
ar
X

iv
:2

50
5.

22
98

9v
1 

 [
cs

.C
R

] 
 2

9 
M

ay
 2

02
5

Chainless Apps: A Modular Framework for Building Apps with

Web2 Capability and Web3 Trust

Brian Seong1 and Paul Gebheim1

1Polygon Labs

Abstract

Modern blockchain applications are often constrained by a trade-off between user experience and
trust. Chainless Apps present a new paradigm of application architecture that separates execution,
trust, bridging, and settlement into distinct compostable layers. This enables app-specific sequencing,
verifiable off-chain computation, chain-agnostic asset and message routing via Agglayer, and finality on
Ethereum — resulting in fast Web2-like UX with Web3-grade verifiability. Although consensus mech-
anisms have historically underpinned verifiable computation, the advent of zkVMs and decentralized
validation services opens up new trust models for developers. Chainless Apps leverage this evolution to
offer modular, scalable applications that maintain interoperability with the broader blockchain ecosystem
while allowing domain-specific trade-offs.

Keywords: Verifiable Compute, App-specific Sequencing, Cross-chain Interoperability, Agglayer

1 Introduction

Modern blockchain apps often face a trade-off be-
tween user experience and trust. Users must man-
age wallets, pay gas, and navigate bridges—barriers
that degrade the seamlessness of Web3. Meanwhile,
traditional blockchains require global re-execution of
every transaction, ensuring strong trust but limiting
scalability. Adding decentralization boosts security
& transparency, not throughput, since all nodes do
the same work. This creates a UX gap that dApps
struggle to overcome.

Verifiable compute addresses this by decoupling
execution from verification. Off-chain computation is
performed by a single prover or small group, who then
supply a proof (e.g., ZK or TEE attestation) that
others can cheaply verify. This approach preserves
trustlessness while massively improving throughput.

Chainless Apps represent a new paradigm at the
intersection of verifiable compute, modular infras-
tructure, and cross-chain interoperability. They are
modular, chain-agnostic applications designed to de-
liver Web2-like performance and UX while preserving
Web3-grade trustlessness. In a Chainless App, most
application logic executes off-chain for speed and scal-
ability in a VM-agnostic environment, then is verified
and settled on-chain for security and settlement.

The settlement can be tied to a particular chain,
but that tie-in brings the shortcomings of a particu-
lar chain (limited ecosystem, settlement times) to the
fore. Thus, these applications leverage shared cross-
chain infrastructure, specifically Agglayer, for uni-
fied messaging, asset bridging, and settlement. Ag-
glayer empowers apps to treat entire Web3 as a uni-
fied ecosystem (a la Web2) while abstracting away
the complexity of multichain interaction, including
gas fees and bridging logic, providing a seamless user
experience across networks.

Chainless Apps also follow an app-specific se-
quencing model [1], where each application behaves
like its own sovereign execution chain, controlling its
own transaction ordering and state evolution inde-
pendently off-chain. This design enables faster exe-
cution, domain-optimized state machines, and trust-
minimized verifiability without relying on global con-
sensus for every transaction.

Chainless Apps unlock a new class of user-facing
applications that were previously infeasible under tra-
ditional blockchain constraints — such as real-time
trading engines, fast-paced multiplayer games, or so-
cially interactive experiences that require responsive-
ness, privacy, and verifiability without incurring the
latency or UX friction of on-chain interaction. This
framework generalizes ideas previously explored in

1

https://arxiv.org/abs/2505.22989v1


the [A-Z]app Paradigm [11]. Recent systems like
vApps [20] also explore modular application architec-
tures that combine high-throughput execution with
verifiable computation, reinforcing the broader trend
toward app-specific design patterns.

Chainless Apps aim to feel like modern web
apps—fast, intuitive, and accessible—while retain-
ing the trust guarantees of decentralized systems.
By combining off-chain execution with on-chain ver-
ification, and separating concerns across execution,
trust, bridging, and settlement layers, developers
can tailor trust models to their needs. To ground
this architecture in a concrete example, we intro-
duce zkSpot, a proof-of-concept high-performance
spot trading application built using the Chainless
App design. zkSpot offers centralized exchange-like
speed with verifiable execution and seamless cross-
chain asset support. The rest of this paper outlines
the Chainless App architecture, explores a trading-
focused implementation, and considers future impli-
cations for scalable decentralized applications.

2 Background

The emergence of modular blockchain design [17] and
verifiable compute has laid the foundation for a new
class of applications that combine performance, se-
curity, and interoperability. This section introduces
the two core concepts that underpin the Chainless
App framework: verifiable computation as a scalable
execution model, and Agglayer as the infrastructure
enabling seamless cross-chain coordination.

