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Abstract

We introduce a new Bayesian perspective on the concept of data reconstruction, and leverage
this viewpoint to propose a new security definition that, in certain settings, provably prevents
reconstruction attacks. We use our paradigm to shed new light on one of the most notorious
attacks in the privacy and memorization literature – fingerprinting code attacks (FPC). We argue
that these attacks are really a form of membership inference attacks, rather than reconstruction
attacks. Furthermore, we show that if the goal is solely to prevent reconstruction (but not
membership inference), then in some cases the impossibility results derived from FPC no longer
apply.

1 Introduction

Carlini et al. [2019] showed that it is sometimes possible to extract unique pieces of training data
from modern language models (such as credit card numbers). This demonstrates that such models
can unintentionally memorize rare parts of their training data, even if those parts appear only
once. Since then, this memorization phenomenon has been studied in a long line of work, providing
increasingly many examples in which modern models unintentionally memorize data. In fact,
several follow-up papers have shown that there exist learning tasks for which memorization is
provably necessary [Feldman, 2020, Feldman and Zhang, 2020, Carlini et al., 2021, Brown et al.,
2021, Haim et al., 2022, Buzaglo et al., 2023, Carlini et al., 2023a,b].

However, these prior works did not converge on a single definition of memorization, and instead
considered several context-dependent notions. Loosely speaking, existing definitions can be grouped
into two main types:
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• Computational memorization. Some papers, such as Carlini et al. [2019], define memo-
rization in terms of extraction. Informally, a model h is said to “memorize” a training example
x if x can be extracted from h. This is in line with the cryptographic concept of knowledge
extraction in proofs of knowledge: To demonstrate that Alice “knows” a fact there should be
a way to extract that fact from her.

• Statistical memorization. Other works definememorization using statistical or information-
theoretic criteria. For example, a model h is said to “memorize” a training example x if the
mutual information between h and x is high. This is in line with the information-theoretic
view of knowledge: A system is considered to possess information about a variable if observing
the system reduces uncertainty about that variable.

In light of this, we ask the following questions:

Is there a difference between computational memorization and statistical memorization?
Could a model be considered “memorizing” under one definition but not the other?

In this paper, we provide positive answers to the above questions. Specifically, we show that
there are well-established examples of statistical memorization in which “extraction” is provably
impossible. Specifically,

1. We put forward a new security definition, computational in nature, such that algorithms that
satisfy it are guaranteed to resist extraction attacks.

2. We revisit problems studied in prior work for when statistical-memorization is provably nec-
essary, and show that these problems can be solved while satisfying our new security notion
(under the same conditions as studied in prior work). Therefore these examples separate
statistical from computational memorization.

This raises the question of whether “statistical memorization” should be considered as a form of
“memorization” at all. Intuitively, if it is impossible for an attacker to extract information from
the model, then had the model really memorized it?

1.1 Existing definitions of statistical memorization

Before describing our new results more formally, we survey some of the existing statistical defini-
tions for memorization. Brown et al. [2021] defined memorization in terms of conditional mutual
information as follows.

Definition 1.1. [Brown et al. [2021]] Let Prior be a meta-distribution (i.e., a distribution over
distributions). Let Nature be a target distribution sampled from Prior, and let S be a sample from
Nature. Let h←M(S) be a model obtained by running a learning algorithm M on the sample S.
The amount of information that h memorizes about S is defined as I(S;h|Nature).

In this definition, the meta-distribution Prior is assumed to be known, but the specific target
distribution Nature is a priori unknown. To interpret this definition, consider a learning algorithm
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M that given a sample S is trying to learn properties of the underlying distribution Nature, say
learn a good predictor h. Now note that I(S;h|Nature) captures the amount of information that
h encodes about S after excluding information about the target distribution itself. Intuitively, this
means that I(S;h|Nature) captures the amount of information encoded in h that is “unique to the
dataset”.

Attias et al. [2024] considered a different definition for memorization, stated in terms of membership
inference attacks (MIA) [Shokri et al., 2017, Yeom et al., 2018]. Membership inference is a type
of attack in which, given a model h and a data point x, the attacker aims to determine whether x
was part of the training data underlying the model h. Formally,

Definition 1.2. [Shokri et al. [2017], Yeom et al. [2018], Attias et al. [2024], Voitovych et al.
[2025]] Let X be a data domain. Let M be an algorithm whose input is a dataset containing n
elements from X . AlgorithmM is (m ∈ N, ξ ∈ (0, 1))-memorizing if there is a distribution D over
X and a distinguisher A such that

Pr
S←Dn

h←M(S)
x←S

b←A(h,x)

[b = “In”] ≥ m

n
and Pr

S←Dn

h←M(S)
x←D

b←A(h,x)

[b = “In”] ≤ ξ

In words, the attacker A is executed on h←M(S) and on a data point x ∈ X . If this x is sampled
uniformly from S, then there is a noticeable probability (at least m/n) that A correctly determines
that x ∈ S. Intuitively this happens if h “memorizes” m out of the n elements of S. On the
other hand, when x is instead sampled independently from S, then the probability that A falsely
determines that x ∈ S should be small (at most ξ).

1.2 Warmup: Memorization can be ambiguous

In this paper we show that there are well-established cases where memorization is “formally am-
biguous”. Before presenting these results, we motivate our discussion with an intuitive example for
a mechanism whose memorization behavior is open to interpretation.

Example 1.3. Let n, d ∈ N be parameters where d is even, let Nature be the uniform distribution
over {0, 1}d, and let S = (x1, . . . , xn) ← Naturen be a sample containing n iid elements from
Nature. We think of S as an n × d binary matrix. Consider the mechanism M that, given S,
returns an n× d

2 matrix H where H[i, j] = S[i, 2j − 1]⊕ S[i, 2j].

In this example, we have that I(S;H|Nature) = nd/2 (intuitively, this holds because given H the
number of choices for every pair of bits in S drops from 4 to 2). SoMmemorizes a lot of information
about S according to Definition 1.1. In addition, there is a trivial membership inference attacker
A against this mechanism. Specifically, given the release H and a row x ∈ {0, 1}d, the attacker A
answers “In” iff x fits one of the rows in H, i.e., there is a row i ∈ [n] such that for every coordinate
j ∈ [d/2] we have H[i, j] = x2j−1 ⊕ x2j . Note that for every x ∈ S we have that A(H,x) = “In”.
But for a random x ∈ {0, 1}d we have that Pr[A(H,x) = “In”] ≤ n · 2−d/2. So M essentially
“memorizes” all elements in S according to Definition 1.2; formally it is (n, n·2−d/2)-memorizing.

