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ABSTRACT

Digital signature algorithms (DSAs) are fundamental to cryptographic security, ensuring data integrity
and authentication. While RSA, DSA, ECDSA, and EdDSA are widely used, their performance
varies significantly depending on key sizes, hash functions, and elliptic curve configurations. In
this paper, we introduce LightDSA, a hybrid and configurable digital signature library that supports
RSA, DSA, ECDSA, and EdDSA with flexible form and curve selection, open sourced at https:
//github.com/serengil/LightDSA. Unlike conventional implementations that impose strict
curve-form mappings—such as Weierstrass for ECDSA and Edwards for EdDSA—LightDSA allows
arbitrary combinations, enabling a broader performance evaluation. We analyze the computational
efficiency of these algorithms across various configurations, comparing key generation, signing, and
verification times. Our results provide insights into the trade-offs between security and efficiency,
guiding the selection of optimal configurations for different cryptographic needs.

Keywords Cryptography, Digital Signarure, ECDSA, EdDSA, RSA, DSA, Python

1 Introduction

Digital signatures are a cornerstone of modern cryptography, providing a mechanism to verify the authenticity and
integrity of digital messages and documents. Widely used in various security protocols, digital signature algorithms
(DSAs) ensure that the data has not been tampered with and that it originates from a trusted sender. Among the most
commonly used digital signature algorithms are RSA [1], DSA [2], ECDSA [3], and EdDSA [4], each offering unique
strengths and trade-offs in terms of security, efficiency, and flexibility. These algorithms are essential in securing
communications, enabling digital certificates, and facilitating blockchain transactions, among other applications.

Despite their widespread adoption, the performance of these algorithms varies significantly depending on several factors,
including the choice of key size, elliptic curve type, and hash function. RSA has been the standard for digital signatures
for decades, relying on large integer factorization for its security. However, its performance decreases as the key size
increases, making it less efficient for modern applications that require smaller, faster cryptographic operations.

Elliptic Curve Cryptography (ECC) [5] [6] is a branch of public-key cryptography based on the algebraic structure of
elliptic curves over finite fields. ECC offers high levels of security with relatively small key sizes, making it highly
efficient compared to traditional systems like RSA. This efficiency has led to its widespread adoption in modern
cryptographic protocols. While ECC is widely used for key exchange protocols and digital signatures, it can also
be applied to encryption schemes, such as EC ElGamal [7]. However, despite its theoretical potential for encryption
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and decryption, EC ElGamal’s decryption process requires solving the Elliptic Curve Discrete Logarithm Problem
(ECDLP), which is computationally difficult and impractical for real-world applications. This makes EC ElGamal
unsuitable for most encryption purposes [8] [9]. In contrast, Elliptic Curve Diffie-Hellman (ECDH) [10], a key exchange
protocol based on ECC, is highly efficient and practical for establishing secure communication channels. Due to
its speed and strong security guarantees, ECDH has gained significant adoption, with tools like GPG incorporating
ECDH support for encryption in recent versions. Similarly, Elliptic Curve Digital Signature Algorithm (ECDSA) and
Edwards-curve Digital Signature Algorithm (EdDSA) are two widely adopted and efficient elliptic curve-based digital
signature algorithms. These algorithms provide strong security with relatively small key sizes, making them ideal
choices for digital signature applications in environments requiring fast and scalable cryptographic operations.

ECDSA (Elliptic Curve Digital Signature Algorithm) and EdDSA (Edwards-curve Digital Signature Algorithm) also
address RSA’s issue by leveraging elliptic curve cryptography (ECC), which provides strong security with smaller key
sizes. While ECDSA is based on the Weierstrass curve form, EdDSA employs the Edwards curve form [11], known for
its efficiency and resistance to certain types of attacks [12]. Both elliptic curve-based algorithms have gained significant
traction in cryptographic standards and protocols.

However, despite the popularity of these algorithms, many implementations follow fixed configurations, such as specific
elliptic curve forms or pre-defined curves. ECDSA, for example, is typically implemented using the secp256k1 or
secp256r1 (p256) curve, while EdDSA often uses Ed25519 [13]. While these defaults are widely accepted, they may
not always represent the best choice for every use case [14].

The main goal of this paper is to present LightDSA, a Python-based digital signature library that supports RSA, DSA,
ECDSA, and EdDSA, open sourced at https://github.com/serengil/LightDSA. The library offers flexibility
in terms of elliptic curve forms (Weierstrass [15], Koblitz [16], and Edwards [17] [18]) and supports a wide range of
pre-defined curves such as secp256k1, secp256r1 or ed25519, allowing users to experiment with different configurations.
The library automatically determines the appropriate hash function based on the key size or curve order, supporting
common cryptographic hash functions like SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 [19].

In this paper, we provide an extensive performance evaluation of LightDSA, comparing RSA, ECDSA, and EdDSA
across different configurations. Specifically, we analyze the impact of curve selection, hash function choice, and key
size on the performance of digital signature operations, including key generation, signing, and verification. We also
explore the trade-offs between security and efficiency, highlighting the suitability of various configurations for different
cryptographic needs.

The findings presented in this paper aim to guide cryptographic practitioners and researchers in selecting the most
appropriate digital signature algorithm and configuration for their specific use cases. By providing a highly configurable
and performance-optimized framework, LightDSA offers a tool to better understand the strengths and weaknesses of
various digital signature approaches, contributing to the ongoing development of more efficient cryptographic systems.