2.1 Verifiable Compute

At the heart of Chainless Apps is the notion of verifi-
able compute. Verifiable compute refers to the ability
for a system to prove that a given computation was
executed correctly, such that others do not need to
re-run that computation in full to trust the result.

In practice, verifiable compute is achieved by gen-
erating an attestation or proof that others can inde-
pendently verify. If valid, the result can be accepted
without re-executing the computation. A common
approach is using zero-knowledge proofs (ZKPs),
where an off-chain executor runs application logic
and produces a succinct proof (e.g., SNARK [6] or
STARK [7]) attesting to its correctness. These proofs
are cheap to verify and imply correct state transi-
tions. This model powers zkRollups and zkVMs, en-
abling Ethereum to validate large batches of transac-
tions with minimal on-chain cost.

Another method uses Trusted Execution Envi-
ronments (TEEs), secure hardware zones (e.g., In-

tel SGX, ARM TrustZone) that ensure computa-
tion integrity and generate attestations. Though not
trustless, since it relys on hardware and manufactur-
ers, TEEs offer high performance and a significantly
higher bar for cheating. TEEs can also emit exe-
cution traces that are later verified by zk-proofs for
stronger guarantees.

Verifiable compute can also rely on consensus:
small validator committees re-execute logic and agree
on the outcome. This model, used in optimistic
rollups [8] and some bridges, assumes at least one
honest participant to detect fraud. While not as
strong as ZKPs, consensus-based verification remains
robust when backed by slashing and incentives.

Chainless Apps are designed to be flexible in what
trust model they use. The developer can choose a
mechanism (or even combine multiple) that best fits
their application’s requirements for security, cost, and
performance. In all cases, the goal is the same: de-
couple execution from on-chain consensus by doing
work off-chain and then proving to the chain that the
work was done correctly. This lays the foundation for
massive scalability gains while retaining the security
of the underlying blockchain.

2.2 Agglayer - Interoperability & Set-
tlement Layer

The future of blockchain scalability is modular and
multichain. Rather than building solely on a Layer-
1, developers are adopting Layer-2s [13], app-specific
chains, and modular blockchains, which decouples ex-
ecution, data availability [12], and settlements. Base
layers like Ethereum provide security, while execution
is offloaded to faster secondary environments.

A key enabler of this vision is chain abstraction
where users shouldn’t need to manage bridges or
switch networks. Agglayer provides the infrastruc-
ture for this abstraction. It unifies liquidity, users,
and state across chains by treating multiple networks
as a single, coherent system. At the heart of Ag-
glayer is the Unified Bridge, a standardized interface
and communication protocol deployed on all Agglayer
connected chains. It enables seamless asset and mes-
sage routing across chains without wrapping or cus-
tom bridges, simplifying both integration and liquid-
ity flows.

To maintain cross-chain safety, Agglayer enforces
pessimistic proofs, an invariant check that prevent
over-withdrawals. This mechanism acts as a built-
in safeguard against exploits, ensuring that no chain
can extract more than it deposited. Agglayer also en-
ables proof aggregation. Instead of each chain posting
its validity proof to Ethereum individually, Agglayer

2



bundles multiple proofs into one aggregate submis-
sion. This reduces settlement costs, improves effi-
ciency, and synchronizes finality across chains.

For real-time use cases, Agglayer will supports
fast interop, sub-second messaging across chains, as
well as third-party shared sequencing, which enables
cross-domain coordination [15]. These features allow
apps to trigger logic or finalize state on other net-
works almost instantly, unlocking responsive, multi-
chain use cases such as trading, gaming, and compos-
able DeFi.

With Agglayer providing the infrastructure for

fast, secure, and seamless multichain coordination,
Chainless Apps are uniquely positioned to thrive.
They combine off-chain execution, modular trust,
and unified cross-chain settlement into a cohesive
framework. By abstracting away the complexities of
chain management and verification, developers can
focus on application logic and user experience, while
end users enjoy fast, gasless, and intuitive interac-
tions. In the following sections, we introduce the
Chainless App architecture in detail, covering its lay-
ered design, trust model flexibility, and real-world im-
plementation examples.

Figure 1: High-level architecture of a Chainless App. It shows user interaction through Web2-like interfaces,
off-chain execution in TEEs, validation via trust layers (ZKVMs, AVSs), and cross-chain bridging and
settlement via the Agglayer.

