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Abstract: The paper proposes a method to secure the Compressive Sensing (CS) streams. It consists
in protecting part of the measurements by a secret key and inserting the code into the rest. The
secret key is generated via a cryptographically secure pseudo-random number generator (CSPRNG)
and XORed with the measurements to be inserted. For insertion, we use a reversible data hiding
(RDH) scheme, which is a prediction error expansion algorithm, modified to match the statistics of CS
measurements. The reconstruction from the embedded stream conducts to visibly distorted images.
The image distortion is controlled by the number of embedded levels. In our tests, the embedding on
10 levels results in ≈ 18dB distortion for images of 256x256 pixels reconstructed with the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [41]. A particularity of the presented method is on-the-fly
insertion that makes it appropriate for the sequential acquisition of measurements by a Single Pixel
Camera. On-the-fly insertion avoids the buffering of CS measurements for a subsequent standard
encryption and generation of a thumbnail image.

Keywords: Reversible data hiding, partial encryption, compressive sensing, on-the-fly insertion,
rate-distortion curve.

1. Introduction
The single pixel camera (SPC) concept is an application of the Compressive Sensing (CS) paradigm

in which signal compression is done at acquisition time by exposing a 2D scene to a sequence of masks
and recording the light reflected by each of them using a single sensor. The captured scene can be
reconstructed based on these SPC measurements with the use of various reconstruction algorithms. In
order for the reconstruction to be possible, the original scene must be sparse in some domain and the
columns of the sensing matrix must be incoherent with the sparsity basis.

Such cameras are an alternative to widely used technologies such as charge-couple devices (CCD)
or metal-oxide-semiconductor (CMOS) that are only available for a small section of the electromagnetic
spectrum. Applications for SPC have been developed in multiple fields, such as fluorescence [1] and
infrared [2] microscopy, methane gas leak detection [3] and three dimensional imaging [4].

Today, most applications include communication on public channels, where the data are exposed
at theft or attacks. The common practice to protect the data is standard encryption after the compression
stage. Another solution is the partial encryption where, in the case of transform-based compression of
images, only the sign or part of significant coefficients are encrypted. One difference from the standard
encryption is the resulted image, which is noise-like in standard encryption and with discernable
content in partial encryption. The main drawback of the partial encryption is the weakness to error
concealment attacks (ECA). It was shown that the encrypted coefficients can be estimated by using
semantic or statistical rationales to obtain an image closer to the original.

Data hiding is the generic name for the set of techniques aiming to insert information in a
multimedia carrier.

The reversible data hiding (RDH) is a particular class of methods allowing perfect recovery of the
carrier after information extraction.

https://arxiv.org/abs/2505.23357v1
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Data hiding is commonly used for data integrity, covert communication, non-repudiation, copy-
right protection, and authentication, among other applications [7].

We propose an RDH method, specific to CS, that consists in protecting part of the CS measurements
by a secret key and embedding them into the rest. The method can also be seen as an alternative to
partial encryption, due to the result which consists of reconstructed images with visible distortion.

The embedded measurements are protected by XOR with a single-use secret key generated via a
cryptographically secure pseudorandom number generator (CSPRNG) that passes the NIST SP 800-22
tests [5]. The key’s length is larger than the encrypted plaintext. The secret key must be transmitted
using a secure communication protocol that follows the guidelines in NIST SP 800-57 [6], thus ensuring
that only authorized parties can access it.

The embedding is done on-the-fly, by a RDH method, which is a prediction error expansion
algorithm modified such to fit CS measurements statistics.

Opposite to the common practice in RDH, where the concern is to embed data without visible
distortion of the carrier, in our method the embedding is done on a high number of bits such to cause
strong visual distortion if an unauthorized user tries to reconstruct the image from the

modified measurements.
The method is dedicated to the confidential information protection of CS measurements obtained

sequentially, from an SPC. Due to the on-the-fly insertion, it avoids the buffering of CS measurements
for a subsequent standard encryption and generation of a thumbnail preview.

The novelty of our method is:

• Light encryption by a secret key of part of CS measurements and use the rest as carrier. No
selection for being embedded is done since in CS, the random projections are equipotent in image
reconstruction. The image distortion is tuned by the percentage of embedded measurements.

• On-the-fly embedding of the measurements. In a SPC scenario, the CS measurements are taken
sequentially. To avoid the measurement buffering before transmission, the embedding is done as
they are obtained.

• A modified version of prediction error expansion algorithm. One particularity of the CS mea-
surements is the statistical independence. Since there is no correlation between the neighboring
measurements, the prediction error is uniformly distributed. To have a Gaussian distribution of
the prediction error, we replaced the mean of neighbors with the mean of all measurements.