However, even given the releaseH, the marginal distribution on any single bit in S is still completely
uniform. Furthermore, even given H, no attacker (even unbounded) can guess noticeably more than
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half of the coordinates of any single row in S. Therefore, while there is a strong sense in whichM
“memorizes” a lot of information (according to Definitions 1.1 and 1.2), there is also a strong sense
in which no attacker can extract training examples from H. It is therefore open to interpretation
whether this should be considered memorization or not.

1.3 Our security definition: arguing about the attacker’s knowledge is crucial

Example 1.3 is simple enough so that we could argue that “extraction is impossible” without
formally defining what it means. This becomes much less clear when dealing with more involved
algorithms/problems. In order to tackle this, we first introduce a formal security definition for
preventing extraction, and then present algorithms satisfying our definition. Building up towards
our security definition, we now argue that such a definition must take into account the attacker’s
side-information (or lack thereof) about the sample and/or the underlying distribution.

Example 1.4. Consider again Example 1.3, where the mechanismM takes a dataset S containing
nd random bits and releases nd

2 “parity bits” (denoted as H). As we mentioned, in this scenario
no attacker can guess noticeably more than half of the bits of any single row in S. However,
this argument clearly breaks if the attacker possesses enough side-information about the sample S.
For example, suppose that the attacker knows a superset S of size n10 that contains S as well as
additional (n10−n) independent samples from {0, 1}d. Now, if the attacker knows S and sees the
release H, then it can easily identify all rows in S with high confidence. Specifically, the attacker
searches for all rows in S that fit perfectly to a row in H. This identifies all rows in S, and the
probability of falsely identifying a row outside of S is bounded by 2−d/2 · poly(n).

But did the attacker really extract S from the release H, or was it already encoded in the side-
information available to it? Taking this example to the limit, suppose that the attacker’s side-
information explicitly specifies a vector x∗ from the sample S. Here it is intuitively clear that if this
attacker sees the releaseH and then “identifies” that x∗ ∈ S, then this is not a very successful attack
as this information was not extracted from the releaseH in any way. An alternative way to interpret
this, is that we cannot hope to defend against “extracting” x∗ by attackers who already “know” that
x∗ ∈ S. What about attackers who know that there is a 99% chance that x∗ ∈ S? What about 10%?
This suggests that we need some way of quantifying the amount of side-information the attacker
possessed before seeing the release on the element that it chooses to reconstruct. Furthermore, we
argue that there are cases where limiting the amount of side-information the attacker has about
S is insufficient, and we must also take into consideration the amount of side-information it has
about the underlying data distribution.

Example 1.5. Let us consider the following variant of Example 1.4. Suppose that the data dis-
tribution Nature is generated at random, by first randomly sampling a set S ⊆ {0, 1}d of size n10,
and then defining Nature to be uniform over S. Now a sample S of size n is sampled from Nature
and we compute H ← M(S), where M is the same mechanism from the previous two examples.
As in Example 1.4, an attacker that knows S and sees the release H can easily reconstruct all of S.
But now the side information that the attacker possesses is more about the underlying distribution
Nature rather than about the sample S, in the sense that conditioned on Nature the attacker does
not hold any side-information.
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This is actually reminiscent of the way some of the negative results are stated in the literature (for
showing that memorization is necessary), e.g., by Attias et al. [2024]: The attacker possesses a lot
of side information; not directly on the sample S, but rather through knowledge on the underlying
distribution Nature. Motivated by this, we advocate that in order for a “reconstruction attack” to
be successful, the attacker needs to reconstruct an element z which it had “little” or “bounded”
knowledge about before seeing the release.

In particular, this means that we need a way to argue about lack of knowledge in order to be able to
designate an attack as successful. We model this via a Bayesian perspective: We assume that the
underlying data distribution Nature is itself a random element, sampled from a family of possible
data distributions Prior. The dataset S is then sampled from Nature. A data analysis mechanism
M is then executed on S and outputs a release H. An attacker A who knows the meta-distribution
Prior (but not Nature and S directly) then sees the release H and tries to extract information
about S form H. We will denote the output of A as z. Treating both Nature and S as random
elements allows us to model the “lack of knowledge” that the attacker has about them. We will
say that the attacker is successful only if it does not have a lot of prior knowledge, through Nature
and S, about z.

Ruling out trivial attacks. Suppose for now that the attacker aims to identify an element z such
that z ∈ S (we will later consider more general types of attacks). Consider the mechanism Mbot

that takes a dataset S, ignores it, and returns ⊥. Clearly, this mechanism should be considered
secure. However, as we assume that the attacker knows Prior, it could be aware of “trivial” elements
which appear in the sample S w.h.p. even over sampling Nature from Prior. Then, paradoxically,
the attacker can “extract” these trivial elements from the empty release ⊥.

Example 1.6. Suppose that the meta-distribution Prior is defined via the following process for
sampling Nature. Sample a set S ⊆ {0, 1}d of size n10 and return the distribution Nature that with
with probability 0.5 returns 0⃗ and with probability 0.5 returns a uniform element from S. As the
attacker knows Prior, it could simply guess that 0⃗ ∈ S.

Motivated by this, in Sections 3 and 4 we present a security definition, called Bayesian Extraction-
Safe, that (informally) prevents an attacker from recovering an element z ∈ S unless: (1) The
attacker possessed “too much” side-information about z before seeing the release; or (2) This z is
a “trivial” element which could be “reconstructed” even without seeing any release.

Our security definition builds on a prior security definition by Cohen et al. [2025], called Narcissus
resiliency, and can be viewed as a Bayesian extension of it capturing “lack of knowledge” in the eyes
of the attacker. We stress that our proposed definition is not a privacy definition. In particular,
it does not prevent the attacker from learning potentially sensitive bits of information about the
sample. The goal of our security definition is to protect against extraction, which we interpret as
reconstructing large portions from the dataset or from a row in the dataset (this will be made formal
in the actual definition). In other words, while a reconstruction attack clearly indicates a privacy
breach, the other direction is not necessarily true: Not all privacy attacks should be considered as
successful reconstruction attacks.

5



1.4 Circumventing fingerprinting code attacks

We use our security definition to shed new light on one of the most notorious attacks in the privacy
and memorization literature – fingerprinting code attacks (FPC). We argue that these attacks are
really a form of membership inference attacks, rather than reconstruction attacks. Furthermore, we
show that if the goal is solely to prevent reconstruction (but not membership inference), then in
some cases the impossibility results derived from FPC no longer apply.