3



3 Chainless App Architecture

A Chainless App is organized into multiple layers,
each responsible for a different aspect of the applica-
tion’s operation. This layered design (illustrated in
1) decouples the fast but off-chain execution from the
trust enforcement and blockchain interaction. Layers
include: (i) an Execution Layer where the applica-
tion’s business logic runs and the state is managed off-
chain, (ii) a Trust Layer which verifies the accuracy of
the execution using one or more methods of verifiable
computation, (iii) an Interoperability Layer (built on
the Agglayer) which handles cross-chain communica-
tion and asset movement, and (iv) a Settlement Layer
that finalizes the state of the application on a base
blockchain for long-term security and dispute resolu-
tion. By separating these concerns, Chainless Apps
achieve modularity and flexibility – each layer can
potentially be implemented or configured in different
ways without affecting the others. Below, we describe
each layer in detail and how they interoperate to pro-
vide a seamless yet trustless experience.

3.1 Execution Layer

The Execution Layer of a Chainless App is responsi-
ble for running the application’s core logic and main-
taining its off-chain state, analogous to the back-
end of a traditional web app. Unlike traditional
blockchains, Chainless Apps implement app-specific
sequencing: each application defines its own state
machine, handles transaction ordering independently,
and logs state transitions off-chain. This decoupled
model enables higher throughput and responsiveness
than global blockchain consensus, while still enabling
later verification and settlement.

By moving execution off-chain, apps can process
many operations per second without being limited by
block times or gas costs. The Execution Layer runs
in a controlled environment—such as a standard run-
time, WASM VM, or secure enclave—rather than as
on-chain smart contracts. However, because this exe-
cution is untrusted by default, it must be paired with
robust verification by the Trust Layer.

Execution Trace and Application Logic:
The Execution Layer processes a stream of user in-
puts and records an ordered sequence of transitions,
forming an execution trace. This trace represents
how the application moved from one state to the next
over each block or epoch. While app logic can be
implemented in any language or environment, it can
be abstractly modeled [21] as a Finite State Machine
(FSM), where each transition is a deterministic func-
tion of the current state and an input. This trace

becomes the canonical record of computation and is
committed cryptographically (e.g., via Merkle roots
or hash chains).

The Trust Layer later consumes this trace for veri-
fication. zkVMs can deterministically replay the com-
putation and generate succinct proofs of correctness.
Similarly, AVS or committee-based systems can re-
execute the logic to verify consistency. This structure
ensures computation is auditable, deterministic, and
anchored in verifiable commitments.

TEE Execution: Optionally, Chainless Apps
may run execution inside a Trusted Execution
Environment (TEE) to ensure low-latency, high-
throughput operation with integrity guarantees. A
TEE (e.g., Intel SGX or AMD SEV) enables appli-
cation logic to run at near-native speed while pro-
tecting internal state from tampering—even by priv-
ileged operators. This model provides CEX-like re-
sponsiveness, allowing a trading app to match orders
and update balances in milliseconds. TEEs also mit-
igate MEV (Maximal Extractable Value) by sealing
execution order against manipulation. As highlighted
by Flashbots’ Rollup Boost framework [9], TEEs can
preserve fairness in off-chain systems.

Data Availability of Execution Trace: Once
generated, execution traces must be available for ver-
ification. Depending on the application’s privacy and
cost needs, traces can be stored privately (with a
hash committed on-chain), or publicly via decentral-
ized data availability (DA) networks like Avail [18].
This flexibility allows developers to trade off between
auditability and overhead.

Execution Security: While TEEs offer per-
formance and integrity, they are not foolproof. A
compromised enclave—through side-channel attacks,
bugs, or insider access—can produce invalid results
with valid-looking attestations. Therefore, Chainless
Apps treat the Execution Layer as untrusted until
verified. Every output must be validated by the Trust
Layer using the execution trace.

To optimize batching and checkpointing, execu-
tion traces are often segmented into blocks or epochs,
each committed with a Merkle root or hash. Periodic
checkpoints can be generated every µ transactions or
ν seconds, aligned with proof generation and bridge
sync intervals.

This design allows Chainless Apps to execute
thousands of transactions off-chain while preserving
verifiability, correctness, and finality when anchored
on-chain through Agglayer.

In essence, the Execution Layer behaves like a
rollup sequencer—but is application-specific and can
configured to run in a secure enclave. It accumulates
a sequence of transactions and produces verifiable evi-

4



dence of correct execution, ready for downstream val-
idation and settlement.

3.2 Trust Layer

The Trust Layer is responsible for verifying that the
Execution Layer’s outputs are correct and enforce-
able according to the application’s rules. In other
words, it provides the trustlessness guarantee: ensur-
ing off-chain computation was performed faithfully
before accepting state updates on-chain. Chainless
Apps are modular at this layer, developers can se-
lect the verification method that best balances their
application’s security and performance needs.