The method is evaluated under the following aspects:
the capacity of the data hiding algorithm, the distortion introduced by embedding and the impact

on data volume. An equation is derived for the insertion capacity and the experimental rate-distortion
curve of the method is given.

The experiments were performed on synthetic and real data. A sky image was divided into 359
patches and for each patch we calculated a series of random random projections in order to simulate
the acquisition. The idea behind this choice was the potential of SPC in sky exploration, where bands
of the electromagnetic spectrum like the far infrared are of interest. For such bands, there are not large
areas of sensors. Besides, the signal is very weak [9]. The real data were measured under white light
by using our setup in [42].

The rest of the paper is organized as follows: Section II presents the two related domains i.e.,
data protection by a secret key and partial or selective encryption. Section III describes on-the-fly data
hiding, explains the modified data hiding algorithm and discusses the impact on data representation.
Section IV is dedicated to the insertion capacity, an equation for capacity is derived and the mechanism
of distortion control is introduced. Section V analyses the sources of distortion in order to better
understand how to control it. Section VI discusses

the method behavior at error concealment attacks. Section VII is dedicated to experiments on
the sky image and real data. Examples of image reconstruction are depicted and an experimental
rate-distortion curve is plotted. Finally, some conclusions are drawn.
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2. Related Work
CS theory naturally encounters the domain of cryptography. Many CS-based cryptosystems are

built on the randomness of the measurement matrix, a sine qua non condition to obtain compressed
samples by signal projection. As randomness means secrecy, the measuring matrix can be used as a
secret key, making compression and encryption a single-step operation. This considerably improves
efficiency compared to the common approach, where the image is first compressed and then encrypted.
Many solutions in this direction were proposed [10–12].

A criticism of these methods has been the size of the secret key that hindered the distribution and
transmission. This stimulated the development of new measuring matrices, generated with chaotic
sequences [13,14].

Another limitation of this kind of methods is the one-time usage of the measurement matrix in
order to preserve the secrecy property. Generating a new measuring matrix for each fresh signal is
costly and impractical in a series of applications. This drawback has boosted a second category of
methods, where the encryption is applied to the measurements, leaving the matrix public. Techniques
inspired from the encryption of Shanon/Nyquist samples [15–18] like the permuting or substitution of
measurements, the sign encoding were such solutions, to enumerate only a few.

The encryption of measurements conducts to noise-like reconstructions that draws the attention of
attackers. To circumvent this problem, a class of methods called visually meaningful images encryption
(VMIE) has been developed. By such methods, a plain image is pre-encrypted and then embedded
into a host image, making the secret less perceptible [19–22]. Here, encryption meets the field of data
hiding that encompasses methods aiming to hide information by embedding it in the less significant
bits of an image. An example of VMIE is in [23], where the authors first encrypt one or several images
and then embed the code into a host image. The encryption is done by scrambling image pixels, then
the result is compressed by CS. The code is embedded into the wavelet coefficients of the host image,
on multiple bit planes. Another example is in [24], where the plain image is compressed and encrypted
to obtain the secret image, then zeros are inserted to extend it at the initial size. The result is wavelet
transformed and embedded into the wavelet coefficients of a carrier image. The encryption is done by
a public key generated by a chaotic system and reinforced by an RSA algorithm.

There is a plethora of data hiding algorithms. A comprehensive survey can be found in [25]. The
emergent techniques of deep learning have been adopted also in the data hiding domain. Recent
applications of deep learning for data hiding in digital signals are especially oriented towards image-
based data hiding [26]. Also, deep learning can augment CS with faster reconstruction algorithms
or better quality of the reconstruction [27]. However, when it comes to RDH performed in the CS
samples, at our best knowledge, deep learning is not currently integrated.

The partial or selective encryption is another related category of methods. It consists in the
partial encryption of the CS measurements. It has roots in the partial encryption of transform-based
compressed images, where only a part of the coefficients are encrypted [28–32]. Unlike the visually
meaningful encryption, the distortion introduced by partial encryption is visible but the image content
is not faded out. An example of partial encryption of compressed sensing measurements is in [33]
where only the measurements sign is encypted by XOR with a secret binary sequence. The method
is completed by embedding side information in the ecrypted measurements. The side information
could include sensor’s ID, sensor’s location, time of measuring etc. The embedding is done by using a
reversible histogram shifting based hiding scheme.

3. The Embedding of CS Measurements
The algorithm we use is a reversible data hiding method that was proposed in [36] and further

discussed in [37]. It is a prediction error expansion schema, as it was presented in [38], where the
authors innovate at the level of predictor and insert data bit by bit into a 2D image.