Specifically, we revisit the Tardos FPC, introduced by Tardos [2008]. This is one of the most
influential and applicable FPC in the literature. In particular, this FPC is exactly what under-
lies the results of Attias et al. [2024] who showed that there are Stochastic Convex Optimization
(SCO) problems which necessitate memorization (in the terminology of Definition 1.2). Our results
show that under the same conditions studied by Attias et al. [2024], for which they proved that
statistical-memorization is necessary, there actually exists a secure mechanism (satisfying our secu-
rity definition) that provably prevents extraction. Therefore, our results show that with a different
viewpoint, it becomes open to interpretation whether the results of Attias et al. [2024] show that
the SCO problems they studied really necessitate “memorization”, or solely forces the algorithm
to be susceptible to membership inference attacks.

2 Preliminaries

Cohen et al. [2025] introduced a definition, called Narcissus resiliency, that aims to capture what
it means for a system to be secure against reconstruction attacks. As “reconstruction” is context-
dependent, the definition of Narcissus resiliency introduces a relation R, where R(S, z) = 1 if and
only if z is a “valid reconstruction” of S (or of some data point in S). A simple example to keep
in mind is R(S, z) ≜ 1{z∈S}.

To motivate the definition of Narcissus resiliency, consider the relation R(S, z) ≜ 1{z∈S} and con-
sider a distribution over images, such that every large enough dataset sampled from this distribution
contains the Mona Lisa. In this case, if an attacker “reconstructs” the Mona Lisa from the outcome
of our mechanism, then this is not a very meaningful attack, as this could also be done without
accessing the outcome of our mechanism. The challenge is to distinguish between reconstructing
something “specific” to the particular dataset versus reconstructing something generic. The key
idea in the definition of Narcissus resiliency is its self-referential nature. Instead of trying to for-
mally capture what is generic and what is not (which is very nuanced), the following definition
places this decision on the attacker itself. Intuitively, the definition requires the attacker to come
up with a valid reconstruction w.r.t. the actual dataset S which would not be considered a valid
reconstruction w.r.t. a fresh dataset T . The formal definition follows.

Definition 2.1 (Cohen et al. [2025]). Let X be a data domain, let D be a distribution over datasets
containing elements from X , and let R : X ∗ × {0, 1}∗ → {0, 1}. Algorithm M is (ε, δ,D, R)-
Narcissus-resilient if for all attackers A it holds that

Pr
S←D

y←M(S)
z←A(y)

[R(S, z) = 1] ≤ eε · Pr
S←D
T←D

y←M(S)
z←A(y)

[R(T, z) = 1] + δ.
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Notations. For two multisets A,B we have that A\B is defined element-wise by subtracting the
multiplicity of each element in B from its multiplicity in A (but never going below zero). We write
a ≥ Ω(f) or a ≤ O(f) to mean that a ≥ c · f or a ≤ c · f , respectively, for some global (unspecified)
constant c.

3 A Bayesian analogue for Narcissus resiliency

As we mentioned in the introduction, in this work we advocate that in order to classify an attack
as a “successful reconstruction” we must take into consideration the amount of side-information
the attacker has (or lack thereof). Otherwise, it is unclear whether the attacker really extracted
this reconstruction from the released model/statistics rather than from its side-information. This
is not captured by Definition 2.1. Thus, our starting point is to reformulate Definition 2.1 using a
Bayesian perspective, aiming to model the uncertainty the attacker has about the underlying data
distribution.

Definition 3.1. Let X be a data domain and let Prior be a meta-distribution. That is, Prior is a
distribution over distributions over datasets containing elements from X . Let R : X ∗ × {0, 1}∗ →
{0, 1} be a reconstruction relation. Algorithm M is (ε, δ,Prior, R)-Bayesian extraction-safe if for
all attackers A it holds that

Pr
Nature←Prior
S←Nature
y←M(S)
z←A(y)

[R(S, z) = 1] ≤ eε · Pr
Nature←Prior
S←Nature
T←Nature
y←M(S)
z←A(y)

[R(T, z) = 1] + δ. (1)

The interpretation is as follows. Look at the left hand side of Equation (1). First Nature is drawn.
This is a distribution over datasets drawn from the meta-distribution Prior. Then we draw a dataset
S from Nature. The algorithm M trains a model y on the dataset S, and finally the attacker A
uses y to reconstruct an element from S. The predicate R determines if this reconstruction was
successful or not. We say that M is Bayesian extraction-safe if the probability of a successful
reconstruction from S is not much larger than the probability of reconstructing an element from a
fresh sample from Nature which we call T on the right hand side of Equation (1).

In this section, we construct an algorithm for the marginals problem (defined below) that is secure
in the sense of Definition 3.1 under interesting choices of the meta-distribution Prior.

Definition 3.2. Let n, d ∈ N be parameters. LetM be an algorithm whose input is an n×d binary
matrix. AlgorithmM solves the (n, d)-marginals problem with error parameters (α, β) if for every
input matrix S, with probability at least 1− β, the algorithm returns a vector y ∈ [0, 1]d satisfying
∥y −Average(S)∥∞ ≤ α, where Average(S) ∈ [0, 1]d is the average of the rows of S.

We show that the marginals problem can be securely solved (in the sense of Definition 3.1) under the
following meta-distribution, which we refer to as the Tardos-Prior. This specific prior distribution
is notoriously hard in the privacy and memorization literature, underlying many of the existing
impossibility results.
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Definition 3.3 (Tardos-Prior). Let N ≥ n ∈ N and d ∈ N be parameters. We write Tardos(N, d, n)
to denote the meta-distribution defined by the following process. To sample a distribution form
Tardos(N, d, n) do:

1. Sample parameters p1, . . . , pd ∈ [0, 1] uniformly and independently.

2. Generate an N × d ∈ {0, 1}N×d matrix C where each entry C[i, j] is sampled independently
from Ber(pj).

3. Return the uniform distribution over S ⊆ C of size n. That is, the distribution of sampling n
rows from C without repetitions.

We next show that the mechanism that returns the exact average is secure for Tardos-Prior. Note
that we cannot hope to show this for every relation R. In particular the exact average is not secure
w.r.t. the relation R defined as R(S, z) = 1 iff z is the average of S. We show that it is secure for
several natural choices for the relation R.

3.1 Preventing near-exact reconstruction

We start by considering attackers that aim to recover an element of S to within a small Hamming
distance. Specifically, we consider the following “Hamming reconstruction relation”:

Definition 3.4. For γ ∈ [0, 1] let RH
γ be defined as follows. For a dataset S ∈ ({0, 1}d)n and an

element z ∈ {0, 1}d we have RH
γ (S, z) = 1 iff ∃x ∈ S such that Ham(x, z) ≤ γd.

Note that for γ = 0 we have that RH
γ (S, z) = 1 iff z ∈ S.

Lemma 3.5. Let N ≥ n ≥ Ω(1) and d ≥ Ω(log n
δ ). The exact average is secure (in the sense of

Definition 3.1) under Tardos-Prior with the relation RH
γ for every γ ≤ 1

25 .