3.2.1 Trust Mechanisms

Common trust mechanisms include zero-knowledge
proof verification, autonomous verifiable service
(AVS), replicated consensus, optimistic verification,
or external trust assumptions. We focus first on the
strongest model: zkVM-based verifiable compute.

zkVM Verifiable Compute: One of the most
secure approaches is to use a zkVM (zero-knowledge
Virtual Machine) such as Plonky3 based zkVMs [5]
or RiscZero’s zkVM [4] to re-execute the application’s
execution trace and produce a succinct proof of cor-
rectness. In this model, the off-chain execution trace
is fed into the zkVM, which deterministically simu-
lates the same transitions based on the application’s
logic. If execution was correct, the zkVM outputs
a cryptographic proof (e.g., a SNARK or STARK)
attesting that the final state was derived correctly.

This proof is small (hundreds of bytes) and ex-
tremely cheap to verify on-chain, while providing
strong cryptographic assurances: if the proof veri-
fies, the chance that an invalid computation passed is
negligible under standard assumptions. Thus, zkVMs
turn Chainless Apps into systems similar to validity
rollups, where every off-chain computation is inde-
pendently verifiable.

By integrating a zkVM, a Chainless App achieves
maximum trustlessness: even if the Execution Layer
(e.g., the TEE) were compromised, invalid state tran-
sitions would be detected and rejected by on-chain
verification. The trade-off is that generating zero-
knowledge proofs, especially for large or complex
state transitions, can be resource-intensive. Luckily,
the proving systems are rapidly becoming more effi-
cient through advances in zk circuit design and hard-
ware acceleration.

Committee-Based Verifiable Compute:
Chainless Apps can leverage off-chain validator com-
mittees to validate execution traces and ensure cor-

rectness. In this model, a set of independent nodes
either re-execute transactions (as seen in EigenLayer
AVS [2] and Truebit [3]) or reach consensus on the
resulting state (as in Tendermint or HotStuff).

Committee-based verification offers several bene-
fits. It enables flexible, programmable validation of
arbitrary application logic without requiring expen-
sive zk-circuit design upfront. It also provides faster
confirmation times compared to full zk-proving, mak-
ing it attractive for applications where low latency is
important. However, its security model varies based
on configuration, some rely on slashing to deter dis-
honesty, others depend on the assumption of at least
one honest validator willing to challenge fraud.

It is well-suited for apps seeking faster time-to-
finality with decentralized security guarantees. One
critical consideration remains data availability: val-
idators must be able to access execution traces or
input data efficiently, whether via public DA layers,
private storage, or inline publication. The final choice
between staking-based committees, consensus-based
finality, or challenge-based fraud detection depends
on the specific risk tolerance, cost sensitivity, and re-
sponsiveness required by the application.

Operator Trust Compute: At the most
trust-dependent end of the spectrum, a Chainless
App could operate without cryptographic or game-
theoretic verification by simply asking users to trust
the operator’s off-chain results. This model priori-
tizes simplicity and speed, sometimes supplemented
with legal contracts or insurance. While unsuitable
for serious decentralized public-facing apps, Opera-
tor Trust can be acceptable for low-stakes use cases,
private betas, early deployments, or institutional de-
velopers who has other web2 constraints for trust.
Critically, even Operator Trust apps can leverage Ag-
glayer for asset bridging and settlement, maintaining
interoperability even if correctness relies purely on
operator reputation. As applications mature, they
can transition from Operator Trust to stronger veri-
fication models as needed.

3.2.2 Trust Layer Design: Flexible Verifica-
tion Models

Chainless Apps allow developers to configure hy-
brid trust models depending on their security, per-
formance, and cost requirements. Several verification
strategies are possible:

• Full Re-execution by Trust Layer: The Trust
Layer deterministically replays the entire execu-
tion trace, validating every transaction step with-
out trusting the TEE beyond transaction ordering.

5



• TEE Sequencing + Partial Verification &
State Verification: First validate the TEE’s at-
testation, then selectively re-verify critical transi-
tions through zk-proofs or validator committees to
balance trust and computational efficiency.

• Sequencing + State Verification by Trust
Layer: The Execution Layer processes transac-
tions like a traditional Web2 server, but the re-
sulting state transitions are independently verified
by a Trust Layer component (e.g., zkVM, AVS),
avoiding full re-execution to optimize performance.

• No State Verification (Operator Trust
Mode): Forgo formal validation entirely and rely
on operator trust, legal agreements, or insurance.
Suitable only for low-risk, internal, early-stage de-
ployments, or institutional usecases.

• Other Custom Security Models: Applications
are free to design their own hybrid or bespoke secu-
rity models that match their specific threat models
and operational needs.

