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Abstract

Advanced Encryption Standard (AES) is one of the most widely used symmet-
ric cipher for the confidentiality of data. Also it is used for other security services,
viz. integrity, authentication and key establishment. However, recently, authors
have shown some weakness in the generation of sub-keys in AES, e.g. bit leakage
attack, etc. Also, AES sub-keys are generated sequentially, which is an overhead,
especially for resource-constrained devices. Therefore, we propose and investi-
gate a novel encryption AESHA3, which uses sub-keys generated by Secure Hash
Algorithm-3 (SHA3). The output of SHA3 is one-way and highly non-linear, and
random. The experimental analysis shows that the average time taken for gen-
erating the sub-keys to be used for encrypting the data using our approach i.e.
AESHA3 is ∼ 1300 times faster than the sub-key generated by the standard AES.
Accordingly, we find that AESHA3 will be very relevant not only in terms of se-
curity but also it will save the resources in IoT devices. We investigated AESHA3
in Intel Core i7, 6th Generation processor and Raspberry Pi 4B and found that up
to two MB data encryption is very significant, and lesser the data size, more the
resource saving compared to AES.

Advanced Encryption Standard, Sub-keys, Secure Hash Algorithm-3, IoT De-
vices

1 Introduction
Advanced Encryption Standard (AES) is the most widely used symmetric key cipher,
basically for data confidentiality. However it can provide other security services viz.
integrity, authentication and key establishment in several real-life applications, includ-
ing financial services, data centres, web security, etc. The AES has three variant based
on the key size i.e. AES-128, AES-192 and AES-256. The design of AES is crypto-
graphically strong [2], and to date, no attack better than brute force has been found.
Additionally, because of the 256-bit key variant, it might even cope with the offing
quantum computations for the next two decades. However, the sub-key generation pro-
cess of AES from the master key is arguably frail [10]. Also, with the advent of smart
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devices and the Internet of Things (IoT) over the last few years, there is a high demand
for an efficient and secure algorithm for these resource and energy-constrained devices.
Therefore in this paper we propose a novel efficient and secure sub-key generation for
AES using Secure Hash Algorithm-3 (SHA-3) for security services, and named AE-
SHA3. We use the same three fundamental layers of AES (Key Addition, Shift Rows
and Mix Columns) approved by the National Institute of Standards and Technology
(NIST) [2]. However the sub-keys are generated from SHA3, which is highly random,
non-linear and one-way (i.e. the key cannot be generated in the reverse order) [6] i.e.,
it has all the properties that the NIST-approved AES sub-keys posses. Hence, we have
used it to generate the sub-keys of all rounds of AES for the encryption of the data.

The remainder of the paper is divided as follows: Section II briefly discusses the
related work. Section III gives the brief description of AES and SHA3. While section
IV discusses the problem overview and our approach for sub-key generation for AE-
SHA3. Section V and VI describes the experimental setup and analysis of our results
respectively. Finally, the section VII contains the conclusion of the paper.

2 Related Work
According to Kerckhoff’s Principles [13], a cipher or cryptosystem should be secure
even if the attacker knows all details about the system, except the secret key i.e. the
system should be secure even if the attacker knows the encryption and decryption pro-
cesses. Therefore, the keys used for any cipher are the most important aspect of achiev-
ing the desired security level. In symmetric cipher, generally sub-keys are generated
from the selected key so that even if the selected key is weak, the sub-key generation
process makes the sub-keys highly random so that security of the cipher entirely lies on
the sub-keys. Therefore, time-to-time researchers investigated one of the widely used
AES sub-keys generation processes. The first weakness in the AES key schedule was
discovered by Lauren and Matt in 2002 [10]. According to them, the key schedule of
the AES is vulnerable to bit leakage i.e. even with partial knowledge of the previous
sub-key, all the other sub-keys can be generated. They proposed a rectified key sched-
ule in which every subkey depends on every bit of the original key. Their proposed
key schedule secures the keys from bit leakage. However, the computational resources
required for generating the sub-keys remain more or less the same as the original AES
sub-key generation processes. Later in 2008, Bahrak et al. [21] proposed a differen-
tial attack which exploits differences at the intermediate state of the AES algorithm
and time-memory trade off. They have shown that the best differential attack requires
2115.5 chosen plain-texts, 2109 bytes of memory and seven rounds only to attack AES-
128. However, it is almost impossible to get 2115.5 of plain-texts.

