ed25519) exhibit superior performance over RSA and DSA (3072-bit) in all metrics, including key generation, signing, and verification. As we increase the security level to 192-bit and 256-bit, RSA's performance continues to degrade exponentially, DSA time outs while the elliptic curve algorithms scale much more efficiently.

All experiments were conducted on a machine equipped with an 11th Gen Intel Core TM i7-11370H processor, running at 3.30 GHz with 8 cores. This CPU, part of Intel's Tiger Lake family, is commonly found in high-performance laptops. Providing these details ensures transparency about the computational environment used for the experiments.

This study highlights the increasing practicality of elliptic curve-based algorithms like ECDSA and EdDSA as security requirements grow. For modern cryptographic applications, particularly those demanding high-performance and scalability, ECDSA and EdDSA provide a clear advantage over RSA and DSA. Therefore, we recommend adopting ECDSA and EdDSA for applications requiring secure, fast, and efficient digital signatures.

References

- Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, 21(2):120–126, 1978.
- [2] Corporate Nist. The digital signature standard. Communications of the ACM, 35(7):36-40, 1992.
- [3] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature algorithm (ecdsa). *International journal of information security*, 1:36–63, 2001.
- [4] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security signatures. *Journal of cryptographic engineering*, 2(2):77–89, 2012.
- [5] Victor S Miller. Use of elliptic curves in cryptography. In *Conference on the theory and application of cryptographic techniques*, pages 417–426. Springer, 1985.
- [6] Neal Koblitz. Elliptic curve cryptosystems. *Mathematics of computation*, 48(177):203–209, 1987.
- [7] S. Sutikno, A. Surya, and R. Effendi. An implementation of elgamal elliptic curves cryptosystems. In IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242), pages 483–486, 1998.
- [8] Sefik Ilkin Serengil and Alper Ozpinar. LightPHE: Integrating Partially Homomorphic Encryption into Python with Extensive Cloud Environment Evaluations. arXiv preprint arXiv:2408.05219, 2025. doi: 10.48550/arXiv.2408.05219. [Online]. Available: https://arxiv.org/abs/2408.05219.
- [9] Sefik Serengil and Alper Ozpinar. Encrypted Vector Similarity Computations Using Partially Homomorphic Encryption: Applications and Performance Analysis. arXiv preprint arXiv:2503.05850, 2025. doi: 10.48550/arXiv.2503.05850. [Online]. Available: https://arxiv.org/abs/2503.05850.
- [10] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In Public Key Cryptography-PKC 2006: 9th International Conference on Theory and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26, 2006. Proceedings 9, pages 207–228. Springer, 2006.
- [11] Daniel J Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. Eddsa for more curves. *Cryptology ePrint Archive*, 2015.
- [12] Daniel J Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. In Advances in Cryptology– ASIACRYPT 2007: 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, December 2-6, 2007. Proceedings 13, pages 29–50. Springer, 2007.
- [13] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security signatures. *Journal of cryptographic engineering*, 2(2):77–89, 2012.
- [14] Daniel J Bernstein, Tanja Lange, et al. Safecurves: choosing safe curves for elliptic-curve cryptography. http: //safecurves.cr.yp.to, 2013.
- [15] John T Tate. The arithmetic of elliptic curves. Inventiones mathematicae, 23(3):179–206, 1974.
- [16] Neal Koblitz. Constructing elliptic curve cryptosystems in characteristic 2. In Advances in Cryptology-CRYPTO'90: Proceedings 10, pages 156–167. Springer, 1991.
- [17] Harold Edwards. A normal form for elliptic curves. *Bulletin of the American mathematical society*, 44(3):393–422, 2007.
- [18] Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted edwards curves. In Progress in Cryptology–AFRICACRYPT 2008: First International Conference on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008. Proceedings 1, pages 389–405. Springer, 2008.
- [19] Shay Gueron, Simon Johnson, and Jesse Walker. Sha-512/256. In 2011 Eighth International Conference on Information Technology: New Generations, pages 354–358. IEEE, 2011.
- [20] Çetin Kaya Koç, Funda Özdemir, and Zeynep Ödemiş Özger. Partially Homomorphic Encryption. Springer, 2021.
- [21] Donald W Davies. Applying the rsa digital signature to electronic mail. *Computer*, 16(02):55–62, 1983.
- [22] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. *IEEE transactions* on information theory, 31(4):469–472, 1985.
- [23] Diego F. Aranha, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira, and Jefferson E. Ricardini. A note on high-security general-purpose elliptic curves. *Cryptology ePrint Archive, Paper 2013/647*, 2013. [Online]. Available: https://eprint.iacr.org/2013/647.
- [24] Rene Struik. Alternative Elliptic Curve Representations. *Internet Engineering Task Force*, January 2022. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/23/.