Proof. Let Nature ← Tardos and let S ← Nature be a sample of size n. By the Chernoff bound,
for d ≥ Ω(log 1

δ ) and N,n ≥ Ω(1), with probability at least 1− δ
2 , there are at least d/5 columns in

S whose Hamming weight is between n/4 and 3n/4.1 We refer to such columns as lukewarm. We
proceed with the analysis assuming that there are at least d/5 lukewarm columns in S.

Let y = M(S) ∈ [0, 1]d denote the average of the rows in S. Note that conditioning on y fixes
the number of ones in every column in S, but the permutation in each column is still completely
uniform and independent of the other columns. Therefore, for any choice of z ← A(y), by the
Chernoff bound, assuming that d ≥ Ω(log n

δ ), with probability2 at least 1− δ
2n , this z agrees with

the first row in S on at most 4
5 -fraction of the lukewarm coordinates of S. As there are at least d/5

lukewarm coordinates, this means that the Hamming distance between z and the first row in S is
at least d/25. By a union bound, the probability that such a z is at Hamming distance at least d

25
from all the rows in S is at least 1− δ. This shows that for any attacker A and for any γ ≤ 1

25 it

1To see this, first observe that by the Chernoff bound, with probability at least 1−O(δ), there are Ω(d) columns
j in Nature with pj ∈ 1

2
± 1

5
. When this is the case, assuming that n ≥ Ω(1), then with probability at least 1−O(δ),

at least Ω(d) of these columns will have Hamming weight between n
4
and 3n

4
in S.

2This probability is over choosing the permutation of each column in S.
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holds that
Pr

Nature←Tardos
S←Nature
y←M(S)
z←A(y)

[RH
γ (S, z) = 1] ≤ δ.

Note that in this proof we did not leverage the RHS of Definition 3.1. One might hope that
by taking the RHS into account, we might be able to avoid the requirement that γ ≤ 1

25 . The
(incorrect) idea is that while the probability of identifying a vector z that is γd-close to S gets
larger when γ increases, the RHS of Definition 3.1 also increases. This however is not true, as for
larger values of γ the attacker could be extremely more likely to find a z that is γd-closer to S than
to T . We overcome this by considering a relaxed version of Definition 3.1.

3.2 Bi-criteria variant of the definition

Recall that Definition 3.1 leverages a relation R to determine if a reconstruction z is valid, and
the same relation R is used in both sides of Inequality (1). This, however, could be considered too
restrictive. For example, suppose that the dataset contains images, and there is an attacker that
given the released model/statistics can reconstruct Bob’s image to within 0.1% error. Suppose also
that without the release, matching this 0.1% error is hard, but one can easily achieve an error of
0.11%. So the attacker gains something from the release, but this gain is arguably quite weak.
Should this be considered a successful reconstruction? We believe that both answers are valid.
To accommodate a negative answer to this question, in the following definition we leverage two
relations R, R̂ instead of just one, in order to allow the criteria applied to the fresh dataset T to be
different from the one applied to S.

Definition 3.6. Let X be a data domain and let Prior be a meta-distribution. That is, Prior is a
distribution over distributions over datasets containing elements from X . Let R and R̂ be recon-
struction relations. Algorithm M is (ε, δ,Prior, R, R̂)-Bayesian extraction-safe if for all attackers
A it holds that

Pr
Nature←Prior
S←Nature
y←M(S)
z←A(y)

[R(S, z) = 1] ≤ eε · Pr
Nature←Prior
S←Nature
T←Nature
y←M(S)
z←A(y)

[R̂(T, z) = 1] + δ. (2)

We show that the exact average is secure w.r.t. Tardos-Prior under the above definition. Specifically,

Lemma 3.7. Let N ≥ 10n ≥ Ω(log 1
δ ) and d ≥ Ω(log n

δ ), and let γ ∈ [0, 1]. The exact average
is secure (in the sense of Definition 3.6) for Tardos-Prior with the relations RH

γ and RH
γ̂ for

γ̂ =

(
1 +O

(√
ln d

δ
n

))
γ.

The proof is similar in spirit to the proof of Lemma 3.5, but becomes much more technical as we
need to argue about both sides of Inequality (2).
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Proof of Lemma 3.7. By Lemma 3.5, we already know that the exact average is secure whenever
γ ≤ 1

25 . We thus proceed with the analysis assuming that γ ≥ 1
25 .

We consider the following process for sampling S and T :

1. Sample p1, . . . , pd ∈ [0, 1] uniformly and independently.

2. Sample two sets of indices of size n independently: IS ⊆ [N ] and IT ⊆ [N ].

3. For every i ∈ IS∪IT sample xi ← Ber(p⃗) independently, where Ber(p⃗) denotes the distribution
over d-bit vectors where the jth bit is sampled independently from Ber(pj).

4. Define DST = {xi : i ∈ IS ∩ IT }, DS = {xi : i ∈ IS \ IT }, DT = {xi : i ∈ IT \ IS}.

5. Return S = DS ∪DST and T = DT ∪DST .

Observe that the distribution on (S, T ) induced by this process is identical to the distribution
induced by first sampling Nature← Prior and then sampling S, T independently from Nature.

For j ∈ [d], let pSTj , pSj , p
T
j denote the “column probabilities” in DST , DS , ST , respectively. That is,

pSTj , pSj , p
T
j are the fraction of 1’s in the jth column of DST , DS , ST . We also denote k = |IS ∩ IT |.

Now fix p⃗, p⃗ST , p⃗S , p⃗T , and k. This, in particular, fixes the average of S and thus fixes the re-
constructed element z. We denote the elements of DS as s1, . . . , sn−k, the elements of DT as
t1, . . . , tn−k, and the elements of DST as st1, . . . , stk.

Let us start by calculating the probability that Ham(z, s1) ≤ γd, where s1 is the first row in DS .
This Hamming distance is a random variable which is the sum of d Bernoullis, where the parameter
of the jth Bernoulli, denoted as wS

j , is either pSj or 1 − pSj , depending on z[j]. (The probability
here is only over the permutation in each column of DS .) Formally, let

wS
j =

{
pSj , if z[j] = 0

1− pSj , if z[j] = 1

We have that

Pr[Ham(z, s1) ≤ γd|p⃗, p⃗ST , p⃗S , p⃗T , k] = Pr

 d∑
j=1

Ber
(
wS
j

)
≤ γd

 .

This holds analogously for elements of DT or DST by replacing wS with wT or wST (defined
analogously to wS).