2 Digital Signature Algorithms

In this section, we will focus on three widely used cryptographic methods for ensuring the authenticity and integrity
of digital messages: RSA, ECDSA, and EdDSA. RSA, one of the oldest and most widely adopted algorithms, uses
a pair of keys—private and public—for signing and verification. It provides strong security based on the difficulty
of factoring large numbers. ECDSA, which uses elliptic curve cryptography, offers similar security to RSA but with
much smaller key sizes, making it more efficient and suitable for resource-constrained environments. Finally, EdDSA,
an enhanced version of ECDSA, uses a different elliptic curve and focuses on improving performance, security, and
resistance to side-channel attacks. Each of these algorithms plays a crucial role in digital signatures, offering varying
benefits depending on the specific requirements of the application.

2.1 RSA

RSA is a widely-used public-key cryptosystem that operates on two key principles: encryption and decryption. In
the context of homomorphic encryption and secure message transfer, the public key is used for encryption, and the
private key is used for decryption [20]. On the other hand, in the context of digital signatures, the private key is used for
signing, while the public key is used for verification [21].

To sign a message, the sender uses their private key, which is represented as d, to generate the signature. The hashed
message m is raised to the power of d and then taken modulo n, as described in Equation 1.

c = (m)d mod n (1)
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Here, c is the resulting signature. This process ensures that only the holder of the private key can generate a valid
signature. To verify the signature, the recipient uses the sender’s public key e. The signature c is raised to the power of
e and taken modulo n, as shown in Equation 2. If the result matches the hash of the original message, the signature is
valid, proving both the authenticity of the message and that it has not been tampered with.

m = (c)e mod n (2)

The relationship between the public and private keys is governed by the Equation 3 and 4.

e× d = 1 mod ϕ(n) (3)

e× d = k × ϕ(n) + 1 (4)

If this rule is applied the encryption - decryption operations respectively

(md)e mod n (5)

mk×ϕ(n)+1 mod n (6)

mk×ϕ(n) ×m mod n (7)

(mϕ(n))k ×m mod n (8)

According to Fermat-Euler Theorem, raising any integer a, which is coprime to n, to the power of Euler’s totient
function results in 1 modulo n. Put Fermat-Euler theorem back to the equation above as follows

(mϕ(n))k ×m mod n (9)

(1)k ×m mod n (10)

m mod n (11)

In summary, applying the private key first and then the public key will recover the original plaintext message as shown
in Equation 12.

(md)e mod n = m mod n (12)

This ensures that the encryption and decryption operations are mathematically linked, allowing for secure digital
signatures. Thus, RSA provides a robust mechanism for ensuring message integrity and authenticity in digital
communication, where the private key signs the message, and the public key verifies it.

2.2 DSA

DSA is a modified version of the Schnorr and ElGamal [22] digital signature algorithms. It requires the selection of two
prime number p and q that satisfy the following conditions:

p− 1 mod q = 0 (13)

A generator g is then generated randomly using, where h is chosen from the range [2, p-2]

g mod p = h
p−1
q mod p (14)
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If we raise both sides to power of q as

gq mod p = (h
p−1
q )

q
mod p (15)

gq mod p = hp−1 mod p (16)

According to the Fermat’s Little Theorem, right hand side must be equal to 1.

gq mod p = 1 (17)

The signer then selects a private key x in the range [1, q-1] and computes the corresponding public key y as follows:

y = gx mod p (18)

The signer then selects a random integer k for each signature, chosen from the range [1, q-1], and the signature (r, s)
pair is calculated as follows:

r = (gk mod p) mod q (19)

s =
H(m) + x× r

k
mod q (20)

In verification process, the verifier calculates u1 and u2 as follows:

u1 =
H(m)

s
mod q (21)

u2 =
r

s
mod q (22)

The verifier then checks whether the following calculations are equal to the r part of the signature.

((gu1 mod p)× (yu2 mod p)) mod q = r (23)

To prove the correctness of the verification process, recall the computation of s

s =
H(m) + x× r

k
mod q (24)

If we find k from that equation as follows

k =
H(m) + x× r

s
mod q (25)

Move divisor s to the additions in the dividend

k =
H(m)

s
+

x× r

s
mod q (26)

Move this equation to the exponents with the same base g and the same modulo p.

gk mod p = g(
H(m)

s + x×r
s mod q) mod p (27)

According to the product rule of exponents, this can be re-arranged as

4



LightDSA A PREPRINT

gk mod p = g(
H(m)

s mod q) × g(
x×r
s mod q) mod p (28)

According to the power of power rule, this can be represented as follows:

gk mod p = g(
H(m)

s mod q) × (gx)(
r
s mod q) mod p (29)

The base g raised to the power of the private key x is equal to the public key y.

gk mod p = g(
H(m)

s mod q) × y(
r
s mod q) mod p (30)

We can replace the exponents with u1 and u2.

gk mod p = gu1 × yu2 mod p (31)

Thus, the verifier calculates gk during verification, where k is the random key generated by the signer, and the verifier
does not know this value directly.

Meanwhile, the signer calculates r as gk mod p, and then takes the result modulo q.

(gk mod p) mod q = (gu1 × yu2 mod p) mod q (32)

r = (gu1 × yu2 mod p) mod q (33)

2.3 ECDSA

A user should select a random number ka as their private key. Then, they compute the corresponding point on the
elliptic curve by multiplying the private key with the base point G, obtaining their public key Qa.

Qa = ka ×G (34)

Then, a random point R on the elliptic curve should be selected.