Figure 2: The more re-execution you run in the trust
layer, the more secure it is, but the higher the per-
formance overhead.

The choice of trust model depends on the applica-
tion’s risk tolerance, performance targets, and matu-
rity stage. High-value apps such as trading platforms
or custody solutions may favor full zk-proof based
verification, while latency-sensitive applications like
gaming may initially leverage TEE-backed sequenc-
ing with periodic zk validation.

While this flexibility enables innovation, it also
introduces a greater burden on users and auditors
to evaluate the security posture of each Chainless
App. Unlike traditional smart contract-based dApps
or rollup SDKs where trust assumptions are more uni-
form, Chainless Apps require careful assessment of
the chosen trust model, sequencing logic, and verifi-
cation pathways. Future tooling for standardizing at-

testations, proof disclosures, or modular audits may
help reduce this burden as the ecosystem matures.

Importantly, Chainless Apps can evolve their
trust architecture over time, mixing, matching, or
upgrading verification modules as technologies and
threat models advance, without re-architect the core
system.

This flexibility is made possible because Agglayer
isolates and secures interoperability independently of
the internal trust assumptions of each app or chain.
Through pessimistic proofs, Agglayer ensures that as-
sets bridging out from a chain or Chainless App can-
not be double spent or overdrawn, even if the inter-
nal security model of the application varies. In this
model, each Chainless App is responsible for main-
taining the authenticity of its internal state, while Ag-
glayer guarantees the correctness and safety of cross-
chain asset transfers and interactions. This separa-
tion of concerns allows diverse trust models to coexist
while maintaining global interoperability guarantees
across the ecosystem.

3.3 Interoperability Layer Using Ag-
glayer

A critical feature of Chainless Apps is native interop-
erability—the ability to seamlessly move assets and
messages across multiple blockchains without custom
bridges or fragmented liquidity. Without a unified
interoperability layer, every app would have to inde-
pendently manage bridging logic, trust different net-
works, and risk security breaches. Chainless Apps
solve this by integrating a dedicated Interoperability
Layer built on Agglayer [10].

Agglayer is an interoperability and settlement
protocol that unifies liquidity, state, and messaging
across diverse blockchain networks, while also fa-
cilitating settlement for Agglayer-connected chains.
It abstracts away the fragmentation of cross-chain
interaction, allowing applications to operate across
ecosystems as if they were part of a single network.
For Chainless Apps to operate on Agglayer, there
are three main components to integrate with. First,
the Unified Bridge provides a standardized asset and
message bridging interface deployed across all con-
nected chains, eliminating the need for chain-specific
wrapping or custom bridges. Second, Pessimistic
Proofs introduce a real-time token balance check that
ensures no chain can withdraw more assets than it
originally deposited, preventing common bridge ex-
ploits and maintaining liquidity safety across the
system. Finally, AggKit is a lightweight developer
toolkit that exposes core Agglayer functionality, en-
abling applications to easily integrate asset bridging

6



and cross-chain messaging with minimal development
overhead.

While Chainless Apps can technically operate
without Agglayer, doing so reintroduces fragmenta-
tion in liquidity, messaging, and settlement logic.
Agglayer provides an unified interop and settlement
layer that simplifies cross-chain UX and protects as-
set invariants — enabling Chainless Apps to scale as
first-class citizens of a multichain world.

Figure 3: A detailed looks of Chainless-App’s Ag-
glayer integration.

By leveraging Agglayer, Chainless Apps gain ac-
cess to secure and standardized cross-chain func-
tionality. Apps can enable seamless deposits and
withdrawals across chains, maintain unified liquidity
tracking, and perform atomic cross-chain actions such
as bridging assets and triggering smart contracts in a
single user operation. Additionally, Agglayer’s Fast
Interop feature enables sub-second cross-chain mes-
saging, allowing latency-sensitive use cases like high-
frequency trading, gaming, and composable DeFi to
function smoothly across multiple chains.

Crucially, Agglayer separates internal applica-
tion security from cross-chain settlement guarantees.
Even if a Chainless App adopts a lighter internal trust
model, such as relying primarily on TEE-backed exe-
cution, cross-chain asset movement remains protected
by the pessimistic proof mechanism at the Agglayer
level. This design ensures that regardless of an in-
dividual app’s internal verification strategy, the in-
tegrity of cross-chain transactions and liquidity re-
mains safeguarded.

Figure 4: A highlevel sequence diagram of a Chain-
less App interacting with Agglayer

3.4 Settlement Layer

The Settlement Layer is the final step of the Chain-
less App architecture, anchoring off-chain execution
and trust proofs onto a secure base blockchain such
as Ethereum. While the Execution Layer runs trans-
actions off-chain and the Trust Layer verifies their
correctness, the Settlement Layer records the final
application state immutably on-chain, ensuring full
finality, dispute resolution, and long-term security.