If the prediction error sits between two thresholds [Tn, Tp], it is expanded and an information is
inserted. Otherwise, the value is shifted so that no overlapping occurs, and extraction is lossless.
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Figure 1. Schema of the proposed scenario. (up) Data insertion: if information is available for embedding and
the measurement is eligible, the modified measurement is computed and transmitted. If not, the measurement
is shifted and transmitted. If information is no longer available for embedding, the current measurement is
processed to be used for insertion. (down) Data extraction: if the user is authorised, the embedded information be
extracted and the original measurements recovered. In the contrary case, the user is obliged to reconstruct the
image using the reduced set of modified measurements

Considering the image to be acquired x ∈ RS×1 is sparse and the set of patterns that are projected
ϕ ∈ RL×S,

the obtained measurements based on the CS are:

y = ϕx (1)

The prediction error expansion algorithm has been updated to better fit this scenario: inserting
the data on-the-fly in the measurements acquired sequentially by a SPC.

Firstly, the predicted value is a constant equal to the mean value of the measurements. This is
done because, as opposed to a natural image where neighboring pixels have correlated values and
allow for a reliable prediction, consecutive SPC measurements are statistically independent of each
other. This also allows us to try to insert data in all the positions in the stream, as none of them must
remain unchanged in order to compute prediction errors.

Secondly, the original algorithm uses two thresholds for data insertion and extraction, as informa-
tion is embedded only when predicted errors fall between the thresholds. This directly impacts the
capacity and distortion. In the proposed schema, the two thresholds can be used for the fine control of
the image distortion or simply ignored.

Lastly, our method allows multiple bits to be inserted as opposed to only one, leading to a higher
possible distortion. This aspect is discussed in more detail in the following subsections.

Another important aspect is that the embedded data is composed of measurements that are
processed and inserted on-the-fly at acquisition time (the flowchart is illustrated in Fig. 1). This
directly impacts the embedding capacity of the schema compared to the original one. When selecting
measurements to serve as embedded data there is no extra check done, the criteria used to decide if a
value is eligible or not do not apply.
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The CS measurement matrix type is Hadamard with randomly permuted columns, a binary
matrix that is easy to implement and use in CS scenarios [39]. The construction of Hadamard matrix
leads to a first row providing a measurement with a double maximum value compared to the others.
This is why the first row is not used in the proposed

scenario, being excluded altogether.
The columns are permuted using a random number generator with a known seed, so the results

are reproducible by an end user. This seed is generated at acquisition time and is then transmitted
with the measurements in order to make the reconstruction possible.

Two types of users can receive and use the modified measurements: an authorised user that can
compute the original measurements and reconstruct the original image or an unauthorised user that is
only able to reconstruct a lower quality version of the image using the modified measurements.

In the case of an authorised user, the information received is: the modified
measurements, the seed used to scramble the Hadamard matrix, the position map of embedded

measurements and the secret key used for data protection.
An unauthorised user only receives the modified measurements and a reduced measurements

matrix that can be used to reconstruct the distorted image. It is built by removing from the original
matrix the columns corresponding to the indexes in the position map.

3.1. On-the-fly insertion

Suppose that the SPC collects sensor measurements y ∈ RL×1 one by one and insertion is done on
n bits. In order to embed data in the acquired values, some of them are processed and used to mark
the next measurements as follows:

1. The measurement is first converted to binary (represented on 16 bits) and a XOR with the secret
key is applied.

2. The resulting 16 bits are split into chunks of length n
3. Each chunk is converted back to decimal, resulting the values that will be inserted. If the division

of the total number of bits to n provides a remainder, the last bits are stored and appended to the
next binary representation.

4. Each of the decimal values is inserted in the following measurement values based on the algorithm
described in Section 3.2.

The maximum for the inserted values is:

bnmax = 2n − 1 (2)

The insertion process is depicted in Fig. 1. The SPC generates measurements yi one by one and
each of them is processed at acquisition time. The very first collected measurement is processed and
the resulting bni values are inserted in the next available measurements. For the following acquired
measurements, if data is available for insertion and the measurement is eligible for marking, the data
is embedded and the modified measurement value is transmitted. If insertion is not possible, the
measurement is shifted and transmitted. If no data is available for insertion, the acquired measurement
is processed to be embedded in the next coming ones.

A numerical example is depicted in Fig. 2. The insertion is done on 7 bits, the thresh-
old T = 10 and the measurement to be inserted is −8. It is firstly converted in binary, to
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]. The 7 bits chunks are [1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 0], a 2
bits remainder [0, 0] will serve to build up the next chunk. The carrying sequence consists of the
following measurements [-4, 2, 22, 23]. The 2 chunks are inserted in the 1st and 2nd measurements
that correspond to prediction errors less than T and larger than -T. The rest of the measurements are
only shifted by 7 bits.
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Figure 2. Embedding process example on 7 bits.