R = kr ×G (35)

The private key should be chosen only once, but a new random point must be generated for each signature. If the same
random point is reused across multiple signatures, an attacker can exploit this to recover the private key by solving for it
algebraically. This is a critical security requirement in elliptic curve cryptography to prevent key leakage.

The signature (r, s) pair should be calculated as

r = Rx (36)

s =
m+ r × ka

kr
mod n (37)

In verification, user should calculate the pair u1 and u2 as

u1 =
m

s
×G (38)

u2 =
r

s
×Qa (39)

Finally, user should find the addition of the points u1 and u2 and check its x coordinate is equal to r. If this condition is
true, then signature is valid.
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(u1 + u2)x = r (40)

To prove this scheme, we need to replace u1 and u2 first.

u1 + u2 =
m

s
×G+

r

s
×Qa (41)

Public key Qa can be expressed as ka ×G

u1 + u2 =
m

s
×G+

r

s
× ka ×G (42)

Both terms in the addition have common s divisor and base point G multiplier.

u1 + u2 =
m+ r × ka

s
×G (43)

Replace the s in the divisor from Equation 37

u1 + u2 =
m+ r × ka

m+r×ka

kr

×G (44)

Dividends can be simplified and the addition of u1 and u2 becomes random point R.

u1 + u2 = kr ×G = R (45)

On the other hand, we checked the equality of x coordinate u1 and u2 addition to r part of the signature where r was the
x coordinate of random point already.

2.4 EdDSA

Similar to ECDSA, user should generate a random integer once as their private key and compute its corresponding
point by multiplying their private key with base point G.

Qa = ka ×G (46)

Secondly, the user should generate a random point by hashing the message. This ensures its randomness and prevents
the leakage of the same random key for different signatures.

r = H(H(m) +m) (47)

Then, calculates the corresponding random point by multiplying random number with the base point G.

R = r ×G (48)

Threafter, the x coordinate of random point, the x coordinate of public key and message should be summed to calculate
h, where p is the prime over which the elliptic curve is defined.

h = Rx + (Qa)x +message mod p (49)

Finally, random number derived from message and h times private key ka should be summed to calcualte s.

s = r + h× ka (50)

The (R, s) pair will be dispatched as a signature, where R is a point on the elliptic curve with x and y coordinates, and s
is an integer.
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Once message and signature (R, s) dispatched, verifier can compute same h as

h = Rx + (Qa)x +message mod p (51)

Then, verifier will compute P1 and P2 as

P1 = s×G (52)

P2 = R+ h×Qa (53)

Signature is valid only if P1 and P2 are equal.

P1 = P2 (54)

To prove the correctness of EdDSA schema, put s back to P1 computation

P1 = s×G = (r + h× ka)×G = r ×G+ h× ka ×G (55)

In the equation above, r ×G refers to random point R, and ka ×G denotes public key Qa. That is exactly equal to P2.
So, this shows the correctness of the verification process of EdDSA.

P1 = R+ h×Qa = P2 (56)

3 Python Library

In the previous section, we focused on the theory behind three major digital signature algorithms. LightDSA aims to
provide a simple and intuitive interface for building cryptosystems using these algorithms. Users do not need to delve
into the underlying processes. To construct a cryptosystem, they can simply initialize a LightDSA object and set the
algorithm to RSA, DSA, ECDSA, or EdDSA. For elliptic curve-based algorithms, users can optionally choose the curve
type, such as Weierstrass, Koblitz, or Edwards, and specify the curve, as demonstrated in the following snippet. Once
set up, any message can be signed using the sign method of the LightDSA object.

Algorithm 1: Building a Cryptosystem and Signing a Message

# !pip install lightdsa
from lightdsa import LightDSA

# construct a cryptosystem
dsa = LightDSA(

algorithm_name = "eddsa", # or ecdsa , rsa , dsa
form_name = "edwards", # or weierstrass , koblitz
curve_name = "ed25519",

)

# export public key
dsa.export_keys("public.txt", public = True)

# sign a message
message = "Hello , world!"
signature = dsa.sign(message)

On the verifier side, the LightDSA object should be initialized with the same configuration, along with the exported
public key. The verify method can then be used to verify a message and its corresponding signature. If the signature is
invalid, the method will raise an error.
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Algorithm 2: Veriying a Message

# construct the cryptosystem with public key
verifier_dsa = LightDSA(

algorithm_name = "eddsa", # or ecdsa , rsa , dsa
form_name = "edwards", # or weierstrass , koblitz
curve_name = "ed25519",
key_file = "public.txt",

)

assert verifier_dsa.verify(message , signature) is True

4 Experiments

Table 1 presents the performance of the RSA algorithm with different key sizes and hash functions, detailing the key
generation time, signing time, and verification time for each configuration. With a 1024-bit key and SHA-160 hash,
RSA key generation takes 0.0480 seconds, while signing and verification operations complete in 0.0031 and 0.0034
seconds, respectively. As the key size increases to 2048 bits with SHA-224, key generation time rises to 0.5314 seconds,
and signing and verification times increase to 0.0221 and 0.0219 seconds, respectively. At 3072 bits with SHA-256, key
generation time grows significantly to 9.3434 seconds, with signing and verification times of 0.0704 and 0.0693 seconds.
The trend continues with a 7680-bit key and SHA-384, where key generation takes 43.8724 seconds, while signing and
verification times increase to 0.9308 and 0.9995 seconds, respectively. Finally, at 15360 bits with SHA-512, RSA key
generation time surges to 455.00 seconds, while signing and verification times rise drastically to 7.0423 and 7.6164
seconds. These results demonstrate that as the RSA key size increases, the computational overhead grows exponentially,
making RSA increasingly impractical for larger key sizes, particularly in applications requiring frequent key generation.