In the Chainless model, settlement is typically
handled by Agglayer’s smart contracts. When the
Trust Layer generates a proof—such as a zk proof,
validator signatures, or an optimistic validation, then
an Agglayer node submits this data to the Settlement
Layer. Along with state roots, bridge events are also
recorded to ensure liquidity invariants are preserved
across chains.

The Settlement Layer acts as the ultimate source
of truth: once a state update is finalized, users can
safely bridge out assets, reference balances, or resolve
disputes based on the canonical on-chain state.

Although this paper assumes Ethereum as the de-
fault settlement layer, Chainless Apps can target any
sufficiently secure base, such as Agglayer in the long
run. In all cases, settlement anchors the app’s cor-
rectness and ensures that the app’s outcomes, bal-
ances, and interactions remain verifiable and trustless
across Web3 ecosystems.

4 What Chainless Apps Unlock

Chainless Apps enable new classes of applications
by decoupling execution from trust and settlement.
With flexible execution environments and pluggable
verification mechanisms, developers are no longer
limited by the constraints of on-chain logic or rigid
rollup architectures. This section showcases several
application designs—ranging from high-performance
trading platforms to verifiable games and decentral-
ized social systems—that demonstrate the diversity

7



of execution and trust configurations made possible
by the Chainless App framework.

4.1 zkSpot

To illustrate the Chainless App architecture in prac-
tice, consider a high-performance spot trading appli-
cation, which we will refer to as zkSpot [19] through-
out this context. zkSpot aims to deliver the speed
and user experience of a centralized exchange (CEX)
— fast order matching, real-time updates, no visible
gas fees — while retaining the trustlessness and self-
custody of a decentralized exchange (DEX). In short:
“Use it like a CEX, trust it like a DEX.”

Figure 5: Flow of zkSpot execution, trust verifica-
tion, cross-chain bridging, and settlement.

At User Interface Layer, traders interact
through a Web2-style web application. They can
place orders, deposit assets, and manage balances
without signing blockchain transactions in real-time.
Onboarding is simplified through optional embedded
wallets, with Agglayer handling the underlying cross-
chain deposits and withdrawals.

The Execution Layer runs the trading en-
gine inside a Trusted Execution Environment (TEE),
maintaining an off-chain central limit order book
(CLOB). Trades are matched and balances updated
within milliseconds inside the enclave, with execution
logs generated for each batch. These logs are crypto-
graphically attested to ensure execution integrity and
enforce transaction ordering guarantees.

The Trust Layer verifies each batch using a
zkVM (such as Succinct’s SP1 [16]). The zkVM de-
terministically replays the trade logic based on the
execution trace and generates a succinct zk-proof at-
testing that all matching and balance updates were
performed correctly. This proof is then submitted to
Agglayer for confirmation.

At the Interoperability Layer, Agglayer vali-
dates the zk-proof and updates the unified cross-chain
state. Verified state transitions allow users to bridge
their updated balances to any Agglayer-connected
chain.

Finally, the Settlement Layer records zkSpot’s
finalized state on Ethereum. The Agglayer settlement
contracts immutably anchor the updated state roots
and balance proofs, completing the loop between fast
off-chain execution and on-chain verifiability.

zkSpot demonstrates how Chainless Apps elimi-
nate traditional trade-offs. It offers CEX-level UX
without compromising Web3-grade guarantees —
and without launching a dedicated rollup or valida-
tor set. Developers simply plug into the modular Ag-
glayer infrastructure. The same architectural prin-
ciples can be applied to unlock many other types of
applications.

4.2 Other Chainless Designs

While zkSpot highlights one high-trust model (TEE
+ zkVM), the Chainless framework unlocks a broad
range of applications using different execution and
trust configurations — tailored for their domain-
specific needs.

Verifiable web3 games: A turn-based multi-
player game runs its logic off-chain in native run-
time. Each player’s actions (e.g., move, attack) are
recorded into state transitions and batched as execu-
tion traces. A zkVM verifies that all game logic was
followed correctly — enforcing fairness without re-

8



quiring all logic to run on-chain. Agglayer interop al-
lows NFT rewards or state syncs to flow across chains.
This design enables games to feel real-time and inter-
active while remaining cryptographically verifiable.