In 2010, Biryukov et al. [26] show that AES-192 and AES-256 security level can
be 176 and 199 bits respectively. However, still, it is completely impractical to find the
key. The reason for their reduced security level may be due to generating 1.5 and 2
sub-keys with the standard AES key schedule. Therefore, their attack is not applicable
to AES-128 because one sub-key is generated in each iteration in AES-128. Also, their
attack depends on how the keys are related.

Understanding the importance of light weight cipher for IoT devices, Bogdanov
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et al. [25] in 2014 proposed a light weight encryption scheme which uses AES-128
key schedule. The cipher is an online, single-pass authenticated encryption algorithm
that supports optional associated data, and its security relies on nonces. Later in 2019
Alasaad et al. [23] claimed that as the S-box used in AES is a static and fixed matrix,
therefore, a backdoor can be built into the cipher to exploit the AES. Hence, they
proposed a simple key dependent S-box scheme which generates a dynamic S-box
for each round of encryption. Their approach uses some bits of the primary key to
directly manipulate the standard S-box in such a way that its content is changed but its
cryptographic properties are preserved. They have shown that their proposed method
strengthens the cipher against certain attacks at the expense of a relatively modest one-
time computational procedure during the set-up phase.

In 2020, Leurent et al. [9], proposed a key schedule in which all the sub-keys
of the rounds are generated independently of each other, unlike the original AES key
schedule, where the sub-keys are generated from a single master key. Their proposed
approach security level remains the same as that of the original AES. Also, the number
of steps for generating the sub-keys was exactly the same. Later in 2021, G. Leurent et
al. [9] proposed a modified AES key schedule in which all the sub-keys of the rounds
are generated independently, unlike the original AES key schedule, where the sub-keys
are generated sequentially from the master key. Their basic idea is to parallelise the
computation of the key schedule. They generate an equivalent representation of the
AES key schedule using invariant subspace attacks. However, the number of computa-
tions for the variants of AES are the same as the original AES.

Recently, Sawka et al. [14] proposed a scheme to create key expansion algorithms
for modern block ciphers. Their approach uses the sponge construction for creating the
key expansion algorithm. Further, their method uses the key expansion algorithm on a
specifically designed block cipher, IJON. As their approach was specific to the custom
block cipher, its scalability is not guaranteed.

3 Brief Description of Advanced Encryption Standard
and Secure Hash Algorithm-3

3.1 Advanced Encryption Standard
The first approved block cipher was Data Encryption Standard (DES) [27], which is
still secure as per its design, i.e. no attack better than brute force attack has been found
yet. However, due to its small key size (56 bits), DES is no longer recommended;
instead, one can use 3DES, which is three times slower than DES and provides 112-
bit security only. Therefore, to have an efficient and more secure symmetric cipher,
NIST approved AES in 2002 [2]. In general, symmetric block cipher processes n
bits of plain text and m bits of the key to generate n bits of random cipher text. The
security of the modern symmetric cipher is achieved by applying two characteristics,
i.e. confusion and diffusion, introduced by Claude Shannon [15] in multiple rounds (in
AES, the number of rounds depends on the key size to produce a completely random
ciphertext). The confusion property obscures the relationship between the key and
cipher text, while diffusion obscures the relationship between plain text and cipher text
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Table 1: Number of rounds and sub-keys in the variants of AES

AES Version AES-128 AES-192 AES-256
Number of bits in the sub-key 128 192 256

Number of rounds 10 12 14
Number of sub-keys 11 13 15

Total number of bits required 1408 1664 1920

to resist cryptanalysis. AES transforms the input data into three layers, i.e. substitution
layer for confusion property, diffusion layer for diffusion property and in key addition
layer, data state is XORed with the generated non-linear sub-keys to make the cipher
random.