Table 1: Performance of RSA with different key sizes and hashes

Algorithm Key Size Hash KeyGen (s) Sign (s) Verify (s)
RSA 15360 sha512 455.00 7.0423 7.6164
RSA 7680 sha384 43.8724 0.9308 0.9995
RSA 3072 sha256 9.3434 0.0704 0.0693
RSA 2048 sha224 0.5314 0.0221 0.0219
RSA 1024 sha160 0.0480 0.0031 0.0034

The table 2 presents the performance of the Digital Signature Algorithm (DSA) with varying key sizes and hash
functions. It shows the time taken for key generation, signing, and verification for different configurations. The key
sizes range from 1024 bits to 15360 bits, with corresponding hash functions including sha1, sha224, sha256, sha384,
and sha512. As the key size increases, the time required for key generation grows significantly, with the 15360-bit key
taking the longest at 7172.1030 seconds. However, the signing and verification times remain relatively low across all
configurations, with the fastest being 0.0006 seconds for signing and 0.0012 seconds for verification at a 1024-bit key
with the sha160 hash. The results highlight the trade-off between key size and computational efficiency, with larger
keys offering higher security but requiring more time for key generation.

Table 2: Performance of DSA with different key sizes and hashes

Algorithm Key Size Hash KeyGen (s) Sign (s) Verify (s)
DSA 15360 sha512 7172.1030 0.1937 0.3868
DSA 7680 sha384 432.1513 0.0412 0.0833
DSA 3072 sha256 41.2033 0.0065 0.0126
DSA 2048 sha224 3.9034 0.0033 0.0062
DSA 1024 sha160 0.8196 0.0006 0.0012

Table 3 compares the performance of Edwards curve cryptography for ECDSA and EdDSA, showing key generation,
signing, and verification times across different curve sizes. Both schemes offer efficient performance, with execution
times increasing gradually as the security level grows. Larger curves like e521 and ed448 maintain practical performance,
while smaller curves like ed25519 provide the fastest execution. EdDSA generally outperforms ECDSA in signing
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operations, and both schemes scale more efficiently than RSA. Overall, Edwards curves are well-suited for fast and
secure digital signatures.

Table 3: Performance of Prime Field Edwards Form for ECDSA and EdDSA

EdDSA ECDSA
Curve n Hash KeyGen (s) Sign (s) Verify (s) KeyGen (s) Sign (s) Verify (s)
e521 [23] 519 sha512 0.0667 0.032 0.1357 0.0656 0.0647 0.1368
rfc5832-512 510 sha512 0.062 0.0314 0.1204 0.063 0.0631 0.1242
numsp512t1 510 sha512 0.0585 0.0321 0.1253 0.064 0.0626 0.1433
ed448 [24] 446 sha512 0.0436 0.0259 0.0919 0.0466 0.0497 0.0992
ed448godilocks [25] 446 sha512 0.0516 0.0376 0.1131 0.0457 0.0551 0.0899
curve41417 [26] 411 sha512 0.0381 0.0235 0.0728 0.0528 0.0363 0.0976
numsp384t1 382 sha384 0.0356 0.0201 0.0616 0.0296 0.0301 0.0688
e382 [23] 380 sha384 0.0347 0.0272 0.1340 0.0304 0.0328 0.0699
rfc5832-256 255 sha256 0.0125 0.0122 0.0256 0.0129 0.0132 0.0279
mdc201601 [27] 254 sha256 0.0118 0.012 0.0244 0.0112 0.0114 0.0259
numsp256t1 254 sha256 0.012 0.0122 0.0369 0.0119 0.0117 0.0256
ed25519 [4] 253 sha256 0.0122 0.0116 0.0227 0.0126 0.0117 0.024
jubjub 252 sha256 0.0131 0.0123 0.0253 0.0127 0.0142 0.0352
e222 [23] 220 sha224 0.0123 0.0096 0.0206 0.0150 0.0089 0.0168

Table 4 presents the performance comparison of Koblitz curves for EdDSA and ECDSA across various elliptic curve
parameters. The table includes key performance metrics such as key generation, signing, and verification times for
each curve. The curves are characterized by their form, name, bit-length n, and the hash function used. Generally,
larger bit-lengths result in longer processing times due to increased cryptographic complexity. For both EdDSA and
ECDSA, key generation times remain relatively consistent across curves, while signing and verification times vary more
significantly. Higher bit-length curves like b571 and k571 exhibit the longest processing times, whereas smaller curves
such as sect113r1 and wap-wsg-idm-ecid-wtls1 demonstrate the fastest performance. The comparison highlights that
EdDSA typically has faster signing operations, whereas ECDSA shows more variation in signing and verification times.
These insights are valuable for selecting the appropriate Koblitz curve based on the required balance between security
and computational efficiency.
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Table 4: Performance of Binary Field Koblitz Form for ECDSA and EdDSA