- [25] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive, Paper 2015/625, 2015.
 [Online]. Available: https://eprint.iacr.org/2015/625.
- [26] Tanja Lange D. J. Bernstein. Security dangers of the NIST curves. Invited talk, International State of the Art Cryptography Workshop, September 2013. [Online]. Available: https://cr.yp.to/talks/2013.09.16/ slides-djb-20130916-a4.pdf.
- [27] Thomas Baigneres, Cécile Delerablée, Matthieu Finiasz, Louis Goubin, Tancrede Lepoint, and Matthieu Rivain. Trap me if you can-million dollar curve. *Cryptology ePrint Archive*, 2015.
- [28] ISO/IEC 15946-5:2022. Information security Cryptographic techniques based on elliptic curves, Part 5: Elliptic curve generation. ISO, 2022. [Online]. Available: https://www.iso.org/standard/80241.html.
- [29] Víctor Duarte Melo and William J Buchanan. Eccfrog512ck2: An enhanced 512-bit weierstrass elliptic curve. arXiv preprint arXiv: 2504.09584, 2025. [Online]. Available: https://arxiv.org/abs/2504.09584.
- [30] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is an Efficient LIbrary for Cryptography. *GitHub Repository*, 2018. [Online]. Available: https://github.com/relic-toolkit/relic.
- [31] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and Francisco Rodríguez-Henríquez. Implementing pairings at the 192-bit security level. *Cryptology ePrint Archive, Paper 2012/232*, 2012. [Online]. Available: https://eprint.iacr.org/2012/232.
- [32] Armando Faz-Hernández, Watson Ladd, and Deepak Maram. ZKAttest: Ring and group signatures for existing ECDSA keys. Cryptology ePrint Archive, Paper 2021/1183, 2021. [Online]. Available: https://eprint.iacr. org/2021/1183.
- [33] Sean Bowe. The Pasta Curves for Halo 2 and Beyond. *Electric Coin Co.*, 2017. [Online]. Available: https://electriccoin.co/blog/new-snark-curve/.
- [34] Daira Hopwood. The Pasta Curves for Halo 2 and Beyond. *Electric Coin Co.*, 2020. [Online]. Available: https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/.
- [35] Daira-Emma Hopwood. Tweedledum/Tweedledee supporting evidence. *GitHub Repository*, 2017. [Online]. Available: https://github.com/daira/tweedle.
- [36] Jean-Luc Beuchat, Jorge Enrique González Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya. High-speed software implementation of the optimal ate pairing over barreto-naehrig curves. *Cryptology ePrint Archive, Paper 2010/354*, 2010. [Online]. Available: https://eprint.iacr.org/2010/354.
- [37] Diego F Aranha, Koray Karabina, Patrick Longa, Catherine H Gebotys, and Julio López. Faster explicit formulas for computing pairings over ordinary curves. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 48–68. Springer, 2011.
- [38] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. Zexe: Enabling decentralized private computation. *Cryptology ePrint Archive, Paper 2018/962*, 2018. [Online]. Available: https://eprint.iacr.org/2018/962.
- [39] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: Elliptic-curve points indistinguishable from uniform random strings. *Cryptology ePrint Archive, Paper 2013/325. doi:* 10.1145/2508859.2516734, 2013. [Online]. Available: https://eprint.iacr.org/2013/325.