Private institutional finance systems: A
bank or regulated institution can deploy a private
Chainless App to manage internal processes like pay-
ments, compliance checks, or trade settlement. The
Execution Layer runs business logic off-chain in a se-
cure enclave (TEE), while trust is enforced through
internal attestations, audit logs, or selectively ap-
plied zk proofs. In this setting, the Trust Layer may
include formal compliance attestation rather than
zkVM verification, or use optimistic proofs with legal
recourse. If public visibility is needed (e.g., for regula-
tory settlement), finalized states or aggregate proofs
can be posted on-chain via Agglayer. This archi-
tecture unlocks permissioned systems that retain au-
ditability, verifiability, and interoperability—without
requiring a full blockchain stack.

Verifiable Web2 integration via zkTLS: A
Chainless App can securely ingest data from HTTPS
APIs (e.g., price feeds, off-chain identities, or attes-
tations) using zkTLS. In this setup, the Execution
Layer establishes a TLS connection with a Web2 ser-
vice and captures the server’s signed response. The
Trust Layer then generates a zero-knowledge proof
that this response was delivered over a valid TLS
session, including verification of the TLS certificate
chain and server authenticity, without revealing the
full session content. This proof is generated using a
zkVM-based TLS prover, and can be posted on-chain
or passed across chains via Agglayer. This unlocks
verifiable oracles and Web2–Web3 bridges that oper-
ate without trusted intermediaries, enabling trustless
consumption of HTTPS data in smart contracts.

These examples highlight the expressive power of
Chainless Apps. Developers can pick the right mix of
performance, verification, and interoperability tools
— with Agglayer enabling seamless cross-chain inter-
action regardless of the internal trust model.

5 Conclusion

Chainless Apps present a new modular paradigm for
building blockchain applications that combine the
performance of Web2 systems with the verifiabil-
ity and decentralization guarantees of Web3. By
decoupling execution, trust verification, cross-chain
interoperability, and settlement into distinct layers,
Chainless Apps allow developers to optimize for scal-
ability, flexibility, and security independently at each
stage.

Central to this design is app-specific sequencing,
where each application maintains independent con-
trol over transaction ordering and state evolution off-
chain. This enables domain-optimized performance
while retaining the ability to later verify and settle
results trustlessly on-chain.

Through verifiable compute techniques such as
zkVMs, validator committees, or trusted hardware,
applications can run high-throughput operations off-
chain while maintaining cryptographic or decentral-
ized trust guarantees. Agglayer further strengthens
this model by providing a standardized interoperabil-
ity and settlement infrastructure — enabling seam-
less asset and message bridging, liquidity unification
across chains, and real-time cross-chain communica-
tion, all anchored by pessimistic proofs for safety.

This architecture allows developers to select trust
models that fit their specific use cases, ranging from
high-assurance zk verification to lightweight commit-
tee or legal enforcement models, without fragment-
ing the broader security and liquidity ecosystem. It
also ensures that even applications with diverse in-
ternal assumptions can interoperate safely through
Agglayer’s shared settlement framework.

The zkSpot example demonstrates the viability
of Chainless Apps today: achieving CEX-like UX
while preserving Web3-grade guarantees — without
the need to deploy new blockchains, manage val-
idator sets, or fragment liquidity. Moving forward,
the Chainless App framework has broad applicability
beyond trading into gaming, social platforms, data
availability, and beyond — offering a new founda-
tion for scalable, trust-minimized, and interoperable
blockchain applications.

In a modular and multichain future, Chainless
Apps, powered by app-specific sequencing and cross-
chain interoperability, represent a fundamental step
toward realizing the vision of a seamless, verifiable,
and user-centric Web3 ecosystem. The vision aligns
with modular decentralization pathways [14].

6 Acknowledgements

The authors would like to thank the broader Poly-
gon Labs team for insightful discussions on mod-
ular blockchain design, verifiable computation, and
cross-chain interoperability that helped shape the
ideas presented in this paper. Special thanks to the
developers and researchers behind projects such as
Polygon Zero(Plonky3), Polygon Miden, RISC Zero,
EigenLayer, Succinct, and Flashbots, whose pioneer-
ing work on zkVMs, decentralized validation, and
MEV minimization provided critical technical foun-

9



dations.
We would like to specifically acknowledge David

Silverman for contributing the “Just Trust Me Bro”
(JTMB) terminology, which is Operator Trust and
for valuable discussions around the early concepts
of Chainless Apps. We also thank Pablo Vigara
and Saúl Garćıa for their work on implementing the
zkHyperliquid(zkSpot) proof-of-concept demo, which
helped demonstrate the practical viability of the
Chainless App architecture. We also extend our ap-
preciation to Rongxin Zhang from Whitepaper Read-
ing Club, Ellie Davidson from Espresso Systems,
Katie Mckeon and Stasia Carson from Sindri team,
Soubhik Deb and Ishaan 0x from EigenLayer team,
last but not least Abhishek Agarwal and Brendan
Farmer from Polygon Labs for the extensive review.