EdDSA ECDSA
Curve n Hash KeyGen (s) Sign (s) Verify (s) KeyGen (s) Sign (s) Verify (s)
b571 570 sha512 8.194 3.7683 17.4123 8.216 8.3472 16.174
k571 570 sha512 8.2713 3.9519 16.1562 8.4748 8.2457 17.1495
c2tnb431r1 418 sha512 3.386 2.1913 7.4535 3.3694 3.374 6.7825
b409 409 sha512 3.4035 1.9555 6.1243 2.9679 3.005 6.114
k409 407 sha512 2.9362 2.0002 6.2678 3.0423 3.2321 6.0597
c2pnb368w1 353 sha384 1.9927 1.5442 4.3315 2.039 2.2011 4.2777
c2tnb359v1 353 sha384 2.0163 1.4565 3.9728 1.9861 2.0191 3.9461
c2pnb304w1 289 sha384 1.3413 1.2259 2.405 1.2239 1.1946 2.6447
b283 282 sha384 1.0931 0.9905 2.3768 1.0412 1.0213 2.0634
k283 281 sha384 1.2124 0.9356 2.0528 0.9805 0.9449 2.0996
c2pnb272w1 257 sha384 0.7865 0.8815 1.709 1.0488 0.8912 1.7936
ansit239k1 238 sha256 0.6724 0.6275 1.2682 0.7017 0.888 1.2746
c2tnb239v1 238 sha256 0.7212 0.7171 1.3736 0.6199 0.6499 1.189
c2tnb239v2 237 sha256 0.6987 0.6232 1.234 0.6207 0.5708 1.2449
c2tnb239v3 236 sha256 0.6312 0.6157 1.2617 0.6048 0.593 1.1998
b233 233 sha256 0.5879 0.5479 1.2912 0.7237 0.8425 1.1725
k233 232 sha256 0.6677 0.5965 1.6555 0.6128 0.5404 1.1134
ansit193r1 193 sha224 0.4117 0.3504 0.6917 0.322 0.3276 0.7053
ansit193r2 193 sha224 0.3241 0.3212 0.7989 0.3586 0.3558 0.6204
c2pnb208w1 193 sha224 0.3913 0.3725 0.7813 0.374 0.3936 0.7869
c2tnb191v1 191 sha224 0.3042 0.3416 0.7359 0.3341 0.3189 0.6884
c2tnb191v2 190 sha224 0.3182 0.327 0.6551 0.3281 0.3544 0.6656
c2tnb191v3 189 sha224 0.327 0.3333 0.7207 0.3449 0.322 0.6343
b163 163 sha224 0.1969 0.2011 0.4037 0.2064 0.2351 0.5114
c2pnb163v1 163 sha224 0.2132 0.2122 0.4019 0.2335 0.2039 0.406
k163 163 sha224 0.2729 0.2496 0.5028 0.2318 0.2229 0.4173
ansit163r1 162 sha224 0.2265 0.2332 0.4603 0.2074 0.2169 0.4184
c2pnb163v2 162 sha224 0.2322 0.2764 0.3987 0.2134 0.2638 0.4357
c2pnb163v3 162 sha224 0.228 0.2051 0.4114 0.2158 0.1913 0.3957
c2pnb176w1 161 sha224 0.2576 0.2598 0.4752 0.222 0.2353 0.5246
sect131r1 131 sha160 0.1067 0.1088 0.2342 0.1047 0.1085 0.2301
sect131r2 131 sha160 0.1174 0.0992 0.2317 0.1075 0.1073 0.2114
sect113r1 113 sha160 0.0821 0.0799 0.1372 0.0734 0.0688 0.145
sect113r2 113 sha160 0.0693 0.075 0.1523 0.069 0.0805 0.1484
k113 112 sha160 0.0795 0.0759 0.1487 0.1032 0.0828 0.1694

The table 5 and 6 present the performance metrics of various Weierstrass curve implementations used for the EdDSA and
ECDSA elliptic curve signature algorithms. The table includes details on the curve name, the order of the curve denoted
by n, the hash function used, and the performance timings for key generation, signing, and verification operations.
Each row corresponds to a specific curve configuration with performance measurements provided for both EdDSA
and ECDSA, where time is recorded in seconds. For EdDSA, the key generation times range from approximately
0.006 to 0.077 seconds, signing times from 0.006 to 0.015 seconds, and verification times from 0.013 to 0.120 seconds.
Similarly, ECDSA shows key generation times from 0.007 to 0.077 seconds, signing times from 0.0058 to 0.0699
seconds, and verification times from 0.0132 to 0.1278 seconds. This data allows for a detailed comparison of the
efficiency of different elliptic curves for these cryptographic operations, aiding in the selection of the most optimal
curve for specific use cases.
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Table 5: Performance of Prime Field Weierstrass Form for ECDSA and EdDSA #1