With these steps, the following data is transmitted: the marked measurements ywm, the seed value
used to construct the measurement matrix and a location map representing the positions in y that were
extracted and then embedded in following eligible measurements.

An authorised user has access to extra information that allows the original measurements to be
computed: the threshold value T (with [−T, T] defining the expandable set of prediction errors), as
well as the secret key used to perform the XOR operation.

Because part of the measurements are used for embedding
, the resulting ywm has a length of Lwm that is less than L.
This means that in order to be able to reconstruct a lower quality of the original image based

on ywm, an unauthorised user must use a truncated version of the measurement matrix. It can be
constructed based on the random seed and location map as follows: generate a Hadamard matrix,
permute the columns using the same random number generator algorithm and seed initially used and
then remove the lines corresponding to the positions in the location map.

Considering this, the extraction steps an authorised user would perform are as follows:

1. Go through the elements of ywm one by one to extract the embedded data and recover the set of
original measurement values. This is possible since we use a RDH algorithm [37].

2. For each extracted value bni, convert it to binary, represent it on n bits and perform a XOR
operation to obtain the original data.

3. Concatenate the resulting values and slice chunks of 16 bits. Each 16 bits value is then converted
back to decimal, resulting the set of measurement values embedded in the data insertion stage.

4. Use the position map to insert these in the correct locations, finally obtaining the original values
of y.

As the deployed RDH algorithm is reversible, the recovered values are the same as the original
ones except the final one that could be truncated [37].
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3.2. Impact of data insertion on measurements dynamic range

As mentioned, given the particularities of CS measurements, we calculate the prediction error di

by considering the measurement mean y. Moreover, due to the construction of Hadamard matrix, the
mean estimate is always zero:

di = yi − y = yi (3)

It follows that the prediction error is the measurement itself and that the insertion is done directly into
the measurements.

According to the algorithm in [38], the prediction error is expanded to Di in order to insert bni.
By supposing the threshold T > 0 that defines the set of expandable measurements and the maximum
possible inserted value bnmax defined in eq. (2):

Di =


2n · di + bni if di ∈ [−T, T]

di + bnmaxT + bnmax if di > T

di − bnmaxT di < −T

(4)

In the insertion stage, the original yi value is replaced with the marked ywmi :

ywmi = Di + y = Di (5)

Based on (4) and (5), ywmi can be expressed as:

ywmi =


2n · yi + bni if yi ∈ [−T, T]

yi + bnmaxT + bnmax if yi > T

yi − bnmaxT yi < −T

(6)

It should be noted that the carrying measurements occupy the upper bits in ywmi and encrypted
chunks the lower bits. It is a consequence of modifying the original algorithm by taking the average of
all measurements instead of that of neighbors.

By choosing a large enough threshold T, all measurements become eligible for insertion. This
leads to authorised users not needing a position map in order to perform the extraction.

Since the algorithm shifts the measurements values in order to expand the prediction error, the
dynamic range will expand based on the thresholds and the inserted number of levels.

For a set of patterns ϕ ∈ RL×S of type scrambled Hadamard and a scene to be acquired x ∈ RS×1

with values xi ∈ [0, 1], according to eq. (1), the theoretical maximum measurement value occurs when
all the elements of 1 in ϕ correspond to areas of maximum light in the scene (xi = 1):

ymax = 2−1 · S (7)

Similarly, the theoretical minimum would be:

ymin = −ymax = −2−1 · S (8)

For an image of 256 × 256 bits, the range is theoretically [−215, 215], which requires a 16 bits representa-
tion. By embedding data, even if only using a single insertion level, an overflow appears forcing the
representation on 32 bits.

4. The Insertion Capacity
The scrambled Hadamard matrix usually behaves like a random Gaussian matrix [39]. The

obtained measurements have a Gaussian distribution with zero mean (Fig. 3). The standard deviation
depends on scene sparsity: the more sparse the scene, the lower is the standard deviation.
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Figure 3. An example of measurement distribution for scrambled Hadamard matrix. The blue area delimited by
the thresholds −T and T is the probability of insertable measurements.

Knowing the distribution and the thresholds [−T, T], the number of insertable measurements
M can be estimated by multiplying the total number of measurements L by the probability P to be
between thresholds:

M = L ∗ PT,σ = L ∗
∫ T

−T

1
σ
√

2π
e−x2/2σ2

dx (9)

If the insertion is on n levels, then the maximum number of bits that could be inserted is L ∗ PT,σ ∗ n.
In fact, this is only an upper limit since there is always a nonzero probability to use such measurements
as data.