The AES operates on bytes rather than bits, and its input (plaintext) of 128 bits
is represented as 16 bytes, arranged in a 4 x 4 matrix. This plaintext of the matrix
is known as the initial state and is modified as the algorithm progresses. AES comes
in three different variants viz. 128, 192, and 256 input key bits. Each of these is
arranged in a 4 x 4/6/8 matrix, each column representing a word of 4 bytes. However,
in encryption processes, only 128 bits are used to XOR the data state irrespective of the
main key size. Therefore, the number of rounds of encryption processes increases with
key size and are 10, 12 and 14 rounds for 128, 192 and 256-bit key sizes, respectively.
Table 1 shows the number of rounds, number of sub-keys and total number of bits
generated to get the ciphertext. The number of sub-keys is one more than the number
of rounds because before the start of the encryption processes, the original plaintext is
initially XORed with the first subkey (master-key), and this XORing of plaintext before
the start of the actual encryption processes is known as key whitening.

3.2 Secure Hash Algorithm-3
A cryptographic hash function (CHF) is a one-way function which takes arbitrary size
input and provides a highly compressed fixed-size output. It is key-less but plays a
very important role in digital security, viz., checks the integrity of the data because it is
deterministic and highly sensitive (on average, when a single bit in the data is changed,
approximately half of the bits in the hash output will be modified), and it is computa-
tionally impossible to find another message for the known hash value. Therefore, it is
also known as checksum, message digest and fingerprint. The security level of a hash
function is determined by computationally in-feasibility to find two different inputs
that generate the same hash, i.e. collision resistance, and to find the original input from
the hash value, i.e. preimage-resistance. Generally, if n is the size of the hash value,
then a good hash function shall have n/2 bits security level.
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Figure 1: A schematic of SHA-3

The first CHF was designed by Rabin in the late 70s. He proposed a 64-bit hash
function using DES block cipher [18]. Later, in the 80s, more hash functions were pro-
posed, and in 90s, MD5 and SHA-1 were used in several applications [6]. However,
in 2004, it was shown that finding the collision in Message Digest-5 (MD5) is easy,
and the security level of SHA-1 is significantly less than the standard required secu-
rity. Hence SHA-2 series (SHA-256, SHA-384, SHA-512) has been approved, and to
date, no collision has been found in SHA-2. However, understanding the significance
of CHF for security services, in 2012, NIST approved SHA-3 [6] to meet out the dig-
ital security requirements. The design of SHA-3 is very different from earlier hash
functions. A schematic of the SHA-3 is shown in figure 1, which is based on sponge
construction. It has two phases: in the first phase, the message is absorbed into the
sponge, and in the second phase, the result is squeezed. In the absorbing phase, mes-
sage blocks (xi) are XORed into a subset of the state and the output blocks are read
from the same subset of the state and alternated with the state transformation function
(f ). The size of the part of the message that is written and read is known as the rate
(r), and the size of the part that is untouched by input/output is known as the capacity
(c). The capacity determines the security of the SHA-3 and is c/2, and the security level
does not changes even one take more than the double the bit of the desired security level
from the output of the SHA-3. The message transformation is done by the f -function
in five steps called θ, ρ, π, χ and ι in which computation of the parity, bit-wise rota-
tion, permutation of 25 words, bit-wise combination along rows and exclusive-OR are
done respectively. To get the hash, after the absorption is completed, the function f of
the state is taken until the required length is obtained, i.e. Hash(x) = Yo||Y1||...
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(a) AES Encryption (b) AES Decryption

Figure 2: Flowchart for AES

4 Problem Overview and Proposed Approach

4.1 Problem Overview
In AES, the round sub-keys are generated sequentially from the master key using a
non-linear g-function, which uses the same S-box that is used in the byte substitution
layer [2]. Depending on key size, the number of words (32 bits) are generated. This
sequential generation of keys creates additional computational overhead, resulting in
more resource utilisation, especially in resource-constrained IoT devices. Also, the au-
thors [2, 9, 16, 17] pointed out the weakness in the key generation process of the AES.
Therefore, we investigate SHA-3 for efficient and secure sub-key generation processes
for data encryption and decryption.

4.2 Proposed Approach
We propose and investigate a novel and efficient approach for generating the sub-keys
using SHA-3. The output of the squeezed phase in SHA-3 provides a non-linear one-
way 1600-bit output and can be used as sub-keys in the encryption of data in AES.
The required number of bits for encrypting data in different variant of AES is shown
in Table 1. For AES-128, just first output of the squeezing phase is sufficient to have
all the 11 sub-keys. However, in case of AES-192 and AES-256, one more iteration of
the squeezing phase had to run to get all the sub-keys to encrypt the data, i.e. one can
have 3200 bits of non-linear bits to make 13 or 15 sub-keys, i.e.