EdDSA ECDSA
Curve n Hash KeyGen (s) Sign (s) Verify (s) KeyGen (s) Sign (s) Verify (s)
bn638 638 sha512 0.0692 0.0248 0.1205 0.0771 0.0636 0.1278
bn606 606 sha512 0.053 0.0222 0.1039 0.0518 0.0699 0.1062
bn574 574 sha512 0.0444 0.0283 0.106 0.0476 0.0452 0.1006
bn542 542 sha512 0.0392 0.0184 0.0809 0.0418 0.0409 0.0868
p521 521 sha512 0.0734 0.0188 0.0781 0.0372 0.0429 0.076
brainpoolp512r1 512 sha512 0.0436 0.0263 0.0897 0.0341 0.0347 0.0684
brainpoolp512t1 512 sha512 0.0462 0.0182 0.0698 0.04 0.0351 0.0761
fp512bn [28] 512 sha512 0.036 0.0175 0.0715 0.0348 0.0336 0.0655
numsp512d1 512 sha512 0.0482 0.0234 0.0875 0.0413 0.0356 0.0678
eccfrog512ck2 [29] 512 sha512 0.0421 0.0205 0.0961 0.0503 0.0526 0.0734
gost512 511 sha512 0.0353 0.0169 0.0745 0.0349 0.0327 0.0721
bn510 510 sha512 0.03 0.0165 0.0627 0.0396 0.0354 0.0784
bn478 478 sha512 0.0274 0.0151 0.0545 0.0302 0.0301 0.0657
bn446 446 sha512 0.023 0.0164 0.0541 0.0295 0.0234 0.0463
bls12-638 [30] [31] 427 sha512 0.0424 0.0241 0.0838 0.0495 0.0402 0.0754
bn414 414 sha512 0.0234 0.0136 0.0391 0.0208 0.0206 0.0439
brainpoolp384r1 384 sha384 0.0176 0.0118 0.0342 0.0176 0.0171 0.0355
brainpoolp384t1 384 sha384 0.0183 0.0124 0.0487 0.0183 0.0177 0.0373
fp384bn [28] 384 sha384 0.0165 0.0109 0.0342 0.0189 0.0174 0.0345
numsp384d1 384 sha384 0.0276 0.0121 0.0389 0.0185 0.0175 0.0354
p384 384 sha384 0.0193 0.0128 0.0372 0.0174 0.0171 0.0352
bls24-477 [30] [31] 383 sha384 0.0241 0.0156 0.0489 0.0241 0.0216 0.0542
bn382 382 sha384 0.0173 0.0111 0.0524 0.027 0.0169 0.0334
curve67254 [30] 380 sha384 0.0167 0.0113 0.0358 0.0184 0.0177 0.0497
bn350 350 sha384 0.0154 0.0095 0.0277 0.0136 0.0127 0.03
brainpoolp320r1 320 sha384 0.0169 0.0145 0.0237 0.0118 0.0111 0.022
brainpoolp320t1 320 sha384 0.0107 0.0104 0.0226 0.0124 0.0115 0.0235
bn318 318 sha384 0.0112 0.0087 0.0239 0.0118 0.0103 0.0219
bls12-455 305 sha384 0.0174 0.0146 0.0347 0.0194 0.0185 0.0465
bls12-446 [30] 299 sha384 0.0172 0.0136 0.0312 0.016 0.0153 0.0318
bn286 286 sha384 0.0082 0.0073 0.0166 0.0085 0.0086 0.0171
brainpoolp256r1 256 sha256 0.0162 0.0125 0.0135 0.0068 0.0066 0.0143
brainpoolp256t1 256 sha256 0.0072 0.007 0.0137 0.0069 0.0086 0.0163
fp256bn [28] 256 sha256 0.0066 0.0065 0.013 0.0068 0.0062 0.0129
gost256 256 sha256 0.0066 0.0063 0.014 0.0068 0.0096 0.0197
numsp256d1 256 sha256 0.0077 0.007 0.0207 0.007 0.0067 0.0144
p256 256 sha256 0.0115 0.0094 0.0137 0.0073 0.0064 0.0132
secp256k1 256 sha256 0.0067 0.0077 0.0293 0.0067 0.0066 0.0136
tom256 [32] 256 sha256 0.0139 0.007 0.0141 0.0077 0.0068 0.013
bls12-381 [33] 255 sha256 0.0117 0.0112 0.0227 0.0179 0.0112 0.0237
pallas [34] 255 sha256 0.0071 0.0063 0.0133 0.0063 0.0064 0.0133
tweedledee [35] 255 sha256 0.0138 0.0151 0.0193 0.0063 0.0062 0.0122
tweedledum [35] 255 sha256 0.007 0.0068 0.013 0.0068 0.006 0.0125
vesta [34] 255 sha256 0.0142 0.012 0.0132 0.0065 0.0066 0.0126
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Table 6: Performance of Prime Field Weierstrass Form for ECDSA and EdDSA #2