Next, the probability that z matches some element in S = DS ∪ DST , i.e., the probability that
RH

γ (S, z) = 1, can be written as

Pr[RH
γ (S, z) = 1|p⃗, p⃗ST , p⃗S , p⃗T , k]

= Pr
[{

RH
γ (DS , z) = 1

}
∨
{
RH

γ (DST , z) = 1
}∣∣ p⃗, p⃗ST , p⃗S , p⃗T , k

]
= Pr[Ham(z, s1) ≤ γd ∨ ... ∨Ham(z, sn−k) ≤ γd ∨Ham(z, st1) ≤ γd ∨ ... ∨Ham(z, stk) ≤ γd|p⃗, p⃗ST , p⃗S , p⃗T , k]
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= Pr




d∑
j=1

XS
1,j ≤ γd

 ∨ ... ∨


d∑

j=1

XS
n−k,j ≤ γd

 ∨


d∑
j=1

XST
1,j ≤ γd

 ∨ ... ∨


d∑

j=1

XST
n−k,j ≤ γd

︸ ︷︷ ︸
call it Event ST

 ,

(3)

where each XS
i,j is a binary RV taking the value 1 iff z[j] ̸= si[j], and each XST

i,j is a binary RV
taking the value 1 iff z[j] ̸= sti[j]. These Bernoullis are over the permutation within each column
of DS or SST . Note that the RV’s within each summation are independent. (However, these
RV’s are not independent across different summations.) Also note that for every i, j, the marginal
distribution over XS

i,j and XST
i,j is Ber(wS

j ) and Ber(wST
j ), respectively.

Analogously, for T = DT ∪DST we have

Pr[RH
(1+∆)γ(T, z) = 1|p⃗, p⃗ST , p⃗S , p⃗T , k]

= Pr
[{

RH
(1+∆)γ(DT , z) = 1

}
∨
{
RH

(1+∆)γ(DST , z) = 1
}∣∣∣ p⃗, p⃗ST , p⃗S , p⃗T , k

]
≥ Pr

[{
RH

(1+∆)γ(DT , z) = 1
}
∨
{
RH

γ (DST , z) = 1
}∣∣∣ p⃗, p⃗ST , p⃗S , p⃗T , k

]

= Pr




d∑
j=1

XT
1,j ≤ (1+∆)γd

∨...∨


d∑
j=1

XT
n−k,j ≤ (1+∆)γd

∨


d∑
j=1

XST
1,j ≤ γd

∨...∨


d∑
j=1

XST
n−k,j ≤ γd

︸ ︷︷ ︸
Event ST

 ,

(4)

where eachXT
i,j is a binary RV taking the value 1 iff z[j] ̸= ti[j]. To connect between the expressions

given in (3) and (4), let us consider the following two good events:

Event G1 := For every j ∈ [d] it holds that |pj − pSj | ≤ O

√
ln d

δ

n

 and |pj − pTj | ≤ O

√
ln d

δ

n

 .

Event G2 := For every i ∈ [n− k] it holds that

d∑
j=1

(
XT

i,j −XS
i,j

)
≤ ∆γd.

We will show that G1 happens w.p. 1 − O(δ), and when this happens then G2 happens w.p.
1 − O(δ). So overall G2 happens w.o.p. Note that conditioned on G2, for every i we have that

the event
{∑d

j=1X
S
i,j ≤ γd

}
is contained in the event

{∑d
j=1X

T
1,j ≤ (1+∆)γd

}
, in which case the

expression given in (4) upper bounds the one in (3), which basically implies the lemma. We will
state this formally after showing that G1, G2 occur w.o.p.

For G1, note that as N ≥ 10n then by the Chernoff bound, for n ≥ Ω(log 1
δ ), with probability at

least 1 − δ, we have that |DS | = |DT | ≥ n
2 . When this is the case, then Event G1 happens with

probability at least 1−O(δ) by the Hoeffding bound (and a union bound). So Pr[G1] ≥ 1−O(δ).

We now show that for any fixture of p⃗, p⃗ST , p⃗S , p⃗T , k such that G1 holds, then G2 happens with
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probability at least 1−O(δ). By a union bound, it suffices to show that

Pr


d∑

j=1

(
XT

1,j −XS
1,j

)
≤ ∆γd


 ≥ 1−O

(
δ

n

)
.

This is a sum of d independent RV’s, each taking values in {−1, 0, 1}, each with expectation

E
[
XT

1,j −XS
1,j

]
= wT

j − wS
j ≤ O

(√
ln d

δ
n

)
. This is because we fixed p⃗, p⃗ST , p⃗S , p⃗T , k such that G1

holds (this also fixes z and so wj , ŵj are well defined in terms of p⃗S , p⃗T ). Recall that we assumed

that γ ≥ 1
25 , and let ∆ = 1

γ · Θ
(√

ln d
δ

n

)
= Θ

(√
ln d

δ
n

)
. Asserting that d ≥ Ω(ln n

δ ), by the

Hoeffding bound we have that

Pr

 d∑
j=1

(
XT

1,j −XS
1,j

)
≤ ∆γd

 ≥ 1−O

(
δ

n

)
,

as required. Overall, Event G1 happens with probability at least 1 − O(δ), and then Event G2

happens with probability at least 1−O(δ).

Finally,

Pr[RH
γ (S, z) = 1] =

∑
p⃗,p⃗ST ,

p⃗S ,p⃗T ,k

Pr

[
p⃗, p⃗ST ,
p⃗S , p⃗T , k

]
Pr

[
RH

γ (S, z) = 1
∣∣p⃗, p⃗ST , p⃗S , p⃗T , k

]