Suppose that x is the true number of measurements that, at the end of on-the-fly insertion process,
are carrying data. Then the following equation holds:

x + q ∗ x ∗ n
16

= L ∗ PT,σ (10)

where x ∗ n/16 is the total number of measurements - insertable or not - sacrificed in view of insertion
(the rounding was neglected) and q is the probability to have insertable measurements among them.
The true number of measurements that carry data, derived from eq. (10) is:

x =
PT,σ ∗ L

1 + q ∗ n/16
(11)

Hereinafter, we calculate q in the hypothesis that we need two carrying measurements for inserting
one, meaning a number of insertion levels n between 8 and 16. Such situation occurs when we have
a string of 3 insertable measurements with, eventually, one or more non-insertable measurements
between the first and second ones:

q = P3 + P3 ∗ (1 − P) + P3 ∗ (1 − P)2 + ... =

= P2 ∗ [1 − (1 − P)m] ≈ P2 (12)

where m is a the number of terms. The term (1 − P)m becomes quickly negligible, being a probability.
For loose thresholds, P = 1 and likewise q = 1. As the thresholds stretch around zero, the probability
P reduces, the terms (1 − P)m start to count and the approximation becomes coarser. For T = 3 ∗ σ,
the error in approximating q is 1% and for T = 2 ∗ σ, it is 5%. The error estimation was done for m = 1.
For higher m, (1 − P)m is lower than 10−2. We do not encourage the use of small thresholds because it
reduces the insertion capacity and fragilizes the method as explained in Section VI.

With this approximation, the true number of measurements carrying data:
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x ≈ PT,σ ∗ L
1 + P2

T,σ ∗ n/16
(13)

The capacity in number of inserted bits is C = x ∗ n and the relative capacity Cr is:

Cr =
C
L
≈ PT,σ ∗ n

1 + P2
T,σ ∗ n/16

(14)

There are two mechanisms to control the capacity and finally, the distortion: the threshold T
through PT,σ and the number of insertion levels n. The former can provide a fine tuning, the latter a
coarse one.

If we give up to the fine tuning by working with large enough thresholds such to have PT,σ = 1,
the relative capacity simplifies to:

Cr ≈
n

1 + n/16
(15)

which has the advantage of being independent of image sparsity.
The fine tuning by controlling T is limited by the constraint of having a representation on 32 bits

after data embedding. In this case, the range of ywm should be [−216, 216], meaning:

yi + bnmaxT + bnmax < 216 (16)

yi − bnmaxT > −216 (17)

From eq. 16, it follows that the threshold can be at maximum:

Tmax =
215

2n − 1
(18)

For 13 levels for instance, Tmax is 3 meaning a very low capacity of insertion and a low distortion of
the recovered image. It is a mechanism that can be effective only at lower n.

Figure 4 depicts Cr as a function of measurements standard deviation, parametrized for 8 to 13
insertion levels and the corresponding Tmax. The plots follow a similar trend. The capacity is constant
up to a certain standard deviation, then decrease because of insufficient measurements available for
carrying data (eq. 14). With dashed line, is the capacity controlled only by the number of insertion
levels (eq. 15).

The number of remaining measurements after insertion and available for a low quality reconstruc-
tion is:

Rp ≈ L − C
16

= L(1 − Cr

16
) (19)

In Fig. 5, Rp is plotted vs. the number of insertion levels for three initial number of measurements
given as percentage.

5. The distortion of the reconstructed image
In partial encryption, the image reconstructed from the encrypted samples is visibly distorted. In

our method, the source of distortion is twofold: less measurements are available for the reconstruction
since part of them are removed in view of embedding and the remaining ones are distorted by
embedding or shifting. These two effects compete for the same goal, which is the image controlled
distortion.

To evaluate the contribution of the two sources, we have reconstructed images in two instances: by
inserting data and meanwhile, keeping all the measurements and by removing Membed measurements
without any embedding. Figure 6 depicts the image distortion given as Peak Signal to Noise Ratio



10 of 20

Figure 4. The theoretical relative capacity
as a function of measurements standard

deviation for Tmax and parametrized by n.
With dashed line, the capacity

calculated for no restrictive thresholds.

Figure 5. The percentage of measurements
after embedding for three initial numbers of

measurements: 40%, 30% and 20%.

Figure 6. The distortion as a function of insertion levels in three instances: reconstruction from truncated
measurements with no embedding (blue), marked measurements extended to contain the measurements to be
embedded too (red), and including both embedding and truncation (black).

(PSNR) versus the number of embedded levels, in these two instances. The plots are obtained
experimentally by averaging the PSNR over 359 patches from the sky image in section 7. Loose
thresholds were used, so that all measurements are considered eligible for embedding.

For this kind of image that is rather sparse, at 40% initial measurements, the main source of distor-
tion is the data insertion or shifting, which alters the values in ywm. In comparison, the reconstruction
quality when truncating the measurement sequence does not present major variations when depicted
as a function of insertion levels. To be sensitive to truncation, L should have been lower.