Finally, we acknowledge the broader modular
blockchain and Layer 2 research community, includ-
ing the authors of foundational works on zkSNARKs,
zkSTARKs, rollup architectures, and application-
specific sequencing, for advancing the field and inspir-
ing the Chainless App framework. We appreciate the
open-source and academic communities whose contri-
butions have made this work possible.

References

[1] Yash Agarwal. “Demystifying Application Spe-
cific Rollups on Solana VM — An Eclipse Deep
Dive.” Medium, December 2022.

[2] EigenLayer Team. EigenLayer: The Restaking
Collective. Whitepaper, 2023.

[3] Jason Teutsch and Christian Reitwiessner. “A
Scalable Verification Solution for Blockchains.”
arXiv preprint arXiv:1908.04756 (2019).

[4] Jeremy Bruestle, Paul Gafni, et al. RISC
Zero zkVM: Scalable, Transparent Arguments
of RISC-V Integrity. RISC Zero Technical
Whitepaper, 2023.

[5] Polygon Zero Team. Plonky3: Recursive zk-
SNARKs over Modern Curves. GitHub reposi-
tory, 2023.

[6] Eli Ben-Sasson et al. “Succinct Non-Interactive
Zero Knowledge for a von Neumann Ar-
chitecture.” IACR Cryptology ePrint Archive
2013/879 (2013).

[7] Eli Ben-Sasson et al. “Scalable, Transpar-
ent, and Post-Quantum Secure Computational
Integrity.” IACR Cryptology ePrint Archive
2018/046 (2018).

[8] Harry Kalodner et al. “Arbitrum: Scalable, Pri-
vate Smart Contracts.” 27th USENIX Security
Symposium, 2018.

[9] Flashbots Team. “Introducing Rollup-Boost:
Launching on Unichain.” Flashbots Writings,
October 2024.

[10] Polygon Labs. Aggregated Blockchains: A New
Thesis. Polygon Technology Blog, January 2024.

[11] Brian Seong. “The [A-Z]app Paradigm: Trust-
less Apps with Web2 UX and Web3 Verifiabil-
ity.” Personal Blog, 2024.

[12] Mustafa Al-Bassam. “LazyLedger: A Dis-
tributed Data Availability Ledger with
Client-Side Smart Contracts.” arXiv preprint
arXiv:1905.09274 (2019).

[13] Vitalik Buterin. “An Incomplete Guide to
Rollups.” Vitalik.ca Blog, January 2021.

[14] Vitalik Buterin. “Endgame (Thoughts on
Blockchain Decentralization).” Vitalik.ca Blog,
December 2021.

[15] Huijian Han et al. “A Layer-2 Expansion Shared
Sequencer Model for Blockchain Scalability.”
Blockchain Research and Applications, 2024.

[16] Succinct Labs. “SP1: A General-Purpose zkVM
for Verifying Arbitrary Programs.” Succinct
Documentation, 2023.

[17] Christine Kim. “Scaling Blockchains: The Mod-
ularity Thesis.” Galaxy Research Report, 2023.

[18] Avail Team. Avail: A Modular Data Availabil-
ity Layer for Scalable Blockchain Applications.
Whitepaper, 2024.

[19] Brian Seong, Pablo Vigara and Saúl Garćıa.
zkHyperliquid: A Proof of Concept Chain-
less App for High-Performance Spot Trading.
GitHub repository, 2024.

[20] Isaac Zhang, Kshitij Kulkarni, Tan Li, Daniel
Wong, Thomas Kim, John Guibas, Uma Roy,
Bryan Pellegrino, and Ryan Zarick. “vApps:
Verifiable Applications at Internet Scale.” arXiv
preprint arXiv:2504.14809, 2024.

[21] Kautuk Kundan. “Micro-Rollups: Modu-
lar Micro-Services for Web3” 2024. Avail-
able at: https://assets.stackrlabs.xyz/

litepaper.pdf

10

https://assets.stackrlabs.xyz/litepaper.pdf
https://assets.stackrlabs.xyz/litepaper.pdf

	Introduction
	Background
	Verifiable Compute
	Agglayer - Interoperability & Settlement Layer

	Chainless App Architecture
	Execution Layer
	Trust Layer
	Trust Mechanisms
	Trust Layer Design: Flexible Verification Models

	Interoperability Layer Using Agglayer
	Settlement Layer

	What Chainless Apps Unlock
	zkSpot
	Other Chainless Designs

	Conclusion
	Acknowledgements