=
∑

p⃗,p⃗ST ,

p⃗S ,p⃗T ,k

Pr

[
p⃗, p⃗ST ,
p⃗S , p⃗T , k

]
Pr


d∑

j=1

XS
1,j ≤ γd

 ∨ . . . ∨


d∑

j=1

XS
n,j ≤ γd

 ∨ Event ST



≤ O(δ) +
∑

p⃗,p⃗ST ,

p⃗S ,p⃗T ,k
s.t. G1 holds

Pr

[
p⃗, p⃗ST ,
p⃗S , p⃗T , k

]
Pr


d∑

j=1

XS
1,j ≤ γd

 ∨ . . . ∨


d∑

j=1

XS
n,j ≤ γd

 ∨ Event ST



≤ O(δ) +
∑

p⃗,p⃗ST ,

p⃗S ,p⃗T ,k
s.t. G1 holds

Pr

[
p⃗, p⃗ST ,
p⃗S , p⃗T , k

]
Pr

G2 ∧


d∑

j=1

XS
1,j ≤ γd

 ∨ . . . ∨


d∑

j=1

XS
n,j ≤ γd

 ∨ Event ST



≤ O(δ) +
∑

p⃗,p⃗ST ,

p⃗S ,p⃗T ,k
s.t. G1 holds

Pr

[
p⃗, p⃗ST ,
p⃗S , p⃗T , k

]
Pr

G2∧


d∑

j=1

XT
1,j ≤ (1+∆)γd

∨...∨


d∑
j=1

XT
n,j ≤ (1+∆)γd

∨Event ST


≤ O(δ) +
∑

p⃗,p⃗ST ,

p⃗S ,p⃗T ,k

Pr

[
p⃗, p⃗ST ,
p⃗S , p⃗T , k

]
Pr


d∑

j=1

XT
1,j ≤ (1+∆)γd

 ∨ ... ∨


d∑

j=1

XT
n,j ≤ (1+∆)γd

 ∨ Event ST


= O(δ) +

∑
p⃗,p⃗ST ,

p⃗S ,p⃗T ,k

Pr

[
p⃗, p⃗ST ,
p⃗S , p⃗T , k

]
Pr

[
RH

(1+∆)γ(T, z) = 1
∣∣p⃗, p⃗ST , p⃗S , p⃗T , k

]
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= O(δ) + Pr
[
RH

(1+∆)γ(T, z) = 1
]
.

4 Incorporating side-information into the definition

In the definitions presented in the previous section, the attacker’s knowledge (beyond the release
y) is captured solely by the meta-distribution Prior. However, it is reasonable to assume that the
attacker might possess additional information: Either additional knowledge about the dataset S or
about the specific target distribution Nature. For example, the attacker might know a point from
S. In this section we extend our definition to support such side-information.

4.1 Side-information about the sample

We start by examining one natural way to extend the definition to capture side-information about
the sample S (but not yet about the target distribution Nature).

Definition 4.1. Let X be a data domain and let Prior be a meta-distribution. That is, Prior is a
distribution over distributions over datasets containing elements from X . Let R : X ∗ × {0, 1}∗ →
{0, 1} be a reconstruction relation. Algorithm M is (ε, δ,Prior, R)-Bayesian extraction-safe if for
every attacker A and every side information function SideInfo it holds that

Pr
Nature←Prior
S←Nature

K←SideInfo(S)
y←M(S)
z←A(y,K)

[R(S, z) = 1] ≤ eε · Pr
Nature←Prior
S←Nature

K←SideInfo(S)
T←Nature |K

y←M(S)
z←A(y,K)

[R(T, z) = 1] + δ. (5)

In words, in the above definition we allow the attacker to have arbitrary side-information about
the sample S, captured by the function K ← SideInfo(S). We then sample the “fresh” (baseline)
dataset T from the conditional distribution Nature |K. To motivate this, suppose for example that
the attacker knows the first row in S. So if S = (x1, . . . , xn) then K = x1. Then, when sampling
T ← Nature |K we have that x1 is also included in T and therefore if the attacker outputs x1 as
the recovered element then this would not be considered a valid reconstruction. Indeed, in order
to break Inequality (5), and thus break the security ofM, the attacker’s goal is to succeed in the
left experiment while failing in the right experiment.

We now show that, unlike before, once we allow the attacker to have side-information about the
sample, then the exact average is no longer secure w.r.t. Tardos-Prior. Specifically,

Observation 4.2. The exact average is not secure (according to Definition 4.1) for Tardos-Prior
with the relation RH

0 (i.e., when the attacker’s goal is to identify an element from S).

Proof. Let SideInfo be the function that takes a dataset S = (x1, . . . , xn) and returns the first
n − 1 elements in it. Let A be the attacker that given y = Average(S) and K = SideInfo(S) =
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(x1, . . . , xn−1), returns z = xn. That is, the attacker recovers the last element in S (exactly) by
subtracting x1, . . . , xn−1 from the unnormalized average. So, Pr

Nature←Prior
S←Nature

K←SideInfo(S)
y←M(S)
z←A(y,K)

[z ∈ S] = 1.

Now suppose that we resample T ← Nature |K, and denote T = (x′1, . . . , x
′
n). Note that by sampling

from Nature |K we ensure that the first n − 1 elements in T are identical to their corresponding
elements in S, while x′n is fresh. The event that z = xn ∈ T is exactly the event that xn ∈
{x1, . . . , xn−1, x′n}, which is very unlikely under Tardos-Prior. Specifically,

Pr
Nature←Prior
S←Nature

K←SideInfo(S)
T←Nature |K

y←M(S)
z←A(y,K)

[z ∈ T ] = Pr
Nature←Prior

(x1,...,xn,x′
n)←Nature

[xn ∈ {x1, . . . , xn−1, x′n}] ≤
1

N
+ n · 2−Ω(d).

To see this, recall that S = (x1, . . . , xn) are sampled without repetitions from Nature. Thus,
Pr[xn ∈ {x1, . . . , xn−1}] ≤ (n − 1) · 2−Ω(d). As for x′n, with probability 1/N we have that x′n
and xn are the same element from Nature, and otherwise they are equal with probability at most
2−Ω(d).

4.2 An alternative treatment for the attacker’s side-information

So the exact average is not secure w.r.t. Tardos-Prior when the attacker possesses enough side
information. How about a noisy average? Consider the mechanism M that takes a dataset S ∈
({0, 1}d)n and returns y = Average(S) + noise. That is, M adds independent noise to each of
the coordinates of the empirical average of S. Now consider an attacker with the following side-
information: A pair of vectors (k1, k2) ∈ ({0, 1}d)2 such that one of them is a random element
from S and the other is a random element from Nature, but we do not know which is which.
Nevertheless, given the release y = Average(S)+noise the attacker can identify w.h.p. who among
k1, k2 belongs to S, and return it as its reconstructed element.3 On the other hand, in the “baseline
experiment”, given this side information, each of k1, k2 is exactly equally likely to be in T . Thus,
the attacker would fail to correctly guess an element of T with probability ≳ 1/2.4

So the noisy average is not secure w.r.t. Tardos-Prior when the attacker possesses enough side
information. However, one could argue that the attack in this example should not be considered
successful, because the result of the attack (the reconstructed element) was entirely encoded in the
attacker’s side-information. In some sense, the attacker extracted z more from its side-information
than from the release y.