If tight thresholds are used, the number of measurements selected for embedding is reduced. To
have a fully contribution of the truncation mechanism, loose thresholds - enough to not matter - should
be used. In this case, the distortion can be controlled only through the number of insertion levels.

6. Data Integrity Aspects
The partial encryption is prone to ECA attack that consists in estimating the encrypted coefficients

based on some a priori knowledge like, for instance, the position of low frequency coefficients in DCT
based image compression.

In CS, due to the random projection, there are no privileged measurements. In our method, the
weakness is given by the fact that the encrypted measurements are placed at insertion,
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a) PSNR 14.67 dB, L=40% b) PSNR 31.03 dB, L=40%

c) PSNR 13.30 dB, L=18% d) PSNR 30.12 dB, L=18%

Figure 7. Example of ECA attack: (a,c) Patch reconstructed with insertion on 10 levels, (b,d) The same patch
recontructed with clean measurements and reduced Hadamard matrice (after EDA attack).

on the less significant bits of the carriers.
If loose thresholds are used, by several trials the encrypted chunks can be discarded and a better

quality image can be reconstructed with the reduced Hadamard matrix. An example is given in
Fig. 7. After ECA, the PSNR is improved by 16.36 dB when the initial percentage of measuremets is
40% and by 16.82 dB for 18% initial measurements. In this second case, the truncation mechanism
becomes effective. The PSNRs are calculated by respect with the reconstruction with full number of
measurements.

Even with this remarkable improvement in PSNR, the recovered measurements are not complete.
The embedded measurements that were discarded by ECA, are missing. According to Fig. 5, after
ECA, the reconstruction is done with less than 25% measurements instead of 40% in the first case and
less than 12.5% instead of 18% in the second one. The embedded measurements can be recovered only
if the user has access to the secret key used to protect them. The PSNR, which is 32.03 dB and 30.12 dB
respectively, confirms missing data.

Data integrity protection is obtained at the expense of volume increase. The number of measure-
ments sacrificed for embedding does not compensate for extending data representation from 16 to 32
bits. The compression rate calculated in Section VII shows how this overflow depends on the number
of insertion levels.

If tight thresholds are used, it is more difficult to recover clean measurements because of bnmaxT
in eq. (6) that needs the knowledge of T in order to be calculated.

7. Experimental Results
We experimentally test our method under the following aspects: embedding capacity, distortion,

and impact on data volume.
The experiments are carried out on simulated and real data. The simulated data are obtained from

an image of the W51 nebula (Fig. 8) converted to grayscale using the weighted method, normalized
to have values between 0 and 1 and split into 359 patches of 256 x 256 pixels each. Fig. 9 shows two
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Figure 8. The image of the W51 nebula obtained by NASA’s Spitzer Space Telescope.
The image was used to generate the simulated data [40].

Figure 9. Two examples of patches used for tests: a dense one (left) and a sparse one (right).

patches with different sparsities. We simulated the acquisition by calculating random projections
on a Hadamard matrix generated using Sylvester’s construction. The matrix only contains 1 and -1
elements. The elements in the first row are all positive, while all the other rows have an equal number
of positive and negative elements. The first row was excluded since it leads to a first measurement
with a double maximum value compared to the others. The matrix columns are randomly scrambled
before image projection [39]. We use 40% measurements meaning that 60% of the matrix rows are
discarded. To reconstruct the images from the embedded measurements, the matrix size is reduced
accordingly.

The real data consist of a set of measurements acquired with our setup in [42]. The imaged
object is a 0.5 mm thick sheet of metal with machined patterns in it, and with a total dimension of
13mm×13mm (Fig. 17). The object was exposed to homogenized light from a halogen lamp. Since the
construction of the SLM in Single Pixel camera only permits the use of sensing matrices composed
by 0 or 1, the real data were measured with a S-matrix having randomly scrambled columns. Such a
matrix ca obtained from the Hadamard matrix by removing its first row and column and turning all
the negative values to 0 [43], followed by randomly permuting its columns.

For image reconstruction, either from simulated or real data, we use an implementation of the
fast iterative shrinkage-thresholding algorithm (FISTA) presented in [41].

For embedding data, we considered a loose threshold of T = 500, which ensures that all measure-
ments are eligible for insertion.

When analyzing the results, we must take into consideration that an unauthorized user should still
be able to reconstruct a lower quality version of the original image using the modified measurements.
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Figure 10. The relative capacity Cr vs. the number of insertion levels n, for loose thresholds (T = 500).

Figure 11. The median of PSNR
experimental values against n for

T = 500 and T = 50.
The vertical dotted lines marks the range

of interest for the application.