EdDSA ECDSA
Curve n Hash KeyGen (s) Sign (s) Verify (s) KeyGen (s) Sign (s) Verify (s)
bn254 254 sha256 0.0064 0.006 0.0122 0.0162 0.0089 0.0144
fp254bna [36] 254 sha256 0.0068 0.0064 0.013 0.0065 0.0061 0.0131
fp254bnb [37] 254 sha256 0.007 0.0075 0.0133 0.008 0.0065 0.0138
bls12-377 [38] 253 sha256 0.0123 0.012 0.0217 0.0128 0.0129 0.0238
curve1174 [39] 249 sha256 0.0066 0.0062 0.0135 0.0068 0.0064 0.0134
mnt4 240 sha256 0.0064 0.0103 0.0264 0.006 0.0059 0.018
mnt5-1 240 sha256 0.0084 0.0105 0.0254 0.0086 0.0058 0.0173
mnt5-2 240 sha256 0.0146 0.0094 0.0132 0.0062 0.0058 0.0119
mnt5-3 240 sha256 0.0059 0.0055 0.0116 0.0059 0.0059 0.0114
prime239v1 239 sha256 0.0078 0.012 0.0203 0.0058 0.0055 0.0114
prime239v2 239 sha256 0.0064 0.006 0.0118 0.0059 0.0064 0.0119
prime239v3 239 sha256 0.006 0.0059 0.0121 0.0059 0.0057 0.0109
secp224k1 225 sha256 0.0053 0.0049 0.0105 0.0049 0.0048 0.0097
brainpoolp224r1 224 sha224 0.0051 0.0049 0.0097 0.005 0.0049 0.0115
brainpoolp224t1 224 sha224 0.0052 0.0049 0.0096 0.005 0.0062 0.0103
curve4417 [30] 224 sha224 0.0063 0.0051 0.0107 0.0056 0.0048 0.0099
fp224bn [28] 224 sha224 0.0051 0.0053 0.0103 0.0059 0.0049 0.0102
p224 224 sha224 0.0056 0.0109 0.014 0.0052 0.0052 0.0099
bn222 222 sha224 0.0049 0.0056 0.0096 0.005 0.0047 0.014
curve22103 [30] 218 sha224 0.0052 0.005 0.0114 0.0053 0.0048 0.0099
brainpoolp192r1 192 sha224 0.0036 0.0033 0.0074 0.0047 0.0054 0.0119
brainpoolp192t1 192 sha224 0.0036 0.0033 0.0069 0.0041 0.0034 0.0074
p192 192 sha224 0.0039 0.0042 0.0099 0.0038 0.0037 0.0071
prime192v2 192 sha224 0.0038 0.0036 0.0071 0.0041 0.0036 0.0074
prime192v3 192 sha224 0.0038 0.0073 0.0074 0.004 0.0036 0.0074
secp192k1 192 sha224 0.0046 0.0036 0.011 0.0036 0.0041 0.007
bn190 190 sha224 0.0035 0.0032 0.0062 0.0035 0.0033 0.0071
secp160k1 161 sha224 0.0043 0.0059 0.0092 0.0056 0.0042 0.0058
secp160r1 161 sha224 0.004 0.0029 0.0053 0.0026 0.0022 0.0049
secp160r2 161 sha224 0.0038 0.0039 0.0063 0.0025 0.0024 0.0048
brainpoolp160r1 160 sha224 0.0039 0.0034 0.0049 0.0026 0.0024 0.0051
brainpoolp160t1 160 sha224 0.003 0.0025 0.0055 0.003 0.0024 0.0053
mnt3-1 160 sha224 0.0027 0.0024 0.0048 0.0026 0.0025 0.005
mnt3-2 160 sha224 0.0025 0.0028 0.0049 0.0025 0.0026 0.0049
mnt3-3 160 sha224 0.0025 0.0024 0.0052 0.0026 0.0025 0.0052
mnt2-1 159 sha160 0.0027 0.0023 0.0064 0.005 0.0043 0.0061
mnt2-2 159 sha160 0.0034 0.0025 0.0063 0.0028 0.0024 0.0052
bn158 158 sha160 0.0026 0.0022 0.0045 0.0034 0.0023 0.0048
mnt1 156 sha160 0.0029 0.0025 0.0053 0.0027 0.0025 0.008
secp128r1 128 sha160 0.0019 0.0016 0.0029 0.0017 0.0019 0.0042
secp128r2 126 sha160 0.0016 0.0014 0.0032 0.0028 0.0036 0.0075
secp112r1 112 sha160 0.0014 0.0012 0.0023 0.0018 0.0012 0.0024
secp112r2 110 sha160 0.0013 0.0011 0.0028 0.0013 0.0011 0.0029

The performance of Edwards, Koblitz, and Weierstrass curves for cryptographic operations is compared across key
generation, signing, and verification times. Edwards curves, particularly in the form of EdDSA, offer efficient
performance with near-linear scaling and fast execution, especially for smaller curves like ed25519. Koblitz curves,
known for their use in binary fields for custom hardware design generally show competitive performance with moderate
execution times. Weierstrass curves, typically used in traditional ECDSA, exhibit slower scaling compared to Edwards
and Koblitz, with more noticeable increases in execution times as the curve size grows. Overall, Edwards curves provide
the best performance for modern applications requiring both speed and security, followed by Koblitz and Weierstrass
curves.
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4.1 High Level Comparison

In the previous section, we analyzed digital signature algorithms (DSAs) independently across different configurations.
Here, we compare these algorithms against each other.

The table 7 summarizes NIST’s recommendations for key sizes across different cryptographic algorithms, providing the
equivalent key sizes for symmetric encryption, RSA, DSA, and ECC, along with the expected lifetime of the security.

Table 7: NIST’s Key Size Recommendations

Security Level RSA & DSA Key Size ECC Key Size Expected Lifetime
80 1024 160 Until 2010
112 2048 224 Until 2030
128 3072 256 Beyond 2030
192 7680 384 Much Beyond 2030
256 15360 521 Far Beyond 2030

By default, both ECDSA and EdDSA provide a 256-bit security level. Therefore, we compare 256-bit ECDSA and
EdDSA with 3072-bit RSA and DSA, as all three configurations offer an equivalent 128-bit security level. For a 192-bit
security level, ECDSA and EdDSA require 384-bit keys whereas RSA and DSA require 7680-bit keys. Thus, we use
the P-384 curve in the Weierstrass form for ECDSA and the Numsp384t1 curve in the Edwards form for EdDSA. To
achieve a 256-bit security level, ECDSA and EdDSA require 521-bit keys whereas RSA and DSA requires 15360-bit
keys. Therefore, we adopt the P-521 curve in the Weierstrass form for ECDSA and the E-521 curve in the Edwards
form for EdDSA.

The performance of RSA, DSA, ECDSA, and EdDSA is evaluated at different security levels—128-bit, 192-bit, and
256-bit—based on key generation, signing, and verification times. The results are summarized in Table 8, Table 9, and
Table 10.