This discussion suggests that a different treatment for the attacker’s side-information might be
needed. More specifically, we want a way to measure the amount of information that K contains

3More specifically, the attacker picks kb that maximizes ⟨kb, y⟩. See, e.g., Dwork et al. [2015].
4Recall that in Definition 4.1 we sample T from Nature conditioned on K. In our case, this means that one of

k1, k2 is included in T , each w.p. 1/2. Our attacker guesses one out of k1, k2 which is very likely to be in S, but the
probability of this element being in T is still ≈ 1/2. This probability is slightly larger than 1/2 because even for the
element which is sampled independently of T there is still a tiny (but non-zero) probability that this element will
appear in T .
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on z, and require that this quantity is “not too high” in order for the attack to be considered
successful. One could try to quantify this is via standard tools from information theory, such as the
mutual information between K and z, or the conditional entropy of z given K. Recall, however,
that these are both average notions, that do not necessarily have meaningful implications on the
specific instantiations of K and z. That is, it could be that the mutual information between K and
z (as random variables) is very low, but the specific instantiation of K actually tells us quite a bit
about z.

Motivated by this discussion, we use a “point wise” variant of entropy (and conditional entropy),
known as information content, self-information, or surprisal.

Definition 4.3 (Shannon [1948], Cover and Thomas [2006]). Let X be a random variable and let x
be an outcome. The surprisal of x w.r.t. X is defined as h(x) = − log (Pr[X = x]). Given another
random variable Y and an outcome y, we also write h(x|y) = − log (Pr[X = x|Y = y]).

Intuitively, this quantity measures the amount of “surprise” or “information” gained upon learning
that the event X = x has occurred: rare events (with small probability) carry more information,
while common events carry less.

We now leverage this notion in order to address the relation between the attacker’s side-information
K and the reconstructed element z in Definition 4.1. To simplify the presentation, we begin with
a variant of our definition that is tailored to “exact reconstruction”, where the attacker’s goal is to
recover an element from the sample exactly. We will later relax this assumption.

Definition 4.4. Let X be a data domain and let Prior be a meta-distribution. That is, Prior
is a distribution over distributions over datasets containing elements from X . Algorithm M is
(ε, δ, ξ,Prior)-Bayesian extraction-safe if for every attacker A and every side information function
SideInfo it holds that

Pr
Nature←Prior
S←Nature

K←SideInfo(Nature,S)
y←M(S)
z←A(y,K)

[
z ∈ S, and

h (z|K,S\{z}) ≥ ξ · h (z|S\{z})

]
≤ eϵ · Pr

Nature←Prior
S←Nature

K←SideInfo(Nature,S)
T←Nature |K

y←M(S)
z←A(y,K)

[
z ∈ T

]
+ δ, (6)

where for a fixed element z ∈ X , a fixed dataset Ŝ ∈ X n−1, and a fixed value K̂ we have

h(z|K̂, Ŝ) ≜ − log


Pr

Nature←Prior
S←Nature

K←SideInfo(Nature,S)
v←S

S′:=S\{v}

[
v = z

∣∣∣(K,S′) =
(
K̂, Ŝ

)]


.

In words, for the attacker A to be successful, it must identify an element z ∈ S such that: (1) the
probability that z ∈ T for a fresh dataset T is relatively small; and (2) the side-information K does
not reveal too much about z beyond what all other elements in S might reveal.
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Remark 4.5. There are many variants of Definition 4.4 which seem to capture similar intuition.
For example,

1. In the definition above we chose to compare h(z|K,S\{z}) with h(z|S \ {z}). This choice
is somewhat arbitrary. One could definitely consider other expressions to compare between.
Additionally, one could consider other conditioning instead of (K,S \ {z}) and S \ {z}. For
example, one could consider h(z|K,D) for a dataset D sampled independently from S, possibly
of different size.

2. One could require the event {h(z|K,S\{z}) ≥ ξ · h(z|S \ {z})} to hold in both sides of In-
equality 6, rather than just on the left hand side (possibly with a different value for ξ in the
right hand side).

We next present a secure mechanism w.r.t. Definition 4.4 and Tardos-Prior. Specifically, we show
that this can be achieved using differential privacy (DP) Dwork et al. [2006]. Crucially, this only
requires guaranteeing per attribute DP. That is, in our construction we do not need to pay in
DP composition across the d features. As a result, the size of the required dataset does not need
to scale polynomially with d. This is in sharp contrast to known lower bound from the privacy
literature where it is known that in order to resist membership inference attacks, under the same
Tardos-Prior, the size of the dataset must grow polynomially with d. This demonstrates that, in
some cases, protecting against reconstruction attacks can be significantly easier than protecting
against privacy attacks.

Let us first introduce some additional preliminaries from the literature on differential privacy.
Informally, an algorithm that analyzes data satisfies differential privacy if it is robust in the sense
that its outcome distribution does not depend “too much” on any single data point. Formally,

Definition 4.6 (Dwork et al. [2006]). Let M : X ∗ → Y be a randomized algorithm whose input
is a dataset S ∈ X ∗. Algorithm A is (ε, δ)-differentially private (DP) if for any two datasets S, S′

that differ on one point (such datasets are called neighboring) and for any outcome set F ⊆ Y it
holds that Pr[M(S) ∈ F ] ≤ eε · Pr[M(S′) ∈ F ] + δ.

One of the most basic techniques for designing differentially private algorithms is by injecting
(carefully calibrated) random noise into the computation that obscures the effect of every single
element in the dataset. In particular,

Theorem 4.7 (Dwork et al. [2006]). Let ε > 0, and let Mε be the mechanism that on input
S = (x1, . . . , xn) ∈

(
[0, 1]d

)n
adds independently generated noise with distribution Lap( 1

εn) to each
of the d coordinates of Average(S) = 1

n

∑
i xi. ThenMε is (εd, 0)-differentially private.

We are now ready to present a secure mechanism w.r.t. Definition 4.4. Specifically, we show that
algorithmMε (returning the noisy average) is secure.

Lemma 4.8. Let δ = 2−Ω(d), constant ξ > 0, and ε = 0. Then for ε̂ = O(1) (small enough
constant) it holds thatMε̂ is secure (in the sense of Definition 4.4) for Tardos-Prior with parameters
ε, δ, ξ.

To prove this lemma, we need the following claim.
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Claim 4.9. Let Ŝ ∈ X n−1 with at least d/5 lukewarm columns, and let z ∈ X . Then for Tardos-
Prior we have that

h(z|Ŝ) := − log

 Pr
Nature←Prior
S←Nature

v←S
S′:=S\{v}

[v = z|S′ = Ŝ]

 = Ω(d).

Recall that a lukewarm column is a column whose Hamming weight is between n/4 and 3n/4.

We first prove Lemma 4.8. The proof of Claim 4.9 will follow.