Figure 12. The median of PSNR
experimental values for 3 ranges of

image standard deviation and
loose thresholds.

Since in our experiment all measurements are eligible for insertion, the capacity can be calculated
directly using eq. (15). In Fig. 10, the relative capacity Cr is plotted against the number of insertion
levels n. The curve has an ascending trend, with capacity values ranging from 0.9 bits/measurement
for 1 level to 7.5 bits/measurements for 14 levels.

To evaluate the image distortion obtained by embedding,
we calculate the PSNR taking as reference the image reconstructed from the original measurements.

Figure 11 plots the median of the PSNR of all 359 patches for a loose threshold (T = 500) and a more
restrictive one (T = 50). A drop in the reconstruction quality can be noticed after 6 levels. Up to 7
insertion levels, the distortion is not visible. For this reason, we restrict our analysis at n ∈ [7, 14]. We
repeated the experiments for a tight threshold T = 50. The plot in Fig. 11 shows a significantly higher
distortion for small n but results close to loose thresholds for n > 8.

We deepened the analysis and we split the image set into 3 subsets corresponding to the following
3 ranges of pixels standard deviation: [13,19], [19,24] and [24,67]. The ranges were chosen such to
cover the standard deviations of all images and to have approximately the same number of images in
each subset. In natural images, the standard deviation gives an indication about the image sparsity,
which is the main parameter in the CS reconstruction from a fixed percentage of measurements. The
plots of PSNR vs. n are quite similar for the 3 ranges (Fig. 12).
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a) Original e) Original

b) PSNR 29.18 dB f) PSNR 32.23

c) PSNR 21.89 dB g) PSNR 14.67 dB

d) PSNR 12.06 dB h) PSNR 13.45 dB

Figure 13. Reconstruction examples for a sparse and a dense patch: (a,e) originals obtained with the 40% genuine
measurements; (b,f) images after performing insertion on 7 levels; (c,g) images after insertion on 10 levels; (d,h)
images after insertion on 14 levels.

Examples of image degradation are shown in Fig. 13. For 7 insertion levels the quality of the two
patches is rather good. At 10 insertion levels, the distortion is quite strong, especially for the dense
patch that has a PSNR of 14.67 dB. Its content becomes almost undiscernable at 14 levels.
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Figure 14. Relative Capacity Cr as a function of PSNRs median.

The PSNR median at 10 levels is 18.21 dB for the whole set (Fig. 11). On the 3 ranges considered
for the standard deviation, it is 19.05 dB, 18.35 dB and 16.45 dB, respectively. Given the images visual
quality and the small variations of the PSNR with the standard deviation range, we adopted 10 as
being the appropriate number of insertion levels.

The distortion and the capacity are closely related. Figure 14 shows the correlation between the
relative capacity Cr and the PSNR. As expected, both capacity and distortion increase with the number
of insertion levels.

The data insertion by our algorithm modifies the data volume. There are two opposite effects that
compete: sacrificing measurements for insertion reduces the data volume and data embedding that
extends the data representation from 16 to 32 bits. These effects are summarized in the compression
rate equation below:

r = 2 ∗ x/L (20)

For loose thresholds, the number of measurements x in eq. (13) becomes:

x ≈ L
1 + n/16

(21)

which leads to the following equation for the compression rate:

r ≈ 2
1 + n/16

(22)

The compression rate shows that the algorithm always expands the data volume for a number of
insertion levels less than 16. Also, it should be noted that given the loose thresholds, the data volume
is not influenced by either the image size or the content. Only the number of insertion levels matters.
Figure 15 depicts the evolution of r for the analyzed range of insertion levels. The compression rate is
always higher than 1, showing a data overflow varying from 39% for n = 7 to 7% for n = 14.

The data throughput of SPCs is limited by the Digital Micromirror Device (DMD). Texas In-
struments DMD products have binary pattern rates ranging from 2,500 Hz to 32,000Hz [44]. By
multiplying these rates by 32 bits, which is the measurement binary representation after data hiding, a
maximum throughput of about 1 MHz is to be expected. The volume expansion by only 7-39% takes
into consideration the reduction of the number of measurements to be transmitted. This means a
shorter transmission time but here, we must take into consideration also the processing time necessary
to data hiding.

To jointly evaluate the data expansion and image distortion, we plotted in Fig. 16 the rate-
distortion curve. As the number of insertion levels increases, the distortion becomes more evident and
the data expansion less important.
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Figure 15. The compression rate vs. n
for insertion

with loose thresholds.

Figure 16. The rate-distortion curve for
insertion with loose thresholds.