Table 8: Performance of Cryptosystems with Default Configurations for 128-bit Security Level

Algorithm Form Curve Key Size Hash KeyGen (s) Sign (s) Verify (s)
RSA - - 3072 sha256 9.3434 0.0704 0.0693
DSA - - 3072 sha256 41.2033 0.0065 0.0126
ECDSA Weierstrass secp256k1 256 sha256 0.0067 0.0066 0.0136
ECDSA Weierstrass p256 256 sha256 0.0073 0.0064 0.0132
EdDSA Edwards ed25519 253 sha256 0.0122 0.0116 0.0227

Table 9: Performance of Cryptosystems with Default Configurations for 192-bit Security Level

Algorithm Form Curve Key Size Hash KeyGen (s) Sign (s) Verify (s)
RSA - - 7680 sha384 43.8724 0.9308 0.9995
DSA - - 7680 sha384 432.1513 0.0412 0.0833
ECDSA Weierstrass p384 384 sha384 0.0174 0.0171 0.0352
EdDSA Edwards numsp384t1 382 sha384 0.0356 0.0201 0.0616

Table 10: Performance of Cryptosystems with Default Configurations for 256-bit Security Level

Algorithm Form Curve Key Size Hash KeyGen (s) Sign (s) Verify (s)
RSA - - 15360 sha512 455.00 7.0423 7.6164
DSA - - 15360 sha512 7172.1030 0.1937 0.3868
ECDSA Weierstrass p521 521 sha512 0.0372 0.0429 0.076
EdDSA Edwards e521 519 sha512 0.0667 0.032 0.1357

At the 128-bit security level, ECDSA (secp256k1 & p256 or secp256r1) and EdDSA (ed25519) outperform RSA and
DSA (3072-bit) in all metrics. RSA key generation takes over 9 seconds, while DSA takes just over 41 seconds. In
contrast, both ECDSA and EdDSA generate keys in milliseconds. Signing and verification are also significantly faster
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with ECDSA and EdDSA. Among elliptic curve algorithms, ECDSA has a slight edge in signing and verification speed,
making it the most efficient option at this level.

For 192-bit security, ECDSA (P-384) and EdDSA (Numsp384t1) continue to be superior to RSA (7680-bit) and DSA.
RSA’s key generation time reaches over 43 seconds, while DSA’s is even higher at 432 seconds, making both impractical
for dynamic key creation. In contrast, ECDSA and EdDSA generate keys in under 40 milliseconds, with much faster
signing and verification times as well.

At the 256-bit security level, RSA and DSA (15360-bit) become even less practical due to extremely long key generation
times of 455 seconds and over 7000 seconds, respectively, and slow signing and verification speeds. ECDSA (P-521)
and EdDSA (E-521) are significantly faster, with ECDSA providing better verification performance, while EdDSA is
slightly more efficient in signing.

So, we can summarize our observations as:

• RSA consistently underperforms, particularly in key generation, making it impractical for dynamic use.
• DSA has faster signing and verification than RSA at all levels, but suffers from extremely slow key generation,

especially as security level increases.
• ECDSA is generally faster in verification, while EdDSA is more efficient for signing across different security

levels.
• Both ECDSA and EdDSA significantly outperform RSA and DSA, making them the preferred options for

modern cryptographic applications.
• As the security level increases, RSA’s computation time grows exponentially, making it increasingly inefficient.

DSA also exhibits very slow key generation times. In contrast, both ECDSA and EdDSA exhibit only linear
growth, maintaining practical performance even at higher security levels.

5 Conclusion

In this paper, we have compared the performance of three prominent digital signature algorithms (DSAs)—RSA, DSA,
ECDSA, and EdDSA—across various security levels (128-bit, 192-bit, and 256-bit). The analysis was conducted by
evaluating key generation, signing, and verification times for each algorithm, using NIST’s recommended key sizes for
equivalent security levels.

Our results clearly demonstrate that both ECDSA and EdDSA outperform RSA and DSA in terms of speed and
efficiency, particularly in the context of dynamic key generation. RSA’s and DSA’s key generation times increase
significantly with larger key sizes, making it less suitable for environments where quick key creation and signing are
critical. In contrast, ECDSA and EdDSA, both based on elliptic curve cryptography, maintain fast performance across
all security levels, with EdDSA being more efficient in signing operations and ECDSA excelling in verification.

At the 128-bit security level, ECDSA (secp256k1) and EdDSA (ed25519) exhibit superior performance over RSA and
DSA (3072-bit) in all metrics, including key generation, signing, and verification. As we increase the security level to
192-bit and 256-bit, RSA’s performance continues to degrade exponentially, DSA time outs while the elliptic curve
algorithms scale much more efficiently.

All experiments were conducted on a machine equipped with an 11th Gen Intel Core TM i7-11370H processor, running
at 3.30 GHz with 8 cores. This CPU, part of Intel’s Tiger Lake family, is commonly found in high-performance laptops.
Providing these details ensures transparency about the computational environment used for the experiments.

This study highlights the increasing practicality of elliptic curve-based algorithms like ECDSA and EdDSA as security
requirements grow. For modern cryptographic applications, particularly those demanding high-performance and
scalability, ECDSA and EdDSA provide a clear advantage over RSA and DSA. Therefore, we recommend adopting
ECDSA and EdDSA for applications requiring secure, fast, and efficient digital signatures.
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