Proof of Lemma 4.8. Let Nature ← Prior and let S ← Nature. As in the proof of Lemma 3.5, by
the Chernoff bound, for N ≥ n = Ω(1), with probability at least 1− 2−Ω(d), there are at least d/5
lukewarm columns in S, i.e. columns of Hamming weight between n/4 and 3n/4. By Claim 4.9, for
every such S and every z ∈ X we have h(z|S) = Ω(d). We calculate

Pr
Nature←Prior
S←Nature

K←SideInfo(Nature,S)
z←A(M(S),K)

[z ∈ S and h(z|K,S\{z}) ≥ ξ · h(z|S \ {z})]

≤
(∗1)

2−Ω(d) + Pr
Nature←Prior
S←Nature

K←SideInfo(Nature,S)
z←A(M(S),K)

[z ∈ S and h(z|K,S\{z}) ≥ Ω(d)]

≤
(∗2)

2−Ω(d) + n · Pr
Nature←Prior
S←Nature

v←S
K←SideInfo(Nature,S)

z←A(M(S),K)

[z = v and h(z|K,S\{v}) ≥ Ω(d)]

≤
(∗3)

2−Ω(d) + n · eε̂d · Pr
Nature←Prior
S←Nature

v←S
K←SideInfo(Nature,S)
z←A(M(S\{v}),K)

[z = v and h(z|K,S\{v}) ≥ Ω(d)]

=
(∗4)

2−Ω(d) + n · eε̂d ·
∑

K,z,S\{v}:
h(z|K,S\{v})≥Ω(d)

Pr[K, z, S\{v}] · Pr
v
[v = z|K, z, S\{v}]

=
(∗5)

2−Ω(d) + n · eε̂d ·
∑

K,z,S\{v}:
h(z|K,S\{v})≥Ω(d)

Pr[K, z, S\{v}] · Pr
v
[v = z|K,S\{v}]

≤
(∗6)

2−Ω(d) + n · eε̂d ·
∑

K,z,S\{v}:
h(z|K,S\{v})≥Ω(d)

Pr[K, z, S\{Sℓ}] · 2−Ω(d)

≤ 2−Ω(d) + n · eε̂d · 2−Ω(d)

≤
(∗7)

n · 2−Ω(d).

Here (∗1) follows from Claim 4.9. For (∗2), note that Pr[z = v] = Pr[z ∈ S] · Pr[z = v|z ∈
S] ≥ 1

n Pr[z ∈ S]. Inequality (∗3) follows from the fact that M is (ε̂d, 0)-differentially private.
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Specifically, instead of applyingM to S we apply it to S \ {v}. Equality (∗4) follows from the law
of total probability. Equality (∗5) is true because z is a function (only) of K and S \{v}. Inequality
(∗6) holds as for every K, z, S \{v} in this summation we have that h(z|K,S\{v}) ≥ Ω(d), and thus
Prv[v = z|K,S\{v}] ≤ 2−Ω(d). Finally, Inequality (∗7) holds for small enough ε̂ ≤ O(1).

In remains to prove Claim 4.9.

Proof of Claim 4.9. Fix Ŝ ∈ X n−1 with d/5 lukewarm columns and fix z ∈ X . We use Ŝ[j] to
denote the jth column of Ŝ. Also, given p⃗ = (p1, . . . , pd) we write Ber(p⃗) to denote the distribution
over d-bit vectors, where the jth bit is sampled from Ber(pj). We have that

Pr
Nature←Prior
S←Nature

v←S
S′:=S\{v}

[
v = z

∣∣∣S′ = Ŝ
]

=
(∗1)

Pr
p⃗←[0,1]d

S′←Ber(p⃗)n−1

v←Ber(p⃗)

[
v = z

∣∣∣S′ = Ŝ
]

=
∏
j∈[d]

Pr
pj←[0,1]

S′[j]←Ber(pj)
n−1

vj←Ber(pj)

[
vj = zj

∣∣∣S′[j] = Ŝ[j]
]

=
∏
j∈[d]:
zj=1

Pr
pj←[0,1]

S′[j]←Ber(pj)
n−1

vj←Ber(pj)

[
vj = 1

∣∣∣S′[j] = Ŝ[j]
]
·
∏
j∈[d]:
zj=0

Pr
pj←[0,1]

S′[j]←Ber(pj)
n−1

vj←Ber(pj)

[
vj = 0

∣∣∣S′[j] = Ŝ[j]
]

=
∏
j∈[d]:
zj=1

E
pj←[0,1]

S′[j]←Ber(pj)
n−1

[
pj

∣∣∣S′[j] = Ŝ[j]
]
·
∏
j∈[d]:
zj=0

1− E
pj←[0,1]

S′[j]←Ber(pj)
n−1

[
pj

∣∣∣S′[j] = Ŝ[j]
]

≤
(∗2)

2−Ω(d).

Here (∗1) follows from the assumption that S is sampled without repetitions from Nature. Thus,
instead of sampling S of size n from Nature, then sampling v ← Nature, and then setting S′ :=
S \{v}, we could simply sample S′, v directly from Ber(p⃗). Finally, (∗2) follows from the assumption
that there are Ω(d) lukewarm columns in Ŝ and by applying Laplace’s rule of succession (derived
using the properties of the Beta distribution, see e.g., [Jaynes, 2003]).

4.3 Extending Definition 4.4 beyond perfect reconstruction

In Definition 4.4 we focused on exact recovery, i.e., on attackers that aim to perfectly recover an
element z such that z ∈ S. This was convenient because it allowed us to argue about the surprisal
of this recovered element z. In this subsection we extend Definition 4.4 beyond exact recovery.
We consider a restricted family of relations R in which the attacker’s goal is to reconstruct (part
of) a row from S, unlike general relations which possibly capture global information about S. We
refer to these types of attacks as targeted reconstruction or targeted relation. Note that RH

γ is an
example of a targeted relation. On the other hand, the relation R that given S, z returns 1 iff z
specifies the first 3 bits of every point in S is not a targeted relation.
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Definition 4.10. A targeted reconstruction relation is a function R : X × {0, 1}∗ → {0, 1}. For a
dataset S ∈ X n we abuse notation and write R(S, z) = 1 iff ∃x ∈ S such that R(x, z) = 1.

Definition 4.11. Let X be a data domain and let Prior be a meta-distribution. That is, Prior is
a distribution over distributions over datasets containing elements from X . Let R and R̂ be recon-
struction relations where R is targeted. AlgorithmM is (ε, δ, ξ,Prior, R, R̂)-Bayesian extraction-safe
if for every attacker A and every side information function SideInfo it holds that

Pr
Nature←Prior
S←Nature

K←SideInfo(Nature,S)
y←M(S)
z←A(y,K)

[
∃x ∈ S s.t. R(x, z) = 1 and

h(x|K,S\{x}) ≥ ξ · h(x|S\{x})

]
≤ eϵ · Pr

Nature←Prior
S←Nature

K←SideInfo(Nature,S)
T←Nature |K

y←M(S)
z←A(y,K)

[R̂(T, z) = 1] + δ
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