For 10 levels, a number that we considered appropriate for our application, the measurements
volume increases by 23%. With respect to image size and taking into account that the sampling rate
is 40%, it follows the data volume after insertion represents 2 ∗ 0.4 ∗ 1.23 from the image size, which
means an image compression rate of 98%. CS expands data representation by 2, from 8 bits/pixel to 16
bits/measurement.

We measured the time of execution and necessary memory for both data hiding and data extraction
for 256 × 256 pixels images, 40% measurements and loose thresholds (Table I). The simulations were
performed on macOS 13.4 with 3.5 GHz CPU and 8 GB RAM, using the software Python 3.9.6. It is to
note that the time and memory increase with n and that they are higher for data extraction. Table I
also includes the values obtained when inserting on 10 bits and using L = 20%, respectively L = 30%.
As expected, they are lower for both execution time and memory requirements when compared to the
L = 40% and n = 10 values.

The experiments on smaller patches of 128x128 pixels have shown on average, a higher PSNR. If
the user chooses to work with patches sizes other than 256 × 256 pixels, the distortion can be tuned
from the number of insertion levels.

We compare our method with [33], which is close to ours as goal and approach. Similar to us,
the authors of [33] perform a partial encryption of CS measurements and hide information. Unlike
our method, the encryption concerns the sign of part of measurements and the hidden data is side
information. The tuning of distortion is obtained via the percentage of encrypted measurements. For
256 × 256 images and 50% measurements, at an encryption percentage of 0.62% the distortion of the
reconstructed image is 16.7 dB, similar to our result. The data hiding in [33] is done by histogram

Table 1. Execution time and required memory for L = 40% and loose thresholds.

Insertion levels
n

Insertion time
[ms]

Extraction time
[ms]

Insertion
memory[MB]

Extraction
memory[MB]

7 179.06 1159.12 1.39 2.85
8 186.24 1259.10 1.45 3.01
9 213.02 1359.29 1.48 3.20

10 231.15 1447.98 1.54 3.39
11 247.34 1537.39 1.59 3.51
12 256.72 1621.28 1.62 3.64
13 273.28 1679.53 1.65 3.82
14 281.57 1748.07 1.70 3.89

n = 10, L = 20% 121.25 778.05 0.78 1.71
n = 10, L = 30% 186.71 1181.71 1.20 2.51
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shifting, which supposes an estimation of the measurements distribution. Our method has the
advantage of being blind and that of an on-the-fly insertion.

Two other methods related to our work are [34],[35]. Although the CS does not concern scene
acquisition, it is used to pre-process the cover or watermak images. In [34], for pre-processing, the
authors use prediction coding based on CS progressive recovery and encryption by XOR with a
random stream generated with a secret key. Side information is inserted into the encrypted data. The
resulting insertion capacity is up to 4 bpp for a recovered image quality higher than 39 dB. In [35], the
CS is applied on the Principal Components (PCs) of watermark image to get CS measurements that
are further embedded into the HL subband of the wavelet-transformed cover image. The method has
three security layers, one from PCs and two from CS. The method reaches insertion rates of around 2
bpp and a PSNR above 30 dB for both watermark and cover image.

The insertion in real data with our method led to lower PSNRs compared to simulated measure-
ments. At 10 insertion levels, the PSNR is 10.48 dB for the real image and about 14 dB for the images
reconstructed from simulated measurements. The real images are shown in Fig. 17. In all three cases
i.e., 7, 10 and 14 insertion levels, the PSNRs are under those obtained for synthetic data.

a) Original b) PSNR 12.69 dB

c) PSNR 10.48 dB d) PSNR 9.94 dB

Figure 17. Images reconstructed from real measurements: (a) Original obtained with 40% measurements; (b)
image after data insertion on 7 levels; (c) image after insertion on 10 levels; (d) image after insertion on 14 levels.
The PSNR is calculated by respect to the Original.

8. Conclusion
The method we propose for securing CS streams is effective for multiple insertion levels. For the

synthetic data used in our experiments, the appropriate number of levels has been 10, with an average
distortion of 18 dB, which lets the image content still discernible for an unauthorized user. For the
real data and smaller images, the distortion was higher, suggesting that a smaller number of insertion
could be used. However, since the insertion capacity and the compression rate are directly impacted,
we recommend to use, as much as possible, a high number of insertion levels.
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The control of image distortion is done mainly through the number of insertion levels. If an
extension beyond 32 bits is tolerated for the modified measurements, a second mechanism of control
i.e., the insertion threshold T can be used. It adds a supplementary security layer.

The method expands the measurements volume by 40% to 6% for n ∈ [7, 14]. At 10 levels, the
volume increases by 23%.

The method is sensitive to ECA attacks, especially when the images are very sparse and good
reconstructions can be obtained from fewer measurements. However, the number of recovered
measurements remains incomplete, and the original image cannot be obtained without the secret key
used for encryption.
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