Hash(x) = Yo||Y1

where x denotes the input string, Yo and Y1 are the output of SHA-3 squeezing phase,
which is of 1600 bits. The processes of squeezing phase in such that from Y1 it is
computationally infeasible to find Yo and taking any sequence of 128 bits from Hash(x)
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does not effect the security of the sub-keys. Figures 2a and 2b show the flowchart of
AES encryption and decryption processes of AESHA3.

5 Experimental Setup
To investigate the proposed novel approach, we implemented it on Intel Core i7 6th
generation, 12 GB RAM, in Ubuntu 22.04 LTS OS and Raspberry Pi 4, 8 GB RAM
with Raspbian OS using Python 3.10. First, we run the SHA-3 10,000 times with
random inputs strings and found the average time taken for generating the sub-keys to
be used for encrypting the data using the AES three layer is ∼ 1300 times faster then
sub-key generated by he standard AES. The detail results are shown in table 2. Then
we used Electronic Code Book modes of operations i.e. encrypting data of 128 bits or
more independently to find how much time can be saved for data encryption for IoT
devices, which are generally resource constrained.

Table 2: Time taken in milliseconds for the sub-key generation by AES and AESHA3

System
Specifications

Operating
System AES-128 AESHA3-128 AES-192 AESHA3-192 AES-256 AESHA3-256

Intel Core i7
6th generation CPU

Ubuntu 22.04
LTS 1334.31 1.21 1403.26 1.231 1442.18 1.237

Raspberry Pi 4B
8GB RAM Raspbian OS 5996.36 4.55 6084.61 4.74 6205.45 4.69

Table 3: Time taken and efficiency to encrypt the data up to 16 MB using AES and
AESHA3 in Intel Core i7 6th Generation processor.

File Size
Total Time

AES-128

(ms)

Total Time

AESHA3-128

(ms)

Efficiency of

AESHA3-128

(X)

Total Time

AES-192

(ms)

Total Time

AESHA3-192

(ms)

Efficiency of

AESHA3-192

(X)

Total Time

AES-256

(ms)

Total Time

AESHA3-256

(ms)

Efficiency of

AESHA3-256

(X)

1 KB 1347.24 15.68 85.92 1417.22 19.38 73.12 1464.15 22.70 64.5

2 KB 1355.44 23.69 57.21 1424.68 26.26 54.25 1476.69 34.88 42.33

4 KB 1373.93 42.29 32.49 1448.18 49.99 28.97 1509.12 68.89 21.91

8 KB 1413.34 81.60 17.32 1491.14 92.22 16.17 1548.31 106.64 14.52

16 KB 1473.12 141.49 10.41 1566.51 168.31 9.31 1665.26 222.89 7.47

32 KB 1604.57 272.77 5.88 1729.70 330.97 5.22 1861.00 418.86 4.44

64 KB 1881.59 550.00 3.42 2044.98 646.93 3.16 2225.71 783.58 2.84

128 KB 2402.95 1071.30 2.24 2656.92 1257.83 2.43 2903.74 1462.38 1.98

256 KB 3388.58 2056.83 1.65 3892.48 2493.95 1.56 4358.85 2917.59 1.49

512 KB 5461.41 4129.83 1.32 6398.85 4999.23 1.28 7278.61 5836.77 1.25

1 MB 9649.51 8317.80 1.16 12831.64 11432.31 1.12 13094.25 11653.24 1.12

2 MB 17779.87 16448.04 1.08 22338.69 20939.92 1.06 24701.81 23259.94 1.062

4 MB 35315.09 33984.14 1.04 40327.12 38924.27 1.03 57461.65 56015.52 1.025

8 MB 67805.52 66472.24 1.02 80735.64 79330.45 1.02 114207.08 112728.99 1.013

16 MB 134256.81 132920.93 1.01 160978.36 159569.76 1.01 219933.49 218440.19 1.006

6 Results Analysis
As we find that sub-key generated by SHA-3 takes ∼ 1300 less time than the sub-key
generated by AES. Therefore for IoT devices we investigated that how much it will
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Table 4: Time taken and efficiency to encrypt the data up to 16 MB using AES and
AESHA3 in Raspberry Pi 4B.

File Size
Total Time

AES-128

(ms)

Total Time

AESHA3-128

(ms)

Efficiency of

AESHA3-128

(X)

Total Time

AES-192

(ms)

Total Time

AESHA3-192

(ms)

Efficiency of

AESHA3-192

(X)

Total Time

AES-256

(ms)

Total Time

AESHA3-256

(ms)

Efficiency of

AESHA3-256

(X)

1 KB 6,021.61 34.22 175.97 6,109.35 37.62 162.40 6,230.05 41.73 149.29

2 KB 6,044.45 56.67 106.66 6,131.04 60.83 100.79 6,258.88 71.06 88.08

4 KB 6,088.72 101.13 60.21 6,174.92 103.58 59.61 6,319.90 131.98 47.89

8 KB 6,185.17 197.83 31.27 6,263.59 190.93 32.81 6,445.41 256.86 25.09

16 KB 6,351.80 364.67 17.42 6,445.58 373.80 17.24 6,685.70 497.24 13.45

32 KB 6,700.51 713.00 9.40 6,853.98 782.73 8.76 7,158.61 970.84 7.37

64 KB 7,393.14 1,406.06 5.26 7,722.23 1,651.22 4.68 8,126.02 1,938.22 4.19

128 KB 8,790.51 2,803.58 3.14 9,437.66 3,366.87 2.80 10,078.41 3,891.07 2.59

256 KB 11,656.09 5,668.24 2.06 12,743.25 6,675.07 1.91 13,874.86 7,689.83 1.80

512 KB 17,375.71 11,388.39 1.53 19,583.15 13,510.26 1.45 21,684.56 15,499.15 1.40

1 MB 28,641.21 22,653.57 1.26 32,821.73 26,749.37 1.23 28,572.75 22,384.93 1.28

2 MB 51,266.41 45,279.09 1.13 59,780.93 53,657.67 1.11 67,857.84 61,664.73 1.10

4 MB 98,149.74 92,156.76 1.07 111,105.16 104,965.89 1.06 129,221.49 123,033.96 1.05

8 MB 187,024.09 180,998.08 1.03 218,761.47 212,593.99 1.03 255,063.21 248,797.29 1.03

16 MB 368,645.63 362,567.91 1.02 415,755.80 409,473.02 1.02 499,292.89 493,065.41 1.01

be efficient if data is encrypted by AESHA3. For the purpose first we implemented
AESHA3 and AES to encrypt data in intel core i7, 6th generation processor and then
we implemented in Raspberry Pi 4B because it has limited computational power and
can be considered as IoT device. We encrypted the data in both operating systems
starting from 1 KB and doubling the data till 16 MB. We find that up to 2 MB data
encryption it is significant, and lesser the data size more the resource saving (table 3
and 4). This is basically due to fact that sub-key generation is one time job. The figure
3 and 4 shows the time taken to encrypt the data with AESHA3 and AES upto 16 MB,
and figure 5 and 6 shows the number of times AESHA3 is faster then AES in intel core
i7, 6th generation processor and Rasberry Pi 4B respectively.
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7 Conclusion
In symmetric cipher, AES is the most widely used cipher for the confidentiality of the
data and is also used for the security services viz. integrity, authentication and key
establishment. According to Kerckhoff’s Principles, a cipher or cryptosystem should
be secure even if the attacker knows all details about the system, except the secret key,
i.e. the system should be secure even if the attacker knows the encryption/decryption
algorithms. However, recently authors have shown some weakness in the generation
of sub-keys in AES, hence a threat to the AES cipher. Therefore, we proposed and
investigated a novel encryption AESHA3, which uses sub-key generated by SHA3,
which provides a one way and highly non-linear output i.e. the overall security will
not change. However, our analysis shows that the average time taken for generating
the sub-keys to be used for encrypting the data using the three layers of AES is ∼ 1300
times faster than sub-key generated by the AES. Therefore, AESHA3 will be very
relevant not only in terms of security but also it will save the resources in IoT devices.
We implemented AESHA3 in intel core i7, 6th generation processor and Raspberry Pi
4B and find that up to 2 MB data encryption is very significant, and lesser the data
size, more the resource saving compared to AES. In this we have made some initial
analysis to compare the randomness (i.e. uniformity and independence) of the sub-
keys generated by SHA-3 with AES generated sub-keys. The results are encouraging
and the detail analysis will be published elsewhere.
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